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Chapter 1 Introduction 

 

1-1 Progress of Korea’s water supply system 

 

Korea has more than 100 years of water purification history since the Plant No. 1 at the 

“Ttukdo” water reservoir in the “Ttuk-seom” region was established as the first of the water 

purification plants.1) Although water supply facilities and dissemination were extremely 

inadequate in the early days, water supply and the improvement of water supply facilities 

showed rapid progress under the economic development policy that started in the late 1970s, 

and water supply for large cities including Seoul began to meet the demand in the 2000s (Fig. 

1-1-1). 

According to the 2011 waterworks statistics, the water-supply population was 48,937,688 

people out of the administrative total population of 51,716,745; while the water supply ratio 

all over the country and in metropolitan cities were 95.8% and 97.9%, respectively, which 

means a majority of the people in Korea are now receiving water supply services.  

Recently, a waterworks team in Korea has been making an effort to supply high quality 

water. The city of Seoul especially announced a “five-year plan of waterworks vision” in 

2007. It included the supplying of the best water quality and the achievement of 

competitiveness in order to prepare for the water industry market to open up. The waterworks 

vision had three major goals, which were to supply the best water quality, to provide the best 

customer service, and to achieve the highest revenue water ratio in the world. The 

waterworks team conducted the following to accomplish these goals. 

Firstly, in order to produce the best water quality, the waterworks team carried out a 

consolidated water examination on the achievement of quality water source and advanced 

water treatment such as membrane system. As a result, advanced water treatment technology 
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is making great contributions not only to the quantitative growth, but also the qualitative 

growth of water supply. This is particularly owing to the fact that water-supply consumers are 

seeking high standard water services that correspond to their improved living environment.  

Secondly, tap water is fully delivered all the way up to the faucet under the system of 

service pipes without any deterioration in water quality. The ability of a pipe network system 

to function greatly affects water supply conditions in terms of quantity and quality. 

Particularly, the average revenue water ratio of the entire country in relation to the amount of 

fees collected for the production of water supply facilities, was 83.5% in year of 2011 (Fig. 

1-1-2). It is reported that this mostly resulted from pipe deterioration and water leakage in the 

water distribution system. Water leakage is greatly associated with the reduction of function 

caused by decrepit water distribution pipes (Fig. 1-1-3). 

 

 

Fig. 1-1-1 Trend of water supply ratio in Korea 

 (Source: Website of Korean Statistical Information Service)  
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Fig. 1-1-2 Trend of revenue water ratio in Korea (Source: 2011 waterworks statistics) 

 

 

Fig. 1-1-3 Trend of leakage ratio in Korea (Source: 2011 waterworks statistics) 
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1-2 Leakage and deterioration of distribution pipelines 

 

There are many factors that contribute to leakage and deterioration, and these factors have 

some kind of correlation between them2). This study looks at four remarkable factors: the 

pipe material as a physical and chemical factor, the aging as a physical factor, the soil 

property as a chemical factor, and the replacement as a social factor. 

Firstly, the occurrence of leakage and deterioration is substantially different for each pipe 

material, which includes around 13% PVC and 12% PE pipes (Fig. 1-2-1). Particularly 

among the distribution pipes, 12% are cast iron pipes (CIP). The main disadvantages of CIP 

are that it is heavy and that it is subject to corrosion from the inside and the outside.3) 

Consequently, as ductile cast iron pipe (DCIP) is stronger and less rigid than CIP, it is mostly 

used in distribution pipe instead of CIP. 

In the case of service pipes, 24.2% and 24.1% of pipelines are PVC and PE, respectively, 

which are hardly used for pipes to be newly laid or replaced (Fig. 1-2-2). PVC and PE pipes 

are highly valuable in many construction applications as they are thermo resistant and fire 

retardant, and they serve as high quality water conduits. However, the probability of leakage 

is high when heat plate bonding and strength is weak.4) Nowadays, stainless steel is mostly 

used in service pipes instead of PVC and PE. As indicated by the 2011 waterworks statistics, 

there are around 37% of PVC and 14% of PE pipes that are over 21 years in use (Fig. 1-2-3). 

This is the absolute cause of leakage in service pipes.  

 

Table 1-2-1 Information of pipe materials 

SP Steel pipe CIP 
Cast iron 

pipe 
SPPW

Galvanized Steel Pipes 

for Water Service 
PVC 

Polyvinyl chloride

pipe 

DCIP Ductile iron pipe CP Copper pipe PE Polyethylene pipe STS Stainless steel pipe
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Fig. 1-2-1 Composition of distribution pipe materials 

(Source: 2011 waterworks statistics) 

 

 

Fig. 1-2-2 Composition of service pipe materials 

(Source: 2011 statistics of waterworks) 
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Fig. 1-2-3 Aging ratio according by pipe material (service pipes) 

(Source: 2011 waterworks statistics) 

 

Fig. 1-2-4 and Fig. 1-2-5 show the number of leakages and amount of leakage according to 

each pipe material. It can be proved that there is a relation between leakage and pipe material. 

Fig. 1-2-4 indicates the obtained amount of leakage for each pipe material. The results are in 

order from the largest to the smallest leakage: PE, PVC, STS, SP and so on. It is noteworthy 

that the sum of leakage amount in PE and PVC pipes is almost 50% of the total leakage 

amount.  

Meanwhile, Fig. 1-2-5 shows the results in order from the highest to the lowest number of 

leakages per pipe length by pipe material. Copper pipe (CP) has the highest number of all, but 

the length of CP is around 0.2% of the total length of pipes. So it is natural that CP has the 

highest value among other materials in these results. Excluding the results for CP and Etc., 

the ranks for the other materials are, in order from the highest to the lowest: STS, PVC, PE, 

SP, CIP and DCIP. In the case of STS, PVC and PE pipes, these are widely used service pipes, 

although nowadays many PVC and PE pipes have been replaced by stainless (STS) pipes. In 
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the case of STS pipes, the number of leakage per pipe length is around 20% of the total result, 

while PVC and PE pipes show almost 16% and 15% of the total result, respectively. On the 

other hand, CIPs, SPs and DCIPs are used distribution pipes, but CIP and SP pipes have been 

replaced by DCIPs recently. As expected, CIPs and SPs have a higher probability of leakage 

than DCIPs.                  

  

 

Fig. 1-2-4 Amount of leakage in water distribution system by pipe material 

(Source: 2011 waterworks statistics) 

 

 

Fig. 1-2-5 Number of leakages per pipe length by pipe material 

(Source: 2011 waterworks statistics) 
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The second remarkable factor is aging. According to the 2011 waterworks statistics, the 

total length of water distribution pipelines (distribution pipelines + service pipelines) in 

Korea is nearly 159,039 km, where the total length of aged pipes over 21 years in use is 

40,321 km and the aging ratio of the entire pipeline is around 25% (Table 1-2-2). Hereupon, 

pipes of over 21 years in use were regarded as aged pipes   

 

Table 1-2-2 Aging condition of pipelines in Korea (Source: 2011 waterworks statistics) 

 

Water transmission 

main (km) 

Transmission pipe 

(km) 

Distribution pipe 

(km) 

Service pipe 

 (km) 

Total length  3,257 10,718 89,903 69,137 

Length of aged pipe  1,212 2,896 18,255 22,066 

Aging ratio (%) 

(over 21 years) 
37% 27% 20% 32% 

 

 

Fig. 1-2-6 Accumulated total length of distribution pipes over the years 

(Source: 2011 waterworks statistics) 
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Fig. 1-2-6 shows the accumulated total length of distribution pipes over the years. 

Supposing there is no establishment of new distribution pipes for 20 years from now, around 

60% distribution pipes will have been in use for over 21 years. As deterioration of pipes is the 

main cause of pipe accidents (such as leakage, corrosion and burst), it is necessary for the 

water distribution system to invest in developments such as replacement and maintenance. 

Despite that, such developments are still lacking compared to that of water treatment 

technology.     

As mentioned above, there are many causes for leakage occurrence, among which 

unreported leaks are particularly influenced by pipe corrosion. In the case of external 

corrosion, it is influenced by soil properties such as soil resistivity, pH, moisture, 

microorganism, and so on.5) Thus, the soil property is the third most remarkable factor. 

However, as it is an extremely difficult task to directly measure the degree of corrosion, it is 

thus necessary to indirectly measure and assess corrosion in pipes. After assessing pipe 

corrosion, corroded pipes will need to be replaced in order to prevent leakage.       

The fourth most remarkable factor is pipe replacement. According to the 2011 waterworks 

statistics, there are still a lot of leakage occurrences (Table 1-2-3). In addition, only 0.9% of 

pipelines are replaced per year and there is a shortage of investments in the pipeline 

replacement project. This is a potential source for water leakage and pipeline accidents. Thus, 

it is necessary to replace aged pipes and pipe materials that are weak and prone to leakage or 

accidents.  

The International Water association (IWA) defines leakage in two categories: real losses and 

apparent losses. Real losses (leakage) are the physical escape of water from the distribution 

system, and include leakage and overflows prior to the point of end use. On the other hand, 

apparent losses are essentially losses that consist of customer use which is not recorded due 

to metering error, incorrect assumption of unmeasured use, or unauthorized consumption.6) It 
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is worthy of note here that there are much more real losses (leakage) than apparent losses.   

Leakage occurs for many reasons such as poor material, pressure transients, corrosion, poor 

installation, environmental conditions, and so forth.7) British leakage management 

terminology distinguishes reported bursts from unreported leaks.8) Reported burst is the main 

cause of leakage, and it is possible to quickly repair pipes when they burst. However, as it is 

difficult and time consuming to find leak points in the case of unreported leaks, too much 

time is wasted before leak points are discovered. Thus, it is necessary to prevent unreported 

leaks such as through pipe replacement.  

 

Table 1-2-3 Condition of leakage in Korea (Source: 2011 waterworks statistics) 

  Transmission Distribution pipe Service pipe Indoor service pipe Total 

Number of leakage 

(number) 
397 20,180 65,255 58,258 144,090 

Amount of leakage 

(m3) 
3,516,366 58,555,140 64,783,391 8,061,730 134,916,627 
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1-3 Problems with leakage and deterioration 

 

When water leakage and pipeline accidents occur, water can be cut off and cause direct 

damage to consumers, while affecting others as a result of roads being blocked off and 

hindered the use of surrounding facilities during pipeline restoration.9) Therefore, it is 

necessary to prevent social losses by changing pipelines in advance to prevent water leakage 

and accidents. In general, however, the replacement project is focused on pipes that have 

exceeded a certain period of time in use since installation, rather than considering the present 

conditions and functional durability. Since deterioration of pipelines and functional reduction 

are affected by several complex factors such as road load on pipes and the surrounding soil 

conditions, in addition to the year the pipes were laid, it is necessary to come up with 

replacement plans that consider these factors. 

In developed countries with advanced water supply systems, there have been active and 

vigorous researches on the improvement and replacement of water distribution pipes, as well 

as on economic evaluation since several decades ago. Currently, studies in Korea on 

performance improvement and replacement of faulty pipes are also in progress, but there is 

difficulty due to a lack of systematic data accumulated over a long period of time. Not only 

that, even studies that look at economic efficiency are still insufficient. Moreover, water 

distribution system as a buried structure makes it difficult to check the progress of 

deterioration and condition, while road excavation and occupation of road facilities increase 

the burden of social costs.  

Consequently, in order to prevent water leakage and suggest how to effectively plan 

management of water distribution pipelines, this research introduced three methods as 

follows: 
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1) To indirectly check and assess the present conditions of pipes through a statistical 

approach in order to prevent water losses by corrosion;  

2) To effectively calculate the replacement rate of pipelines through benefit-cost analysis 

within the limited budget; 

3) To calculate the replacement priority of pipelines by predicting pipeline accidents and the 

extent of the damages that may happen in the future.  
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1-4 Composition of this research 

 

This research is composed of three studies about the plan of pipeline replacement. The first 

study was for evaluating the present pipe condition in an effective way. Pipe corrosion was 

regarded as a representative factor of pipe condition in this study, as corrosion of pipes cause 

cracks and bursts that lead to water leakage, pipe repair, and even water quality problems. 

However, it is difficult to evaluate pipe corrosion, since pipes laid underground are hardly 

excavated for examination. Pipe corrosion is also related to many factors such as pipe 

materials, pipe age, surrounding soil conditions, water quality, pipe maintenance and 

management, among others. Consequently, in order to evaluate pipe corrosion without 

excavation, a method of indirect evaluation is necessary.  

Thus, a statistical approach and a method to evaluate pipe corrosion indirectly were 

proposed in Chapter 2. For this study we focused on external corrosion by firstly searching 

references on pipe corrosion and then analyzing samples with pipe characteristics and using 

soil test. During this process, statistical approach applied to this study cause of insufficient 

data. In particular, discriminant function analysis and regression analysis were applied to the 

analyses of soil properties and pipe characteristics, respectively. We then developed models 

applied to the study area for evaluating pipe corrosion. In addition, this study also evaluated 

future risks by utilizing developed models. 

Next, Chapter 3 deals with the rate of annual replacement of main distribution pipelines. 

Water pipelines age with time and aged pipelines cause leakages and other water supply 

problems. Thus, a replacement plan is needed to effectively maintain these pipelines. This 

study proposes a long-period simulation using an accidental damage occurrence model that 

handles water pipeline damage contingencies. It involves the calculation for the post-damage 

maintenance scenario and the preventive maintenance scenario, as well as comparative 
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analyses of the costs and the affected population, ultimately achieving a highly cost-effective 

replacement plan. Here, as occurrence of failure may be influenced by various contingent 

factors like random phenomena, the failure probability is calculated using Monte Carlo 

simulation. Next, the results of the simulation were applied to economic evaluation using 

benefit–cost analysis. Economic evaluation is necessary because budgets for pipeline 

replacement are limited. In this study, the benefit is shown as the affected population, while 

the cost is the sum of total repair cost and total replacement cost. From this we were able to 

set the annual replacement rate for main distribution pipeline through the simulation model 

and economic evaluation. In addition to this, the replacement of key pipelines was also 

introduced. 

Finally, in Chapter 4 we proposed the replacement order for distribution pipelines. Current 

existing water pipeline replacement plans almost follow the order of aged pipelines, but such 

plans can be vulnerable to risks. The cause of a pipe’s deterioration is not only due to aging 

but also various other factors. Accidents along important pipelines cause more impact both 

directly and indirectly on consumers. Thus, this study aims to propose an efficient water 

pipeline replacement plan by considering risk prevention and factors that cause the 

deterioration of pipelines.  

For this study we attempted to analyze risks through three analyses. The first analysis was 

for predicting the number of pipeline damages to find out how many times the pipes would be 

damaged in the future. The second analysis was for estimating the restoration time which 

represents indirect disadvantages of pipeline damage accidents by pipe repair time. The third 

analysis was for investigating the direct impact on consumers when a pipeline is intercepted at 

the damaged point. From these analyses we were able to obtain the quantitative rank of risks 

in each analysis. As the risk ranking of each analysis is different, it was necessary to find the 

overall risk ranking. Consequently, in this study we introduced the predicted risk index (PRI) 
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to estimate the overall risk ranking. In conclusion, the highest PRI eminently deserves the 

utmost priority for pipeline replacement. This study also proves that replacement in order of 

PRI has an advantage over replacement in order of aged pipes using the simulation model 

given in Chapter 3. 

The composition of this research is shown in Fig. 1-4-1. 

 

 

Fig. 1-4-1 Composition of this research 
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Chapter 2 Evaluation of present pipes condition 

 

2-1 Introduction 

 

2-1-1 Background and Purpose 

Water system plays an important role as a lifeline for our life. It is through pipelines that water 

is distributed to customers for steadiness and safety without interruption. However, Water 

pipes tend to be corroded as time goes by. Pipes laid underground are hardly examined without 

excavation. Some corrosion pipes may cause leakage or damages, resulting in declining or 

interruption of water supply. In conclusion, pipe corrosion is able to consider pipe condition 

representative.  

 Then, in order to maintain customer service at a desirable level, replacement of such old 

pipelines is considered inevitable. As the replacement of pipelines requires huge costs and time 

span, it is pressing needs to provide information on how to evaluate the pipe condition in an 

effective way. 

Corrosion of pipes may cause cracks and bursts, resulting in water leakage, pipe repair, and 

posing even water quality problem so-called ‘red water’. Occurrence of the corrosion relates to 

many factors: pipe materials, pipe age, surrounding soil conditions, water quality, pipe 

maintenance and management1), 2). It is, therefore, difficult to examine how much extent and 

where the corrosion is taking place.  

Corrosion of outer surface of the metallic pipes occurs mainly due to electrochemical 

reactions under no homogeneous soil condition. Reaction rate is influenced by soil resistivity, 

permeability and salty ions existing around the installed pipes3), 4).  

Most of previous researches dealt with causual analysis of pipe corrosion and prediction of 

future corrosion for water distribution pipe. Katano et al. (2003) found that the log-normal 
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distribution best fitted their pit data and using regression analysis observed that the 

environmental factors that were found to be the most significant in determining pit depth 

included soil type, pH, resistivity, redox potential and sulfate ion5). Kiefner and Kolovitch 

(2007) developed a Monte Carlo method for determining the corrosion rate distribution in 

buried pipelines that uses the probability distributions of corrosion depth and initiation time6). 

Restrepo et al. (2009) employed statistical techniques like cluster analysis to establish the 

sampling design and later for the data analysis and obtaining a mathematical expression for 

external corrosion depth as a function of several experimental variables7). In addition, various 

studies have reported different methodologies used to be able to predict the future trend of 

corrosion for water pipeline.  

Present study has strengths that although data is insufficient, effective evaluation of current 

condition and prediction model can be obtained clear quantitative model by statistical approach 

and application is easy in other areas because of high reproducibility. In order to obtain a 

quantitative model for measuring pipe corrosion, we propose to apply an evaluation index to 

fuzzy environmental soil conditions of water pipes.  

The present study aims at proposing an approach and method to predict intensiveness and 

probable points of present pipe condition through evaluating pipe corrosion. Base data utilized 

for the prediction are those sampled at the site. Objectives of the study are referred to:  

 

1) Obtain evaluation indexes for external corrosion reflecting the fuzzy soil nature of 

installation sites,   

2) Develop a multiple regression model to measure the degree of pipe corrosion under the 

fuzzy soil conditions,  

3) Evaluate future risk and timing for decision of pipeline replacement. 
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2-1-2 Study area and analysis data 

The study conducted based on a research project for water distribution network system 

targeting City S in South Korea from 2009 to 20108). City S extends to 121.05km2 with a 

population of about 1.11 million9). Carrying through this research project, a study on utilization 

of water network GIS and an investigation concerning pipe corrosions were executed.  

Field data on pipe corrosions and soil conditions around pipes were obtained in the previous 

research project include those of the test pit excavation at 60 random locations along the water 

distribution pipelines (Fig. 2-1-1).  

 

 

Fig. 2-1-1 Sampling points in City S (n = 60) 
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And then we can obtain three kinds of information through the test pit excavation. First is 

degree of external corrosion. Second is characteristics of sample pipe’ body. And then last 

information is results of soil test for sampling points. Specially, the external corrosion is 

measured by two indexes: external depth of corrosion given as localized corrosion index (Yd), 

and corrosion spread on the pipe’s surface given as general corrosion index (Ya). In case of 

characteristics of sample pipe’ body, there is information which is included pipe age, diameter 

and water pressure. This information is obtained from GIS. And Soil test was analyzed by 

soil properties around sample pipes10). 
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2-2 Basic analysis 

 

2-2-1 Distribution of samples 

To begin with, a histogram was created in order to make it easy to understand a distribution 

of samples. Corrosion conditions are presented in histograms to show cumulative frequency 

vs. corrosion level (Fig. 2-2-1 and Fig. 2-2-2). As following histograms, no pipe corrosion is 

found at 47%. This is because the investigation includes pipes that are not corroded due to 

random sampling.  

    

 

Fig. 2-2-1 Histogram of the depth of external corrosion (Yd) 

 

 

Fig. 2-2-2 Histogram of the spread of general corrosion (Ya) 
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Next Fig. 2-2-3, Fig. 2-2-4 and Fig. 2-2-5 are indicated histograms of pipe characteristics.  

 

 

Fig. 2-2-3 Histogram of diameter (X1) 

 

 

Fig. 2-2-4 Histogram of water pressure (X2) 

 

 

Fig. 2-2-5 Histogram of pipe age (X3) 
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This study mainly deals with slender distribution pipes which are lower than 300mm as in 

Fig. 2-2-3. And then the investigation area has rather high water pressure (Fig. 2-2-4). 

According to Korea Waterworks Facility Standards (2004), the standard minimum dynamic 

water pressure for direct connecting water supply of a 5 storey building is 300~350kPa, and 

should differ according to topography and dwelling pattern11). Mansion-style dwelling was 

more common than detached houses in the sampling areas, and due to the high ground levels it 

can be seen that the water pressure is rather high. 

In case of pipe age, the range of distribution is from 12 to 52 years. Despite pipe age of 12 to 

52 years, some newer pipes (under 20 years) have deeper and/or wider spread of corrosion than 

the average. To a contrary, there are some samples which didn’t have corrosion found in older 

(over 40 years) pipes. This tendency is considered to be closely related to characteristics of the 

surrounding soil conditions and the pipe conditions which are not protected by polyethylene 

sleeve. 

Next histograms show about distribution of soil properties.  

 

 

Fig. 2-2-6 Histogram of soil resistivity (X4) 

0

5

10

15

20

25

30

35

40

45

50

LT 700 LE 1000 LE 1500 LE 2000 GT 2000

F
re

q
u

en
cy

Soil resistivity (Ω-cm)



 
 

24 
 

 

Fig. 2-2-7 Histogram of soil pH (X5) 

 

 

 Fig. 2-2-8 Histogram of Moisture (X6) 

 

Fig. 2-2-9 Histogram of chlorine ion (X7) 
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As the above results, for soil resistivity, it was identified by the ANSI method that only four 

samples had measurement values below 700 to be under very highly corrosive soil condition, 

and around 72% of samples indicated values above 2000 to be sampled from extremely low 

corrosive soil condition. As pH’s histogram shows, also, only one sampling point had acidity of 

less than 4, whereas 7 sampling points were found to have alkalinity of over 8.5. Next, in 

relation to moisture, exact half of samples are obtained from dry condition (moisture is less 

than 10%). Lastly, chloride ion was detected from 87% of soil samples. These figures illustrate 

that the sampling points covered a wide range of soil conditions. 

Soil corrosivity assessment was conducted using ANSI index. ANSI index is standard method 

which is commonly used for assessment corrosivity. Table 2-2-1 shows valuation basis for 

corrosivity using modified ANSI. And then Table 2-2-2 shows ANSI index12).  

 

Table 2-2-1 Valuation basis for corrosivity using modified ANSI 

Total score 

 (ANSI modified) 
Corrosivity Class 

0 ～ 2 Nothing. 1 

3 ～ 5 Weak 2 

6 ～ 9 Middle 3 

Over 10  Strong 4 
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Table 2-2-2 Assessment table of soil corrosivity by ANSI (modified) 

Soil parameter Range of test result Assigned points 

Soil resistivity 

(Ω-cm) 

<700 

700～1,000 

1,000～1,200 

1,200～1,500 

1,500～2,000 

>2,000Ω-cm 

10 

8 

5 

2 

1 

0 

Soil pH  

0～2 

2～4 

4～6.5 

6.5～7.5 

7.5～8.5 

>8.5 

5 

3 

0 

0 

0 

3 

Redox potential 

(ORP, mV) 

>100 

50～100 

0～50 

<0 (-) 

0 

3.5 

4 

5 

Moisture  

(%) 

Over 20% 

10 ~ 20% 

Less than 10%  

2 

1 

0 

Acid compounds 

(mg/kg) 

Over 100 (+)  

0 ~100 

Negative 

3.5 

2 

0 

* If sulfides are present and low or negative redox-potential results are obtained, give 3 points for this range. 

 

Table 2-2-3 Results of modified ANSI  

Total score 

 (ANSI modified) 
Corrosivity Class 

Number of samples  

(n=60) 

0 ～ 2 Nothing. 1 6 

3 ～ 5 Weak 2 29 

6 ～ 9 Middle 3 11 

Over 10  Strong 4 14 
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As the results of modified ANSI method, we can judge that around 42% soil samples have 

corrosivity. 

Also, the relation between the corrosive condition of each soil sample evaluated by ANSI 

methods and the actually measured external corrosion is shown in Fig. 2-2-10 and Fig. 2-2-11. 

As the Fig. 2-2-10 and Fig. 2-2-11 illustrate, there are samples that actually measured 

external corrosion depth and spread of general corrosion have low values with the high score 

of modified ANSI and also have high values with the low score of modified ANSI. 

 

 

Fig. 2-2-10 Relation between score of modified ANSI and external corrosion depth 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 3 5 7 9 11 13 15

D
ep

th
 o

f 
ex

te
rn

al
 c

or
ro

si
on

 (
m

m
)

Score of modified ANSI



 
 

28 
 

 

Fig. 2-2-11 Relation between score of modified ANSI and spread of general corrosion 

 

And then, corrosive condition of soil samples was also evaluated using DVGW method 

which are the most representative methods for evaluation of soil corrosivity. Table 2-2-4 

shows class of corrosivity based on DVGE method13). And then Table 2-2-5 shows items of 

DVGE method. As the results, around 88% of soil samples were found to be evaluated as 

weak corrosivity and 12% soil samples as middle corrosivity using DVGW method (Table 

2-2-6). 

 

Table 2-2-4 Class of corrosivity based on DVGW method  

Estimated value >0 0 ~ -4 -5 ~ -10 <-10 

Corrosivity Very weak Weak Middle Strong 
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Table 2-2-5 Assessment table of soil corrosivity by DVGW method  

Point +2 +1 0 -1 -2 -3 -4 

Kinds of soil 

C, CM, 

SM, S 

 S, SL, 

LM, SA

 

 A, AM, H  T, LS, 

SA 

Groundwater level 
  No 

present 

 Present 

variable 

  

Condition of soil 
  SN 

S1 
 Sr S2 

 

Soil resistivity (Ω-cm) 
  

>10,000
10,000 ~ 

5,000 

5,000 ~ 

2,300 

2,300 ~ 

1,000 
<1,000

Moisture (%)   <20 >20    

pH   >6  <6   

Total acidity (pH7) [mg/kg]   <2.5 >2.5~5 >5   

Redox potential (pH7) [mV] 
>400 

VS 
 

200~400 

VM 
 0~200 VW  <0 VN

Total alkalinity (pH4.8) [mg/kg] 
>1,000 200 ~ 

1,000

<200     

Sulphide & Hydrogen sulphide 

[S-2mg/kg] 

  No 

present 

   
Present

Ciders, Cokes 
  No 

present 

   
Present

Chloride ion [mg/kg]   <100 >100    

Sulfate ion [mg/kg]   <200 200~500 500~1,000 >1,000  
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Table 2-2-6 Results of corrosivity evaluation by DVGW method 

Estimate value >0 0 ~ -4 -5 ~ -10 <-10 

Corrosivity Very weak Weak Middle Strong 

Class 1 2 3 4 

Number of samples (n=60) 0 53 7 0 

 

Also, the relation between the corrosive condition of each soil sample evaluated by DVGW 

method and the actually measured external corrosion is shown in Fig. 2-2-12 and Fig. 2-2-13. 

Similarly, between actually measured values of external corrosion and absolute values of 

DVGW score don’t have definite relationship as shown in Fig. 2-2-10 and Fig. 2-2-11. These 

results mean that there are significant differences between the actually measured external 

corrosion and the corrosive condition evaluated by DVGW method. In conclusion, it is 

considered that a new evaluation method of corrosivity of soil samples should be developed. 

 

 

Fig. 2-2-12 Relation between absolute value of DVGW score and external corrosion depth 
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Fig. 2-2-13 Relation between absolute value of DVGW score and spread of general corrosion 

 

2-2-2 Correlation analysis 

A correlation analysis is carried out in order to examine the linear correlation between 

external corrosion and influential factors using scatter diagrams and correlation coefficients. 

At firstly checked closely at the correlation between depth of external corrosion and spread of 

general corrosion. The scatter diagram (Fig. 2-2-14) reveals that depth of external corrosion 

has not a definite correlation with spread of general corrosion. Because there are some 

samples which have big gap between both indexes, the advance on each corrosion index is 

considered to be helped by different influential factors. Using this result as basis, depth of 

external corrosion and spread of general corrosion were determined to be treated separately in 

the following analysis. 

Secondly the correlations between external corrosion indexes and characteristics of pipe 

(pipe age, diameter, material, water pressure) are investigated. The following figures are 

scatter diagrams of depth of external corrosion with indexes of characteristics of pipe 

respectively, while the scatter diagrams for general corrosion were skipped because of 
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similarity.  

 

 

Fig. 2-2-14 Correlation between external corrosion depth and general corrosion 

 

 

Fig. 2-2-15 Correlation between  

external corrosion depth and pipe age 

 

Fig. 2-2-16 Correlation between 

external corrosion depth and diameter 
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Fig. 2-2-17 Correlation between external corrosion depth and water pressure 

 

And then the next figures are scatter diagrams of depth of external corrosion with indexes of 

soil properties respectively. 

 

    Fig. 2-2-18 Correlation between  

     external corrosion depth and soil   

    resistivity 

     Fig. 2-2-19 Correlation between 

   external corrosion depth and soil pH 
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    Fig. 2-2-20 Correlation between  

  external corrosion depth and moisture 

       Fig. 2-2-21 Correlation between   

        external corrosion depth and  

         chloride ion 

 

Table 2-2-7 Correlation coefficient between corrosion indexes and influence factors   

Item Variable R 

Depth of 

external 

corrosion 

(Yd) 

Characteristics of pipe 

Diameter (mm) X1 -0.03  

water pressure (kg/cm2) X2 -0.08  

Pipe Age (year) X3 -0.12  

Soil properties 

Soil resistivity (Ω-m) X4 -0.09  

Soil pH X5 -0.15  

Moisture (%) X6 -0.02  

Cl- (mg/kg) X7 -0.12  

Spread of  

general 

corrosion 

(Ya) 

Characteristics of pipe 

Diameter (mm) X1 -0.44  

water pressure (kg/cm2) X2 0.19  

Pipe Age (year) X3 -0.25  

Soil properties 

Soil resistivity (Ω-m) X4 -0.15  

Soil pH X5 -0.24  

Moisture (%) X6 -0.07  

Cl- (mg/kg) X7 -0.16  
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As the scatter diagrams, we can find that almost correlations between depth of external 

corrosion and influence factors have big gap and inverse proportion. To find out more clearly, 

correlation coefficient was confirmed (Table 2-2-7).  

It became apparent after correlation analysis that between indexes of external corrosion and 

influence factors have big gap and non linear relation. This is because around 28 sample 

pipes don’t have external corrosion and some sample pipes have rack of data, so it is difficult 

to find relation between external corrosion and influence factors.  

 In order to check relation between external corrosion and influence factors clearly, 

correlation analysis except for the samples of non-corrosion data and soil properties and/or no 

soil property data is necessary. So the correlation analysis was performed again without 

sample pipes which have rack of data and non corrosion. As the results, 26 sample pipes were 

selected. Table 2-2-8 shows results of correlation analysis.     

 

Table 2-2-8 Result of correlation by t-distribution (n = 26, r0.05 = 0.39, r0.1 = 0.33) 

Corrosion index Influence factor R r0.05 r0.10 Logicality 

Yd 

Diameter (mm) X1 0.21     O 

Water pressure (kg/cm2) X2 -0.16     X 

Pipe age (years) X3 0.37   * O 

Resistivity (Ω-m) X4 0.17     X 

Soil pH (-) X5 0.24     O 

Moisture (%) X6 0.1     O 

Cl- (mg/kg) X7 -0.27     X 

Ya 

Diameter (mm) X1 -0.77 **   O 

Water pressure (kg/cm2) X2 0.48 **   O 

Pipe age (years) X3 -0.3     X 

Resistivity (Ω-m) X4 0.11     X 

Soil pH (-) X5 0.12     O 

Moisture (%) X6 0.13     O 

Cl- (mg/kg) X7 -0.26     X 
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Next, the correlations among external corrosion (Yd , Ya), characteristic of pipe (X3) and soil 

properties (X4 , X5 , X6 , X7) are examined with t-distribution test at 90% and 95% 

significance level. In here, significance level of reliability is confirmed as results of Equation 

2-2-1. If correlation coefficients had smaller value than the standard rα, this means that there 

is no relation between each influential factor and each corrosion index. 

 

  (2-2-1) 

 

where, ra: standard value of correlation coefficient at α-significant level 

ta: t-value at α-significant level (t-distribution test) 

n: sample size  

 

As seen in ‘**’ and ‘*’ in Table 2-2-8, in case of depth of external corrosion (Yd), pipe age 

(X3) is relevant with 90% significance level. On the other hand, in case of spread of general 

corrosion (Ya), diameter and water pressure are relevant with 95% significance level. 

In this table, logicality is an indicator illustrating logical relevance within variables. 

Typically, soil properties except for soil resistivity (X4) feature that external corrosion 

accelerates as each element goes up while X4 has the opposite tendency. According to Table 

2-2-8, almost all factors cannot pass the t-distribution test and some factors do not have 

logical relevance. It is likely that the research data is less statistically significant, because the 

relations among samples with wide range of soil properties (from strongly corrosive soil to 

non-corrosive soil) are misleadingly vague without classification. 
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2-3 Discriminant function analysis (DFA) 

 

2-3-1 Purpose of discriminant function analysis  

In this study, in order to get more reliable model to predict the degree of pipe corrosion, the 

relationship between external corrosion and soil property is further looked into by applying 

DFA. Examining the discriminant function, we quantify the soil environment corrosivity 

using some combination of variables in which the fuzzy soil property is reflected14). 

DFA is applied in order to distinguish the corrosive soil environment from the non-corrosive. 

Common purpose of the DFA is to predict the group membership based on a linear 

combination of variables using a measure of generalized square distance assuming that each 

group has a multivariate normal distribution (Fig. 2-3-1). Another purpose of DFA is to get an 

insight into the relationship between the group membership and variables in the prediction 

model which is given as a discriminant function. 

 

 

Fig. 2-3-1 Purpose of discriminant function analysis 

  

 

The best discriminant function

Group 1

Group 2
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2-3-2 Set sample condition for BAD and GOOD group 

At the beginning of DFA, observations for each group are made including both high-ranking 

and low-ranking samples reflecting a characteristic of the universe (the population of all 

samples). In this study, two groups, namely, a corrosive group (named BAD group) and a 

non-corrosive group (named GOOD group) are considered for each discriminant function 

corresponding to each corrosion indexes (Yd and Ya).   

It is normal procedures that DFA focuses merely on data ranked high and low (namely, the 

first quarter and the last quarter of the sorted sample). In this study, 16 samples (almost the 

last quarter) which had over 0.6mm of corrosion depth are regarded as BAD group member 

corresponding to Yd, and 12 samples with over 10% area corrosion are categorized into BAD 

group corresponding to Ya. On the other hand, GOOD group consists of no external corrosion 

samples both for Yd and Ya. As numbers of effective data differs between these groups, a 

measure to balance sample data is required. 

 

2-3-3 Balance sample size between BAD and GOOD group 

 To ensure stability of DFA, two groups are preferably equal in data size. The number of 

samples in GOOD group is greater than sample size of BAD group. As the above the two 

tables, we can find that the number of GOOD group data is 28. However in case of Yd, the 

number of BAD group data is 16. Also in case of Ya, the number of BAD group data is 12. 

So, random sampling methods are adopted to select samples for GOOD group. Several sets of 

samples are arranged so that Good group may have same sample size to BAD group, and then 

the corresponding models for classification are examined. In this part, 5 random sampling 

methods were adopted like below Fig. 2-3-2. 
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Fig. 2-3-2 Random sampling methods for balance of data size 

 

5 random sampling methods are as follow and these methods were applied to Yd and Ya 

respectively.  

 

1) Except the highest and lowest value in each soil properties 

2) After range ascending order for pipe age, except multiple of three sample pipes 

3) After range ascending order for soil resistivity, except multiple of three sample pipes 

4) After range ascending order for moisture, except multiple of three sample pipes 

5) After range ascending order for chloride ion, except multiple of three sample pipes 

 

As the results of random sampling, the number of GOOD group data size is same with BAD 

group data size, and then total 10 cases (hereafter as ‘D1~D5’ and ‘A1~A5’) were made in 

each index of external corrosion like below tables. In here, ‘D’ means case of Yd and ‘A’ 

means case of Ya. 

 

28 samples

No external 
corrosion

Yd=0, Ya=0

GOOD 2

GOOD 3

GOOD 1

GOOD 4

GOOD 5

Random
sampling

BAD group

BAD group

BAD group

BAD group

BAD group

Same sample size (Yd=16, Ya=12)
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2-3-4 Examine whether each environmental factor is logically acceptable 

After adjusting sample size of both groups, the average value of each environmental factor 

for each group is compared. When the average value of an environmental factor in BAD 

group is higher than that of GOOD group (Bold character), such factor is judged to have 

logicality, excluding soil resistivity (X4) which has an opposite tendency. Results of this part 

show as bellow Table 2-3-1.  

 

Table 2-3-1 Results of logicality between groups 

 Case 

Soil- resistivity

 (Ω-m)  

Soil pH  

(-)  

Moisture 

 (%)  
Cl

-
 (mg/l)  

X
4
  X

5
  X

6
  X

7
  

 

 Y
d
 

Run D1  57.30 / 50.23  7.37 / 7.43  

Run D2  68.29 / 50.23  10.94 / 11.88  

Run D3  58.13 / 50.23  10.67 / 11.88  

Run D4  62.91 / 50.23  10.77 / 11.88  

Run D5  62.36 / 50.23  11.24 / 11.88  

 

 Y
a
 

Run A1  57.68 / 46.43  7.15 / 7.22  

Run A2  61.75 / 46.43  

Run A3  65.42 / 46.43  

Run A4  59.56 / 46.43  

Run A5  62.61 / 46.43  9.95 / 10.82  

 

After comparing the average of the GOOD group with BAD group for each cell, the 

corresponding cell that is out of logicality was represented with a blank. In the case of depth 

of external corrosion (Yd) in Table 2-3-1, it can be seen that soil resistivity (X4) of Run D1 ~ 

Run D5 all accord with logicality, and the case of moisture (X6) displays logicality in Run D2 

~ Run D5. This is a sector that allows us to indirectly know that soil resistivity (X4) and 

moisture (X6) have intimate influence on the depth of external corrosion (Yd).  
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Also, as in the case of spread of general corrosion (Ya), it can be confirmed that soil 

resistivity (X4) has logicality in Run A1 ~ Run A5. However, the case of moisture (X6) 

displays only in Run A5. These results show that soil resistivity (X4) has intimate influence 

on the spread of general corrosion (Ya).  

 

2-3-5 Estimate discriminant function 

DFA model is developed with the aid of SAS15) as a function of the selected factors, 

logically reasonable. For depth of external corrosion (Yd) and spread of general corrosion 

(Ya), 5 cases randomly sampled are analyzed respectively. Most reliable DFA models are then 

selected for Yd and Ya taking into consideration of misclassified observation. 

Before development of DFA model with SAS, an assumption is necessary for optimization 

of DF. The objects which used for deduction of discriminant function must be extracted from 

the multivariate normal distribution. So standardization is necessary. Below Equation 2-3-1 

indicates how to standardization. 

 

Wn = (Xn – mn) / sn          (2-3-1) 

 

In here, Wn is factor (W4 ~W7) of standardized as expressed in Equation 2-3-1, Xn is 

explanatory factors (X4 ~ X7), mn is their entire mean values (m4 ~ m6) and sn is their entire 

standard deviations (s4 ~ s6). 

Table 2-3-2 and Table 2-3-3 are findings of DFA through SAS, and in 5 cases, the highest 

hit ratio case is selected respectively. The hit ratio is predictive accuracy for examined data. 

 

 



 
 

42 
 

Table 2-3-2 Result of Yd using SAS (nGOOD = 16, nBAD=16) 

Yd Constant 
X4 X5 X6 X7 

d2 Hit ratio 
W4 W5 W6 W7 

1 Zd 0.007 0.4401 -0.187 0.049 53% 

2 Zd -0.216 1.203 -0.307 0.341 59% 

3 Zd -0.041 0.392 -0.455 0.107 56% 

4 Zd -0.081 0.601 -0.442 0.164 63% 

5 Zd -0.060 0.688 -0.171 0.131 56% 

 

As for external corrosion depth (Yd), equations obtained from the analyses are assessed highly 

reliable. As the above the table, we can obtain number 4 model which has the highest hit 

ratio. Number 4 model was made an equation like below.   

 

Zd = 0.601W4 – 0.442W6 – 0.060                 (2-3-2) 

 

Equation 2-3-2 represents a linear discriminant function. If a classification index (Zd) 

estimated from this equation is greater than zero, it is considered the sample falls into the 

GOOD category. This implies the external depth within the range of less than 0.6mm. 

Explanatory factors (X4 and X6) are standardized as expressed in Equations 2-3-1 

respectively. From coefficients in the Equation 2-3-2, W4 has a larger absolute value than that 

of W6. This indicates that the soil resistivity (X4) is more influential than the moisture (X6) on 

the external depth. 

On the other hand, as for the spread of general corrosion (Ya), the soil resistivity (X4) is 

found as an influential factor. Equation 2-3-3 stands for a linear discriminant function 

obtained for Ya. A standardized variable, W4 in Equation 2-3-3, is similar of the soil 

resistivity (X4) as presented in the Equation 2-3-1 above. If Za is greater than 0, then the 

sample is classified to the GOOD group. This implies the spread of general corrosion is 
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estimated less than 10% of pipe surface. Below flow cart is a comprehensive process of DFA 

model. 

 

Table 2-3-3 Result of Ya using SAS (nGOOD = 12, nBAD=12) 

Ya Constant 
X4 X5 X6 X7 

d2 Hit ratio 
W4 W5 W6 W7 

1 Za -0.002 0.665 -0.241 0.111 50% 

2 Za -0.018 0.771 0.168 58% 

3 Za -0.083 1.097 0.296 58% 

4 Za 0.006 0.798 0.149 58% 

5 Za -0.031 0.859 0.197 63% 

 

Za = 0.859W4 – 0.031                             (2-3-3) 

 

 

Fig. 2-3-3 Development process of DFA model 

STEP1: Set BAD and GOOD group

Good group: No external corrosion

STEP2: Balance data size

The selected factors perform discriminant analysis by using SAS

Arrange several Good groups with same data size to BAD group

Check logicality: Compare average of each environmental factor
between GOOD and BAD group   

STEP3: Check trend of each environmental factor

Bad group: Non-0 outcome based on degree of corrosion

Depth of external corrosion (Yd)

: Over 0.6mm depth of corrosion

Spread of general corrosion (Ya)

: Over 10% spread of cossrion

STEP4: Estimate discriminant function

Choose the higest hit ratio case
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2-4 Modeling of external corrosion 

 

Evaluation indexes of fuzzy soil properties can be obtained from the linear discriminant 

functions. From these indexes, we can assess corrosiveness of the soil properties. It is found 

that low resistivity and/or high moisture of the soil properties accelerate an external corrosion 

depth rate. In the case of the general horizontal corrosion, however, the low resistivity of the 

soil is considered dominant in affecting an extent of spread area and its corrosion rate.  

As to external corrosion prediction, regression analysis is applied to find influential factors 

related to pipe characteristic. Among 60 sampled data, nearly a half of the sampled data didn’t 

find corrosion on pipe surface. To minimize effects on regression model, these data are omitted 

in the succeeding analyses. Number of data utilized is twenty (20) and nineteen (19) samples 

for external corrosion depth and general horizontal corrosion respectively. It is believed that 

pipe characteristics and soil properties have a linear and/or and non-linear effects on pipe 

corrosion16). To incorporate these effects into the analyses on a same basis, this non-linear 

effect is first expressed in the form of power regression equations with a variable of pipe 

characteristics. Then, multiple regression equations for the two types of external corrosion (Yd 

and Ya) are formulated as a function of the selected factors expressed in linear and/or 

non-linear forms. 

 

2-4-1 Logarithmic correlation analysis 

 Prior to regression analysis, correlation coefficient of logarithmic data of pipe characteristic 

factors with corrosion indexes are estimated as shown in Table 2-4-1.  Significant levels of 

reliability is also confirmed as a result of Equation 2-2-1 which is t-distribution test 

corresponding to sample size ‘n’ and statistically significant level ‘’. When an absolute 

value of the correlation coefficient is greater than its significance level, the factors are 
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assessed statistically significant.  

 

Table 2-4-1 Logarithmic correlation between items of external corrosion and pipe characteristics 

External corrosion index 

[significance levels of correlation coefficient] 

Diameter (mm) Water pressure (kg/cm2) Pipe age (years)

log(X1) log(X2) log(X3) 

log(Yd) [ r (n=20, =0.05) = 0.437 ] 0.121  -0.312  0.463**  

log(Ya) [ r (n=19, =0.05) = 0.456 ] -0.824**  0.109  -0.453  

** The correlation coefficient is significant at 0.05 (bilateral)  

 

As seen in ‘**’ in Table 2-4-1, depth of external corrosion (Yd) has a non-linear relation 

with pipe age (X3), and spread of general corrosion (Ya) with diameter (X1). These results 

suggest effectiveness of adopting each factor as one of explanatory variables in the corrosion 

prediction equations. 

 

2-4-2 Power regression model for external corrosion depth 

Firstly, regression model of depth of external corrosion (Yd) with a variable, pipe age (X3), 

in the form of power function. Before modeling, these samples were leveling off according to 

average of every 5-year period due to lack of samples.  

As the results of power regression model using data, we could obtain Equation 2-4-1 as 

power regression model for between depth of external corrosion and pipe age. According to 

Equation 2-4-1, the estimated power coefficient (1.642) is greater than 1.0. This implies that 

the pipe age would affect pipe deterioration with acceleration as seen in Fig. 2-4-1. 

 

Yd = 0.00504X3
1.642                (2-4-1) 
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Fig. 2-4-1 Estimated trend of depth of external corrosion according to pipe age 

 

2-4-3 Multiple regression model (MRA) for external corrosion depth 

Following DFA and regression analysis in the form of power function, MRA is applied for 

further analysis. As the explanatory variables, the MRA utilizes pipe age expressed as 1.67th 

power, soil resistivity (X4) and moisture (X6) as previously verified effective by the 

discriminant function. This regression model expressed in Equation 2-4-2 is assessed 

statistically significant from its multiple correlation coefficient (R) obtained through 

t-distribution test.  

 

Yd = -0.00325X4 + 0.01184X6 + 0.00491X3
1.642     (R = 0.516)    (2-4-2) 

 

This implies that soil resistivity (X4), moisture (X6) and pipe age (X3) would affect depth of 

external corrosion with acceleration as seen in Fig. 2-4-2. 
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Fig. 2-4-2 Estimated depth of external corrosion according to combined influence factors 

 

Relation between the observed and the estimated values of external corrosion depth is 

shown in Fig. 2-4-3, which indicates sufficient accuracy of our model with a mean absolute 

error (δ), 0.31mm.  

 

 

Fig. 2-4-3 Estimated values of external corrosion depth 
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2-4-4 Power regression model for spread of general corrosion 

 In the same way as stated above, a prediction model for the spread of general corrosion (Ya) 

is expressed as a factor of the pipe diameter (X1). As the results of power regression model, 

we could obtain Equation 2-4-3 as power regression model for between spread of general 

corrosion and diameter. 

 

Ya = 8962.784X1
-1.392          (2-4-3) 

 

The negative power (i.e., -1.392) of X1 implies that value of Ya (the corrosion spread on 

pipe surface in percentage) tends to progressively decrease against an increase in value X1 

(the pipe diameter). This tendency is clearly seen in Fig. 2-4-4.  

 

 

Fig. 2-4-4 Estimated trend of spread of general corrosion according to diameter 
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2-4-5 Multiple regression model for spread of general corrosion 

Main culprit behind the general corrosion is soil resistivity (X4) among soil properties. 

According to the findings of regression analysis, pipe diameter (X1) is considered to have a 

negative relation with the general corrosion (Ya). In a multiple regression equation developed 

here, there are two independent variables as shown in Equation 2-4-4. A correlation 

coefficient of the equation is estimated at 0.657. As examined by t-distribution test, this 

figure ensures reliability of the equation. 

 

        Ya = 0.0325X4 + 8522.499X1
-1.392       (R = 0.657)          (2-4-4) 

 

Relation between the observed and the estimated values of spread of general corrosion is 

shown in Fig. 2-4-5. 

 

 

Fig. 2-4-5 Estimated values of spread of general corrosion 
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Severity of the general corrosion of any pipes in the target area can be simply estimated 

from the equation. Data required for prediction is merely pipe diameter and soil resistivity in 

the targeted area. The equation is not expressed as the function of pipe age. This is due to the 

fact that the general corrosion rate per year is rather slower than that of the external corrosion 

depth. Continuous efforts are required to collect data on pipe corrosion. It may be possible to 

develop more reliable prediction model based on process as mentioned above. 
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2-5 The corrosion model evaluation  

 

 In the previous paragraph, a prediction model for the external corrosion depth (Yd) 

represented by pipe age (X3), soil resistivity (X4) and moisture (X6) was proposed. Another 

method is a prediction which considers soil environment around the pipes. Corrosion depth of 

60 samples in future is tentatively forecast in the Equation 2-4-2, assuming that the pipes are 

left without any maintenance for 20 years.  

In this study a depth of external corrosion over 2mm is considered serious and may result in 

pipe damage or leakage. Analyzing the result of forecast, total 38 out of 60 samples are 

expected to have serious external corrosion with a depth exceeding 2 mm on their pipe 

surface. Locations of those samples are given in Fig. 2-5-1.  

 

 

Fig. 2-5-1 Location where corrosion depth will exceed 2 mm by 2030 

 

Over 2mm
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Out of total 60 soil samples, 39 are consisting of soft clay, and 17 of red clay, while 4 

samples are of sands. Soft and red clay, accounting for over half of the total are causing a 

rapid growth of corrosion, but the remnants are rather slow in corrosion, predicted not to 

reach 2mm. These results indicate that future risk of corrosion closely relates not only to the 

soil factors but also to the pipe characteristics. 
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2-6 Conclusions 

 

Water distribution pipes installed underground have potential risks of pipe failure and burst. 

After years of use, pipe walls tend to be corroded due to aggressive soil environments where 

they are located. That’s why present study aims to discuss an influence of soil properties on 

corrosion. As mentioned in introduction, this study was regarded pipe corrosion as present 

pipe condition. Especially, in this study, we focused on external corrosion. In order to discuss 

it, this study intended to predict scale and severity of pipe corrosion in the target area. And 

then it difficult to survey all pipes in study area, data of 60 sample pipes were obtain through 

test excavation and soil test. In particularly statistical approach is useful to predict severity of 

pipe corrosion, so we applied to this study. First, discriminant function analysis (DFA) was 

applied in order to distinguish corrosive soil form non corrosive soil environment. Secondly, 

regression model was applied in order to develop external corrosion model. Finally in order 

to evaluation of future corrosion, evaluation model developed by multiple regression analysis. 

So we could obtain two conclusions as bellow.  

 

1) In terms of depth of external corrosion in study area, soil resistivity (X4), moisture (X6) 

and pipe age (X3). It is also confirmed that the soil resistivity (X4) and the pipe diameter (X1), 

among others, affect spread of general corrosion (Ya). 

 

2) It can be concluded that the multiple regression equation obtained herein provides 

valuable information on degree and rate of external pipe corrosion in the target area. 

 

Continuing efforts for collecting and storing up field data are, however, considered 

important to improve the reliability of the proposed prediction model obtained.  
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Chapter 3 Replacement plan for main distribution pipelines using economic 

evaluation 

 

3-1 Introduction 

 

3-1-1 Background and purposes 

The main purpose of water distribution pipelines is to deliver water while satisfying 

demands for quality, quantity, and water pressure. However distribution pipelines age with the 

passage of time. Thus, many countries are now faced with the major task of water pipeline 

replacement. Aged pipelines cause leakage and other problems for water supplies. 

Replacement plan is needed to maintain these pipelines effectively. However, budgets for 

pipeline replacement are limited. Therefore, replacement plan with greatly reduced economic 

cost is needed for effective budget allocation. 

Several studies have presented and proposed different techniques in an effort to plan the 

rehabilitation of water pipelines. Shehab et al. (2010) developed a cost-estimating model for 

water and sewer pipelines that utilizes a neural network and regression model1). Malm et al. 

(2012) proposed a future replacement model by using historical data. The replacement model 

utilizes survival functions to determine the percentage of a group of pipelines that reaches a 

particular age2). 

Although Ugarelli and Federico (2010) don’t address water pipeline, they discuss optimal 

scheduling of replacement and rehabilitation for wastewater pipeline. The presented model 

could predict optimal replacement time based on balance between investment and 

expenditures3). Also, Nafi and Kleiner (2010) focus on relationship between pipeline failure 

and cost. Using the relationship, they develop method for optimal scheduling of individual 

pipelines for replacement4). 
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The aim of the present study was to propose long-term plan for main distribution pipeline 

replacement that utilizes a damage occurrence model. In particular, this study attempted 

long-term replacement plan by efficiently allocating a budget for pipeline replacement. 

Moreover pipeline accidents that occur at unspecified times and places can be quantified by 

Monte Carlo simulation (MCS). The simulation model consists of post-damage maintenance 

(without replacement = repairing) and preventive maintenance (replacement). Unlike 

previous studies, our focus was on not only the economy aspect but also an assessment of the 

affected population. After conducting an evaluation from a benefit/cost perspective, we 

propose a highly effective replacement plan. 

In this study is composed of simulation model and case study like Fig. 3-1-1. 

 

 

Fig. 3-1-1 Analytical process flow in this study 

  

First, in simulation model, we need to judge damage occurrence. And then check 

convergence of MCS after setting evaluation indexes. And we need to set parameters like 

SDR and PDR. Next is case study. Firstly we compose water pipeline system, and then 

examine replacement rate effect. As the results of before 2 steps, we assess cost and total 

affected population (TC and TAP). And then our model is applied to select desirable 

alternative plans. Finally we select a highly cost effective rehabilitation planning based on 

this analytical process. For further details is known from following chapters.  

 

Subject water pipeline system

Case study

Examination of replacement rate effect

Assessment of  costs and affected population

Application for desirable alternative plans

Judgement of damage occurence

Set evaluation indexes

Check convergence of MCS

Simulation model

Set parameters; SDR and PDR
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3-1-2 Study area 

 The study focused on a simulated main distribution pipeline system, as shown in Fig. 3-1-2. 

The system consisted of 1 reservoir, 21 nodes, and 21 pipelines. Pipelines 1~17 were made of 

cast-iron pipe (CIP), and the other pipelines were made of ductile cast-iron pipe (DCIP). And 

then the population was assumed to be about 48,000 people5).  

 

 

 

Fig. 3-1-2 Simulated main distribution pipeline system 
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3-2 Simulation model 

 

3-2-1 Failure rate curve and function 

Several failure models for buried pipeline are proposed in literatures. Moglia et. al (2007) 

develop probabilistic failure model for cast iron pipe (CIP). Specially, the model is applied to 

Monte Carlo simulation and calculated historical failure rate based on recorded failures of 

pipeline6). Yamijala et al. (2009) suggest predicting failure pipeline utilizing regression model. 

This paper compared 3 types of regression models which are time linear model, time 

exponential model and generalized linear models for estimating the reliability of pipelines7).    

In this study, simulation model was used to obtain the failure rate curve based on Equation 

3-2-1, which uses reliability theory and data analysis for pipeline leakage accidents8):  

 

 

Fig. 3-2-1 Failure rate curve according by pipe materials 

 

                        (k, c, t: real number)  (3-2-1) 
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indicates DCIP with quake-proof joint. 

Mori et al. (2010) was developed failure rate function through expansion of failure rate 

curve. This is because in order to predict failure term of sub items using failure rate curve. In 

here, sub item is that pipeline divided into virtual sub-items with a fixed length. At the time 

of failure rate curve was made, pipelines divided into 4m sub items. So failure rate function 

also assumed 4m sub items. Below process shows that failure rate curve change into failure 

rate function. This failure rate function is utilized in this paper for predicting failure term of 

pipelines9).     

When Equation 3-2-1 which is utilized “Weibull distribution” is calculated by age of sub 

item t, failure rate function could expand into reliability function R(t) as express in Equation 

3-2-2. 

 

(3-2-2) 

 

Meanwhile, failure rate of sub item which was the passing of a year τ was expressed as 

Equation 3-2-3. 

 

               (3-2-3) 

 

And then, probability of failure (P) from τ to τ+Δ was expressed as Equation 3-2-4. 
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The failure term (△) is calculated under various influences such as the underground soil 

condition and traffic load above. Moreover P is distributed within range between 0 and 1. 

Therefore, using the inverse function of Equation 3-2-4, the failure time (Δ) is obtained from 

Equation 3-2-5 by substituted uniform random number [0~1].  

 

(3-2-5) 

 

In this study, for calculating failure term utilizing Monte Carlo simulation (MCS), Equation 

3-2-5 changed like below Equation 3-2-6. In here, c and k are the constants for each type of 

pipe. And then R was uniform random number which was generated by ‘Mersenne twister’. 

While τ represented the years of the pipeline being buried.  

 

(E is failure term)   (3-2-6) 

 

After calculating failure term E, the failure term E and replacement term T were found and 

compared to determine the damage of each sub item and calculate the total cost (repair cost + 

replacement cost) and the affected population. 

   

3-2-2 Monte Carlo simulation (MCS) 

 The failure term of pipeline was calculated by MCS. The MCS can be used to describe any 

technique that approximates solutions to quantitative problems through statistical sampling. 

This method gives approximate solution to a variety of mathematical problems by performing 

statistical sampling experiments on a computer. It applies to problems with no probabilistic 

content as well as to those with inherent probabilistic content.  

The MCS is a powerful engineering tool which enables one to perform a statistical analysis 
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of the uncertainty in structural engineering problems10). This tool is particularly useful for 

complex nonlinear problems. The fundamental step in MCS is a development of a set of 

uniformly generated random numbers. The cumulative distribution function (CDF) of 

uniform distribution is used to explain MCS. In MCS, uniformly generated random numbers 

are increased to obtain accurate solution11). When uniformly generated random numbers are 

increased to obtain accurate results, the computing time is increased. So, the computing time 

is a major concern in MCS. 

To generate appropriate random number according to distribution, the uniform random 

number which distributed between 0 and 1 is used commonly. In present study, the random 

numbers were generated by ‘Mersenne twister (219937-1)’. The ‘Mersenne twister’ provides 

for fast generation of very high-quality pseudorandom numbers, having been designed 

specifically to rectify many of the flaws found in older algorithms12), 13). Also, since there is 

seed, it is possible to reduce the same random number multiple times. So each case study 

could be performed by same seed number. In this study, MCS was applied to this simulation 

model following the number of future years from the start to the end of replacement plan. To 

calculate the failure term utilizing MCS, generated random number was substituted for R in 

Equation 3-2-6. And τ denotes the pipeline age in the start year of MCS.  

 

3-2-3 Calculation of total cost (TC) 

Before calculate total cost (TC), the simulation model considers pipelines to be divided into 

virtual sub-items with 4m. The failure of each sub-item can be predicted by the failure rate 

function. We can then assume that breakage or leakage occur when sub-items reach the 

failure term, and the sub-items will undergo repairs. Some older sub-items will be replaced 

by SDIP under a budget restriction of replacement plan. 

The total cost is obtained from the accumulated repair and replacement costs over the whole 
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period of simulation. The unit cost of replacement (per pipeline length) and unit cost of repair 

(per failure) can be obtained from a function using the pipe diameter. 

Firstly total replacement cost is calculated by multiplying total unit cost of replacement by 

pipeline length like Equation 3-2-7. 

 

Total replacement cost (yen) = the total unit cost of replacement (¥/m)  

× length of pipeline (m)                (3-2-7) 

 

In here, the total unit cost of replacement consists of the unit cost of replacement and the 

cost of the branching method like Equation 3-2-8. 

 

Total unit cost of replacement (yen/m) = the unit cost of replacement  

+ the cost of the branching method (¥/m)    (3-2-8)   

 

 The unit cost of replacement is calculated by survey of construction cost for water 

distribution pipeline on Sep. 199814). It is composed of cost of material, labor and earthwork 

according to pipe diameter.   

On the other hand, in case of repair cost, we assumed that when sub item occur damage or 

accident such as leakage, the repair cost is multiple replacement cost for sub item by 10 times. 

It is expressible in Equation 3-2-9.    

 

The repair cost (yen) = the unit cost of replacement (yen/m) × 10 times × 4(m/sub item)  

× number of damaged sub items (number)          (3-2-9)  

 

In conclusion, the total cost can be calculated by replacement cost plus total repair cost. It is 
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expressible in simple Equation 3-2-10. 

 

TC (yen) = the replacement cost (yen) + Σ (the total repair cost (yen))    

                 (3-2-10) 

 

3-2-4 Calculation of total affected population (TAP) 

 In general, the evaluation of the model depends on the availability of efficiency. In this study, 

we considered two parts to prove efficiency. One part is cost and another is benefit. The cost 

usually used to the index of benefit. However, in this study, we regarded the affected 

population as the index of benefit. So the study calculated “benefit/cost” to estimate 

efficiency. 

 When accidents occur on the pipelines, the total affected population is calculated by 

summing up the population living in the downstream area rather than in the damaged part like 

Fig. 3-2-2. 

 

 

Fig. 3-2-2 Image of the affected population 

 

Table 3-2-1 shows the accumulation of the affected population at each pipeline. For 

example, if P-1 pipeline occur damage or accident, total affected population are 48,000 

people.  
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Shutdown
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Table 3-2-1 The affected population at each pipeline 

Pipeline ID 

Accumulation of the 

affected population 

(people) 

Pipeline ID 

Accumulation of the 

affected population 

(people) 

P-1 48,000 P-12 17,047 

P-2 36,695 P-13 4,334 

P-3 32,578 P-14 7,476 

P-4 2,312 P-15 3,503 

P-5 1,336 P-16 2,781 

P-6 3,070 P-17 9,860 

P-7 1,517 P-18 1,770 

P-8 722 P-19 7,296 

P-9 24,415 P-20 2,167 

P-10 2,167 P-21 1,228 

P-11 19,756   

 

In conclusion, the total affected population can be calculated by multiplying number of 

accidents by population using water. It is expressible in simple Equation 3-2-11.  

 

TAP (people) = Σ (the number of accidents ×the population using water)     

(3-2-11) 

 

3-2-5 Set parameters of SDR and PDR 

 This simulation model was assumed two parameters. First is social discount rate (SDR). 

SDR is a measure used to help guide choices about the value of diverting funds to social 

projects15). In order to predict expected value of money in the future, SDR is necessary. 

Expected value of money can be express as Equation 3-2-12.   
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          Expected value of money (yen) = C / (1+SDR)M                  (3-2-12) 

 

where, C: present value of money, M: equals year (time). And then SDR is expressible in 

percent per year (%/year).     

However, in this study, 0%/year SDR applied to simulation model. That is we regard 

expected value of money as present value of money. But, developed simulation model for this 

study can calculate expected value of money using SDR.   

Second is population decrease rate (PDR). This simulation can also estimate the affected 

population in the future. In order to estimate the future population, the simulation model 

reflects PDR. Korea’s population is expected to decrease in the future. In particular, 

population statics for Seoul show that the population will decrease by 1% every 5 years 

(Figure 3-2-3)16). Thus, PDR was assumed to be 1% per term in this study. 

 

 

Fig. 3-2-3 Trend of changed population in Seoul 
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3-3 Examination of replacement rate effect 

 

3-3-1 Determination of iteration times 

MCS can yield more accurate results by increasing the number of iterations. However, this 

also increases the computation time. Therefore, an appropriate number of iteration is needed 

to effectively calculate the results against time. The number of iterations was determined in 

the following steps. 

 

1) The study period was set to 10 terms over 50 years (1 term = 5 years). 

2) The scenario focused only on pipeline repair (without replacement). 

3) MCS initially calculated 1000 iterations. 

4) The number of iterations was determined against the result of 1000 iterations.  

(Margin error ±0.5%) 

 

In step 3), 1000 iterations were empirically found to be sufficient in this study. The study 

focused on a simulated pipeline system, as shown in Fig. 3-1-1. And then as mentioned above, 

the population was assumed to be about 48,000 people. Finally, Equation 3-2-6 was applied 

to the simulation for obtain failure term at each pipeline.  

The simulation results according to the above steps are described next. Firstly, Fig. 3-3-1 

and Fig. 3-3-2 show the average total cost over 50 years (ATC) and average total affected 

population over 50 years (ATAP), respectively, based on 1000 iterations. In here, the reason 

why average value was used is that MCS can be obtained from average value which is 

calculated at each iteration time. In here, dotted lines on the graph means margin error, bar 

indicates appropriate iteration times.   
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Fig. 3-3-1 ATC ratio until 1000 iterations 

 

 

Fig. 3-3-2 ATAP ratio until 1000 iterations 
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The above graphs show that the ratio curve was in the margin of error (±0.5%) after 300 

iterations. In other words, by 300 iterations we can get the result with a quite acceptable 

margin of error. 

 In MCS, selected data should make up a normal distribution. In order to confirm the data 

distribution, a histogram was applied to the obtained results. In order to confirm the 

determined number of iterations, the histograms were drawn according to the number of 

iteration times without replacement, as shown in Fig. 3-3-3. If the distribution for a 

determined number of iterations is similar to that for 1000 iterations, the number of iterations 

can be judged as being appropriate. Histograms were drawn according to the average number 

of total pipeline failures.  

 

 

Fig. 3-3-3 Comparison with each histogram 
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The histogram results were also evaluated by referring to a statistics table, as shown in 

Table 3-3-1. A comparison of the mean values showed that the mean value for 300 iterations 

was almost the same as that for 1000 iterations. In conclusion, 300 times iteration was found 

to be appropriate in this study. 

 

Table 3-3-1 Statistics table for histograms 

150 iterations 300 iterations 1000 iterations 

Mean 523.42 521.83 521.89 

Standard deviation 19.12 18.67 19.06 

Max 588.00 588.00 588.00 

Min 471.00 468.00 465.00 

 

3-3-2 Results of calculated ATC and ATAP 

To compare the effect of replacement rate, seven cases for the annual replacement rate were 

set (without replacement, 0.5%, 1%, 1.5%, 2%, 2.5% and 3%). The ATC and ATAP were 

calculated and compared over the entire simulation term for each case. By the way, 

replacement of the pipelines occurred in order of age of the pipeline. Of course, these 

calculations were performed at 300 times iteration which was determined appropriate 

iteration time as shown before. MCS was performed by using a random number with the 

same number of seeds for each case.  

As the results, firstly, Fig. 3-3-4 shows average of total number of failure pipelines. We can 

know that that total number of failure pipelines was decreased according to increased annual 

replacement rate. It shows effect of replacement pipelines. And then, Fig. 3-3-5 shows the 

average total repair cost and total replacement cost at each annual replacement rate. 
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Fig. 3-3-4 Average of total number of failure pipeline at each annual replacement rate 

 

 

Fig. 3-3-5 Results for average total cost at each replacement rate 
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replacement rate, but the ATC is increased again from annual 2.5% replacement rate. The 

second cycle of replacement restarted because the first cycle finished by 40 years. Thus, the 

ATC increased again from 2.5%. In conclusion, 2% is the most economical replacement rate. 

These results are expressible in below Table 3-3-2.  And then, the ATC can be explained 

concretely through below accumulated graph (Fig. 3-3-6). 

 

Table 3-3-2 Result of calculated ATC at each annual replacement rate 

 

Average of  

failure pipeline 

(number) 

Average of total 

repair cost 

(104 yen) 

Average of total 

replacement cost 

(104 yen) 

ATC 

(104 yen) 

Without replacement 517 273,227 - 273,227 

0.5% 468 222,995 28,182 251,177 

1% 372 174,934 56,396 231,331 

1.5% 268 129,227 84,636 213,863 

2% 179 88,293 112,866 201,159 

2.5% 124 63,752 141,048 204,800 

3% 94 49,825 169,262 219,087 

 

 

Fig. 3-3-6 Results for accumulated ATC at each term 
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As above the graph, curves of annual 2%, 2.5% and 3% replacement rate are decelerated 

according to term. It means that although total cost is higher than other annual replacement in 

the early, total cost is reduced from middle term. This is because a lot of pipelines were 

replaced in the early, so additional repair cost is reduced as by goes by. Curves of annual 1%, 

1.5 % replacement rate are accelerated until end of 7 terms and decelerated from 8 terms. It 

means that although pipelines were replaced, effect of replacement pipeline is not big. So 

additional repair cost was input until end of 7 terms. However, start of 8 terms, effect of 

replacement began to appear. On the other hand, in case of without replacement and 0.5%, 

repair cost is increased continuously because of increased failure pipelines, so total cost is 

also accelerated according to increased term.  

 Next are results of the ATAP. Fig 3-3-7 shows results of calculated the ATAP at annual 

replacement rate.  

 

 

Fig. 3-3-7 Results of the ATAP at each annual replacement rate 
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ATAP can be explained concretely through below accumulated graph (Fig. 3-3-8). 

 

 

Fig. 3-3-8 Results for accumulated ATAP at each term 
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by performing a project versus the amount it costs to execute the project. The higher the BCR 

means the better the investment. General rule of thumb is that if the benefit is higher than the 

cost the project is a good investment17). The analysis of the BCR applied to this study. 

 Below the Fig. 3-3-9 shows the ATC and the ATAP results. 

 

 

Fig. 3-3-9 ATC and ATAP results for each annual replacement rate 
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Fig. 3-3-10 Curve for results of benefit-cost ratio   

 

3-3-4 Sensitivity analysis 
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Table 3-3-3 Change in future population under each case 

Case Standard Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Central 

district 

1%/term 

decrease 

5%/term 

decrease 

2%/term 

decrease 
Constant 

1%/term 

increase 

2%/term 

increase 

5%/term 

increase 

Other 

districts 

1%/term 

decrease 

3%/term 

decrease 

2%/term 

decrease 
Constant 

1%/term 

increase 

2%/term 

increase 

3%/term 

increase 

 

 

Fig. 3-3-11 Consist of study area 

 

The results are shown in Fig. 3-3-12. In all PDR cases, the ATAP is gradually decreased 

according to the increase of replacement rate. ∆P/C was then calculated again according to 
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of the PDR cases indicate that the 2.5% annual replacement rate is the best scenario with high 

efficiency. In other word, the sensitivity analysis results showed that the future population 

growth or decrease (the settings of PDR) do not have an important effect upon the selection 

of most efficient case of replacement rate. 
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Fig. 3-3-12 Tendency of sensitivity analysis according to each PDR 

 

 

Fig. 3-3-13 Changed ∆P/C values according to each PDR 

 

For most of waterworks, the replacement cost of pipelines reaches a large percentage of total 

budgets and the economy aspect is the most important factor under the severe restrictions. 

From this economy preferential viewpoint, this study found 2% to be the most reasonable 

replacement rate.  

0 

100 

200 

300 

400 

500 

600 

700 

800 

Witout 
replacement

0.5% 1% 1.5% 2% 2.5% 3%

A
T

A
P

 (
10

4 
p

eo
p

le
)

Annual replacement rate (%/year)

Case 6
Case 5
Case 4
Case 3
Standard case
Case 2
Case 1

0.00 

5.00 

10.00 

15.00 

20.00 

25.00 

30.00 

0.5% 1% 1.5% 2% 2.5% 3%

⊿
P

/C
 (

p
eo

p
le

 / 
10

4
ye

n
)

Annual replacement rate (%/year)

Case 6
Case 5
Case 4
Case 3
Standard case
Case 2
Case 1



 
 

79 
 

3-4 Application for key pipelines replacement plan 

 

Key pipelines are vital pipelines located in central districts with public establishments 

distributed densely around them, such as hospitals, schools, and government organizations. If 

accidents occur on key pipelines, and the damage is serious. Thus, the replacement of key 

pipelines is considered to have the priority. 

A simulation model was applied to key pipelines. Specifically, pipelines 1, 17, 18, 19, 20, 

and 21 in Fig. 3-4-1 were considered to be key pipelines and given the utmost priority for 

replacement. Regardless of the fact that non-key pipelines are also renewed at the same time. 

 

 

Fig. 3-4-1 Location of key pipelines on study area 
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non-key pipelines, and after fully completing key pipeline replacement (in 5~10 term) full 

annual budget is used for non-key pipelines replacement. The overall annual replacement rate 

was set at 2% in order to replace each pipeline once in 50 years (planning period in this 

study). Replacement of the non-key pipelines occurred in order of age of the pipeline.  

 

Table 3-4-1 Allocation of budget for the key pipelines and non-key pipelines 

 

 

3-4-2 Calculation of the ATC and ATAP for key pipelines 

These five scenarios were implemented using MCS with 300 iterations under the condition 

that PDR was 1%/term and 2% annual replacement rate. As the results, firstly, Fig. 3-4-2 

shows average of total number of failure pipelines. We can know that that total number of 

failure pipelines was decreased little by little according to increased TBA. 

 

 

Fig. 3-4-2 Average of total number of failure pipelines at each TBA 

Term 1, 2 3 4 5 6 7 8 9 10

3 TBA 100 %
            0 %

47 %
           53 %

0 %
          100 %

0 %
          100 %

0 %
          100 %

0 %
          100 %

0 %
          100 %

0 %
          100 %

0 %
          100 %

4 TBA 62 %
          38 %

62 %
          38 %

62 %
          38 %

0 %
          100 %

0 %
          100 %

0 %
          100 %

0 %
          100 %

0 %
          100 %

0 %
          100 %

6 TBA 41 %
          59 %

41 %
          59 %

41 %
          59 %

41 %
          59 %

41 %
          59 %

0 %
          100 %

0 %
          100 %

0 %
          100 %

0 %
          100 %

8 TBA 31 %
          69 %

31 %
          69 %

31 %
          69 %

31 %
          69 %

31 %
          69 %

31 %
          69 %

31 %
          69 %

0 %
          100 %

0 %
          100 %

10 TBA 25 %
          75 %

25 %
          75 %

25 %
          75 %

25 %
          75 %

25 %
          75 %

25 %
          75 %

25 %
          75 %

25 %
          75 %

25 %
          75 %

Key
pipeline

 

        Non
        key
     pipeline

Ratio of
budget

allocation
(%)

275 271 260
244

225

0

50

100

150

200

250

300

3 TBA 4 TBA 6 TBA 8 TBA 10 TBA

A
ve

ra
ge

 o
f 

to
ta

l f
ai

lu
re

 p
ip

el
in

es
 

(n
u

m
b

er
)



 
 

81 
 

As the results, there is no big gap but 10 TBA has the smallest failure pipelines. It means 

that allocation of replacement budget for key pipelines is a long time rather than short time. 

And then, Fig. 3-4-3 shows the average total repair cost and total replacement cost at each 

TBA. 

 

 

Fig. 3-4-3 Results for average total cost at each TBA 
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Table 3-4-2 Result of calculated ATC at each TBA 

 

Number of  

failure pipelines 

(number) 

Average of total 

repair cost 

 (104 yen) 

Average of total 

replacement cost 

(104 yen) 

ATC 

(104 yen) 

3 TBA 275 129,175 112,866 242,041 

4 TBA 271 126,364 112,866 239,230 

6 TBA 260 119,562 112,866 232,428 

8 TBA 244 112,095 112,866 224,961 

10 TBA 225 103,768 112,866 216,634 

 

 

Fig. 3-4-4 Accumulated cost at each term 
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will be the main consideration.    

 So next are results of the ATAP and the ATAP in key pipelines. Firstly, Fig. 3-4-5 shows the 

ATAP in entire study area. 

 

 

Fig. 3-4-5 Result of the ATAP in entire area at each TBA 

 

Just as results of the ATC, results of the ATAP in entire area are same. The results show the 

cases in order from greatest to smallest ATAP: 3 TBA, 4 TBA, 6 TBA, 8 TBA and 10 TBA. 

In conclusion, the 10 TBA case was the most preventive one.  

However, as mentioned before, in the study of key pipeline, the ATAP in key pipelines is 

main consideration. Next Fig. 3-4-6 indicates the ATAP in key pipelines. As the results, 3 

TBA is the smallest among the cases. This is because investment in as short time helped to 

prevent failure of key pipelines. In conclusion, 3 TBA is the most preventive case in this 

study. 
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Fig. 3-4-6 Result of the ATAP in key pipelines at each TBA 

 

The ATAP in key pipelines can be explained concretely through below accumulated graph at 

each term (Fig. 3-4-7). 

 

 

Fig. 3-4-7 Accumulated affected population in key pipelines at each term 
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As the graphs, we can know that in case of 3 TBA, after replacement of key pipelines, key 

pipelines aren’t failure. Also this is effect of fast replacement for key pipelines. Next graph is 

compound result of the ATC with result of the ATAP in key pipelines (Fig. 3-4-8).     

 

 

Fig. 3-4-8 Comparison of the ATC and the ATAP for key pipelines 

 

In conclusion, the most economical scenario was 10 TBA for the entire area. On the other 

hand, the ATAP for key pipelines was smallest at 3 TBA. In other words, the scenario of 3 

TBA provided the minimum risk for key pipelines. Because the difference in the ATC values 

is rather small and the most important object is to minimize the affected population, the most 

reasonable scenario is 3 TBA in conclusion. This result indicates that in terms of the impact 

on society the prioritizing replacement of key pipelines requires a higher total cost than that 

in the normal case. 
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3-5 Conclusions 

 

Present study aims to propose long-term plan for water pipeline replacement under limited 

replacement budgets that utilizes a damage occurrence model. In order to set replacement 

plan, developed simulation model. The simulation model is used to obtain the failure rate 

curve which uses reliability theory and data analysis for pipeline leakage accidents. This 

simulation model also involves the calculation for the post-damage maintenance (breakage or 

leakage repairing) scenario and the preventive maintenance (replacement) scenario.  

The MCS can be used to describe any technique that approximates solutions to quantitative 

problems through statistical sampling. Because pipeline accidents that occur at unspecified 

times and places, Monte Carlo simulation (MCS) is applied to simulation model. Because this 

study is long term simulation, we considered social discount rate (SDR) and population 

decrease rate (PDR).  

Unlike other studies, our study considered not only the economy aspect but also the aspect 

of society impact. So benefit – cost ratio is applied to this study.  

And then the present study was carried out several case studies which are changed annual 

replacement rate in order to confirm of replacement effect. Finally, the simulation model 

applies to key pipelines which are vital pipelines located in central districts with public 

establishments distributed densely around them. From the process we can obtain two 

conclusions as bellow: 

 

1) An examination of the replacement rate revealed that 2.5% is the most effective rate for 

damage prevention and maintenance of pipelines, on the other hand 2% was found to be the 

most economical replacement rate. 
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2) In case of prioritized replacement of key pipelines, although the 10 TBA was the best in 

terms of economics, the 3 TBA was the best in terms of the impact on society considering the 

purpose of key pipeline. 

 

The present study is expected to provide desirable alternative plans for water pipelines when 

the budget for replacement is limited with consideration of future conditions in study area. 

For the next study, this study will apply to not only simulated water distribution system but 

also on site of real water distribution system. So simulation model will upgrade to be 

appropriate reality and apply to a filed study.  
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Chapter 4 Replacement plan of distribution pipelines considering  

risk prevention 

  

4-1 Introduction 

 

4-1-1 Background and purposes 

The water pipeline is the most basic facility of social infrastructure. With the increasing 

quality of life, the level of consumer demand is also increasing. Consequently, water supply 

businesses are trying to supply sufficient high quality water. While water supply services 

work to supply sufficient high-quality water to meet demands, they are facing difficulty due 

to the deterioration of the water distribution network, particularly in the case of water 

pipelines laid in the late 1970s during rapid industrialization in Korea. These aged water 

pipelines are approaching 40 years in use, which is the standard facility age of water pipelines 

as proposed by the enforcement regulations for local public enterprises1).  

The biggest problem of aged pipelines is the occurrence of accidents such as water leakage 

or pipeline burst, leading to economic loss and inconvenience for the consumers who are 

supplied by the water pipeline. The current reported average revenue water ratio in Korea is 

83.5% and most of the non- revenue water ratio is caused by leakage from aged waterworks 

facilities in the water distribution system. In here revenue water means billed authorized 

consumption for supplied water. Waterworks are trying to increase the revenue water ratio 

and reduce water leakage.  

To prevent these problems, water pipelines must be efficiently replaced. In the past, the 

replacement commenced from the oldest buried water pipelines. However, given the complex 

natural and artificial factors that influence water pipeline accident, water pipelines must be 

analyzed in conjunction with priority plans. 
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Nazif and Karamouz (2009) quantified the readiness of systems for disasters. This readiness 

was developed into an algorithm based on three system performance indexes of reliability, 

resiliency, and vulnerability2). Choi et al. (2011) expanded this research by proposing new 

factors to formulate a reliability index that can be applied to small water pipeline networks3).  

Unlike previous studies, the present study introduced pipeline risk with quantitative 

approach. In addition, future replacement plan with an order of replacement was also set by 

quantitative rank of risk. Since pipeline accidents occur at random times and spaces, the 

Monte Carlo simulation (MCS) was applied. The aim of this study is to help in the stable 

establishment of efficient water pipeline replacement plans. 

 

4-1-2 Study area 

This study was conducted by analyzing data collected from the water pipeline defects 

diagnosis of City S in Korea that was conducted in 2009~20104). City S is composed of 10 

water distribution areas (big blocks) and 127 small blocks (Fig. 4-1-1). City S is composed of 

127 small blocks. The present study chooses one small block as the study area among 127 

small blocks (Fig. 4-1-2). 

The small blocks in this study area is supplied about 2400m3 of water every day. The water 

pressure ranges from 280kPa ~ 440kPa. And then this Study area includes 142 pipelines5).     

This research focused only on the water distribution pipelines without service line branch 

and service pipelines of under 75mm. The water distribution system was also simplified by 

excluding transmission pipelines and service pipelines.  

Table 4-1-1 shows the data of a studied network with only distribution pipelines. 
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Fig. 4-1-1 City S with 127 small blocks 

 

 

Fig. 4-1-2 Study area  

Table 4-1-1 Data of study area 

 

Distributed amount 

(m3/day) 

Total length  

(m) 
DCIP ratio* (%) 

Range of diameter 

(mm) 

City S 345,968 1,111,4322 88 80 to 1200 

Small block  2,400 7,832 100 80 to 300 

* Ductile cast iron pipe (DCIP) length / Total length 



 
 

93 
 

4-2 Risk analysis 

 

First, the present study defined pipeline accidents as pipeline damages cause of natural 

leakage or burst. In order to maintain or prevent the pipeline accidents, it is necessary to 

repair quickly at leakage point or set plan of pipeline replacement. As in the previous step of 

this analysis, pipelines with high accidents rate were analyzed for entire distribution area 

considering soil environments and replacement rate by economic evaluation. In order to 

determine priority of replacement pipelines in a small block, this study aims to quantify the 

impact on water consumers in pipeline accident. Because the study area is mostly residential 

area, suspension or reduction of working pipeline accidents was not concerned in this study. 

Three representative indexes for risk analysis of pipeline network were selected from 

existing researches to examine firstly, how many times pipeline damages occur; secondly, 

how long does it take to repair damaged pipelines; and lastly, how much water shortage is 

caused by damaged pipelines. This study carried out quantitative risk analyses using these 

three indexes according to Fig. 4-2-1. 

The small block is composed of 142 water pipelines. Pipeline No. 142, particularly, is 

directly connected to the transmission pipeline, so that all water supplies will be blocked if 

this pipeline is destroyed. Consequently, No. 142 pipeline is the most significant pipeline and 

the establishment of a special emergency plan was deemed necessary. Given this, No. 142 

pipeline was thus excluded from the risk analysis. 
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Fig. 4-2-1 Flowchart of this study by risk analysis 

 

4-2-1 Prediction of number of pipeline damages 

In previous studies, records of pipeline accidents were used to make probability models and 

find future damage probability. However, in this study, in order to predict the failure time of 

pipelines, a failure curve was obtained through a survey on waterworks businesses and record 

analysis of past accidents as dealt with chapter 3.  

At last the failure time of pipelines was predicted by using Equation 3-2-1 based on a 

failure curve as shown Fig. 3-2-1. For this study, the pipeline is divided into a constant length 

(4m here) of virtual sub-items, and it is assumed that accidents occur in each sub-item. In 

paper of Arai et al.6) the failure rate (%/year) is expressed as Equation 3-2-1 conducted from 
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reliability engineering. Assuming that each accident occurs at each sub-item, the failure rate 

is converted into the number of accidents per year (number/km/year). The constants k and c 

were estimated for each type of pipeline material from the data of regression analysis of past 

accidents. The expected number of damage occurrences is then calculated as Equation 4-2-1. 

 

                                               (4-2-1) 

 

where, t: degree of time, τ: age of pipeline, N: the total number of damaged sub-items from t1 

to t2. 

And then in order to expect to damage on pipelines in the study area, the entire pipeline age 

increased 20 years. So the average age of pipelines is nearly 40 years. So, the number of 

pipeline damage was calculated using Equation 4-2-1. The number of pipeline damages 

occurring in 60 years without replacement could be predicted by synthesizing each failure 

rate of pipelines.  

The results are expressible in Fig. 4-2-2. As the results, total predicted number of pipeline 

damages is around 174. Especially, for pipeline No. 118, nearly six damage incidents were 

predicted with the highest risk. On the other hand, No. 3 pipeline was predicted with almost 

zero occurrence of pipeline damage in 60 years, which is the last rank in the risk ranking. 

This indicates that No. 3 pipeline has minimum risk in this study area. Besides risk ranking is 

obtained by descending order of pipeline damages number.

2

1

( )
t c

t
N k t dt 
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Fig. 4-2-2 Results of predicted number of pipeline damages 
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4-2-2 Prediction of restoration time 

 When pipeline accidents on pipeline occur, the service must quickly be restored to normal 

consumer service. If the restoration time is delayed, the incurred consumer damage will 

increases and add a risk factor to maintenance management. The accident restoration time is 

influenced by complaint registration, transport time to accident area, human factors such as 

working manpower, depth of pipeline burial, pipeline diameter, road width, packaging type of 

buried land, and numerous other burial environmental factors.  

This study excludes human factors and focuses on the construction work time at damaged 

points. The time is influenced by the pipeline burial environment. We analyzed past records 

of accidents to generate a multiple regression equation that is applied to the study area. To 

predict the restoration time of each pipeline in the study area, a record of the accidents 

occurring in City S from 2006 to 2009 was analyzed. The record shows that a total of 1216 

accidents were reported in the four-year period and the restoration time was widely 

distributed. In accordance with the characteristics of the study area, we extracted cases where 

DCIP material with a diameter between 80mm and 300mm are in use and that have a 

fast-response restoration time of within 24 hours from the accidents data. Multiple regression 

analysis of the resulting 145 cases was conducted on the restoration time (hr.) and burial 

environment. The DCIP ratio was 100% in the study area, so the material of pipeline was 

excluded from this analysis. Table 4-2-1 presents the relevant data for this analysis with their 

mean, max and minimum values of items used as independent variable.  

 

Table 4-2-1 The statistics of items for multiple regression analysis  

Independent variable Unit Variable Mean Min Max 

Laying depth (m) X1 1.22 0.7 1.8 

Road width  (m) X2 13.31 4 39 

Diameter  (mm) X3 167.52 80 300 
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Among the variables that were used in the multiple regression analysis, pipeline age and 

material of pipeline were used to predict the future damaged pipeline numbers, which were 

excluded from this analysis. The multiple regression analysis models that was formulated 

based on the analysis of the accident records was applied to rank the predicted restoration 

time from the slowest to the fastest.  

Prior to regression analysis, a correlation analysis was carried out. Moreover in order to 

examine this model to determine whether it is likely linear or non-linear, the correlation 

coefficients of the logarithmic data of independent variables were also estimated as shown in 

Table 4-2-2. 

 

Table 4-2-2 Results of correlation analysis 

  X1 X2 X3 

Y 

(n = 145) 

(R0.05 = 0.164) 

-0.275  0.245  0.248  

Log (X1) Log (X2) Log(X3) 

-0.275  0.290  0.238  

 

If correlation coefficients have smaller value than the standard value R0.05, this means that 

there is no relation between each independent value and restoration time. However all factors 

are satisfied. And then in value of X2, correlation coefficient is increased.  

As the results, restoration time (Y) has a non-linear relation with road width (X2). Based on 

results of correlation analysis, the multiple regression analysis was carried out (Table 4-2-3). 
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Table 4-2-3 Results of non-linear multiple regression analysis 

Model number 
 Laying depth (m) Road width (m) Diameter (mm) 

Constant R-value
X1 Log(X2) X3 

R1 -5.575 2.893 0.016 9.238 0.446 

R2 -4.644 4.27   9.253 0.387 

R3   3.618 0.011 2.456 0.330 

R4 -0.866 6.033 0.016   0.354 

R5 0.075 7.419     0.288 

R6   5.387 0.014   0.330 

 

As the results, R1 has the highest R-value among the models. So we can judge that R1 

model is appropriate in this study. R1 is expressed as Equation 4-2-2. 

 

Y = -5.575X1 + 2.893Log(X2) + 0.016X3 + 9.238 (R=0.446)   (4-2-2) 

 

 First, the variance analysis results were examined to verify the statistical significance of the 

regression equation. As a result, the significance of probability was 0.000 (<α=0.05) to show 

statistical significance. The null hypothesis (H0) that ‘the coefficients of the independent 

variable included in the model is 0’ are dismissed when the significant probability of the F 

value, which is the probabilistic indication, is smaller than 0.05. It was therefore judged 

useful to predict the dependent variables using the regression equation made by input 

independent variables7).  

From the deduced equation, it was shown that the laying depth, road width and diameter 

rank exerted a strong influence. Fig. 4-2-3 indicates fitness between observation values and 

estimated values by multiple regression analysis.  
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Fig. 4-2-3 Estimated values of restoration time 

 

Equation 4-2-2 was applied to all pipelines of the study area and the predicted restoration 

times were obtained. The results are expressible in Fig. 4-2-4. 

The average restoration time of the pipelines in the study area was about 7 hours. Pipeline 

No. 4 with a diameter of 300mm buried at a depth of 1.3m under a 45m-wide road showed a 

restoration time of almost 11 hours, which was the longest predicted time. In contrast to that, 

Pipeline No. 121 with a diameter of 80mm buried at a depth of 1.7m under a 5m-wide road 

showed a restoration time of almost 3 hours, which was the shortest.  
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Fig. 4-2-4 Results of predicted restoration time 
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4-2-3 Prediction of water shortage volume 

 Water shortage volume was predicted to investigate the influence on consumers until the 

pipeline accident is restored. Water shortage in a water distribution system occurs due to the 

lockage of valves in the accident pipelines during restoration, causing an isolated demand 

point occurs in this process. This is called a direct water shortage. Meanwhile, an accident in 

a pipeline can result in decreasing water pressure in nearby pipelines. This is called an 

indirect water shortage.  

For this study, the pressure dependent demands (PDD) module of WaterGEMS V8 

commonly used software8) for hydraulic analysis of water distribution system was used to 

estimate direct and indirect water shortage volume.  

Most water distribution analysis programs used in the field are conducted with the demand 

dependent analysis (DDA) model. The DDA model9) is a way to calculate the head under the 

assumption that water demand at each node is always satisfied (Equation 4-2-3), but has 

problems when the water distribution is abnormal operation.  

On the other hand, the PDD model10) assumes that demand at each node is fully satisfied 

only if the minimum required water pressure at that node is satisfied (Equation 4-2-4). 

Otherwise, demand at the node is partially satisfied by relational formula between nodal 

demand and water pressure. This model is more reliable than the DDA model when the water 

distribution is abnormal, such as due to a pipeline accident. 

 

                                                            (4-2-3) 

 

 

                                                            (4-2-4) 
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where, Hi: calculated pressure at node i, Qri: requested demand at node i, Qis: calculated 

demand at node i, Hp: pressure threshold above which the demand is independent of nodal 

pressure (input parameter), α: exponent of pressure demand relationship. In addition, the 

detailed comparison of DDA and PDD were show in Table 4-2-4.   

 

Table 4-2-4 Comparison of DDA and PDD11) 

 DDA PDD 

Application Normal operation 
Abnormal operation condition 

(leakage, failure, pump problem, fire demand, etc) 

Reliability for 

abnormal condition 

analysis 

Low High 

Basic assumption 
Demands of nodes are fully 

satisfied  
Demands of nodes are depending on available head

Weak point 

Minus pressure occur under 

higher demand loading 

condition -> Unrealistic 

Need of relation curve between nodal heads vs. 

nodal flows (Filed data are necessary) 

Solving method Continuity and loop equations Optimization method  

 

In this study accident occurrence on each pipeline is assumed and a simulation was 

conducted by blocking the water flow in the accident pipeline. The water shortage volume 

was calculated by Equation 4-2-5. The water shortage was also ranked in terms of water 

shortage in the pipeline accidents from the largest to the smallest. 

 

(4-2-5) 

  

where, ΔQj: water shortage volume when accident occurred on j pipeline, Qs
ji: calculated 

water at node i when accident occurred on j pipeline, m and n: the number of nodes in the 

water distribution network and the number of pipelines respectively. 

1 1

( 1, 2, ..., )
m m

s
j ri ji

i i

Q Q Q j n
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First, water distribution system analysis was conducted using DDA method in the normal 

state to determine the amount of water shortage followed by the pipeline damage in the study 

area. As a result, the total amount of supplied water was 2240m3/day. Water distribution 

system analysis using PDD method was conducted in the same condition. First, the pressure 

threshold above which the demand is independent of nodal pressure should be set to satisfy 

the designed demand for water distribution system analysis by PDD method. The Korean 

Waterworks facility standard proposes a minimum dynamic water pressure of 300~350kPa 

for direct water supply to a 5 story building12). The maximum height of direct water supply to 

5 stories in this study area; thus, the pressure threshold (HP) was set at 300kPa.  

As a result of PDD water distribution system analysis in the normal state, 2240m3/day of 

water was supplied. There was no difference between the DDA and PDD water distribution 

system analyses in the normal operation.  

To estimate the water shortage that will occur due to the pipeline damage of this study area, 

it each pipeline from No. 1 to No. 141 was assumed to have been damaged one at a time 

through PDD method. The results are shown in Fig. 4-2-5.  

As the results, Pipeline No. 1 in particular is in a very important location as it is directly 

connected with pipeline No. 142 and the result shows that this pipeline would have the 

greatest water shortage of 186.81m3/day (8.3%). This analysis revealed that the water 

shortage is strongly influenced not only by the pipeline diameter or the distance of the 

connected pipe to the transmission pipeline, but also by the complicated configuration of the 

distribution network. 
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Fig. 4-2-5 Results of predicted water shortage volume
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Moreover Fig. 4-2-6 shows groups in order from the largest to the smallest amount of water 

shortage in the bold line, bold dotted line, line with triangle and dotted line. If the bold lines 

were damaged by accident, the amount of water shortage would be over 14m3/day. And then 

the bold dotted line was indicated that the amount of water shortage would be over 3m3/day, 

and pipelines which have over 2m3/day water shortage were expressed lines with triangle. On 

the other hand, in the case of dotted lines, there are 71 pipelines and amount of water 

shortage would be under 2 m3/day.  

 

Fig. 4-2-6 Network of predicted water shortage volume 

 

 

 

 

 

∆Q ≥ 14m3/day 3m3/day ≤ ∆Q <14m3/day 2m3/day ≤ ∆Q <3m3/day 

∆Q < 2m3/day NodeNumeric character: pipeline No.
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4-3 Predicted risk index (PRI) 

 

Each risk ranking was obtained through 3 risk analyses. However, each analysis has a 

different risk ranking, requiring an overall risk ranking to balance each risk ranking. 

Consequently, the predicted risk index (PRI) was introduced in this study to estimate the 

overall risk ranking. PRI is a quantitative approach used to compensate for the method of 

deriving overall risk ranking from obtained risk analysis.     

In this study, the PRI was calculated by multiplying the expected number of pipeline 

damages with the restoration time and the amount of water shortage. That is, the PRI in this 

case indicates the water shortage volume in the future period from t1 to t2. In this way, the 

PRI also becomes a quantitative impact ranking.  

 

.                                                                 (4-3-1) 

 

where, PRIj: amount of water shortage when accident occurs on j pipeline (m3), Nj: expected 

number of damage occurrences on j pipeline, RTj: restoration time (hr), ΔQj: water shortage 

volume (m3/hr), j: accident pipeline number, n: the number of pipelines. 

Using Equation 4-3-1, the PRI of each pipeline was calculated to decide the ranking of the 

largest water shortage volume. The results are shown in Fig. 4-3-1. 

As the results of PRI, pipeline No. 1 would have the highest risk because of the highest 

water shortage volume. On the other hand, pipeline No. 3 was predicted with the lowest risk 

in 60 years. Based on the above results, the priority of pipeline replacement can be set by the 

PRI. The highest PRI was given the utmost priority for replacement. These results also 

present the estimated priority of the replacement of each pipeline from 1st to 141st rank 

(excluding pipeline No. 142).  

( 1, 2, ..., )j j j jPRI N RT Q j n    
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Consequently, the pipeline with No. 1 risk ranking should be the first to be replaced (Table 

4-3-1).  

 

 

Fig. 4-3-1 Results of calculated PRI 
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Table 4-3-1 Priority of replacement pipeline according to PRI 

Pipeline Replacement order Pipeline Replacement order Pipeline Replacement order

1 1 51 108 101 46

2 78 52 105 102 102

3 141 53 103 103 75

4 17 54 137 104 18

5 31 55 135 105 35

6 132 56 124 106 21

7 33 57 138 107 115

8 69 58 36 108 117

9 136 59 8 109 22

10 134 60 88 110 83

11 70 61 32 111 122

12 131 62 49 112 100

13 23 63 113 113 48

14 29 64 116 114 53

15 123 65 133 115 37

16 5 66 110 116 40

17 39 67 94 117 125

18 99 68 42 118 11

19 20 69 93 119 86

20 15 70 9 120 140

21 26 71 111 121 112

22 54 72 34 122 84

23 118 73 139 123 130

24 97 74 16 124 74

25 10 75 50 125 12

26 41 76 19 126 24

27 73 77 52 127 79

28 13 78 107 128 14

29 80 79 87 129 128

30 4 80 119 130 28

31 59 81 27 131 85

32 92 82 63 132 109

33 57 83 3 133 25

34 58 84 47 134 76

35 126 85 68 135 6

36 64 86 95 136 56

37 60 87 77 137 120

38 45 88 104 138 44

39 7 89 30 139 90

40 114 90 38 140 72

41 91 91 62 141 55

42 81 92 106

43 127 93 101

44 67 94 71

45 51 95 82

46 96 96 129

47 43 97 65

48 61 98 98

49 121 99 66

50 2 100 89
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4-4 Examination of replacement order effect 

  

Before the study, annual replacement rate was proposed considering the budget of pipeline 

replacement. The average pipeline age is around 20 years in this study area, so there is no 

need to start pipeline replacement immediately. This study assumes pipeline replacement to 

start after 20 years and the period of the replacement project is set for the next 60 years, 

because in order to match the useful life of the latest DCIP. In the simulation, pipelines of 

study area are not replaced in the first 10 years due to the budget of other small blocks. After 

that, pipeline replacement is simulated for the next 25 years, with no replacement for 

following 25 years. So after 60 years, the replacement plan will be reconsidered for the next 

60 years. In short, the analysis predicted that water pipelines in the study area could be 

replaced at a 4%/year replacement rate.  

In order to compare the effect of replacement order, three scenarios were set: (A) 4%/year 

replacement in order of aged pipeline, (B) 4%/year replacement in order of PRI, and (C) 

without replacement. Here, “without replacement” (Scenario C) means that pipelines are 

repaired but not replaced after damage according to their age, whereas in other scenarios the 

considerably few damaged pipelines are repaired after replacement. These scenarios also help 

confirm the effect of the replacement order.  

Firstly, Fig. 4-4-1 and Fig. 4-4-2 show the replacement order respectively. And then Table 

4-4-1 indicates detail standard of grade for replacement order. Table 4-4-1 indicates the 

details of the standard grades for the replacement order and their average values. In scenario 

A the older pipes would be replaced at an earlier term, and pipes of same age with a larger 

diameter will have priority. In scenario B, whose priority is PRI, some of the older pipes with 

fewer risks to consumers would be replaced after the replacement of the newer pipes with 

greater risks. 
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Fig. 4-4-1 Replacement in order of aged pipeline (Scenario A) 

 

Fig. 4-4-2 Replacement in order of PRI (Scenario B) 
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Table 4-4-1 Grade standard of replacement order 

Group 
Rank of 

pipeline 

Group 

color 

In order of aged pipelines 

(Scenario A) 

In order of PRI 

(Scenario B) 

Average of 

diameter (mm)

Average of 

age (year)

Average of  

Diameter (mm) 

Average of  

age (year) 

1st replacement 1 - 30 Red 108 25 135 20 

2nd replacement 31 - 60 Yellow 80 24 107 21 

3rd replacement 61 - 90 Green 84 22 104 21 

4th replacement 91 - 120 Sky blue 149 17 93 22 

5th replacement 121 - 142 Blue 148 12 124 19 

 

In addition, this study was used to Monte Carlo simulation (MCS). Because pipeline 

accidents occur at unspecified times and places randomly, MCS need to describe approximates 

solution such as pipeline damages. The present study assumed that pipeline damages occur 

when pipelines reach the failure time given by Equation 3-2-6 before and after the 

replacement timing. To calculate the pipeline damages utilizing MCS, the present study 

assumed that pipeline damages occur when pipelines reach the failure time, and the pipelines 

will damage. In this study MCS ran at 1000 iteration times. 1000 iterations were empirically 

found to be sufficient in this study. The study period was set to 12 terms over 60 years (1 

term = 5 years), and MCS was conducted for scenarios A, B, and C. As mentioned before, the 

study set the rate of annual replacement at 4%, the replacement period from 3 terms to 7 

terms for 25 years, which was expected in the balance of all small blocks. From the MCS, the 

expected value of pipeline damages for each term in each case was obtained. Following this, 

the restoration time, the amount of water shortage, and the PRI were calculated and compared 

over the entire simulation term for all three cases. 

As the results, Fig. 4-4-3 shows the accumulated number of pipeline damages for each 

scenario. In the case of scenario C, the line sharply rises as the time lapses along the terms, 

showing acceleration of the number of damages. On the other hand, the two other scenarios 
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show a deceleration after 4 or 5 terms as a result of replacement. In other words, Fig. 4-4-3 

clearly demonstrate that, in the case of the network studied, reducing pipeline damages by 

replacement is effective after up to 50% of pipeline replacement has been attained. The effect 

is expected to be consistently maintained until the end of the period planned. 

 

 

Fig. 4-4-3 The accumulated number of pipeline damages 

 

To investigate the effect of replacement order in this study, a graph showing the 

accumulated PRI was drawn, as shown in Fig. 4-4-4. In the case of scenario C, the PRI also 

accelerated according as time lapsed along the terms. In scenario A, the line increases until 

the end of 6 terms and decelerates from the 7th term. However, in scenario B, the line 

decelerates after 3 terms. The effect of replacement order by PRI is clearly demonstrated by 

these results. When comparing the two graphs, there is a difference between scenarios A and 

B. From Table 4-4-1, we can see that in scenario A there is a tendency to replace pipelines 

from ones with small diameters, but in the case of scenario B it is the opposite, i.e. 

replacement would tend to begin from pipeline with large diameters. In this way, it is evident 

that PRI is more affected by diameter than pipeline age. In other words, if we consider the 

PRI for scenario B, replacement would not become effective until the end of 6 terms, while 
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for scenario C we can expect to obtain stabilized effectiveness with very little water shortage 

volume after 3 terms. 

    

 

Fig. 4-4-4 Results of accumulated PRI 

 

Finally, the numbers of pipeline damages, restoration time, water shortage volume, and PRI 

for each scenario are given in Table 4-4-2 to show the effect of replacement. In the case of 

scenario B, the restoration time is a little longer than in scenario A, indicating that 

replacement in order of PRI can give us desirable alternatives for preventing the risks. 

 

Table 4-4-2 Total of expected values  

 Scenario 

Number of 

pipeline damages 

(number) 

Restoration time 

(hr) 

Water shortage 

volume (m3/hr) 

PRI  

(m3)  

A 30  218  41  372  

B 34  238  16  143  

C 157  1140  148  1345  
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4-5 Conclusions 

 

This study attempts to analyze risks through three analyses. The first analysis is for 

predicting the number of pipeline damages to find out how many times the pipelines would be 

damaged in the future. The second analysis is for estimating the restoration time. It represents 

indirect disadvantages of pipeline damage accidents by pipeline repair time. The third analysis 

is for investigating the direct impact on consumers when a pipeline is intercepted at the 

damaged point. From these analyses, we were able to obtain the quantitative rank of risk in 

each analysis. As the risk ranking of each analysis is different, the overall risk ranking is 

necessary.  

Consequently, this study introduced the predicted risk index (PRI) to estimate the overall 

risk ranking. The PRI becomes a quantitative impact ranking. In conclusion, the highest PRI 

eminently deserves the utmost priority for pipeline replacement. The PRI can propose for risk 

evaluation to provide sufficient guarantee of stable distribution service. As the results, we can 

obtain two conclusions as shown bellow. 

 

1) 141 pipelines were assessed with a risk ranking from 1st rank to 141st rank. In conclusion, 

the pipeline with the 1st risk ranking should be replaced first when establishing replacement 

plans.  

 

2) In order to examine effect of replacement order based on PRI, three cases were set and 

compared each other. As the results, replacement in order of PRI prevents the risk compare 

with replacement in order of aged pipelines. 
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This study has proposed a risk prediction method for waterworks pipeline network 

management, and can be expected to be used to assist the decision-making when devising 

pipeline replacement plans, as well as in the maintenance and management of water 

distribution systems. Moreover unlike past researches, this study conducts to quantify the 

impact of pipeline accidents on water consumers. It helps waterworks set the specific 

replacement or maintenance plan. This study will be updated by a future study aimed at 

determining the replacement rank of 127 small blocks in the entire study area, which will 

consider the total cost (repair cost and replacement cost) and the benefit using PRI. 
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Chapter 5 Conclusions 

 

Nowadays, Korea is faced with pipeline deterioration and functional durability. If water 

leakage and accidents occur cause of deterioration and functional durability, it can cause not 

only cost loss but also social loss. So, in this research, a new approach was developed for 

pipeline replacement. 

First, in the Chapter 2 is proposed to evaluate present condition of water distribution 

pipeline. Especially, degree of external corrosion is regarded as representative pipeline 

condition. For this study, in-situ data obtained through test pit excavation and direct sampling 

are carefully collated and assessed. In order to evaluate indirectly, statistical approach is 

applied. Statistical approach is useful to predict severity of pipeline corrosion at present and in 

future. First, criteria functions defined by discriminant Function Analysis (DFA) are 

formulated to judge whether the pipelines are corroded seriously. Data utilized in the analyses 

are those related to soil property, i.e., soil resistivity, pH, moisture, and Chloride ion. 

Secondly, corrosion factors that significantly affect pipeline wall pitting (vertical) and spread 

(horizontal) on pipeline surface are identified with a view to quantifying a degree of the 

pipeline corrosion. Finally, a most reliable model represented in the form of a multiple 

regression equation is developed for this purpose.     

As the results, influential parameters on external corrosion depth (Yd) are soil resistivity 

(X4), moisture (X6) and pipeline age (X3). It is also confirmed that the soil resistivity (X4) and 

the pipeline diameter, among others, affect spread of general corrosion (Ya). From all the 

above, it can be concluded that the multiple regression equation obtained herein provides 

valuable information on degree and rate of external pipeline corrosion in the target area. From 

these analyses, it can be concluded that our proposed model is effective to evaluate present 

pipeline condition.   
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Next in the Chapter 3 is to propose long term plan for main distribution pipeline 

replacement using economic evaluation that utilizes a damage occurrence model. Especially, 

this study attempts long term replacement plan by efficiently allocating a budget for pipeline 

replacement. First, a simulation model is used to obtain the failure rate curve which uses 

reliability theory and data analysis for pipeline leakage accidents. And Monte Carlo 

simulation (MCS) is applied to the simulation model. Secondly, in order to set the best 

planning, several cases which are changed annual replacement rate are applied to this study. 

Finally, the simulation model applies to key pipelines. The key pipelines are vital pipelines 

located in central districts. Thus, the replacement of key pipelines is considered to be the 

priority.  

Unlike other studies, this study considered not only the economy aspect but also the aspect 

of society impact. From these steps, annual 2.5% replacement rate is the most effective rate 

for damage prevention and maintenance of pipelines, in case of replacement of key pipelines, 

although the 10 -TBA scenario was the best in terms of economics, the 3-TBA scenario was 

the best in terms of the impact on society.  

Finally, in the Chapter 4 is to introduce efficient water distribution pipeline replacement plans 

considering risk prevention. Especially, this study attempts risk analysis utilizing three 

methods which are prediction of number of pipeline damages, restoration time and water 

shortage. When results of three risk analysis put together, the overall risk ranking had to be 

estimated by predicted risk index (PRI). In conclusion, the highest PRI was given the utmost 

priority for replacement.  

From these analyses, pipelines were assessed with a risk ranking from first rank to last rank. 

In order to confirm replacement effects utilizing PRI order, three case studies which are 

changed replacement order are applied to MCS. As the results of MCS at each case, we can 
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confirm effects of replacement in order of PRI. Thus, this study expected to assist 

decision-making in the pipeline replacement plans. 

 In this research is proposed effective replacement plan using 3 studies. This research will be 

upgrade by combining 3 studies, and apply to real water distribution system in order to prove 

usefulness.   
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