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Abstract  Disease mapping is an effective analytical approach to conducting epidemiological 
analysis as well as risk communications to share fundamental knowledge of existing/emerging 
epidemics. This article employs a series of spatial epidemiological techniques for enhanced 
disease mapping of the mesothelioma epidemic at the municipality level across Japan during the 
period between 1995 and 2004. The processing of data using spatial statistics is vital in the 
effective geovisualisation. The results revealed distinctive geographical concentrations of highly 
elevated mesothelioma risks, especially in areas with a history of prior asbestos-related 
manufacturing industries, such as textile, construction materials and shipbuilding factories. 
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1. Introduction 
 

Mesothelioma is representative of asbestos-related diseases, due to its strong causal link with 
past asbestos exposure. Recently, the incidence of the disease has been steadily and rapidly 
increasing in Japan (Fig. 1). However, since the national cancer registry system has not yet been 
implemented, details of the disease epidemic are still not fully known. The death count caused by 
pleural mesothelioma only began to be recorded in 1995 when ICD-10 was introduced for 
classifying primary cause of death in Japanese vital statistics. The total number of deaths caused 
by mesothelioma from 1995 to 2012 was 16,235 (male: 12,671; female: 3,564). Asbestos is now 
acknowledged to be the leading source of occupational respiratory cancers in Japan (Morinaga et 
al. 2001). Considering the delay in imposing the ban on asbestos use (fully banned in 2002), and 
the long latency period of the disease (over 30 years), we expect the rising trend in the number of 
mesothelioma deaths to continue for the next several decades. 

The geographical distribution of mesothelioma is one of the key factors in comprehending this 
asbestos-related disease epidemic. This information may integrate our existing partial knowledge 
of the link between past exposure and emerging victims (i.e., disease cases), while also providing a 
means for detecting unrecognised risks of asbestos-related diseases. In 1995, a local newspaper  
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Fig. 1  The temporal trend of deaths from mesothelioma in Japan, 1995–2012. 
Source: Vital Statistics in Japan (Ministry of Health, Labour and Welfare) 

reported five mesothelioma cases without a history of occupational asbestos exposure in the 
vicinity of a former asbestos cement pipe plant of Kubota Corporation (hereafter, Kubota plant) in 
Amagasaki city. These cases raised a serious concern about exposure to airborne asbestos emitted 
revealing a striking mapping result indicating a clear geographic concentration around the Kubota 
from the Kubota plant. Soon after, Kurumatani and Kumagai (2008) confirmed the link by plant; 
they did so by spotting past residences of mesothelioma cases that did not have any history of 
occupational exposure.  

This seminal mapping study shared several features with the legendary work of John Snow on 
the mapping of cholera in the 19th century (Snow, 1855). Snow mapped the residential locations 
of cholera deaths to confirm the use of a water pump as the most plausible putative source of 
contaminated water. However, such spot mapping efforts have been conducted mainly for 
investigating specific putative sources of contamination of asbestos in small geographic areas, and 
are not appropriate for revealing a wider geographic context of the current mesothelioma epidemic 
in Japan. This short article thus aims to examine the geographic variations in mesothelioma 
mortality throughout Japan by visualising the geographic concentrations of elevated mesothelioma 
risks at the municipal level. We also demonstrate how geovisualisation of mesothelioma risks is 
enhanced by spatial epidemiology techniques in a geographic information system (GIS) 
environment (Nakaya 2008; Pfeiffer et al. 2008). 

Although the regional mortality from mesothelioma according to vital statistics is usually 
available only at the level of 47 prefectures, the geographic list of mesothelioma death counts 
(only sex combined information) from 1995 to 2004 at the municipality level (Shi-cho-son) was 
included in a reference table in meeting records from the Ministry of the Environment. If the 
number of deaths in a region ranges from one to three, the regional count is masked in the list. The 
masked integer values were restored by maximizing the Poisson likelihood, assuming the relative 
risk for the masked regions as a constant for each prefecture. Using this death count data source, 
we prepared the dataset of standard mortality ratio (SMR) with regional age- and sex-specific 
population sizes obtained from the 2000 population census for our disease mapping efforts. The 
number of municipality in the dataset is 1,837. 
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Fig. 2  Standard mortality ratio (SMR) distribution of mesothelioma, 1995–2004.  
A: raw SMR, B: smoothed SMR using spatial empirical Bayes estimates,  
C: smoothed SMR based on the population cartogram 

 
 
2. Spatially Smoothed Mapping of Mesothelioma Mortality 
 

Kanazawa et al. (2006) mapped the standard incidence ratio (SIR) of mesothelioma within 
Osaka prefecture at the municipal level, indicating an uneven mesothelioma incidence distribution. 
This study would be the first trial mapping the regional distributions of mesothelioma incidence on 
the basis of long-term cancer registration data, revealing remarkable small-area variations within a 
prefecture. However, since a small number of asbestos-related cancer cases leads to an inaccurate 
estimate of SIR, we should carefully consider such thematic maps at the level of small areal 
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aggregation units. It is important to recognize that rural regions with a low population density tend 
to be large; therefore, unreliable SIR estimates in such rural regions would obscure the geographic 
tendency. The small-number problem occurs with the mapping of the distribution of nationwide 
mesothelioma SMR distribution in Japan (Fig. 2A). Thus, it is difficult to infer the meaningful 
geographical trends or concentrations of high mesothelioma SMRs in the thematic map. 

To overcome the difficulties in disease mapping using low death counts, various statistical and 
cartographical approaches have been developed in the field of spatial epidemiology. Spatial 
smoothing is commonly employed as the first step to stabilize statistically unreliable regional rate 
estimates such as SIR or SMR. Empirical and full Bayesian models with spatial dependency have 
been widely employed for this purpose (Lawson 2013).  

Figure 2B shows the result of applying spatial empirical Bayes smoothing (Marshall 1991) to 
the SMR data set of mesothelioma cases studied from 1995 to 2004. The regional relative risk 
estimate, which is calculated using this statistical technique, shrinks to the average SMR in the 
neighbourhood of a region if the number of expected cases in the region is small. However, the 
relative risk estimates are not largely different from the raw SMR for populous regions with a large 
number of expected cases. A spatial empirical Bayes estimator of SMR in the ith region, SMRiEB, 
is expressed as 
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where oi and ei are the number of observed and expected cases, and ( )i  and ( )i  are positive 
hyperparameters estimated from the regionally pooled data in the neighbourhood of region i. It 
should be noted that ( ) ( )/i i 

 
corresponds to the SMR in the pooled data. Neighbourhoods are 

defined using a moving window by defining a second order queen contiguity weighting matrix for 
each region. The result indicates that the western part of Japan along the Seto Inland Sea has 
experienced higher mortality due to mesothelioma.  
 
 
3. Highlighting Geographical Regions with Excess Deaths from Mesothelioma 
 

In Figure 2C, the smoothed SMR is mapped on a population cartogram in which the size of 
each spatial unit is proportional to the population size (here, the number of expected cases is used 
as the base population). In the cartogram, values in populous areas become visually dominant. We 
used the algorithm developed by Gaster and Newman (2004) to construct continuous cartograms. 
This method of mapping enables us to understand a geographical trend in high-risk areas observed 
in western Japan, particularly, the locally increased risk in conurbations along the Seto Inland Sea. 
In such locations, municipalities are likely to be populous but geographically small, such that we 
visually overlook the importance of local excess deaths on a standard map projection. In fact, we 
cannot identify Amagasaki city as having one of the highest SMRs on the standard map projection 
with the equidistant conic projection centred in Tokyo (Fig. 2B).  

Combining the cartographic visualisation of excess deaths with 3D visualisation provides a 
bird’s eye view of the cartogram-based excess death distribution; that is, a more direct visualisation 
of the geographical distribution of excess deaths (Nakaya 2010). Figure 3 shows the prismatic 
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display of SMR distribution based on the cartogram in which the height of each municipality is 
proportional to its SMR. Given that the areal size and height of a geographic unit represent the 
regional population (number of expected cases) and regional SMRs (relative risks of death), 
respectively, the volume of “mountains/prism,” (areal size multiplied by the height) shown on the 
3D map corresponds to the absolute size of excess deaths, compared with cases with no history of 
asbestos exposure. We observe several considerably large volumes of excess deaths, particularly in 
and around Amagasaki city and other cities with shipbuilding (such as Aioi, Kobe, Tamano, and 
Kudamatsu), seaports with naval bases (Kure, Maizuru, and Yokosuka), and asbestos-related 
manufactguring industries (such as Amagasaki, Hashima, Sennan, and Ohji). 

 
 

Fig. 3  Prismatic display of excess deaths from mesothelioma in Japan, 1995–2004. 
       The colour and height represents SMR (spatial empirical Bayes estimates of relative risk). 
       Numbers in parenthesises refer to the regional SMRs. 

 
 
4. Detecting Spatial Clusters of High Mesothelioma Risks 
 

Considering the fact that a geographic unit is modifiable, we should carefully take into account 
the zone design for the geographical spatial analysis. The significance testing of SMR levels on the 
basis of the Poisson probability is often conducted for each basic geographic unit. However, the 
statistical power is dependent on the number of expected cases. Thus, in the case that regional 
excess deaths are insignificant at the level of the basic unit, the results might be different at the 
level of larger aggregated units. Further, the classic Poisson test suffers from multiple-testing 
problems because it repeats the local evaluations of anomalous values countless times. It should be 
noted that although geographical smoothing using the spatial empirical Bayes estimator generally 
provides conservative estimates, spurious geographic patterns of estimated relative risks can still 
emerge depending on the local geographic settings. Thus, it is necessary to use a more stringent 
test to assess whether a geographically elevated risk is significantly high. 
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Fig. 4  Statistically significant clusters of elevated risks of mesothelioma detected 
using spatial scan statistics (p values <0.05). 

 
Spatial scan statistics are devised to detect significant clusters by exhaustively scanning the 

space using moving circular windows with different radii (Kulldorff 1997). The scan statistics 
provide a way to avoid performing multiple tests by focusing on the maximum value in the entire 
study domain. The method is now commonly applied to spatial statistics for various purposes 
regarding spatial cluster detection. 

The test statistic is the observed maximum likelihood ratio in a circular window in the entire 
geographic domain under study. Omitting a constant term, the statistic is given as 
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where y and e denote the number of observed and expected cases, respectively; Z and Zc represent 
domains inside and outside the specified window, respectively; and I is the indicator function (if a 
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> b, then I (a > b) becomes 1, otherwise 0). 
Under the null assumption that the disease cases under study randomly occur following a 

Poisson distribution with expected size of death as its mean, Monte Carlo replications of the 
dataset enable us to obtain the simulated distribution of the likelihood ratio-based statistics,  , for 
the significance testing of high-density clusters. We generated 999 replications to obtain p-values, 
the probability of random occurrence of observed excess deaths in a circular window. The cluster 
defined by the window with the lowest p-value is called the most likely cluster. Secondary clusters 
are also obtained for those that do not geographically overlap more likely clusters if their p-values 
are below the significance level. 

Selecting the upper geographical search limit for scan statistics is crucial, because it is well 
known that if the upper limit is set to a large value, the spatial scan statistics are likely to generate a 
few extra-large and low-risk clusters (Pfeiffer et al. 2008). We herewith use a radius of 10 km as 
the upper search limit to confirm the regional, citywide geographic concentrations of excess deaths. 
Distances are calculated as the crow-fly distance between municipality centroids. Figure 4 shows 
statistically significant concentrations of high relative risks detected by using spatial scan statistics 
at the 5% significance level. Even if we exclude the originally masked data from the dataset, the 
result is essentially unchanged. 

The detected clusters again highlighted the regions with navy ports, shipbuilding, textile, or 
other manufacturing industries that used asbestos. These clusters are mainly distributed in western 
Japan. The figure also shows an unidentified local cluster in the city of Toyama, confirming the 
occurrence of anomalous excess deaths visualised in the thematic map of SMR (obtained by 
conservative statistical testing). 
 
 
4. Discussion 
 

As demonstrated by the seminal work of Kurumatani and Kumagai (2008), unidentified risks, 
including hidden sources of asbestos exposure or unknown putative sources, can be explored and 
confirmed by adopting a disease mapping approach. The visualisation of the regional distribution 
of mesothelioma incidence in a wider geographic context is also well powered by mapping, spatial 
statistics, and the GIS-related cartographical analysis such as cartograms. We assessed the extent 
of the epidemic by directly visualising the number of excess deaths estimated by using empirical 
Bayesian smoothing on the basis of a population cartogram in 2D or 3D GIS environments. 
Spatial scan statistics provide a method for the conservative testing of local geographical 
concentrations of mesothelioma deaths. It is well documented that the geographic concentrations 
of mesothelioma deaths in areas with seaports support the fact that heavy occupational exposure to 
asbestos occurred in old shipbuilding workplaces in many countries, including the U.K. and U.S. 
(Jenal et al. 2000). Our disease mapping efforts reveal similar geographic concentrations of 
mesothelioma deaths, indicating heavy past exposure to asbestos due to the presence of 
asbestos-related manufacturing industries, including shipbuilding factories. It suggested that 
occupational exposures to asbestos in closed working environments was the main cause of 
mesothelioma geographic clusters except Amagasaki city where neighbourhood exposures to 
asbestos emitted from a factory led to one of the largest concentrations of mesothelioma deaths 
We also found some unrecognized geographic clusters that need to be explored further (such as 
Toyama). It is worth noting that uncovering such unrecognised geographic concentrations of 
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mesothelioma be crucial for comprehending the entire picture of mesothelioma epidemic and 
making social policies to fully cover the associated victims. 

An important issue for future research is the inclusion of temporal dimensions to predict the 
future geographic trend of asbestos-related diseases. In the U.K., wherein the epidemic started 
earlier than in Japan, there remain geographic concentrations of excess deaths in ports and 
dockyards, but the rate of increase in the number of excess deaths has reduced, because of the 
migration of previously exposed people from high-risk to low-risk areas (Health and Safety 
Executives 2005). This implies that excess deaths would be underestimated by the current SMRs 
in such high-risk areas. The study conducted in the U.K. also suggests that while the number of 
excess deaths due to heavy exposure has been declining, the incidence of asbestos-related disease 
continues to increase among those working at construction industries that are widely distributed 
across regions. Thus, it is essential to contextualize the information regarding an epidemic 
according to the changing geography; that is, in terms of population composition, occupational 
exposure, migration history, and resources supporting those at risk. We should further explore the 
ways in which GIS facilitates contextualization as an information platform by visualising and 
linking different information over space and time. 
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