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GENERAL INTRODUCTION 

 

A major goal in evolutionary biology is to uncover the mechanisms of phenotypic evolution. 

It is considered that many phenotypic characters have been evolved to adapt to various 

environmental conditions by natural selection (Darwin 1859). So far, molecular evolutionary 

biologists have tried to understand the adaptive evolution at molecular level using theoretical 

and experimental analyses (Hughes and Nei 1988, Nielsen and Yang 1998, Suzuki and Gojobori 

1999, Smith and Eyre-Walker 2002, Yokoyama et al., 2008). In these studies, it was postulated 

that changes of nucleotide or protein sequence causing functionary alteration of the gene are the 

most reflect the adaptive evolution. A representative example of the theoretical studies is that 

focused on evolution of immune systems. Hughes and Nei (1988) revealed that the rate of 

nonsynonymous substitution (dN) was significantly higher than the rate of synonymous 

substitution (dS) in antigen recognition sites (ARS) of major histocompatibility complex (MHC) 

genes by comparing protein-coding region of MHC genes among mammals, whereas dN for 

non-ARS region was significantly lower than dS. From this results, they claimed that the ARS 

have been evolved under positive selection and the highly polymorphism of ARS have been 

maintained by overdominant selection, based on the prediction from the neutral theory of 

molecular evolution (Kimura 1983). Similarly, many immune-related genes involving in innate 

immune system are shown to be rapidly evolving compared to non-immune-related genes 

(Schlenke and Begun, 2003, Sackton et al., 2007, Obbard et al., 2009). These observations were 

explained by coevolutionary interactions between hosts and pathogens, so-called “arms races” 

(Dawkins and Krebs 1979). Under this conception, compared to non-immune-related genes, 

immune-related genes are expected to be rapidly evolving or to have elevated polymorphism to 

maintain various alleles to cover ever-changing pathogens (Schlenke and Begun, 2003, Sackton 
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et al., 2007, Obbard et al., 2009). These studies were focused on to detect evolutionary traces 

from the primary structure of DNA or protein sequences. 

However, Wilson, Maxson and Sarich (1974) proposed that phenotypic evolution have more 

arisen from changes of gene regulatory system than from changes of protein function. 

Consistently, in recent years, it has been revealed that changes in gene expression pattern play 

an important role in phenotypic evolution, e.g., novelty of pigmentation pattern on Drosophila 

wings generated by changing spatial expression pattern of yellow (Gompel et al., 2005), changes 

in butterfly eyespots on the wings by changes in Distal-less expression pattern (Beldade, 

Brakefield and Long 2002) and changes in beak morphology in Darwin’s Finches generated by 

gene expression changes of BMP4 (Abzhanov et al., 2004). In Drosophila immune system, 

similar situation was also reported. Sackton and Clark (2009) found that the expression patterns 

of antimicrobial peptide (AMP) genes against bacterial infection by septic injury were different 

between two Drosophila species, Drosophila melanogaster and D. virilis. Although they 

suggested that this difference in the immune-response was due to different ecological traits of 

the two species, they did not clarify the relationship between the phenotype and the gene 

expression pattern. 

D. melanogaster feeds on fermented or rotting fruits, which mainly harbor Baker’s yeast, 

Saccharomyces cerevisiae, whereas D. virilis feeds on slime flux and decaying bark of trees, on 

which a variety of yeasts and filamentous fungi thrive (Carson 1971, Throckmorton 1975, 

Weber, Davoli and Anke 2006, Weber 2006). From this difference in the natural habitat, D. 

virilis is supposed to have a higher risk of the infection by a variety of fungi. However, 

according to 12 Drosophila species genomes analysis, D. virilis does not have the antifungal 

peptide, Drosomycin (Sackton et al., 2007), which is known to be an essential AMP in 

antifungal immune system of D. melanogaster (Lemaitre et al., 1996, Tzou, Reichhart and 
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Lemaitre 2002). This raises the question about the immune mechanism contributed to the 

antifungal resistance of D. virilis, which is thought to be an important factor for understanding 

the adaptive evolution of D. virilis to its habitat in moldy environment. To answer this question, 

I investigated the immune gene response to the fungal infection of D. virilis to clarify what 

immune system of D. virilis has evolved to defend against fungal infection.  

My comparative transcriptome analysis revealed that many immune-related genes, such as 

AMP genes and immune-induced molecule (IM) genes, showed extensively different expression 

pattern between D. melanogaster and D. virilis in response to the infection of Penicillium 

fungus. Furthermore, I found a possibility that unknown immune-related genes have been 

recruited in antifungal immune system of D. virilis during its evolution. This D. virilis-specific 

immune gene response may contribute to the observed high resistance to the fungal infection. 

My results provide an important example for understanding the mechanism of phenotypic 

evolution by gene expression changes proposed by Wilson, Maxson and Sarich (1974). 
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ABSTRACT 

 

 

The innate immune system of Drosophila is activated by ingestion of microorganisms. D. 

melanogaster breeds on fruits fermented by Saccharomyces cerevisiae, whereas D. virilis breeds 

on slime flux and decaying bark of tree housing a variety of bacteria, yeasts and molds. In this 

study, it is shown that D. virilis has a higher resistance to oral infection of a species of 

filamentous fungi belonging to the genus Penicillium compared to D. melanogaster. In response 

to the fungal infection, a transcriptome profile of immune-related genes was considerably 

different between D. melanogaster and D. virilis: the genes encoding antifungal peptides, 

Drosomycin and Metchnikowin, were highly expressed in D. melanogaster whereas the genes 

encoding Diptericin and Defensin were highly expressed in D. virilis. On the other hand, the 

immune-induced molecule (IM) genes showed contrary expression patterns between the two 

species: they were induced by the fungal infection in D. melanogaster but tended to be 

suppressed in D. virilis. Our transcriptome analysis also showed newly predicted 

immune-related genes in D. virilis. These results suggest that the innate immune system has 

been extensively differentiated during the evolution of these Drosophila species.  
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immune-induced molecule (IM) genes showed contrary expression patterns between the two 

species: they were induced by the fungal infection in D. melanogaster but tended to be 

suppressed in D. virilis. Our transcriptome analysis also showed newly predicted 
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been extensively differentiated during the evolution of these Drosophila species.  
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1. INTRODUCTION 

In natural environments, Drosophila species feed and breed on fermenting fruits, slime 

fluxes on decaying parts of tree, etc., where biochemical processes of bacteria and fungi are 

extremely active (Carson 1971, Throckmorton 1975, Markow and O'Grady 2007). Therefore, 

Drosophila species are exposed to a huge number of microorganisms throughout their 

developmental stages. Feeding on decaying or fermented materials results in the ingestion of a 

wide variety of microorganisms in their digestive organs. Recent studies on larval immune 

response of D. melanogaster to oral infection of bacteria and fungi showed that the fat body 

mediated systemic immune response including antimicrobial peptide (AMP) production was 

triggered by infections of gram-negative bacterial species such as Pseudomonas entomophila 

and Erwinia carotovora carotovora 15 (Ecc15) and of a dimorphic fungal species, Candida 

albicans (Basset et al., 2000, Vodovaret al., 2005, Glittenberg et al., 2011).  

In the expression of AMP genes, two major signaling pathways, Toll and Imd pathways, 

play a critical role. The Toll pathway is especially important in immune response to infection of 

fungi and gram-positive bacteria (Lemaitre et al., 1996, Rutschmann, Kilinc and Ferrandon 

2002). After beta-(1.3)-glucans and Lys-type peptidoglycans, which are components of cell wall 

of fungi and gram-positive bacteria, are recognized by the gram-negative bacteria binding 

protein 3 (GNBP3) and peptidoglycan-recognition protein-SA (PGRP-SA), the Toll pathway is 

triggered by cleavage and binding of the ligand, Spatzle, to lead to degradation of Cactus, an 

inhibitor of NF-kappaB like transcription factor. The degradation allows NF-kappaB (NF-kB) 

like transcription factor, Dif and Dorsal, to translocate into nucleus and activate the transcription 

of a set of target genes. On the other hand, the Imd pathway has a key function in immune 

response to infection of gram-negative bacteria. After DAP-type peptide glycan, which is a 

component of cell wall of gram-negative bacteria, is recognized by peptidoglycan-recognition 
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protein-LC (PGRP-LC), a transcription factor, Relish, is phosphorylated and cleaved into the 

active form. As the result, expressions of a group of target genes are triggered (Ferrandon et al., 

2007, Lemaitre and Hoffmann 2007) (Figure 1). In addition to these two pathways, JAK/STAT 

and JNK pathways are also important for immune response to infection of microorganisms in 

Drosophila (Boutros, Agaisse and Perrimon 2002, Agaisse and Perrimon 2004, Delaney et al., 

2006, Lemaitre and Hoffmann 2007). The JAK/STAT signaling pathway mainly regulates 

phagocytosis, hemolymph coagulation and melanization (Agaisse and Perrimon 2004).  

AMPs are cationic small secretory peptides that exhibit a wide range of activities against 

bacteria, fungi and/or viruses, playing an essential role in the innate immune system of 

Drosophila (Lemaitre and Hoffmann 2007). To date, seven AMP families, i.e., Attacin, Cecropin, 

Defensin, Diptericin, Drosocin, Drosomycin and Metchnikowin, have been identified in 

Drosophila melanogaster (Lemaitre and Hoffmann 2007). According to Sackton et al. (2007), it 

was indicated by their sequence analysis of the 12 Drosophila genomes that only the species 

belonging to the melanogaster species group of the subgenus Sophophora had Drosomycin 

genes. Drosomycin is known to be a major antifungal peptide (Fehlbaum et al., 1994, Lemaitre 

et al., 1996, Tzou, Reichhart and Lemaitre 2002). This suggests that antifungal immune 

response varies among different Drosophila species and attacks from different bacteria and/or 

fungi might have produced different immune responses in Drosophila. Therefore, it is 

hypothesized that the differences in the environmental factors caused the difference in the 

immune system.  

For instance, D. virilis feeds and breeds on slime flux and decaying bark of trees, which are 

infected by various bacteria, yeasts and molds. Indeed, many yeasts other than Saccharomyces 

cerevisiae and filamentous fungi, such as Xanthophyllomyces dendrorhous, Cryptococcus spp., 

Fusarium spp., etc., have been isolated from slime flux and decaying wood (Weber, Davoli and 
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Anke 2006, Weber 2006), whereas S. cerevisiae solely ferments various fruits, which D. 

melanogaster thrives on (Carson 1971, Throckmorton 1975, Markow and O'Grady 2007). From 

this difference in the microbial community in host materials of D. virilis and D. melanogaster, it 

is conceivable that D. virilis is exposed to a wider variety of fungi and therefore D. virilis has a 

higher resistance to fungi compared to D. melanogaster. To test this hypothesis, I examined the 

immune response of D. virilis and D. melanogaster to a fungus species belonging to the genus 

Penicillium. Since Penicillium species are commonly found in both slime flux and rotting fruits 

(Coates and Johnson 1997, Peterson, Bayer and Wicklow 2004), both D. virilis and D. 

melanogaster likely have high risk of Penicillium infection throughout their developmental 

stages. To measure resistance of D. virilis and D. melanogaster to the fungal infection, adult 

flies of these species were reared on the culture medium that Penicillium fungi grew. The results 

showed that D. virilis adult flies survived more than two times longer than D. melanogaster flies 

(Figure 2), suggesting that D. virilis has a higher resistance to Penicillium infection. This higher 

antifungal activity without having Drosomycin motivated us to investigate the immune system 

of D. virilis. 

In this study, to clarify the immune mechanism responsible for the higher antifungal 

resistance of D. virilis, larval immune response to the fungal infection between D. virilis and D. 

melanogaster were compared by means of comparative transcriptome analyses. Using a Roche 

454 GS Junior sequencer, I examined the transcriptome of fat body and salivary gland of 

3rd-inster larvae with and without infection of a Penicillium species. Genes showing different 

expression pattern in response to the fungal infection between D. virilis and D. melanogaster 

were extracted and compared. These genes included those encoding AMPs and 

‘immune-induced molecule (IM)’. Extensive differences were observed in the expression 

pattern of already known AMP and IM genes between D. virilis and D. melanogaster. 
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Additionally, two potential AMP genes were newly identified from function-unidentified genes. 

Furthermore, three novel putative immune-related genes were identified: the products of them 

had a homology to an IM, Ras-like GTP binding protein Rho1 involved in many signaling 

pathways and Ficolin-2 binding to a cell wall component of bacteria and fungi, respectively.  
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2. MATERIALS and METHODS 

 

2.1 Measurement of antifungal resistance 

 

  Twenty to twenty five adult flies 1-day after eclosion were reared at 25 ºC on a cornmeal-malt 

medium (50 g cornmeal, 50 g malt powder, 40 g dried brewer’s yeast, 50 g sucrose, 5 ml 

propionic acid and 5 g agar in 1 liter water) with and without Penicillium fungi. The medium 

containing Penicillium fungi was prepared by inoculating a small amount of spores of a 

Penicillium species (identified by its nucleotide sequence of 18S RNA gene) onto the 

cornmeal-malt medium and incubated at 20 ºC for a week or more until the surface was 

completely covered by the growing fungi. After the flies were transferred onto the medium with 

or without fungi, the number of flies alive was counted every day. To measure the resistance to 

the infection of the Penicillium species, the 50% lethal time (LT50) was estimated by the 

generalized linear method implemented in R version 2.15.2 software (R Development Core 

Team 2008). These processes were independently replicated three times. 

 

 

2.2 Induction of gene expression by fungal-infection 

 

A small amount of Penicillium’s spores were inoculated and cultured on a sabouraud dextrose 

agar (SDA) medium (10 g peptone, 40 g Dextrose and 15 g agar in 1 liter water) at 20 °C for 

several days until the fungi grew to cover the surface of medium. To prepare the fungus infected 

larvae, twenty 3rd-instar larvae of D. virilis or D. melanogaster were reared on the 

fungus-covered SDA medium for 12 hours at 20 °C. The induction of AMP genes is usually 
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detected in three hours after the infection and continued at least 24 hours at 25 °C (Vodovar et 

al., 2005, Glittenberg et al., 2011). However, I reared the larvae at 20 °C to postpone their 

pupation. The response to the fungal infection was confirmed by the raised expression level of 

the Metchnikowin gene (Mtk) (known antifungal AMP gene) measured by RT-PCR and only the 

induction confirmed samples were used for the transcriptome sequencing described in the next 

section. As the control, the naïve larvae were prepared by rearing with the same condition on 

fungus-free SDA medium.  

 

 

2.3 Transcriptome sequencing 

 

  I analyzed transcriptome of larval fat body and salivary grand. This is because all AMPs were 

shown to be expressed in fat body and a major antifungal AMP, Drosomycin, was highly 

expressed in larval salivary gland in D. melanogaster (Tzou, De Gregorio and Lemaitre 2002). 

Larval fat bodies and salivary glands dissected from twenty fungus infected or naïve 3rd-instar 

larvae were pooled and the total RNA was extracted from these fat bodies and salivary glands 

by acid-guanidium phenol-chloroform (AGPC) method (Chomczynski and Sacchi 1987). Then, 

mRNA was isolated by using Dynabeads mRNA purification kit (Invitrogen) according to the 

supplier’s instruction. The complementary DNA (cDNA) library was constructed according to 

the Roche GS Junior cDNA rapid library preparation protocol with a modification to keep short 

molecules expected for AMP genes. The double-stranded cDNA was synthesized by using 

cDNA synthesis system (Roche Diagnostics) with random hexamer primers. The resultant 

cDNA was purified by using AMPure XP kit (Agencourt) and the end-polished cDNA fragments 

were ligated with the FAM-labeled RL adaptor included in Lib-L GS FLX Titanium Rapid 
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Library Preparation kit (Roche Diagnostics). The adaptor-ligated cDNA was then purified by 

using Agencourt AMPure XP system and finally eluted in 50 μl TE buffer. The cDNA solution 

was then concentrated by extracting with the equal volume of 2-butanol twice and subsequently 

with diethyl ether to remove the residual 2-butanol. Instead of the sizing procedure described in 

the standard protocol, I conducted 2% agarose-gel electrophoresis, excised the gel section 

containing 200 bp to 1 kb DNA fragments and extracted the cDNA using High Pure PCR 

Clean-up kit (Roche diagnostics). The quality and quantity of the cDNA was evaluated by using 

QuantiFluor™-P Handheld Fluorometer (Promega) and Agilent 2100 Bioanalyzer High 

Sensitivity DNA kit (Agilent Technologies). The pyrosequencing was conducted by using a 454 

GS junior sequencer after the emulsion PCR according to manufacturer’s instructions (Roche 

diagnostics). 

 

 

2.4 Gene prediction for pyrosequencing reads 

 

All the sequence reads obtained from a 454 GS Junior sequencer were filtered by the shotgun 

full processing of GS Run Processor application with the default setting. The filtered 

pyrosequencing reads of D. melanogaster and of D. virilis were queried to the complete 

mitochondrial genome sequence of D. melanogaster (Flybase genome database release 5.46, 

ftp://ftp.flybase.net/genomes/) and that of D. virilis (NCBI; gi 190710421), respectively, by 

using the stand-alone BLAST 2.2.25+ software (Altschul et al., 1990, Camacho et al., 2009) to 

remove the reads derived from mitochondrial genes. The reads that did not hit the mitochondrial 

genome sequence were then queried to D. melanogaster ribosomal RNA (rRNA) sequences 

(NCBI; gi 158246) to remove the reads from rRNA. To identify the gene, from which each read 
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derived, each read was queried against the Flybase D. virilis database release 1.2 or D. 

melanogaster database release 5.46 downloaded from Flybase FTP site 

(ftp://ftp.flybase.net/genomes/), depending on which species it was derived from. Using the 

stand-alone BLAST 2.2.25+ software, I first queried against the CDS database and the reads 

that did not hit were subsequently queried against gene and transcript databases (Figure 3a). 

Finally, the reads that did not hit any target were used for further analyses to search for novel 

immune -related genes as explained later in the section 2.6 

For the genes identified in the D. virilis genome, most of them have different names from 

their orthologues in the D. melanogaster genome. In this study, however, I used the gene names 

of D. melanogaster for both species for the ease of comparison between species. The 

correspondence of gene ID between the two species was according to the 12 Drosophila 

genome analyses (ftp://ftp.flybase.net/genomes/12_species_analysis/clark_eisen/homology/) 

(Drosophila 12 Genomes Consortium 2007). For genes that have multiple IDs corresponding to 

multiple copies in either or both species, one-to-one correspondence of homologue between the 

two species was determined by TBLASTN search with the translated protein sequence of D. 

virilis gene as the query against the D. melanogaster CDS database. Whether a gene is 

immune-related or not was determined by referring to the list of Drosophila immune-related 

genes (Sackton et al., 2007). (Figure 3b) 

The D. virilis genes of unknown function, which did not have homologue in the D. 

melanogaster genome, were further BLAST searched for their homologues in other organisms’ 

genomes (http://blast.ncbi.nlm.nih.gov/) (Altschul et al., 1990). In this homology search, only 

the genes, for which the number of reads was significantly different between fungus infected 

and naïve larvae, were used. For the genes that did not hit any homologue in any organism (D. 

virilis-specific genes), their functions were predicted by using domain and motif search 
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programs available in NCBI Conserved Domain Database 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) and Pfam (http://pfam.sanger.ac.uk/) 

(Figure 3b). When any conserved domain or motif was not predicted, the presence of signal 

peptide was predicted by using SignalP (v4.0) (Petersen et al., 2011) and ProP (v1.0) (Duckert, 

Brunak and Blom 2004) programs as a criterion to consider the possibility of antimicrobial 

peptide. For the candidates with putative signal peptide, the molecular weight, net charge and 

structural features were computed by using JEMBOSS (v1.5) program (Carver and Bleasby 

2003). Finally, from the amino acid sequence of putative mature peptide after removal of the 

putative signal peptide, the possibility of antimicrobial peptide was examined by AMP 

prediction web programs, AntiBP2 (Lata, Mishra and Raghava 2009), CAMP (Thomas et al., 

2010) and AMPA (Torrent, Nogués and Boix 2009).  

 

 

2.5 Estimation of gene expression level 

 

To estimate the expression level of each gene, the total number of reads to hit the gene in the 

BLAST search was counted (Figure 3b). To calibrate the difference in transcript length among 

different genes, the number of reads counted was then standardized to be the number of reads 

per site per million reads (RPSM) as follows. 

 

RPSM = Number of reads / Total number of reads / Transcript length × 1,000,000 

 

I further normalized RPSM to take the difference in total gene expression level between the 

samples into account and computed Trimmed Mean of M values (TMM) (Robinson and 
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Oshlack 2010), using TCC package implemented in R version 2.15.2 software (R Development 

Core Team 2008, Sun et al., 2013). For each gene, the TMM for the fungus infected larvae was 

compared to that for the control naïve larvae to quantify the extent of gene expression change in 

terms of the induction coefficient (IC) as follows. 

 

IC = TMM of the infected larvae / TMM of the naïve larvae 

 

To test a statistical significance of the induction, the difference in the number of actual reads 

was compared between the fungus infected and naïve larvae. In this test, ribosomal protein L32 

(RpL32) and glyceraldehyde 3 phosphate dehydrogenase (GAPDH) genes were used as 

endogenous control genes. Although Actin was also a well-known endogenous control gene, 

Actin was reported to play an important role in phagocytosis against fungi in Drosophila S2 cell 

(Stroschein-Stevenson et al., 2006) and that the expression of an actin gene (Act42A) of D. 

melanogaster 3rd-instar larvae was induced by Saccharomyces cerevisiae contained in the 

culture medium (Gershman et al., 2007). Indeed, the expression of D. melanogaster Act42A was 

not detected in the control naïve larvae but in the fungus infected larvae (the number of reads 

was 6 and TMM = 0.0619). Therefore, only RpL32 and GAPDH genes were used as the 

endogenous control genes in this study. Since the homogeneity of the numbers of reads for the 

two genes between the fungus infected and the naïve larvae was statistically supported (P = 0.14 

in D. virilis and P = 0.51 in D. melanogaster by Fisher’s exact test, Supplementary Table 1), the 

total number of reads derived from the two genes was used as the number of reads for the 

endogenous control genes. Finally, the difference in the number of reads between the fungus 

infected larvae and the naïve larvae was tested on the 2x2 contingency table with the numbers 

for the endogenous control genes by Pearson's chi-square test or Fisher’s exact test dependent 
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on whether the minimum number of reads was five or more or not. 

 

 

2.6 Prediction of new immune-related genes in D. virilis 

 

The pyrosequencing reads which were derived from the fungus infected D. virilis but not 

matched any known gene were subjected to predict a new gene (Figure 3c). These 

pyrosequencing reads were mapped to the D. virilis genome sequence by Newbler GS reference 

mapper software (Roche Diagnostics) with the default parameter setting designated for CDS 

sequences to obtain continuous transcript sequences. Since the median length (192 bp) of the 

obtained contigs was similar to that (230 bp) of 3’-UTR of D. melanogaster (Sackton and Clark 

2009), many contigs might not include protein coding region at all. Therefore, for each contig, 

the corresponding genome sequence plus 250 bp each of its upstream and downstream flanking 

regions were extracted to build a query sequence to search for new gene. All the query 

sequences obtained were subjected to BLASTX search against Swissprot protein database 

downloaded from the Uniprot web site (http://www.uniprot.org/downloads) with the condition 

of e-value <= 1E-05. For the identified putative genes, the difference in the number of reads was 

statistically tested between the fungus infected and the naïve larvae in the same way as that for 

the known genes described above and if the number of reads was significantly different, then the 

gene ontology was analyzed by STRAP software (v1.1.0.0) (Bhatia et al., 2009). 

 

 

2.7 Pyrosequencing and data analyses of oligo-capped full length cDNA 
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  The 5’-end sequences of the new immune-related genes described in section 2.3 was 

determined by the BAP-TAP method (Maruyama and Sugano 1994, Suzuki et al., 1997) (Figure 

4). Total RNA extraction and mRNA purification from twenty Penicillium-fungus infected 

3rd-instar larvae of D. virilis were performed by the same way as described in section 2.3. The 

purified mRNA was treated by 2 U bacterial alkaline phosphatase (BAP) (Nippon Gene) in a 50 

μl mixture containing 10 mM Tris-HCl and 0.1 mM MgSO4 at 37 °C for 1 hour. After the 

reaction, BAP was removed by Phenol-Chloroform purification. The BAP treated mRNA was 

then treated with 45 U tobacco acid pyrophosphatase (TAP) (Nippon Gene) in a 50 μl mixture 

containing 5 mM Sodium Acetate (pH 5.5), 0.5 mM EDTA (pH 8.0), 1 mM 2-Mercaptoethanol 

at 37 °C for 1 hour and then TAP was removed by Phenol-Chloroform purification The 

BAP-TAP treated mRNA was ligated with 400 ng 5’ RNA adaptor designed for 454 GS Junior 

sequencer (Table 1) by 40 U T4 RNA ligase in 50 μl mixture containing 50 mM Tris-HCl (pH 

7.5), 10 mM MgCl2, 10 mM dithiothreitol (DTT), 1 mM ATP and 0.01 % bovine serum albumin 

(BSA) at 16 °C for 3 hours. The resultant oligo-capped mRNA was purified by 

Phenol-Chloroform extraction, and then treated with 2 U DNase I (Invitrogen) in 20 μl of 20 

mM Tris-HCl (pH 8.4), 2 mM MgCl2, 50 mM KCl at room temperature for 15 minutes. The 

reaction was terminated by adding 2 μl 25 mM EDTA and incubated at 65 °C for 10 minutes. 

The first-strand cDNA of the oligo-capped mRNA was synthesized in a 40 μl mixture 

containing the DNase I-treated oligo-capped mRNA, 50 mM Tris-HCl (pH 8.3 at room 

temperature), 1X First-Strand buffer (75 mM KCl, 3 mM MgCl2), 2.5 μM oligo-(dT)15 added 3’ 

adaptor primer (Table 1), 0.5 mM dNTP mix, 5 mM DTT and 400 U SuperScript III Reverse 

Transcriptase (Invitrogen). The oligo-capped mRNA, the oligo-(dT)15 + 3’ adaptor primer and 

the dNTP mix was firstly mixed and incubated at 65 °C for 5 minutes. Then, the primer mixed 

reaction was placed on ice more than 2 minutes. Finally, the first-strand buffer and the reverse 
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transcriptase were added into the primer mixed reaction and incubated at 50 °C for 50 minutes. 

The reverse transcription reaction was terminated by placing at 70 °C for 15 minutes. 

Double-stranded oligo-capped cDNA was synthesized by using 1.25 U Taq polymerase in a 

50 μl mixture containing 1X PCR buffer (50 mM KCl, 10 mM Tris-HCl (pH 8.5), 2 mM MgCl2 

and 0.001 % gelatin), 0.2 mM dNTP mix, 250 nM FAM-labeled 5’ adaptor primer and the 

first-strand cDNA as the template (Table 1). The reaction was conducted by incubation at 95 °C 

for 2 minutes followed by 20 cycles of 95 °C for 15 seconds and 68 °C for 2 minutes. Then, the 

3’ adaptor primer was added into the reaction to amplify the synthesized double-stranded 

oligo-capped cDNA by PCR. The PCR amplification was performed with 25 cycles of 95 °C for 

15 seconds, 68 °C for 2 minutes, and a final extension at 72 °C for 5 minutes. To purify the PCR 

products, the 3-fold volume of Binding Buffer (5 M Guanidine Thiocyanate; 100 mM Tris-HCl 

(pH 6.6) and 10 μl silica particles (5 μm diameter) suspended in 0.01 N HCl were added into the 

PCR products. The mixture was incubated at room temperature for 5 minutes and centrifuged at 

12,000 rpm for 1 minute. After the supernatant was removed, the precipitated silica particles 

were washed twice with Wash Buffer (10 mM Tris-HCl (pH 7.5), 100 mM NaCl : Ethanol = 1 : 

4). Finally, the purified PCR products (oligo-capped cDNA library) were eluted in 50 μl TE 

buffer. Concentrating, sizing and 454 GS Junior sequencing of the PCR products were 

conducted by the same way as described in section 2.3 with 5’ adaptor primer (Figure 4).  

The obtained 5’-end-enrichd pyrosequencing reads were assembled by using Newbler GS De 

Novo Assembler software (Roche Diagnostics) with the default parameter setting designated for 

CDS sequences. The nucleotide sequence of each contig obtained in section 2.3 was queried 

against the assembled 5’-end-enriched sequences by using the stand-alone BLAST 2.2.25+ 

software (Camacho et al., 2009). In the obtained full length cDNA, the protein-coding region 

was predicted by using getorf program implemented in EMBOSS (Carver and Bleasby 2003). 
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Finally, the secondary structure of the obtained protein sequence was predicted by using 

Disulfind and Jpred programs (Ceroni et al., 2006, Cole, Barber and Barton 2008). 

 

 

2.8 Real-time reverse transcriptase PCR (RT-PCR) 

 

The total RNA was extracted by AGPC method (Chomczynski and Sacchi 1987) from pooled 

fat bodies, salivary glands and guts dissected from ten fungus infected or naïve 3rd-instar larvae. 

The first-strand cDNA was synthesized from 1 μg of total RNA by the same way as described in 

section 2.7 except that the reaction was conducted in a half volume of mixture and 2.5 μM 

oligo-(dT)28 primer was used for the first-strand cDNA synthesis instead of the oligo-(dT)15 + 3’ 

adaptor primer. The same reaction without the reverse transcriptase was conducted to verify the 

absence of genomic DNA. Real-time RT-PCR was conducted by using StepOne PLUS real-time 

PCR system (Applied Biosystems). The amplification of the PCR product was detected by 

SYBR Green I (Camblex Bio Science, Rockland). Primers were designed for the amplicon size 

to be less than 150 bp. The primers were listed in Table 2. In this analysis, RpL32 was used as 

the endogenous control to normalize gene expression level. An 20 μl PCR mixture was 

contained 1X PCR buffer (50 mM KCl, 10 mM Tris-HCl (pH 8.5), 2 mM MgCl2 and 0.001 % 

gelatin), 0.2 mM dNTP Mix, 250 nM gene-specific forward and reverse primers, one 20 

thousandth diluted SYBR Green I, and 0.67 U Taq polymerase. The real-time RT-PCR 

amplification was conducted under the condition of 95 °C for 15 seconds followed by 40 cycles 

of 95 °C for 15 seconds, 62 °C for 20 seconds and 72 °C for 20seconds. The melting-curve 

analysis was then performed under the condition of 95 °C for 15 seconds, 60 °C for 1 minutes 

and then slow heating at 0.3 °C per second up to 95 °C. The obtained gene expression levels 
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were compared by the comparative Ct analysis method (Livak 1997) between the fungal 

infected and naïve samples. The gene expression level was measured in three biological 

repetitions with two technical replications. 
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3. RESULTS 

 

3.1 Difference in antifungal resistance between D. virilis and D. melanogaster  

 

  To compare antifungal resistance between D. virilis and D. melanogaster, adult flies of these 

species were reared on a culture medium harboring Penicillium fungi and their survival time 

was measured. The results showed that the D. virilis flies survived more than two times longer 

than the D. melanogaster flies did (Figure 2); the average 50% lethal times (LT50) of D. virilis 

and D. melanogaster flies were 6.04 days and 1.75 days, respectively, whereas their survival 

time on the normal culture medium without fungi was much longer (LT50 >> 10 days). This 

suggests that D. virilis has a higher resistance to the infection of the Penicillium species than D. 

melanogaster at the adult stage. 

 

 

3.2 Summary of transcriptome analysis 

 

  Many AMP genes encode relatively short peptides less than 100 amino acids long. Therefore, 

to avoid the loss of sequences derived from such short transcripts, the 454 GS junior sequencing 

was adjusted for cDNA library containing cDNA fragments longer than 200 bp long, whereas 

the standard sizing procedure selects DNA fragments of 600 - 900 bp long on average by 

removing those shorter than 350 bp long to be less than 10%. This resulted in 109,106 reads 

with the average length of 226 bp and 119,533 reads with the average length of 217 bp from the 

fungus infected and the naïve (uninfected) D. virilis larvae, respectively (Table 3). On the other 

hand, 110,578 reads with the average length of 242 bp and 91,947 reads with the average length 
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of 219 bp were obtained from the fungus infected and the naïve (uninfected) D. melanogaster 

larvae, respectively (Table 3).  

After removing the reads derived from mitochondrial genes and rRNA genes, the total 

numbers of the remaining reads were 77,558 and 90,836 for the fungus infected and naïve D. 

virilis larvae, respectively, and 65,670 and 48,474 for the fungus infected and naïve D. 

melanogaster larvae, respectively. They were thought to be derived from mRNA transcribed 

from nuclear protein-coding genes. For 55,358 and 62,110 out of the 77,558 and 90,836 reads, 

respectively, I found BLAST hits for 5,155 and 4,709 genes, respectively, in D. virilis, whereas 

for 63,555 and 46,536 out of the 65,670 and 48,474 reads, respectively, I found BLAST hits for 

4,735 and 4,275 genes, respectively, in D. melanogaster. It is noteworthy that the numbers of 

the remaining reads for D. virilis were 22,200 (fungus infected) and 28,726 (naïve), which were 

more than ten times as many as the corresponding 2,115 (fungus infected) and 1,938 (naive) for 

D. melanogaster (Table 3). 

 

 

3.3 Expression pattern of immune-related genes 

 

    According to Sackton et al. (2007), innate immune system is categorized into three 

functional classes, ‘recognition’, ‘signaling’ and ‘effector.’ In the D. virilis transcriptome 

analysis, 128 immune-related genes were detected, in which 23, 68 and 37 were assigned to 

recognition, signaling and effector classes, respectively (Table 4, Supplementary Table 2 and 

Figure 5). In the case of the D. melanogaster transcriptome, 129 immune-related genes were 

detected, in which 28, 62 and 39 genes were assigned to recognition, signaling and effector 

classes, respectively (Table 5, Supplementary Table 3, Figure 5). Among the immune-related 
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genes, many of recognition and signaling class genes expressed in the fungus infected larvae 

were present in both D. virilis and D. melanogaster (Figure 5). In the recognition class genes, 

PGRP-SA, PGRP-LC, PGRP-LE and GNBP3 involved in Toll and Imd pathways were 

expressed in both species (Figure 1, Supplementary Tables 2 and 3). The expression of genes for 

nimrod and complement-like proteins called thioester-containing proteins (TEPs), which 

activate cellular immune response such as phagocytosis, were also detected in both species. 

Among the TEP genes, TEPII (IC = 5.359, P = 4.68E-22) and TEPIV (IC = 2.515, P = 

8.24E-05) were significantly up-regulated in D. melanogaster (Table 5, Supplementary Table 3), 

whereas the expressions of their homologs in D. virilis were not induced by the fungal infection 

(Table 4, Supplementary Table 2). I also detected the genes for negative regulators of systematic 

immune response, such as PGRP-SC1a, PGRP-SC2 and PGRP-LB (Mellroth, J. Karlsson and 

Steiner 2003, Bischoff et al., 2006, Zaidman-Remy et al., 2006, Paredes et al., 2011), as well as 

the genes for activators. Consistent with the expression of these recognition class genes, the 

expressions of signaling class genes, e.g., Myd88, Rel, STAT92E, hep, etc., involved in Toll, 

Imd, JNK and JAK/STAT pathways, were also detected in both species (see Tables 4 and 5, 

Supplementary Tables 2 and 3 for details). 

 

 

3.4 Between-species differences in the expression pattern of effecter class genes 

 

    Since the effectors directly function against infected microbes, in this study I focus on the 

response of the effector class genes to the Penicillium infection to elucidate the differences in 

the antifungal resistance between D. melanogaster and D. virilis. In contrast to the shared 

expression pattern between the species observed in the recognition and signaling class genes, 
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substantial differences in the expression pattern were observed in the effector class genes. 

    AMPs are known to be a major effector that has a critical role in the innate immune system 

of Drosophila (Tzou, Reichhart and Lemaitre 2002). In D. melanogaster, 20 AMP genes 

belonging to seven AMP gene families have been found, whereas 15 AMP genes belonging to 

five AMP gene families have been identified in D. virilis (Drosocin and Drosomycin in D. 

melanogaster are missing in D. virilis) (Sackton et al., 2007). In both D. virilis and D. 

melanogaster, many AMP genes (11 of 15 in D. virilis and 14 of 20 in D. melanogaster) were 

expressed in the fungus infected larvae (Tables 4 and 5, Supplementary Tables 2 and 3). In D. 

virilis, genes encoding Diptericin (GJ19916, TMM = 3.812), Defensin (GJ22479, TMM = 

2.445) and Cecropin (Cec2B, TMM = 1.604 and Cec3, TMM = 1.475) showed high TMM and 

Diptericin (GJ19916) was most highly expressed in the fungus infected larvae (Table 4). In 

contrast, the expression level of Metchnikowin (GJ22469), which was the only known 

antifungal peptide in D. virilis, was not so high (TMM = 0.660; Table 4). In contrast, 

Drosomycin (Drs) and Metchnikowin (Mtk), which were known as antifungal peptide genes, 

were most strongly expressed in the fungus infected D. melanogaster larvae (TMM = 23.817 

and 23.719, respectively), followed by Diptericin (Dpt, TMM = 11.568), Attacin (AttC, TMM = 

4.684) and Drosocin (Dro, TMM = 4.237) (Table 5). Among the Drosomycin gene family, only 

Dro5 responded to the fungal infection, suggesting that D. melanogaster uses the specific 

Drosomycin gene copy against the Penicillium species. However, the expression level of Dro5 

was 100-fold lower than that of Drs (TMM = 0.276) (Table 5). These observations indicate 

substantial differences in the AMP usage between the species, i.e., against the fungal infection, 

Diptericin, Defensin and Cecropin were the three major AMPs in D. virilis, whereas 

Drosomycin and Metchnikowin were the two major AMPs in D. melanogaster (Figure 6).  

Among other effector class genes, the immune-induced molecule (IM) genes showed 
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distinct expression pattern between the species. The IM genes are known as the genes induced 

by bacterial or fungal infection in D. melanogaster. However, their functions mostly have not 

been characterized. In this study, 10 IM genes were identified to be expressed in the fungus 

infected D. melanogaster larvae and five of them, IM1, IM4, IM10, IM14 and IM18 were 

significantly up-regulated by 2-fold or more (Table 5 and Supplementary Table 3). For most of 

the D. melanogaster IMs, their expressions tended to be induced by the fungal infection. On the 

other hand, five IM genes, IM1 (GJ19885), IM4 (GJ18607), IM10 (GJ21308, GJ21309) and 

IM23 (GJ22454), were identified to be expressed in D. virilis, but their expression tended to be 

down-regulated by the fungal infection (Table 4, Supplementary Table 2). Especially, the 

expressions of IM1 (GJ19885), IM4 (GJ18607) and IM10 (GJ21308) were significantly reduced 

by the fungal infection by half or less (Table 4). These differences in the expression pattern may 

indicate that IMs play separate roles in the immune response to fungal infection in D. 

melanogaster and D. virilis.  

 

 

3.5 Novel AMP genes in the annotated D. virilis genes 

 

  Using the BLAST search against all the known D. melanogaster genes, I could not find the 

homologues for three D. virilis annotated genes significantly up-regulated by the fungal 

infection. They were GJ10737 (IC = 2.503, P = 0.0037), GJ11722 (IC = 3.198, P = 0.032) and 

GJ18291 (IC = 3.909, P = 0.047). Additional queries to orthologue database (orthoDB: 

http://cegg.unige.ch/orthodb6) (Waterhouse et al., 2012) and the non-redundant gene database in 

the NCBI BLAST web server failed to find any known gene, suggesting that they were D. 

virilis-specific genes. Although I further searched for annotated domains and motifs in the 
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expected products of these genes using the domain and motif search programs on NCBI 

Conserved Domain Database and Pfam, no conserved domain or motif was predicted. However, 

using SignalP (v4.0) (Petersen et al., 2011), ProP (v1.0) (Duckert, Brunak and Blom 2004) and 

JEMBOSS (v1.5) (Carver and Bleasby 2003) programs, the expected products of GJ10737 and 

GJ18291 were predicted to be secretory peptides having propeptide sequences and positively 

charged mature peptide (Table 6). These features are commonly found in AMPs. Indeed, AMP 

prediction web programs, CAMP (Thomas et al., 2010) and AMPA (Torrent, Nogués and Boix 

2009), predicted them to be AMPs, although another program, AntiBP2 (Lata, Mishra and 

Raghava 2009), did not (Table 6). These results suggested the possibility that D. virilis 

possesses unknown AMP genes functioning in its innate immune system. 

 

 

3.6 Novel immune related genes in D. virilis 

 

In our BLAST analysis described above, 22,200 and 28,726 pyrosequencing reads 

respectively from the fungal infected and naïve D. virilis larvae did not hit any known gene, 

whereas such reads were only 2,115 (infected) and 1,938 (naive) in D. melanogaster (Table 3). I 

hypothesized that this is because there were many unidentified genes in D. virilis. To examine 

whether or not these reads were derived from unidentified immune related genes, I assembled 

these reads by mapping each read onto the D. virilis genome sequence to make contigs. Then, I 

performed a BLASTX search against Swissprot protein database using each of these contigs as 

the query.  

    Out of the 22,200 reads, 21,488 (about 97%) were mapped onto the D. virilis genome 

sequence to be assembled to 3,269 contigs of the average length 237 bp in total (Figure 7). This 
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indicates that these reads were actually derived from transcripts of the D. virilis genome rather 

than possible contaminants and that there are unidentified transcription units potentially 

encoding polypeptide. Since most of the contigs were shorter than the median length of 3’-UTR 

of D. melanogaster genes, I extended each contig with 250 bp each of upstream and 

downstream genome sequences to make a query sequence subjected to the BLAST search 

against Swissprot protein database. As the result, I identified 620 putative genes in the 3,269 

contigs. Among them, 27 putative genes showed a statistically significant difference in the 

number of reads between the fungus infected and naïve larvae. Three out of the 27 putative 

genes, PG00034, PG01778 and PG02420, were assigned to potential immune-related genes for 

subsequent GO analysis (Supplementary Table 4). PG00034 was homologous to IM14 of D. 

melanogaster. Although the expression of IM14 was significantly up-regulated in D. 

melanogaster (Tables 5 and 7), the expression of PG00034 was significantly down-regulated by 

the fungal infection in D. virilis. PG01778 was homologous to a Ras-like GTP-binding protein, 

Rho1, of D. melanogaster. This gene is known to play a role in regulating actin genes involved 

in phagocytosis (Hariharan et al., 1995, Magie et al., 1999, Greenberg and Grinstein 2002, 

Magie and Parkhurst 2005). The expression was observed only in the infected larvae in D. 

virilis and induced by the fungal infection (IC = 2.020) in the D. melanogaster larvae, indicating 

that this gene was up-regulated by the fungal infection in both species. PG02420 was 

homologous to Ficolin-2 that binds to the cell wall component of bacteria and fungi (Ma et al., 

2004, Endo, Matsushita and Fujita 2007), and the expression of PG02420 was significantly 

down-regulated in the infected D. virilis (IC = 0.208) (Table 7). 

For the remaining 2,649 contigs, I did not find any homologue in Swissprot protein 

database. However, among the 2,649 contigs, the number of pyrosequencing reads was 

significantly different between the fungal infected and naïve larvae in 64 contigs and 26 of them 
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were considered to be up-regulated by the fungal infection. In order to predict the 

protein-coding region for these 26 contigs, I tried to determine the 5’-end sequence by the 

oligo-capping method adjusted for the use of 454 GS Junior sequencer. As the results, 50,573 

reads with the average length of 190 bp were obtained from the infected D. virilis larvae, and 

these reads were assembled to construct continuous transcript sequences. Out of the 50,573 

reads, 41,423 (about 82%) were assembled to 900 contigs (Table 8). Combining the 900 contigs 

with the assembled sequences in the section 2.3, I determined 5’-end sequence of 8 contigs. Two 

of them, PG00667 and PG01875, were identified to be GJ11849 and GJ22451 by NCBI 

BLAST analysis, respectively. GJ11849 was ribosomal protein L26 and GJ22451 was a 

homologue of IM3 of D. melanogaster. Interestingly, the expression of GJ22451 was 

up-regulated (IC = 10.396, Table 9), whereas the expressions of all other IM gene homologues 

were tend to be down-regulated in the fungal-infected D. virilis. In this study, it was predicted 

that GJ22451 encoded small secretary peptide having weak positive net charge (net charge = 

0.5). In addition, GJ22451 was predicted to have two beta-sheets and to be stabilized by a 

disulfide-bridge between two cysteine residues (Figure 8). Since these features are found in 

some AMPs, whether GJ22451 could function as AMP was evaluated by using AMP prediction 

programs. As the result, AntiBP2 AMP prediction program predicted that GJ22451 was similar 

to beta-Defensin of mammals (Table 9). 

Since the remaining 6 contigs did not show similarity to any known genes, I predicted the 

protein-coding region using getorf program implemented in EMBOSS (Carver and Bleasby 

2003). As the result, it was predicted that PG01471 encoded a proline-rich and 

positively-charged secretory peptide, which is the features often observed in AMPs. Indeed, 

PG01471 was predicted to be AMP by AntiBP2 AMP prediction program (Table 9). Particularly, 

C-terminal region of the PG01471 was very similar to that of Metchnikowin (Figure 9). Since 
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any sequence showing homology to PG01471 was not found in other Drosophila genome 

sequences excepting D. mojavensis, PG01471 seemed be a lineage-specific AMP gene, which 

may contribute to different antifungal resistance between D. virilis and D. melanogaster (Figure 

10).  

 

 

3.7 Local expression of Defensin gene in response to the fungal infection 

 

My transcriptome analysis indicated that D. virilis uses a specific Defensin in response to the 

fungal infection. However, while my transcriptome analysis particularly focused on systemic 

immune response to the fungal infection, local immune response is also important to defend 

from the infection (Tzou et al., 2000, Liehl et al., 2006). Therefore, I surveyed differences in 

expression responses of Metchnikowin and Defensin genes among fat body, salivary gland and 

gut of the fungal-infected D. virilis larvae by real-time RT-PCR. The analysis for fat body and 

gut was conducted three biological replications, whereas no replication was made for salivary 

gland, because the tissue is too small to extract enough amount of RNA. In the fat body, strong 

induction of Defensin gene (GJ22479) expression was observed in all replicates, consistent with 

the result of the transcriptome analysis. Contrary, the expression of Metchnikowin gene 

(GJ22469) was not always induced by the fungal infection (Figures 11). Additionally, 

expression level of GJ22479 was tended to be higher than that of Metchnikowin (GJ22469) 

(Figure 11). In the salivary gland, the expressions of both Metchnikowin (GJ22469) and 

Defensin (GJ22479) genes were induced by the fungal infection (Figure 12). The expression of 

another Defensin gene (GJ21126) was observed in neither the fat body nor salivary gland 

(Figures 11and 12). Interestingly, GJ21126 was locally expressed in the gut, and the expression 
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was tended to be up-regulated by the fungal infection, whereas the expression of GJ22479 gene 

was tended to be down-regulated by the fungal infection in the gut (Figure 13). Nevertheless, 

the expression level of GJ21126 was very low compared to that of GJ22479 even in the gut 

(Figure 13). These results support the hypothesis that D. virilis uses mainly one of the Defensin 

genes, GJ22479, against the fungal infection. 

 

  



33 
 

4. DISCUSSION 

 

In this study, I first clarified that the antifungal resistance against Penicillium fungal 

infection is higher in D. virilis than in D. melanogaster. In general, adult flies of most 

Drosophila species are attracted to, feed and breed upon a variety of fermenting substances such 

as fallen fruit and flowers, slime fluxes of forest trees, decaying bark of trees, mushrooms, etc. 

(Carson 1971). However, there are inter-species variations of the fermenting substances utilized 

by Drosophila species for feeding and breeding. For instance, D. virilis is known to feed on 

slime flux and decaying bark of tree harboring many yeasts and filamentous fungi, such as 

Xanthophyllomyces dendrorhous, Cryptococcus spp., Fusarium spp., etc. (Weber, Davoli and 

Anke 2006, Weber 2006), whereas D. melanogaster feeds on fermented fruits, which mainly 

harbor Baker’s yeast, Saccharomyces cerevisiae (Carson 1971, Throckmorton 1975, Markow 

and O'Grady 2007). The Penicillium species is ubiquitously and abundantly found in natural 

environment, where Drosophila species live, and grow on both decaying woods and fruits 

(Coates and Johnson 1997, Peterson, Bayer and Wicklow 2004). Therefore, both D. virilis and 

D. melanogaster are likely to be infected by them in nature during their life time. According to 

the theory of evolutionary adaptation, the higher antifungal resistance of D. virilis observed in 

this study (Figure 2) is expected to reflect the result of higher risk of the infection in their living 

environments over the evolutionary time compared to D. melanogaster. This raises the question 

of the immune mechanism attributed to the higher antifungal resistance of D. virilis, and it is 

thought to be a key factor for understanding the adaptive evolution of D. virilis to its habitat in 

moldy environment. To answer this question, I compared the immune response to the fungal 

infection between D. virilis and D. melanogaster by analyzing their transcriptome extracted 

from larval salivary gland and fat body. Although the antifungal resistance was compared at the 
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adult stage, I focused on the transcriptome at the larval stage. Since the larvae live and feed on 

fermented substances in their habitat environment and cannot escape from the surrounding 

microbes as the adults fly away, the larvae are consistently infected by microbes. Therefore, I 

assume that the resistance at the larval stage is more important for their adaptation to 

environment. Unfortunately, it was difficult to measure the antifungal resistance at the larval 

stage since the larvae became pupae within several days and some larvae avoided immediate 

infection of fungi by digging the medium deeply. Accordingly, my interpretation in the 

following is on the basis of the assumption that the resistance at the adult stage correlates with 

the resistance at the larval stage. 

My comparative transcriptome analysis revealed that the genes involved in all major 

signaling pathways for immune response, i.e., Toll, Imd, JAK/STAT and JNK, were triggered by 

the infection of the Penicillium species in both D. virilis and D. melanogaster (Tables 4 and 5, 

Supplementary Tables 2 and 3). These pathways regulate humoral and cellular immune 

responses, such as AMP production, phagocytosis, etc. (Lemaitre and Hoffmann 2007, Agaisse 

and Perrimon 2004, Kallio et al., 2005). Among the signaling pathways, the Toll pathway plays 

an essential role against fungal infection in D. melanogaster (Lemaitre et al., 1996, Lemaitre, 

Reichhart and Hoffmann 1997). The Toll pathway regulates expressions of two antifungal 

peptides, Drosomycin and Metchnikowin (De Gregorio et al., 2002). Consistent with this fact, 

the expression levels of Drosomycin and Metchnikowin genes were highest in the fungus 

infected D. melanogaster larvae (Table 5). The response of these AMP genes to the infection of 

an entomopathogenic fungus, Beauvaria bassiana, was highest in adult D. melanogaster as well 

(De Gregorio 2001, Irving et al., 2001). Interestingly, seven genes encoding Drosomycin have 

been found in D. melanogaster genome (Drs, Drsl, Dro2, Dro3, Dro4, Dro5 and Dro6) (Sackton 

et al., 2007). Nevertheless, I found that only Drs and Dro5 were induced by the fungal infection 
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in the D. melanogaster larvae (Table 5). This specificity of the expression pattern was consistent 

with the result of the microarray analysis by De Gregorio et al. (2001), suggesting that the 

specific genes, Drs and Dro5, are used against the fungal infection at both larva and adult stages. 

In contrast, any Drosomycin gene is absent in the D. virilis genome and the expression of the 

Metchnikowin gene (GJ22469) was not high (TMM = 0.660) compared to that of other AMP 

genes in the fungus infected D. virilis larvae (Table 4, Supplementary Table 2, Figure 6). This 

result was rather unexpected since Metchnikowin was the only known antifungal peptide in D. 

virilis, suggesting that Metchnikowin of D. virilis does not compensate for the lack of 

Drosomycin. Since the comparison of D. melanogaster and D. virilis genomes revealed that Mtk 

is present as a single copy gene in both species (Sackton et al., 2007), it is implausible that D. 

virilis has an additional copy of Mtk responsible for the observed higher antifungal resistance. 

On the other hand, the genes encoding Diptericin (GJ19916), Defensin (GJ22479) and 

Cecropin (Cec2B and Cec3) were highly expressed (TMM = 3.812, TMM = 2.445, TMM = 

1.604 and TMM = 1.475, respectively) in the fungus infected D. virilis larvae compared to other 

AMP genes (Table 4), suggesting a substantial difference in the AMP usage in response to the 

fungal infection between the two species and a possibility that Diptericin, Defensin and 

Cecropin have an antifungal function in D. virilis. The antifungal activity of Diptericin and 

Defensin against an ascomycete fungus, Fusarium oxysporum, has been reported, although they 

are not effective against other fungi (Neurospora crassa, Beauvaria bassiana and Aspergillus 

fumigatus) in D. melanogaster (Tzou, Reichhart and Lemaitre 2002). Comparing the Diptericin 

protein sequence of D. virilis to its orthologue in D. melanogaster, I found substantial amino 

acid differences (50-70%) (Figure 14). This may indicate the possibility that Diptericin of D. 

virilis has a different activity spectrum against fungi from that of D. melanogaster, although the 

main activity of the latter is not antifungal but antibacterial (Wicker et al., 1990). In contrast, 
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amino acid sequences of mature peptide from Cec2B and Cec3 of D. virilis are almost identical 

(92.5-100%) to those of Cecropin of D. melanogaster, and the few amino acid substitutions 

observed are all conservative to maintain physicochemical properties of the peptide (Figure 15). 

Therefore, it is likely that the functions of Cecropin are conserved in the two species. A notable 

difference was observed in the Defensin gene. Defensin is known to be an AMP of main 

specificity to gram-positive bacteria in D. melanogaster (Dimarcq et al., 1994). However, the 

Drosophila Defensin is classified into Defensin_2 superfamily (Pfam: PF01097), which has 

antifungal activity in mosquito (Anopheles gambiae) and sand fly (Phlebotomus duboscqi) 

(Vizioli et al., 2001, Boulanger et al., 2004). D. virilis has two Defensin genes (GJ21126 and 

GJ22479). The mature peptide sequence translated from GJ21126 is closely related to the D. 

melanogaster Defensin gene as expected from their phylogenetic relationship of species, 

whereas the mature peptide sequence translated from GJ22479 is more similar to those of 

Anopheles gambiae (AgaDef) and Phlebotomus duboscqi (PduDef), which have antifungal 

activity (Figures 16 and 17). In my transcriptome analysis for fat body and salivary gland, I 

detected the expression of GJ22479 but not GJ21126 in response to the Penicillium infection. 

This result was confirmed by real-time RT-PCR analysis. However, although the expression 

level was much lower than that of GJ22479, the expression of GJ21126 was detected in gut 

(Figure 13). This observation suggests the possibility that the functions of the two Defensin 

genes have been differentiated through D. virilis evolution. A possible speculation based on 

these observations is that Defensin functions differently as an antifungal peptide in D. virilis 

from that in D. melanogaster. Since the expression of these three AMPs are under the regulation 

of the Imd pathway rather than the Toll pathway (Imler and Hoffmann 2000, De Gregorio et al., 

2002), this result suggests that the Imd pathway plays an important role in the response to the 

fungal infection in D. virilis, in contrast to the fact that the Toll pathway is more important to 
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regulate the Drosomycin genes as the antifungal response in D. melanogaster. Alternatively, the 

Diptericin, Defensin and Cecropin genes may be under the Toll pathway regulation in D. virilis. 

To examine this possibility, I analyzed the upstream region of these genes to see differences in 

the binding sites of NF-kB-like transcription factors, DIF, Dorsal and Relish between D. virilis 

and D. melanogaster. In addition to these binding sites, I also compared the binding site of a 

GATA factor, Serpent, which regulates synergistically the expressions of AMP genes with the 

NF-kB-like transcription factors (Senger et al., 2004). Senger et al. (2004) discussed that the 

organizations of these transcription factor binding sites of AMP genes were related to whether 

the Toll or Imd pathway had main effect on their expression regulation. However, there was no 

clear difference in the number, position and direction of these binding sites, suggesting that the 

alternative possibility is not likely (Figures 18, 19 and 20, Appendices I and II).  

A striking difference in the expression pattern was observed in the immune-induced 

molecule (IM) genes. The IM genes of D. melanogaster showed a similar expression pattern to 

that observed in the previous study conducted by De Gregorio et al. (2001). In this study, ten IM 

genes were expressed in the fungus infected D. melanogaster larvae and five of them, IM1, IM4, 

IM10, IM14 and IM18, were significantly up-regulated by 2-fold or more and down-regulated 

gene was not observed (Table 5, Supplementary Table 3). Similar inductions of IM genes were 

observed in adult flies by the infection of B. bassiana (De Gregorio 2001). This suggests that 

the IM genes play a similar role in antifungal immunity in larvae and adults of D. melanogaster 

and against Penicillium and Beauvaria fungi, although the function of the IM genes has not 

been characterized. However, the IM genes showed contrary expression pattern in D. virilis: the 

expressions of five IM genes, IM1 (GJ19885), IM4 (GJ18607), IM10 (GJ21308, GJ21309) and 

IM23 (GJ22454), detected in D. virilis were rather down-regulated by the fungal infection 

(Figure 6). Indeed, three of them, IM1 (GJ19885), IM4 (GJ18607) and IM10 (GJ21308), 
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showed statistically significant reductions (Table 4, Supplementary Table 2). This result 

suggests differences in the functions of IMs between D. virilis and D. melanogaster. In other 

words, the definition of immune-induced molecule (IM) holds true in D. melanogaster but not 

necessarily so in other Drosophila species. It can be speculated that D. virilis may have other 

immune-related genes that have the functions of IMs in D. melanogaster. Based on the 

comparative transcriptome analysis using bacterial-infected D. melanogaster and D. virilis flies, 

Sackton and Clark (2009) suggested that new components were recruited into the immune 

system of D. virilis. Therefore, my results as well as their observation motivated us to search for 

novel immune-related genes in D. virilis.  

In our transcriptome analysis, I found that three D. virilis-specific genes were induced by 

the fungal infection and two of them, GJ10737 and GJ18291, were predicted to encode novel 

AMPs (Table 6). This suggests that D. virilis has acquired lineage-specific AMPs against fungal 

infection through its evolution. Since no orthologous sequences of these genes were found in 

other Drosophila genomes either, these genes seemed to be recruited to the D. virilis genome de 

novo. In addition to the fraction of these genes of unknown function, I also predicted new D. 

virilis genes from the pyrosequencing reads that did not show any BLAST hit.  

In our BLAST analyses of the pyrosequencing reads, approximately 30% of the reads from 

D. virilis did not hit any gene, whereas only 3-4% of the reads from D. melanogaster fell in the 

same situation (Table 3). This may suggest the possibility that many genes in the D. virilis 

genome have not been identified yet. Actually, I found 620 putative genes in 3,469 contigs and 

three of them, PG00034, PG01778 and PG02420, were predicted to be immune-related genes 

with expression level significantly changed by the fungal infection. PG00034 is homologous to 

IM14 and PG01778 is homologous to a Ras-like GTP-binding protein, Rho1, which regulates 

actin cytoskeletal organization (Hariharan et al., 1995, Magie et al., 1999) and is involved in 
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phagocytosis (Greenberg and Grinstein 2002, Magie and Parkhurst 2005) in D. melanogaster 

(Table 7). PG02420 is homologous to Ficolin-2 of Bos taurus. Ficolin binds to a cell wall 

component of bacteria and fungi and is involved in phagocytosis (Ma et al., 2004, Endo, 

Matsushita and Fujita 2007). Although the expression of the IM14 was significantly 

up-regulated by the fungal infection in the D. melanogaster larvae, the expression of PG00034 

was significantly down-regulated as in the case of other homologues of IM genes in the D. 

virilis larvae. Similarly, the expression of PG02420 was significantly down-regulated in the 

infected D. virilis larvae. On the other hand, the expression of PG01778 was significantly 

up-regulated by the fungal infection in D. virilis. For the remaining 2,649 contigs, I could not 

find any homologue in Swissprot protein database. This seems partly because many of them are 

too short to find a homology to a known gene, domain or motif in the homology search (Figure 

7). Further experimental determination of their full length sequence is necessary for a better 

prediction of novel protein coding genes. From this perspective, I tried to determine the 5’-end 

sequence of these contigs using the oligo-capping method adjusted to 454 GS Junior sequencer. 

As the result, I found two candidate genes, which encode potential AMP. One of them, GJ22451, 

is a homologue of IM3 of D. melanogaster. The expression of GJ22451 is exceptionally 

up-regulated in the fungal-infected D. virilis, whereas other IM genes tended to be 

down-regulated. GJ22451 is predicted to be similar to mammalian beta-Defensin by AntiBP2 

prediction program (Table 9). The other candidate gene, PG01471, was predicted to encode a 

Metchnikowin-like proline-rich secretory peptide (Table 9, Figure 9). Although GJ22451 is 

present in the all 12 Drosophila species, homologue of PG01471 was not found in D. 

melanogaster (Figure 10). This observation suggests that PG01471 may contribute to the higher 

antifungal resistance of D. virilis. Antifungal activity of PG01471 should be experimentally 

verified.  
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Our comparative transcriptome analysis revealed extensive differences in the immune 

response to the infection of Penicillium species between D. virilis and D. melanogaster at the 

transcriptome level. These results provide an important insight to the different role of immune 

system between ecologically diverged species. It is quite natural to consider that the observed 

differences resulted from evolutionary adaptation to their different habitat. This presumption 

should be further experimentally examined by the investigation of antimicrobial activities of 

AMPs, e.g., Diptericin and Defensin, to identify the component responsible for the higher 

antifungal resistance of D. virilis.  
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CONCLUSION 

In general, Drosophila species feed and breed on fermenting fruits, slime fluxes on 

decaying parts of tree and so on, in which a variety of microbes are extremely active (Carson 

1971, Throckmorton 1975, Markow and O'Grady 2007). Therefore, anti-microbes immune 

system is an essential trait for Drosophila species to survive. The evolution of the immune 

system is likely responsible for the diversity of Drosophila species adapting to a variety of 

microbial environments. In this study, a substantial difference in antifungal activity against a 

Penicillium species between two Drosophila species, D. virilis and D. melanogaster living in 

different environments, was demonstrated. 

My comparative transcriptome analysis showed extensive differences in the expression 

pattern of immune-related genes, i.e., antimicrobial peptide (AMP) and the immune-induced 

molecule (IM) genes, in response to the Penicillium infection between D. virilis and D. 

melanogaster. Furthermore, I predicted novel immune-related genes responding to the fungal 

infection in D. virilis. These results indicate that the innate immune system has been 

substantially differentiated during the evolution of these Drosophila species. The extensive 

differences in the immune system may have been evolved as an adaptive response to microbial 

environments, which remains open to further investigations.  
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Table 1: Sequences of oligo-capping adaptors and sequencing primers. 

 

Sequence name Sequence 

5’ RNA adaptor CCAUCUCAUCCCUGCGUGUCUCCGACGACU 

5’-end FAM primer FAM-CCATCTCATCCCTGCGTGTCTCCGACGACT 

5’- adaptor primer CCATCTCATCCCTGCGTGTCTCCGACGACT 

oligo-(dT)15 + 3’ adaptor primer CCTATCCCCTGTGTGCCTTGGCAGTCGACT[T]15 
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Table 2: PCR primers used for real-time RT-PCR 

 

Primer name Sequence 

Drosophila_Rp49_41F AGCGCACCAAGCACTTCA 

Drosophila_Rp49_178R CGTAACCGATGTTGGGCA 

Dvir_Mtk_54F CCTGAGCCTGAACCTGTCG 

Dvir_Mtk_146R GGCTGATTGGGATTGAATGG 

GJ21126_26F TGCTACTAATCCTGGCTGTGAC 

GJ21126_163R AGGCTGTGTTCTTTACGTTCCA 

GJ22479_29F TGGCTCTACTGGTGTGCTTG 

GJ22479_151R ATGTGGCACGCTTCTGACG 
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Table 3: Summary statistics of 454 GS junior sequencing and BLAST analysis. 

 

 

 

 

 

  

  D. virilis  D. melanogaster  

Infected  Naïve  Infected Naïve  

Total no. of reads  109,106 119,533 110,578 91,947 

Maximum length (bp)  715 667 710 580 

Minimum length (bp)  40 40 40 40 

Average Length (bp)  226 217 242 219 

No. of mtDNA-derived reads  5,557 6,197 5,998 7,483 

No. of rDNA-derived reads  25,991 22,500 38,910 35,990 

No. of other reads 77,558 90,836 65,670 48,474 

No. of BLAST hits 

(No. of genes)  

55,358 

(5,155)

62,110 

(4,709)

63,555 

(4,735)

46,536 

(4,275) 

No. of unidentified reads 22,200 28,726 2,115 1,938 
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Table 4: Number of reads, trimmed mean of M value (TMM) and induction coefficient (IC) for recognition, signaling and effector class 

immune genes showing significant changes in expression level by fungal infection in D. virilis. 

Genes are sorted in order of induction coefficient at each functional class.  

D. virilis 

gene 

D. melanogaster 

homologue  

Infected  Naive  
IC 

Functional 

Class 
Notes 

No. of reads TMM  No. of reads TMM 

GJ20666 CG13422 6  0.153 0 0 Infinity Recognition Beta-glucan binding domain 

GJ12160 PGRP-SB1 11  0.235 2 0.040 5.864 Recognition PGRP domain 

GJ18074 nimB3 2  0.067 12 0.376 0.178 Recognition Nimrod-related 

GJ12373 msn 9  0.024 1 0.002 9.595 Signaling Kinase 

GJ20603 Pvr 15  0.038 2 0.005 7.996 Signaling Receptor 

GJ19441 SPE 3  0.033 15 0.155 0.213 Signaling Protease 

GJ22479 Def 53  2.445  0 0 Infinity Effector Antimicrobial peptide  

GJ21173 AttC 47  0.818  0 0 Infinity Effector Antimicrobial peptide  

Cec2B CecA1 / CecA2 25  1.604  0 0 Infinity Effector Antimicrobial peptide  

Cec3 CecC 23  1.475  0 0 Infinity Effector Antimicrobial peptide  

GJ22469 Mtk  9  0.660  0 0 Infinity Effector Antimicrobial peptide  

GJ19916 Dpt 104  3.812  4 0.138 27.720 Effector Antimicrobial peptide  

GJ19917 DptB 39  1.120  3 0.081 13.860 Effector Antimicrobial peptide  

GJ20572 AttA 49  0.856  24 0.393 2.177 Effector Antimicrobial peptide  

GJ17981 fon 217  1.641 370 2.624 0.625 Effector  Coagulation  

GJ18607 IM4 79  7.542 151 13.521 0.558 Effector  IM  

GJ21308 IM10 23  0.350 51 0.727 0.481 Effector  IM  

GJ19885 IM1 37  3.302  123 10.296 0.321 Effector  IM  
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Table 5: Number of reads, trimmed mean of M value (TMM) and induction coefficient (IC) for recognition, 

signaling and effector class immune genes showing significant changes in expression level by fungal infection in D. 

melanogaster. 

D. melanogaster 

gene 

Infected   Naive  

IC 
Functional 

Class 
Notes No. of 

reads 
TMM   

No. of 

reads 
TMM 

PGRP-SB1 29  0.779 0 0 Infinity Recognition PGRP domain 

PGRP-SC1b 11 0.288 0 0 Infinity Recognition Amidase degradation 

PGRP-SB2 9  0.225 0 0 Infinity Recognition PGRP domain 

Mcr 4  0.011 0 0 Infinity Recognition Tep 

PGRP-SC2 20  0.603 3 0.102 5.891 Recognition Amidase degradation 

TepII 188  0.708 31 0.132 5.359 Recognition Tep 

nimC2 43  0.310 9 0.073 4.222 Recognition Nimrod-related 

GNBP3 15  0.164 4 0.049 3.313 Recognition Beta-glucan binding domain

CG13422 17  0.569 5 0.189 3.004 Recognition Beta-glucan binding domain

TepIV 37  0.131 13 0.052 2.515 Recognition Tep 

PGRP-SD 27  0.626 13 0.341 1.835 Recognition PGRP domain 

Rel 14  0.067 0 0 Infinity Signaling Transcription factor 

aop 6  0.026 0 0 Infinity Signaling Transcription factor 

brm 5  0.016 0 0 Infinity Signaling Transcription factor 

Myd88 4  0.019 
 

0 0 Infinity Signaling 
. 

CG6361 15  0.185 1 0.014 13.254 Signaling Protease 

cact 11  0.081 1 0.008 9.720 Signaling . 

dom 8  0.085 1 0.012 7.069 Signaling Transcription factor 

Stat92E 11  0.050 3 0.016 3.240 Signaling Transcription factor 

srp 18  0.080 5 0.025 3.181 Signaling Transcription factor 

phl 32  0.135 9 0.043 3.142 Signaling . 

mask 10  0.012 3 0.004 2.945 Signaling . 

spirit 22  0.231 7 0.083 2.777 Signaling Protease 

CecC 35  1.521   0 0 Infinity Effector Antimicrobial peptide  

CecA1 14  0.663   0 0 Infinity Effector Antimicrobial peptide  

Def 11  0.461   0 0 Infinity Effector Antimicrobial peptide  

CecB 7  0.288   0 0 Infinity Effector Antimicrobial peptide  

dro5 6  0.276   0 0 Infinity Effector Antimicrobial peptide  

AttC 252  4.684   2 0.042 111.333 Effector Antimicrobial peptide  

Dpt 343  11.568   24 0.916 12.628 Effector Antimicrobial peptide  
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Table 5 continued 

DptB 

Pu 

80  

79  

2.974 

0.687 
  

6 

7 

0.252 

0.069 

11.781

9.972 

Effector 

Effector  

Antimicrobial peptide  

Melanin synthesis cascade 

TotC 10  0.311 1 0.035 8.836 Effector  Tot  

IM18 62  1.403 8 0.205 6.848 Effector  IM 

Mtk 380  23.719   52 3.673 6.457 Effector Antimicrobial peptide  

Dro 192  4.237   27 0.674 6.283 Effector Antimicrobial peptide  

yellow-f 23  0.277 6 0.082 3.387 Effector  Melanin synthesis cascade 

IM14 68  5.101 19 1.613 3.162 Effector  IM 

AttA 96  2.113   27 0.673 3.142 Effector Antimicrobial peptide  

IM4 56  2.194 16 0.709 3.093 Effector  IM  

IM10 355  6.147 116 2.273 2.704 Effector  IM  

IM1 247  11.541 82 4.336 2.662 Effector  IM  

AttB 74  1.428   27 0.590 2.422 Effector Antimicrobial peptide  

IM2 139  6.250 62 3.155 1.981 Effector  IM  

Tsf1 145  1.209 68 0.642 1.884 Effector  Iron binding  

TotA 182  5.213 98 3.177 1.641 Effector  Tot  

Drs 551  23.817   299 14.627 1.628 Effector Antimicrobial peptide  

Tig 22  0.053 12 0.033 1.620 Effector  Coagulation  

IM3 330  18.401   188 11.864 1.551 Effector  IM  

Genes are sorted in order of induction coefficient at each functional class.  
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Table 6: Trimmed mean of M value (TMM), induction coefficient (IC), number of amino acids of mature peptide, molecular weight, net charge and protein 

structural feature for putative antimicrobial peptide genes in D. virilis predicted by AMP prediction programs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. virilis 

gene 
TMM IC 

Mature 

peptide size 

(aa)  

Molecular 

weight 

(kDa)  

Net 

Charge 

Structural  

features  

AMP prediction  

AntiBP2 CAMP AMPA 

GJ10737   1.368 2.503 35 4.07 12 Arg+Val rich (51%)  - +  +  

GJ18291  0.316 3.909 61 6.70  25 Lys+Ser rich (46%)  - +  +  
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Table 7: Number of reads and induction coefficient (IC) for putative immune-related genes in D. 

virilis and their homologues in D. melanogaster. 

 

 

 

  

D. virilis D. melanogaster 

Putative 

gene 

No. of reads 
IC Homologue

No. of reads 
IC 

Infected Naïve Infected Naïve 

PG00034 17 * 37 0.477 IM14 68 ** 19 3.162 

PG01778 7 * 0 infinity Rho1 16 * 7 2.020 

PG02420 2 * 10 0.208 -  - - - 
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Table 8: Summary statistics of 5’-end-riched 454 GS junior sequencing and de novo assemble. 

 

454 GS Jr sequencing No. of reads 50573

Average length (bp) 190

Longest read (bp) 599

Shortest read (bp) 40

De novo assemble  No. of assembled reads 41423

  No. of contigs 900
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Table 9: Trimmed mean of M value (TMM), induction coefficient (IC), identity gene of D. virilis, their homologues in D. melanogaster and AMP 

prediction for putative genes whose expression were significantly changed by fungal.infection in D. virilis. 

 

Gene 

Infected Naïve 

IC 
Identity gene 

of D. virilis 

D. melanogaster 

homologue 

AMP 

prediction 
No. of 

reads 
TMM 

No. of 

reads 
TMM 

PG00098 1131 13758.005  814 9532.570 1.443 -   - 

PG00273 32 389.263 15 175.662 2.216 - - 

PG00667 17 206.796 5 58.507 3.535 GJ11849  ribosomal protein L26 - 

PG01259 21 255.454 7 81.975 3.116 - - 

PG01471 9 109.480 1 11.701 9.356 - + 

PG01875 10 121.645 1 11.701 10.396 GJ22451 IM 3 + 

PG02341 10 121.645 1 11.701 10.396 - - 

PG03038 46 559.565  22 257.637 2.172 -   - 
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Supplementary Table 1: Number of reads, trimmed mean of M value (TMM) and induction coefficient 

(IC) for endogenous control genes in D. virilis and D. melanogaster. 

Organism  Symbol Gene 

Infected   Naïve  

IC No. of 

reads 
TMM  

No. of 

reads 
TMM 

D. virilis  RpL32  RpL32  38 1.156 31 0.884 1.307

Gapdh  GJ20812 0 0 2 0.022 0

GJ20492 27 0.333 36 0.416 0.800 

D. melanogaster  RpL32  RpL32 71 2.216 87 3.073 0.721

Gapdh  Gapdh1 27 0.351 40 0.589 0.597 

    Gapdh2 11 0.134 21 0.289 0.463
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Supplementary Table 2: Number of reads, trimmed mean of M value (TMM) and induction coefficient (IC) for recognition, signaling and effector class immune-related genes 

observed in D. virilis. 

D. virilis gene
D. melanogaster 

homologue 

Infected  Naïve 
IC 

Functional 

Class 
Notes 

No of reads TMM  No of reads TMM 

GJ20666 CG13422 6 * 0.153 0 0 Infinity Recognition Beta-glucan binding domain 

GJ18161 nimB5 5 0.070 0 0 Infinity Recognition Nimrod-related 

GJ22101 Corin 1 0.003 0 0 Infinity Recognition Scavenger receptor 

GJ11092 modSP 1 0.009 0 0 Infinity Recognition Scavenger receptor 

GJ12160 PGRP-SB1 11 * 0.235 2 0.040 5.864 Recognition PGRP domain 

GJ20388 Mcr 4 0.009 1 0.002 4.265 Recognition Tep 

GJ13216 modSP 10 0.073 5 0.034 2.132 Recognition Scavenger receptor 

GJ19730 crq 2 0.017 1 0.008 2.132 Recognition Scavenger receptor 

GJ15950 PGRP-SA 10 0.208 7 0.137 1.523 Recognition PGRP domain 

GJ16225 TepII 28 0.082 26 0.071 1.148 Recognition Tep 

GJ13386 PGRP-LF 2 0.022 2 0.021 1.066 Recognition PGRP domain 

GJ13383 PGRP-LC 7 0.054 8 0.058 0.933 Recognition PGRP domain 

GJ18075 nimB2 29 0.298 36 0.347 0.859 Recognition Nimrod-related 

GJ18565 PGRP-LE 3 0.034 4 0.042 0.800 Recognition PGRP domain 

GJ18162 nimC2 11 0.063 15 0.081 0.78 Recognition Nimrod-related 

GJ17482 pes 2 0.015 3 0.021 0.71 Recognition Scavenger receptor 

GJ14102 GNBP2 5 0.149 8 0.223 0.666 Recognition Beta-glucan binding domain 

GJ13082 GNBP3 6 0.050 10 0.078 0.640 Recognition Beta-glucan binding domain 

GJ23926 modSP 4 0.026 7 0.042 0.609 Recognition Scavenger receptor 

GJ18229 TepIV 29 0.081 54 0.141 0.573 Recognition Tep 

GJ21683 CG30148 7 0.230 14 0.431 0.533 Recognition Beta-glucan binding domain 

62 



Supplementary Table 2 continued 

GJ18073 nimB4 1 0.009 3 0.025 0.355 Recognition Nimrod-related 

GJ18074 

GJ11132 

nimB3 

r2d2 

2 * 

3 

0.067 

0.039  

12 

1 

0.376 

0.012 

0.178 

3.198 

Recognition

Other 

Nimrod-related 

. 

GJ20897 Dcr-2 4 0.010 5 0.011 0.853 Other . 

GJ15620 et 5 0.028 0 0 Infinity Signaling . 

GJ18697 Ulp1 5 0.023 0 0 Infinity Signaling Protein modification 

GJ21884 bsk 2 0.022 0 0 Infinity Signaling Kinase 

GJ16598 phl 2 0.011 0 0 Infinity Signaling . 

GJ20084 casp 1 0.034 0 0 Infinity Signaling Negative regulator of imd 

GJ21215 grass 1 0.027 0 0 Infinity Signaling Protease 

GJ21265 her 1 0.012 0 0 Infinity Signaling Transcription factor 

GJ16702 Dredd 1 0.008 0 0 Infinity Signaling Protease 

GJ16121 Traf4 1 0.008 0 0 Infinity Signaling . 

GJ20901 Iap2 1 0.008 0 0 Infinity Signaling . 

GJ14961 Su(var)2-10 1 0.007 0 0 Infinity Signaling . 

GJ24520 ea 1 0.005 0 0 Infinity Signaling Protease 

GJ23176 Ser 1 0.003 0 0 Infinity Signaling Ligand 

GJ12373 msn 9 * 0.024 1 0.002 9.595 Signaling Kinase 

GJ20603 Pvr 15 ** 0.038 2 0.005 7.996 Signaling Receptor 

GJ23773 Hel89B 5 0.011 1 0.002 5.331 Signaling . 

tub tub 7 0.055 2 0.015 3.732 Signaling . 

GJ20044 dom 10 0.013 3 0.004 3.554 Signaling Transcription factor 

Ras1 Ras85D 3 0.065 1 0.020 3.198 Signaling . 

GJ20758 Nup214 3 0.007 1 0.002 3.198 Signaling Nuclear transport 

63 



Supplementary Table 2 continued 

GJ16165 Pvf2 5 0.055 2 0.020 2.665 Signaling Ligand 

GJ21092 Myd88 5 0.044 2 0.017 2.665 Signaling . 

GJ18227 

GJ11038 

ref(2)P 

Mkk4 

18 

4 

0.113 

0.038  

9 

2 

0.053 

0.018 

2.132 

2.132 

Signaling 

Signaling 

. 

Kinase 

GJ18559 smt3 2 0.080 1 0.038 2.132 Signaling Protein modification 

GJ10528 mask 16 0.016 9 0.008 1.895  Signaling . 

GJ12202 Uev1A 7 0.197 4 0.105 1.866 Signaling Protein modification 

GJ19711 lwr 5 0.128 3 0.072 1.777 Signaling Protein modification 

GJ24191 Stat92E 13 0.069 8 0.040 1.733 Signaling Transcription factor 

GJ17162 cact 8 0.059 5 0.035 1.706 Signaling . 

GJ19035 ben 3 0.081 2 0.051 1.599 Signaling Protein modification 

GJ16904 hep 4 0.012 3 0.009 1.422 Signaling Kinase 

GJ23481 Rel 7 0.030 6 0.024 1.244 Signaling Transcription factor 

GJ22783 SPE 7 0.071 7 0.067 1.066 Signaling Protease 

GJ10450 cher 6 0.024 6 0.022 1.066 Signaling . 

GJ16233 Dif 4 0.027 4 0.025 1.066 Signaling Transcription factor 

GJ10642 Kay 3 0.016 3 0.015 1.066 Signaling Transcription factor 

GJ21432 POSH 3 0.014 3 0.013 1.066 Signaling . 

GJ22384 Jra 2 0.028 2 0.026 1.066 Signaling Transcription factor 

GJ13209 Rac1 1 0.021 
 

1 0.020 1.066 Signaling 
. 

GJ12360 Rac2 1 0.021 1 0.020 1.066 Signaling . 

GJ21078 key 1 0.010 1 0.010 1.066 Signaling Kinase 

GJ20083 casp 1 0.008 1 0.007 1.066 Signaling Negative regulator of imd 

GJ10286 Socs36E 1 0.006 1 0.006 1.066 Signaling Negative regulator of JAKSTAT 
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Supplementary Table 2 continued 

GJ24058 mbo 1 0.006 1 0.005 1.066 Signaling Nuclear transport 

GJ15619 dome 1 0.003 1 0.003 1.066 Signaling Receptor 

GJ15330 

GJ20945 

hop 

18w 

1 

1 

0.003 

0.003  

1 

1 

0.003 

0.003 

1.066 

1.066 

Signaling 

Signaling 

Kinase 

Toll-like 

GJ10951 Sp7 35 0.371 40 0.398 0.933 Signaling Phenoloxidase cascade 

GJ20054 Egfr 5 0.014 6 0.016 0.888 Signaling Receptor 

GJ14938 nec 16 0.126 20 0.148 0.853 Signaling Protease 

GJ18893 Pvf1 3 0.038 4 0.047 0.800 Signaling Ligand 

GJ21412 Spn27A 5 0.046 7 0.061 0.762 Signaling Phenoloxidase cascade 

GJ20786 Stam 7 0.040 
 

10 0.053 0.746 Signaling 
. 

GJ18599 Ntf-2 2 0.063 3 0.088 0.711 Signaling Nuclear transport 

GJ14460 MP1 14 0.145 22 0.213 0.678 Signaling Phenoloxidase cascade 

GJ23376 srp 10 0.033 16 0.050 0.666 Signaling Transcription factor 

GJ10449 cher 6 0.017 10 0.027 0.640 Signaling . 

GJ15197 psh 14 0.145 25 0.242 0.597 Signaling Protease 

GJ11780 brm 5 0.012 9 0.021 0.592 Signaling Transcription factor 

GJ23435 ben 1 0.027 2 0.051 0.533 Signaling Protein modification 

GJ18753 slpr 1 0.003 2 0.006 0.533 Signaling . 

GJ17781 ush 4 0.011 10 0.026 0.426 Signaling Transcription factor 

GJ21441 smt3 1 0.045 3 0.127 0.355 Signaling Protein modification 

GJ18140 p38b 1 0.011 3 0.032 0.355 Signaling Kinase 

aop aop 1 0.005 3 0.015 0.355 Signaling Transcription factor 

GJ11480 BG4 1 0.018 4 0.067 0.267 Signaling . 

GJ19441 SPE 3 * 0.033 15 0.155 0.213 Signaling Protease 
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Supplementary Table 2 continued 

GJ22479 Def 53 ** 2.445  0 0 Infinity Effector Antimicrobial peptide  

GJ21173 AttC 47 ** 0.818  0 0 Infinity Effector Antimicrobial peptide  

Cec2B CecA1 / CecA2 25 ** 1.604 0 0 Infinity Effector Antimicrobial peptide  

Cec3 CecC 23 ** 1.475  0 0 Infinity Effector Antimicrobial peptide  

GJ22469 Mtk 9 ** 0.660  0 0 Infinity Effector Antimicrobial peptide  

GJ22662 AttD 5 0.113  0 0 Infinity Effector Antimicrobial peptide  

GJ13808 Tsf2 3 0.015 0 0 Infinity Effector  Iron binding  

GJ15754 Jafrac1 2 0.042 0 0 Infinity Effector  Gut protection  

Ddc Ddc 2 0.016 0 0 Infinity Effector  Melanin synthesis cascade  

GJ21181 PO45 2 0.012 0 0 Infinity Effector  Phenoloxidase  

Cec1 CecC 1 0.064  0 0 Infinity Effector Antimicrobial peptide  

GJ12891 Jafrac2 1 0.017 0 0 Infinity Effector  Gut protection  

GJ14144 Duox  1 0.003 0 0 Infinity Effector  Gut protection  

GJ19916 Dpt 104 ** 3.812  4 0.138 27.720 Effector Antimicrobial peptide  

GJ19917 DptB 39 ** 1.120  3 0.081 13.860 Effector Antimicrobial peptide  

GJ12507 LysD 5 0.146 1 0.027 5.331 Effector  Lysozyme, c-type  

GJ20571 AttA 5 0.087  1 0.016 5.331 Effector Antimicrobial peptide  

GJ20572 AttA 49 * 0.856  24 0.393 2.177 Effector Antimicrobial peptide  

GJ20545 Pu 83 1.257 58 0.824 1.526 Effector  Melanin synthesis cascade  

GJ10563 Irc 19 0.110 14 0.076 1.447 Effector  Gut protection  

GJ11603 Catsup 6 0.056 6 0.053 1.066 Effector  Melanin synthesis cascade 

GJ20669 Tsf3 1 0.006 1 0.005 1.066 Effector  Iron binding  

GJ21009 CG6426 7 0.177 8 0.190 0.933 Effector  Lysozyme, I-type  

GJ15168 Tig 47 0.087 55 0.095 0.911 Effector  Coagulation  
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Supplementary Table 2 continued 

GJ10805 yellow-f2 2 0.018 3 0.025 0.711 Effector  Melanin synthesis cascade  

GJ15366 Tsf1 111 0.713 172 1.036 0.688 Effector  Iron binding  

GJ17981 fon 217 * 1.641 370 2.624 0.625 Effector  Coagulation  

GJ21309 IM10 22 0.257 37 0.405 0.634 Effector  IM  

GJ18607 IM4 79 * 7.542 151 13.521 0.558 Effector  IM  

GJ21008 CG6426 2 0.051  4 0.095 0.533 Effector  Lysozyme, I-type  

GJ21308 IM10 23 * 0.350  51 0.727 0.481 Effector  IM  

GJ18065 CG15293 9 0.069 22 0.159 0.436 Effector  Coagulation  

GJ13134 CG14823 2 0.036 5 0.085 0.426 Effector  Lysozyme, I-type; destabilase  

GJ19885 IM1 37 ** 3.302 123 10.296 0.321 Effector  IM  

GJ18809 CG16799 1 0.025 5 0.117 0.213 Effector  Lysozyme, c-type  

GJ22454 IM23 1 0.039 6 0.218 0.178 Effector  IM  

GJ12894 LysD 1 0.029  7 0.187 0.152 Effector  Lysozyme, c-type  

Genes are shown in order of induction coefficient at each functional class.  

*, ** Significant difference from the number of reads for naïve larvae (* P < 0.05, ** P < 0.01). 

 

 

 

 

 

67 



Supplementary Table 3: Number of reads, trimmed mean of M value (TMM) and induction coefficient (IC) for recognition, 

signaling and effector class immune-related genes observed in D. melanogaster. 

D. melanogaster 

gene 

Infected   Naïve 

IC 
Functional 

Class 
Notes No. of 

reads 
TMM   

No. of 

reads
TMM 

PGRP-SB1 29 ** 0.779 0 0 Infinity Recognition PGRP domain 

PGRP-SC1b 11 ** 0.288 0 0 Infinity Recognition Amidase degradation 

PGRP-SB2 9 ** 0.225 0 0 Infinity Recognition PGRP domain 

Mcr 4 * 0.011 0 0 Infinity Recognition Tep 

GNBP2 3 0.035 0 0 Infinity Recognition Beta-glucan binding domain

Sr-CIV 2 0.024 0 0 Infinity Recognition Scavenger receptor 

nimB1 1 0.013 0 0 Infinity Recognition Nimrod-related 

PGRP-SC1a 1 0.030  0 0 Infinity Recognition Amidase degradation 

PGRP-SC2 20 ** 0.603 3 0.102 5.891 Recognition Amidase degradation 

TepII 188 ** 0.708 31 0.132 5.359 Recognition Tep 

nimC2 43 ** 0.310 9 0.073 4.222 Recognition Nimrod-related 

GNBP3 15 ** 0.164 4 0.049 3.313 Recognition Beta-glucan binding domain

CG13422 17 ** 0.569 5 0.189 3.004 Recognition Beta-glucan binding domain

TepIV 37 ** 0.131 13 0.052 2.515 Recognition Tep 

crq 5 0.043 2 0.020 2.209 Recognition Scavenger receptor 

PGRP-SA 7 0.103 3 0.050 2.062 Recognition PGRP domain 

TepI 7 0.028 3 0.013 2.062 Recognition Tep 

PGRP-SD 27 ** 0.626 13 0.341 1.835 Recognition PGRP domain 

modSP 2 0.014 2 0.016 0.884 Recognition Scavenger receptor 

PGRP-LC 1 0.009 1 0.010 0.884 Recognition PGRP domain 

PGRP-LE 1 0.009 1 0.010 0.884 Recognition PGRP domain 

pes 1 0.007 1 0.007 0.884 Recognition Scavenger receptor 

PGRP-LB 1 0.013 1 0.015 0.884 Recognition Amidase degradation 

nimB2 24 0.279 29 0.382 0.731 Recognition Nimrod-related 

nimB4 4 0.045 5 0.064 0.707 Recognition Nimrod-related 

nimB3 24 0.898  44 1.864 0.482 Recognition Nimrod-related 

CG30148 1 0.026 2 0.058 0.442 Recognition Beta-glucan binding domain

emp 1 0.007 3 0.025 0.295 Recognition Scavenger receptor 

Dcr-2 3 0.009 2 0.007 1.325 Other . 

Rel 14 ** 0.067 0 0 Infinity Signaling Transcription factor 

aop 6 ** 0.026 0 0 Infinity Signaling Transcription factor 

brm 5 * 0.016 0 0 Infinity Signaling Transcription factor 
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Supplementary Table 3 continued 

Myd88 4 * 0.019 
 

0 0 Infinity Signaling 
. 

ush 3 0.008 0 0 Infinity Signaling Transcription factor 

Mpk2 3 0.034 0 0 Infinity Signaling Kinase 

ird5 3 0.020  0 0 Infinity Signaling Kinase 

slpr 3 0.010  0 0 Infinity Signaling . 

lwr 3 0.045 0 0 Infinity Signaling Protein modification 

hop 3 0.010 0 0 Infinity Signaling Kinase 

Ulp1 3 0.010  0 0 Infinity Signaling Protein modification 

tamo 2 0.009 0 0 Infinity Signaling Nuclear transport 

Traf4 2 0.015 0 0 Infinity Signaling . 

Pvf2 1 0.008 0 0 Infinity Signaling Ligand 

edl 1 0.011 0 0 Infinity Signaling . 

Dsor1 1 0.009 0 0 Infinity Signaling Kinase 

mbo 1 0.007 0 0 Infinity Signaling Nuclear transport 

Rac2 1 0.011 0 0 Infinity Signaling . 

CG6361 15 ** 0.185 1 0.014 13.254 Signaling Protease 

cact 11 ** 0.081 1 0.008 9.720 Signaling . 

dom 8 * 0.085 1 0.012 7.069 Signaling Transcription factor 

Rac1 4 0.037 1 0.010 3.534 Signaling . 

spz 4 0.033 1 0.010 3.534 Signaling Ligand 

Stat92E 11 * 0.050 3 0.016 3.240 Signaling Transcription factor 

srp 18 ** 0.080 5 0.025 3.181 Signaling Transcription factor 

phl 32 ** 0.135 9 0.043 3.142 Signaling . 

mask 10 * 0.012 3 0.004 2.945 Signaling . 

spirit 22 ** 0.231 7 0.083 2.777 Signaling Protease 

hep 6 0.031 2 0.012 2.651 Signaling Kinase 

emb 6 0.022 2 0.008 2.651 Signaling Nuclear transport 

Pvr 8 0.026   3 0.011 2.356 Signaling Receptor 

Sp7 13 0.112   6 0.059 1.914 Signaling Phenoloxidase cascade 

ben 15 0.138 7 0.073 1.893 Signaling Protein modification 

Egfr 6 0.022 3 0.012 1.767 Signaling Receptor 

Stam 4 0.023 2 0.013 1.767 Signaling . 

Ntf-2 4 0.022 2 0.012 1.767 Signaling Nuclear transport 

Hel89B 2 0.005 1 0.003 1.767 Signaling . 

key 2 0.025 1 0.014 1.767 Signaling Kinase 

Mkk4 2 0.013 1 0.008 1.767 Signaling Kinase 

Dif 2 0.013 1 0.007 1.767 Signaling Transcription factor 
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Supplementary Table 3 continued 

tub 2 0.017 1 0.009 1.767 Signaling . 

imd 2 0.025 1 0.014 1.767 Signaling . 

dome 3 0.010  2 0.008 1.325 Signaling Receptor 

grass 3 0.038 2 0.029 1.325 Signaling Protease 

nec 18 0.186 14 0.164 1.136 Signaling Protease 

ref(2)P 10 0.075 8 0.068 1.104 Signaling . 

SPE 7 0.093 6 0.090 1.031 Signaling Protease 

MP1 9 0.101 9 0.114 0.884 Signaling Phenoloxidase cascade 

Jra 3 0.033 3 0.037 0.884 Signaling Transcription factor 

msn 2 0.006 2 0.007 0.884 Signaling Kinase 

Iap2 1 0.008 1 0.009 0.884 Signaling . 

Dredd 1 0.008 1 0.0010 0.884 Signaling Protease 

ytr 1 0.008  1 0.009 0.884 Signaling . 

Traf-like 1 0.007 1 0.008 0.884 Signaling . 

kay 1 0.004 1 0.004 0.884 Signaling Transcription factor 

pnt 1 0.006 1 0.007 0.884 Signaling Transcription factor 

Uev1A 7 0.087 9 0.127 0.687 Signaling Protein modification 

psh 3 0.030  4 0.046 0.663 Signaling Protease 

Spn27A 2 0.015 3 0.025 0.589 Signaling Phenoloxidase cascade 

Su(var)2-10 2 0.016 3 0.026 0.589 Signaling . 

cher 4 0.019 7 0.038 0.505 Signaling . 

smt3 3 0.068 9 0.229 0.295 Signaling Protein modification 

CecC 35 ** 1.521   0 0 Infinity Effector Antimicrobial peptide  

CecA1 14 ** 0.663   0 0 Infinity Effector Antimicrobial peptide  

Def 11 ** 0.461   0 0 Infinity Effector Antimicrobial peptide  

CecB 7 ** 0.288   0 0 Infinity Effector Antimicrobial peptide  

dro5 6 ** 0.276   0 0 Infinity Effector Antimicrobial peptide  

Hml 2 0.003 0 0 Infinity Effector  Coagulation  

CG18107 2 0.118 0 0 Infinity Effector  IM  

TotB 2 0.063 0 0 Infinity Effector  Tot  

CecA2 2 0.094   0 0 Infinity Effector Antimicrobial peptide  

Tsf3 1 0.007 0 0 Infinity Effector  Iron binding  

AttC 252 ** 4.684   2 0.042 111.333 Effector Antimicrobial peptide  

Dpt 343 ** 11.568   24 0.916 12.628 Effector Antimicrobial peptide  

DptB 80 ** 2.974   6 0.252 11.781 Effector Antimicrobial peptide  

Pu 79 ** 0.687 7 0.069 9.972 Effector  Melanin synthesis cascade 
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Supplementary Table 3 continued 

TotC 10 ** 0.311 1 0.035 8.836 Effector  Tot  

IM18 62 ** 1.403 8 0.205 6.848 Effector  IM 

Mtk 380 ** 23.719   52 3.673 6.457 Effector Antimicrobial peptide  

Dro 192 ** 4.237   27 0.674 6.283 Effector Antimicrobial peptide  

Jafrac1 5 0.083 1 0.019 4.418 Effector  Gut protection  

yellow-f 23 ** 0.277 6 0.082 3.387 Effector  Melanin synthesis cascade 

IM14 68 ** 5.101 19 1.613 3.162 Effector  IM 

AttA 96 ** 2.113   27 0.673 3.142 Effector Antimicrobial peptide  

IM4 56 ** 2.194 16 0.709 3.093 Effector  IM  

IM10 355 ** 6.147 116 2.273 2.704 Effector  IM  

IM1 247 ** 11.541 82 4.336 2.662 Effector  IM  

AttB 74 ** 1.428   27 0.590 2.422 Effector Antimicrobial peptide  

IM2 139 ** 6.250 62 3.155 1.981 Effector  IM  

Tsf1 145 ** 1.209 68 0.642 1.884 Effector  Iron binding  

IM23 6 0.216 3 0.122 1.767 Effector  IM  

TotA 182 ** 5.213 98 3.177 1.641 Effector  Tot  

Drs 551 ** 23.817   299 14.627 1.628 Effector Antimicrobial peptide  

Tig 22 ** 0.053   12 0.033 1.620 Effector  Coagulation  

CG15293 9 0.126   5 0.079 1.590 Effector  Coagulation  

IM3 330 ** 18.401 188 11.864 1.551 Effector  IM  

CG33470 9 0.167 6 0.126 1.325 Effector  IM  

Irc 26 0.182 22 0.174 1.044 Effector  Gut protection  

CG16799 7 0.164 10 0.265 0.619 Effector  Lysozyme, c-type  

fon 80 0.696  121 1.192 0.584 Effector  Coagulation  

Catsup 2 0.018   8 0.082 0.221 Effector  Melanin synthesis cascade 

Genes are shown in order of induction coefficient at each functional class.  

*, ** Significant difference from the number of reads for naïve larvae (* P < 0.05, ** P < 0.01). 
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Supplementary Table 4: Number of reads, induction coefficient (IC) and predicted function of the putative genes (PG) in D. virilis. 

Putative gene 
No. of reads  

IC Swissprot ID Definition Organism Immune-related 
Infected Naïve 

PG00034 17 37 0.48 P83869 Immune-induced peptide 14 Drosophila melanogaster  + 

PG00098 1131 814 1.44 A7Y3K2 Putative membrane protein ycf1 Ipomoea purpurea - 

PG00273 32 15 2.22 P05389 60S acidic ribosomal protein P2 Drosophila melanogaster - 

PG00326 13 4 3.38 P29742 Clathrin heavy chain Drosophila melanogaster - 

PG00604 11 1 11.44 P60892 Ribose-phosphate pyrophosphokinase 1 Rattus norvegicus - 

PG00667 17 5 3.53 P61255 60S ribosomal protein L26 Mus musculus - 

PG00683 17 54 0.33 P61210 ADP-ribosylation factor 1 Locusta migratoria - 

PG01080 36 86 0.43 O44390 Acyl-CoA Delta(11) desaturase  Trichoplusia ni - 

PG01083 12 0 Infinity P54385 Glutamate dehydrogenase, mitochondrial  Drosophila melanogaster  - 

PG01215 53 122 0.45 P07701 Salivary glue protein Sgs-5  Drosophila melanogaster - 

PG01259 21 7 3.12 P02553 Tubulin alpha chain (Fragment) Lytechinus pictus - 

PG01319 15 0 Infinity P23194 Uricase Drosophila virilis - 

PG01327 8 1 8.32 Q7KN62 Transitional endoplasmic reticulum ATPase TER94 Drosophila melanogaster - 

PG01341 10 0 Infinity P79398 Eukaryotic translation initiation factor 4 gamma 2  Oryctolagus cuniculus - 

PG01370 1 14 0.074 Q03168  Lysosomal aspartic protease Aedes aegypti  - 

PG01376 2 11 0.19 Q962Q6 40S ribosomal protein S24 Spodoptera frugiperda  - 

PG01460 62 27 2.39 P31403 V-type proton ATPase 16 kDa proteolipid subunit Manduca sexta - 

PG01494 17 4 4.42 P20007 Phosphoenolpyruvate carboxykinase [GTP] Drosophila melanogaster - 

PG01518 1 8 0.13 Q8T8R1 CCHC-type zinc finger protein CG3800 Drosophila melanogaster - 

PG01778 7 0 Infinity P48148 Ras-like GTP-binding protein Rho1 Drosophila melanogaster  + 

PG01865 55 105 0.54 P54361 Ornithine decarboxylase antizyme Drosophila melanogaster - 

PG01979 18 39 0.48 P02707 Hepatic lectin  Gallus gallus - 
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Supplementary Table 4 continued 

PG01980 15 0 Infinity P11997 Larval serum protein 1 gamma chain Drosophila melanogaster - 

PG02420 2 10 0.21 Q5I2E5 Ficolin-2 Bos taurus + 

PG02437 10 30 0.35 Q9GPH3 Activating transcription factor of chaperone Bombyx mori - 

PG03038 46 22 2.17 Q9NJH0 Elongation factor 1-gamma  Drosophila melanogaster - 

PG03151 6 0 Infinity P60517 Gamma-aminobutyric acid receptor-associated protein Rattus norvegicus - 
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Figure 1: Diagram of Toll and Imd pathway in Drosophila.  

The Toll pathway is mainly activated by infection of fungi and gram-positive bacteria, and the 

Imd pathway is largely activated by infection of gram-negative bacteria. The infection of fungi, 

gram-positive and gram-negative bacteria is sensed by pattern recognition receptors, such as 

gram-negative bacteria binding protein (GNBP) and peptidoglycan-recognition protein (PGRP). 

In Toll pathway, after beta-(1.3)-glucans and Lys-type peptidoglycans, which are a component 

of cell wall of fungi and gram-positive bacteria, are recognized by GNBP3 and PGRP-SA, 

spatzle processing enzyme (SPE) cleaves the precursor of Spatzle (SPZ). Binding of the SPZ to 

Toll receptor triggers conformational changes in the receptor and activates the Toll receptor. The 

activation of Toll receptor cause formation of MyD88-Tube-Pelle complex and the signal 

proceeds to the phosphorylation and degradation of the Cactus, which is an inhibitor of 

NF-kappaB (NF-kB) like transcription factor, Dorsal and Dif. Then the Dif and the Dorsal move 

into nucleus and activate the transcription of a set of target genes. In Imd pathway, after 

DAP-type peptide glycan, which is a component of cell wall of gram-negative bacteria, is 

recognized by PGRP-LC, the signal activates intracellular adaptor Imd. The Imd interacts with 

FADD, and the FADD activates caspase, Dredd. Ankyrin-repeat of Relish (Rel), is cleaved by 

Dredd, and the Relish is converged to active form. Then the Relish is translocated into nucleus 

and activate the transcription of a group of target genes. 
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Figure 2: Survival curves of fungal infected and naïve D. virilis and D. melanogaster. Twenty to 

twenty five flies 1-day after eclosion were reared at 25 ºC on the culture medium covered by a 

Penicillium species (infected) or without fungus (naïve). The red lines with filled and open 

triangle data points indicate fungus-infected and naïve D. virilis, respectively, whereas the blue 

lines with filled and open circle data points indicate fungus-infected and naïve D. melanogaster, 

respectively. All measurements were independently replicated in three times. The number of 

lines indicates the experimental replications. 
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Figure 3: Workflow of data analyses for gene identification (a), gene expression (b) and 

prediction of immune related gene (c). Input data in an open box is processed by program(s) in 

the grey box on the following arrow with or without a database in the black box leading to its 

outcome in the open box. 
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Figure 4: Workflow of construction of oligo-capping full-length cDNA library and 

5’-end-enriched pyrosequencing by using 454 GS Jr sequencer.  
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Figure 5: Venn diagrams that represent the numbers of expressed immune-related genes for 

recognition (a), signaling (b) and effectors (c) observed in the Penicillium-infected D. virilis 

(Dvir) and D. melanogaster (Dmel) larvae. The numbers in parentheses indicate the numbers of 

duplicated genes in D. virilis.  
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Dvir  Dmel  

Dpt (GJ19916) ** Drs ** 

Def (GJ22479) ** Mtk ** 

CecA1, CecA2 (Cec2B) ** IM3 ** 

CecC (Cec3) ** Dpt ** 

Pu (GJ20545) IM1 ** 

DptB (GJ19917) ** IM2 ** 

AttA (GJ20572) * IM10 ** 

AttC (GJ21173) ** TotA ** 

Mtk (GJ22469) ** IM14 ** 

LysD (GJ12507) AttC ** 

AttD (GJ22662) Dro ** 

Irc (GJ10563) DptB ** 

AttA (GJ20571) IM4 ** 

CecC (Cec1) AttA ** 

Catsup (GJ11603) CecC ** 

Jafrac1 (GJ15754) AttB ** 

Jafrac2 (GJ12891) IM18 ** 

Ddc (Ddc) Tsf1 ** 

Tsf2 (GJ13808) Pu ** 

PO45 (GJ21181) CecA1 ** 

Tsf3 (GJ20669) Def ** 

Duox (GJ14144) TotC ** 

IM4 (GJ18607) * CecB ** 

IM1 (GJ19885) ** dro5 ** 

fon (GJ17981) * yellow-f ** 

Tsf1 (GJ15366) IM23 

IM10 (GJ21308) Irc 

IM10 (GJ21309) CG33470 

CG6426 (GJ21009) CG15293 

Tig (GJ15168) CG18107 

CG15293 (GJ18065) CecA2 

CG6426 (GJ21008) Jafrac1 

IM23 (GJ22454) TotB Induction 

coefficientCG14823 (GJ13134) Tig * 

LysD (GJ12894) Tsf3   infinity 

CG16799 (GJ18809) Hml    2 <  

yellow-f2 (GJ10805) fon    1 ~ 2  

CG16799   0.5 ~ 1  

Catsup   < 0.5  
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Figure 6: Summary of changes in gene expression level of the effector genes in the 

Penicillium-infected larvae.  

The effector class genes are piled in order of the expression level in terms of trimmed mean of 

M values (TMM). Expressions of genes observed only in the Penicillium-infected larvae are 

displayed in red. Genes of the induction coefficient greater than 2.0, between 1.0 and 2.0, 

between 0.5 and 1.0 below 0.5 are displayed in dark orange, light orange, light blue and dark 

blue, respectively. The AMP genes and the IM genes homologous between D. virilis and D. 

melanogaster are connected to each other by red lines and blue lines, respectively. For each D. 

virilis gene, the gene name of its homologue in D. melanogaster is indicated and the gene name 

of D. virilis is indicated in parenthesis. Asterisks indicate a statistically significant difference in 

the number of reads observed between the infected and naïve larvae (* P < 0.05; ** P < 0.01). 
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Figure 7: Distribution of sequence length (bp) of contigs constructed from the pyrosequencing 

reads of D. virilis that did not hit any annotated genes.  
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Figure 8: Amino acid sequences and structural features of GJ22451 and its 

homologue of D. melanogaster (CG15065). GJ22451 was predicted to have signal 

peptide at N-terminal region indicated by the blue doubleheaded arrow. The 

predicted mature peptide is indicated by the orange doubleheaded arrow. 

Additionally, GJ22451 was predicted to have two beta-sheets indicated by gray 

arrows and to be stabilized by disulfide bridge between two cysteine residues in red. 

 

  

Signal peptide Mature peptide

Dmel_CG15065  MKWMSLVFLCGLLAMAVASPLNPGNVIINGDCRHCNVRGG*   
Dvir_GJ22451  MKWLSLAFVMALLALASANPLQPGHVIINGDCKVCNVRGD*    
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Figure 9: Amino acid sequence alignment of mature peptide of Metchnikowin from 

D. melanogaster and its homologues in 11 Drosophila species and PG01471 from D. 

virilis (indicated by bold face) and its homologue from D. mojavensis. Multiple 

alignment was constructed by CLUSTAL W (Higgins et al., 1994) program. The amino 

acid residues identical to the uppermost sequence are indicated by dot. The red 

boxes surround highly conserved regions. For each gene, abbreviated four-letter 

species code (Dmel: D. melanogaster, Dsec: D. sechellia, Dsim: D. simulans, Dere: D. 

erecta, Dyak: D. yakuba, Dana: D. ananassae, Dper: D. persimilis, Dpse: D. 

pseudoobscura, Dgri: D. grimshawi, Dmoj: D. mojavensis, Dvir: D. virilis and Dwil: D. 

willistoni) with the gene name in parenthesis is shown. 

 

  

Dmel (Mtk)             --HRHQGPI- --------FD TRPSPFNPNQ PR-PGPIY–-
Dsim (GD11114)         --.......- --------.. .......... ..-.....–-
Dper (GL20065)         --RHR....- --------.. .........P ..GG-.F---
Dsec (GM21609)         --.......- --------.. .......... ..-.....–-
Dyak (GE11702)         --.......- --------.. .......... ..G.....–-
Dere (GG20517)         --..QR...- --------.. .......... ..-..R..–-
Dana (GF13036)         --.......- --------.. .........A .G-.S.P.RG 
Dpse (GA24917)         --RHR....- --------.. .........P ..GG-.F---
Dwil (GK19217)         --RHR....- --------.. .......... ..GG....–-
Dgri (GH20235)         --S.R....- --------.. .........P ..GG-.YV–-
Dmoj (GI20102)         --RHREDRNP --------.. .........P ..-...YV–-
Dvir (GJ22469)         --RH.E.R.P --------.. .......... ..-...YI–-
Dvir_PG01471           NI...HL.PP PPGNQWNP.N FN......G. ..----Y---
Dmoj_PG01471_homologue NL...PM.PP PPGNQWNP.. F.......G. ..----F---
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Figure 10: Distribution of the four predicted immune-related genes, which may 

function as AMP, among 12 Drosophila species. Presence of the gene is indicated by 

circle (identity is 50% or more) or triangle (identity is less than 50%). The 

phylogenetic relationship of the 12 Drosophila species is displayed at the right side.  

 

 

  

species GJ10737 GJ18291 GJ22451 PG 01471
Dmel - - ○ -
Dsim - - ○ -
Dsec - - ○ -
Dyak - - ○ -
Dere - - ○ -
Dana - - ○ -
Dpse - - ○ -
Dper - - ○ -
Dwil - - ○ -
Dmoj - △ ○ ○

Dvir ○ ○ ○ ○

Dgri - - ○ -
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Figure 11: Three biological replicates (Fat body-1, -2 and -3) of comparison of gene 

expression level of Metchnikowin (GJ22469) and Defensin (GJ22479 and GJ21126) 

in fat body of D. virilis. The gene expression level was normalized by the gene 

expression level of RpL32. N.D.; Not detected. 
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Figure 12: Gene expression response of Metchnikowin (GJ22469) and Defensin gene 

(GJ22479 and GJ21126) to the fungal infection in salivary gland of D. virilis. The 

gene expression level was normalized by the gene expression level of RpL32. N.D.; 

Not detected. 
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Figure 13: Three biological replicates (Gut-1, -2 and -3) of gene expression level of 

Metchnikowin (GJ22469) and Defensin (GJ22479 and GJ21126) in gut of D. virilis. 

The expression level was normalized by that of RpL32 expression level.  

  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Gut-1

GJ22469 GJ22479 GJ21126

R
el

at
iv

e 
ex

pr
es

si
on

 le
ve

l 
(*

10
0)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Gut-3

GJ22469 GJ22479 GJ21126

R
el

at
iv

e 
ex

pr
es

si
on

 le
ve

l 
(*

10
0)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Gut-2

GJ22469 GJ22479 GJ21126

R
el

at
iv

e 
ex

pr
es

si
on

 le
ve

l 
(*

10
0)

0.27

0.29



89 
 

(a) 

 

 

 (b) 

 

 

 

 

Figure 14: Amino acid sequence alignment of mature peptide of Diptericin from D. 

melanogaster and D. virilis. (a) alignment of Diptericin (Dpt) of D. melagnoaster  

(Dmel) and its homologues (GJ19915 and GJ19916) of D. virilis (Dvir). (b) alignment 

of DiptericinB (DptB) of D. melanogaster and its homologue of D. virilis (GJ19917). 

The sequence alignment was constructed by CLUSTAL W (Higgins et al., 1994) 

program. The amino acid residues identical to the uppermost sequence are 

indicated by dot. Gaps are indicated by hyphens.  

  

Dmel (Dpt)      DDMTMKP--- --TPPPQY-P LN----LQGG GGGQSGDGFG FAVQGHQKVW TSDNGRHEIG
Dvir (GJ19915)  -NPEE..KGD VW.ERQ.FN. P.EQRF.LD. .YNKDKS.KD VWA.AQVP.. ..E.K...FD
Dvir (GJ19916)  -NPEE..KGD VW.ERQ.FN. P.EQRF.LD. .YNKDKS.KD VWA.AQVP.. ..E.K...FD

Dmel (Dpt) LNGGYGQHLG GPYGNSEPSW KVGSTYTYRF PNF
Dvir (GJ19915) VI.K...... ..W....... GA.GN.RF.. ---
Dvir (GJ19916) VI.K...... ..W....... GA.GN.RF.. ---

Dmel (DptB)     ---------- -----DPREI VNLQ---PEP -LAYAPNFDV P----LHRVR RQFQLNGGGG
Dvir (GJ19917)  LLTVDDEPAT QLVSAK..SL LS.RLMV.D. NKQL.E.Y.W APSEQVEQL. VPR...VQ.. 

Dmel (DptB) GSPKQGFDLS LNGRAPVWQS PNGRHSFDAT GSYAQHLGGP YGNSRPQWGA GGVYTFRF
Dvir (GJ19917) ...R...... V......... ......L... .Q.S...... ......N... .AQ.....
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Figure 15: Amino acid sequence alignment of mature peptide of Cecropin from D. 

melanogaster (Dmel) and D. virilis (Dvir). The multiple alignment was constructed 

by CLUSTAL W (Higgins et al., 199) program. The amino acid residues identical to the 

uppermost sequence are indicated by dot. 

  

Dmel (CecA1)   GWLKKIGKKIERVGQHTRDATIQGLGIAQQAANVAATARG
Dmel (CecA2)   ........................................
Dmel (CecB)    ...R.L......I.......S..V................
Dmel (CecC)    .....L..R...I...........................
Dvir (Cec1)    ............I...........................
Dvir (Cec2A)   ........................................
Dvir (Cec2B)   ........................................
Dvir (Cec3)    ............I...........................
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Figure 16; Neighbor-joining phylogenetic tree of Drosophila Defensin genes with antifungal 

Defensin genes of sand fly (Phlebotomus duboscqi) and mosquito (Anopheles gambiae). Amino 

acid sequences of the mature peptide were aligned by CLUSTAL W (Higgins et al., 1994) and 

the phylogenetic tree was reconstructed with the Poisson model by MEGA5 (Tamura et al., 

2011). For each Defensin gene, abbreviated four-letter species code (Dmel: Drosophila 

melanogaster, Dsec: D. sechellia, Dsim: D. simulans, Dere: D. erecta, Dyak: D. yakuba, Dana: 

D. ananassae, Dper: D. persimilis, Dpse: D. pseudoobscura, Dgri: D. grimshawi, Dmoj: D. 

mojavensis, Dvir: D. virilis, Dwil: D. willistoni, Pdub: Phlebotomus duboscqi and Agam: 

Anopheles gambiae) with Gene ID or Uniprot ID in parenthesis is shown as an operational 

taxonomic unit. The Defensins genes of D. melanogaster and D. virilis were indicated by bold 

face. The number along each branch is the bootstrap value computed by 1,000 bootstrap 

replicates. 
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Figure 17: Amino acid sequence alignment of mature peptide of Defensin from 

Drosophila melanogaster (Dmel), D. virilis (Dvir), Phlebotomus duboscqi (Pdub) and 

Anopheles gambiae (Agam). The multiple alignment was constructed by CLUSTAL W 

(Higgins et al., 1994) program. The amino acid residues identical to the uppermost 

sequence are indicated by dot.  

  

Dmel (CG1385)      ATCDLLSKWNWNHTACAGHCIAKGFKGGYCNDKAVCVCRN
Dvir (GJ21126)     .......F..VKN...VA..L.RRY......N..I....R
Dvir (GJ22479)     .......GF.V..S...A...GL.RS.............R
Pdub (P83404)      .......AFGVG.A...A...GH.YR.....S....T..R
Agam (AGAP011294)  .....A.GFGVGSSL..A....RRYR.....S........
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Figure 18: Organization of NF-kB-like transcription factor (Relish, Dif and Dorsal) 

and GATA transcription factor (Serpent) binding sites on 1 kb upstream region from 

initiation codon of Diptericin genes (Dpt and DptB) in D. melanogaster and those 

(GJ19915, GJ19916 and GJ19917) in D. virilis. Among these Diptericin genes, 

expression of GJ19915 was not observed in our transcriptome analysis. Binding 

sites of Relish, Dif/Relish heterodimer and Dorsal are designated by blue, green, 

and orange arrows, respectively, whereas white arrow represents Serpent binding 

site. The dashed box represents the segment experimentally tested for enhancer 

activity in Senger et al., 2004. From the sequence comparison, the sites on which 

multiple transcription factors could bind are represented by arrows with two or 

three colors. Doubleheaded arrows indicate palindromic binding sites. 
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Figure 19: Organization of NF-kB-like transcription factors (Relish, Dif and Dorsal) 

and GATA transcription factor (Serpent) binding site on 1 kb upstream region from 

initiation codon of Defensin genes (Def) in D. melanogaster and those (GJ21126 and 

GJ22479) in D. virilis. Among these Defensin genes, although expression of 

GJ21126 was not observed in fat body and salivary gland, the expression was 

detected in gut. Binding sites of Relish, Dif/Relish heterodimer and Dorsal are 

designated by blue, green, and orange arrows, respectively, whereas white arrow 

represents Serpent binding site. The dashed box represents the segments 

experimentally tested for enhancer activity in Senger et al., 2004. From the 

sequence comparison, the sites on which multiple transcription factors could bind 

are represented by arrows with two or three colors. Doubleheaded arrows indicate 

palindromic binding sites.  
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Figure 20: Organization of NF-kB-like transcription factors (Relish, Dif and Dorsal) 

and GATA transcription factor (Serpent) binding site on 1 kb upstream region from 

initiation codon of Cecropin genes (CecA1, CecA2 and CecC) in D. melanogaster 

(CecA1, CecA2 and CecC) and those (Cec2B and Cec3) in D. virilis. Binding sites of 

Relish, Dif/Relish heterodimer and Dorsal are designated by blue, green, and yellow 

arrows, respectively, whereas white arrow represents Serpent binding site. The 

dashed box represents the segments experimentally tested for enhancer activity in 

Senger et al., 2004. From the sequence comparison, the sites on which multiple 

transcription factors could bind are represented by arrows with two or three colors. 

Doubleheaded arrows indicate palindromic binding sites. 
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Appendix I-1: Distribution of NF-kB-like (Relish (Rel), Dorsal and Dif/Rel heterodimer) and 

GATA (Serpent) transcription factor binding sites on 1 kb upstream of Def in D. melanogaster. 

  

 

CAAGACAAGACAACCTGGTCGATAACA(Serpent_fwd)AAGGTAAACAGGCAACGGCCAGCC

AAGGAGCAGGGCAACTGAAAAAGCCTCGGTCGTGGGATTCGATCGGGATTGTCGGCTCAGCGCG

ACTGGGCTGAGAACCAGATGCAGATGCCGATACAGATATAGATACACGTACGCGCAGATACGGA

TTCAGATACAAGTACACCCGCCCCTGCCGCTGTATGCCCAACTAATCATTGTGTGATTCTTGTT

TGTTTATTTGCCCGGCATTATGAAGAGACTTTTCGGTAGAAATTATTTATTGTCGCATGTGTTT

ATGTATCCGTAACCGAGTATCTCAGTTGCTTGAGCCAACTGTGTAGCTGTGTAGCTGTGAGTAT

AGCCCTTAAAGTGGCACCCAATCGGTCAGTTAGCTAGAAATTCAGATGATTAAATATGGATTCC

C(Dif/Rel)CTACATCAGCTAATTTCAACAGTTTGGGAGTAAT(Rel)AAAATCGAAATTGGA

TGCTACTAAAGGGCACATATTTACTTAGGCTTTTATCAACGTTGCATATATACAAATATCCTGC

ATATTTCGCAAACCAAAGATTCTTTCTCAAGTAAGGCCTAAACAATTTGAAATGGTTAATTTCG

TAGATGTTGCTTTTTACAATTAACTTGTCATGTGGAATATACTTTACTGCCTAAAATTTAAGGC

AGTTAAAATCCCTAGAAATGCAAATAACTTATTGCAGAAACGGGCTCTGTCGGCTGTATTTTGC

TCTTATCT(Serpent)ATGAAATATTGTCAATATTTTCCAGGCAAAGCACATGAAATAATGAT

CTAGACAACGGTTTCTCCC(Rel)ATTTGCAGTGAACTTAAAAATTAAAAACCCCCGAGACGTG

TCTTCCTGCACAGAAAAAGAGACAATGGGAAGGTAAGTCACCGGGTGGGAGTCCC(Dorsl,Re

l)TGGGCCGAATCGATCAGCCCGTCGCATTGCTATATAAGCTCGGCGAAACCACAATCTGCAAC

AACAGTATCTCTCCAGTTGTATTCCAAGATGAAGTTCTTCGTTCTCGTGGCTATCGCTTTTGCT

CTGCTTGCTTGCGTGGCGCAGGCTCAGCCAGTTTCCGATGTGGATCCAATTCCAGAGGATCATG

TCCTGGTGCATGAGGATGCCCACCAGGAGGTGCTGCAGCATAGCCGCCAGAAGCGAGCCACATG

CGACCTACTCTCCAAGTGGAACTGGAACCACACCGCCTGCGCCGGCCACTGCATTGCCAAGGGG

TTCAAAGGCGGCTACTGCAACGACAAGGCCGTCTGCGTTTGCCGCAATTGA(Def CDS) 
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Appendix I-2: Distribution of NF-kB-like (Relish (Rel), Dorsal and Dif/Rel heterodimer) and 

GATA (Serpent) transcription factor binding sites on 1 kb upstream of Dpt in D. melanogaster. 

 

 

GTATAATTTTGGTTATAACAAGTAACTTTACTGATAAGA(Serpent)CTTGGATTCTCTTTAT

AATATATTTAACAGAGATGTATATGATGCAATTTATAGAATTTAAAAAATCTTAAGAAACTTAA

AATGTTGCTTCAAGATCCTGGTCATCATTGCCCCAGGGAAATTC(Dorsal)CGTCTTTTCCGG

TGGACCTTCACCCCTTGAACCAATTTCAAGCTCTATATAATCGGCAGATGACTGGGCTGTGACG

TGTCCCAGCTGTAAAGTAAATATGCATATATATTTTTTTTTATATTTTTTTATTTTCGGATTAA

TTGTATATTTTTCCTTTGCCGCACTCACCCAGCAGACCAAAAAAACGGCCAATATTTTCATTAA

TATCGATTGTAACAACATTTCTCTCGGCTGCCTCGGCACTCAACTGCTGATGGGAAACTG(Dor

sal)TTTTTACGTTTGCTCAACCTCTGCTTTTAATCAATTATCA(Serpent)CTTATTAAATA

TTTATATTTGTTTTTTTTTTTGTTTGCCTGCATACAAACATACATCGCTCTTTGTCTGTCGCCG

CGGAGAGGTTTTAAAATTAATCCGTGGAACTGGGAAAAGGATGAACTTTCGTTTATTTTCGAAG

GGAAATCATTAATGTTTTAATTGTTAATAATAAGCTGGGAGGTTGGGATATTG(Dorsal)TTC

TTAAGATACATATTTAAAAACTTCGTGGAATAAGAGGTTACAAATTTTATCATTTAATAAGTAT

TTAACCTCTTGTTTGTCAAATGAAAATAAGGTGTGAGTCCTCGTTTAAGAAAGATCCCCTGGTG

GTATTTGTTTTTGCATCGGGGATTCCT(Rel/Dorsal)TTTTTATGACCGGTAATCAATCTTG

GGTTCTAATTATGAGACAATAACCGCCGTAGGTATACTTTCTGAGTAGATAAGG(Serpent)T

GACATCGGGGATTCCT(Rel/Dorsal)TTTGGAAAGCGGCCTATAAAAGAGCATCGAAACTGC

AGCAAAGGTATCAGTCAGCATATTCCAGTTCTTCAATTGAGAACAACTGAGATGCAGTTCACCA

TTGCCGTCGCCTTACTTTGCTGCGCAATCGCTTCTACTTTGGCTTATCCGATGCCCGACGACAT

GACCATGAAGCCCACTCCACCACCGCAGTACCCACTCAATCTTCAGGGAGGCGGCGGTGGCCAG

AGCGGCGATGGTTTTGGCTTTGCAGTCCAGGGTCACCAGAAGGTGTGGACCAGCGACAATGGAC

GCCACGAGATTGGACTGAATGGAGGATATGGACAGCACTTGGGAGGACCATATGGCAACTCAGA

ACCGAGCTGGAAAGTGGGAAGCACCTACACCTACAGATTTCCGAATTTCTAA (Dpt CDS) 
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Appendix I-3: Distribution of NF-kB-like (Relish (Rel), Dorsal and Dif/Rel heterodimer) and 

GATA (Serpent) transcription factor binding sites on 1 kb upstream of DptB in D. melanogaster. 

 

 

ACTCCGTTGGGTAATAACAAATTACGATGACAGGCGGTCTTAATGAAACCTGCCAAGACAAAAT

GTTTTTTGCTAATTGGATTTATTGCGTAAACTGTCGAGAGAACCTTCGATGGAAATTTATCATG

CGCAACATCCGCAGCCTAACCCGAAGATTAAAATATTACGCCATCCCCAACGAAAGCGAATAAG

ATTCGCTTCGAGTATTTGAAAAATGATTCGTGCAGAGGCTGTATTCTAAACTCTTTTACAACCA

AATTTGGGGATTACC(Rel/Dorsal)AAAGCTTTTCACATCATTAATTCCAGCTAAGAATGGC

CAAATTGAGTTGACCTTGTAAAATGATGAATCGATTTGGGAAACTAAATTCTGCTTGGGTCTGC

GGAACCTGTAAGGTAATTTTGCTTGGGAGGAAATCAAATTTTGGCGAAAGTAACATCCGATATT

CTTACTAATAGAAAACACGAAATTGGAGATGATTAAAAATAGAATATATGTTGAATGAAAATGT

ATTATATATGCATAAAACTCAGGTTACCAGAAAGAAAGTTGGTGTTAAAATGATAAAACATAGA

TTTGCATCTTAACTAGAATGCATAAAAGAAATATAACTCTTCGTATAATGCTCTTTTTTATTAG

AAAGAATTAATTTAGAAAGAATTAATGTTAGCCTAAGAATCTGAAATAGAATTAGCTTGTAGTA

GTTAATATACATATATTATTTTCACAGCTGCCACACATGAATGGATCCC(Rel,Dif/Rel)AA

TCGAAATGCGAGTACCTCTACATTCATTGTTTCTAGATGGGATTCAC(Dorsal,Rel)TTTGG

CATCTGCCTCTATTTGAGGAGCCTACACGTACCTCTTATCA(Serpent)ACGAAATGTGGGGA

TCCAC(Rel,Dif/Rel)TGGTGAACCACTGCACCGTCGTCTTGACAGGGATTCCC(Rel,Dif

/Rel,Dorsal)AATTGGGGAATCTC(Dorsal)ATCTGCGAGTACTGATAAGA(Serpent)C

ACAGATCCGAGCTATATAAGACCTGAGTTCGACTCTAGCCGCATTCAGTTGACAAAGCCTAATC

AAATCAAAATGCATTTCACCGCTAGTCTTCTATTCATTGGACTGGCTTGTGCCTTCTCGAGTGC

CTGGGCTTATCCCTATCCTGATCCCCGAGAGATTGTGAATCTGCAGCCTGAACCACTGGCAGTA

AGTTTTTATGAAACTTTTCACTTGGAGCACAGTTTAATAGAGTATTTTTCTAGTATGCTCCCAA

TTTTGATGTGCCCCTGCACAGAGTGCGTCGCCAGTTCCAATTGAATGGCGGTGGCGGTGGAAGC

CCAAAGCAAGGATTCGATCTGAGCCTCAACGGACGTGCTCCCGTTTGGCAGAGCCCCAATGGAC

GCCACTCCTTCGATGCCACGGGATCGTATGCCCAGCACCTTGGTGGACCCTATGGCAACAGCCG

GCCTCAGTGGGGAGCCGGTGGAGTGTATACCTTCAGGTTTTAG (DptB CDS) 
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Appendix I-4: Distribution of NF-kB-like (Relish (Rel), Dorsal and Dif/Rel heterodimer) and 

GATA (Serpent) transcription factor binding sites on 1 kb upstream of Mtk in D. melanogaster. 

 

 

TAGCGCCACGTTCAACCTCTTTTGCAGCCCCATTCTGCTGCGAGAAAACTAACAAAGTGCTCTA

ATCGAGCCAAGGGGCAATTTCTTGTGTTGCTGCAGCTGCACTTTGCACCTCCGCATCCGTGCAC

CCAAAAACCC(Dorsal)GCTTTCTAGATGTTCTCATCATGCACTGAAAAAGAATCCAAATTTT

TACAAGAAATAGTTTAAAATTAGGTAATGTGAAAGATATCGGCACACGGACAGGCCGAATTATC

TGTTGTAAAACTAGCTGCTCAGTTATTAAAAACATTTGTAGTTGCTGACGTTTCCATACAGAGA

CTAATTTTATTTTCACGGACAGGGGTTTTCC(Dorsal)GCTTTAATTGCTTCATTTTTGTTGC

TTTATTGCGTGTATATTGCCCCACAAAACAGATATAAATCATTCGCGCATATCGTAAATGTTGG

TAGAAAATGACAAACAAGAGAAAAAAGATGATTAAAAGCTTCAAGACAATCCTCTATAGGATCT

GATTAAATATGAATATTTTATTTATTAGTTTTCTTTCTGTGTACGGCTTAGAAGGCAGAAGCTG

CGAGGGGCGTAGGGCAGTGGGCGTGGCTCCGTGTTGACGCATGTTGACTATGCCTTTGAATGGC

TGCCGTGGTTGTCGGTGGGTAATTT(Dorsal)GCAATGCAGAAAAACCAACAGGGCGCTAAAA

AGGAGAGTGTTTTCGTGGGAGGTGGAGATGGTCACTGGGGGCAACATAAATATTCAGCGAGAAA

CGTCATATTTACATTTAGTCTAGGCTGATAATC(Serpent)CGGGACCGTGGGAAGTCCC(Do

rsal,Rel)CTTTGGGTGGTGCTGGCTGGGTTCCC(Dif,Rel)CTGGCCACAATCGGTTATCT

(Serpent)GCCCCCGGCTGACACTTGCCCGTCATTCATTCGGCTGCTTATCG(Serpent)CA

GAAGCTCAAATAAAAAGTCCC(Dorsal)CAATCTGCGACTCGTTTGTCTGGGACTGAGCTATA

AAAGCCTCACCATCTCAACGCTCAAAGCATCAATCAATTCCCGCCACCGAGCTAAGATGCAACT

TAATCTTGGAGCGATTTTTCTGGCCCTGCTGGGTGTGATGGCCACGGCTACATCAGTGCTGGCA

GAGCCTCATCGTCACCAGGGACCCATTTTCGATACGAGGCCGTCGCCCTTCAATCCTAACCAAC

CAAGACCGGGTCCAATTTATTAA (Mtk CDS) 
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Appendix I-5: Distribution of NF-kB-like (Relish (Rel), Dorsal and Dif/Rel heterodimer) and 

GATA (Serpent) transcription factor binding sites on 1 kb upstream of CecA1 in D. 

melanogaster. 

 

 

CATCAGTGTAAAATTCGGAAAACCC(Dorsal)AGCGATCTAGTTATGAAATACTTTGTGGTCC

TTGTCGTCCTGGCCCTCATTTTGGCCATCAGCGTGGGTCCTTCGGATGCAGTATTTATTGATAT

TCTTGACAAAGTGGTTTGTTTCTTCTTTAAACAATTGTAGTTTACAATGAAGCTTAAACATTTG

TATTTCTACAGGAAAACGCAATACACAATGCTGCTCAAGTGGGAATTGGCTTTGCTAAGCCCTT

TGAAAAATTGATCAATCCGAAGTAATTCTGCACTGCAATTTAATTAATGTATCGTTTAACGAAA

ATAAACACAAATTTTAAAATCTGAAAAACAACTAAGTTACTAACGCAAGACTTTTAGTTAAGTT

AGTTAATATAGACCGAGATGTATGTACATACATACCGCTTTCGCTTACAATAAAATGTTAAATA

AGTTTTCAGATTCGTACGTGCTCAGTAAACAATTATTTTTTATTGTCATTTAATGCCTATTGAA

TTTTTCAAACTTAATTTAGTGCCTTTAGTAAAATATTGTAGTGATTCCC(Rel,Dorsal, 

andDif/Rel)CTCGAAAAATACCACAAATTGGATGCGTTTATGTAAATAAATTGCCCTTGAGT

GATAGAGTAAATTTGAATTTGACTGTCTTAGAAAGATAGAAAGAGATCAATTCAAAATGCCAAA

AGGATAGAGTTATTAAAGCTCTAATTCAAATTGGCCCAGAACCGTTTAAAGGATATTACAATTT

GTAATTTACATATTTGGATTATAGCATTGAAATCCCCGATTGTTCCC(Rel)TAGATGTGCAGA

TGTGTGCTTGGAATCAGATCGGTTACCTTCAGTGTACTTTTCTCTGCAAAAATCCC(Dorsal)

CGTGCATGCCTTATCT(Serpent)GTCATTTTGTTTTTCAAGCTGGCTGTTCGCCTATAAAAG

CTCTCGCCTTTTGTATCGCAGTCATCAGTCGCTCAGACCTCACTGCAATATCAATATCTTTAGC

TTCTCCTAAGAAAAAATCAAGAAAATATCACCATGAACTTCTACAACATCTTCGTTTTCGTCGC

TCTCATTCTGGCCATCACCATTGGACAATCGGAAGCTGGGTGGCTGAAGAAAATTGGCAAGAAA

ATCGTAAGTTCTTCCATTTGAAATCTGTTAAGACGGAAACTAACTGACTAACTTCTTTTCGAAG

GAACGCGTTGGTCAGCACACTCGGGATGCCACAATCCAGGGACTGGGAATCGCTCAACAAGCCG

CCAATGTCGCCGCAACTGCCCGAGGTTGA (CecA1 CDS) 
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Appendix I-6: Distribution of NF-kB-like (Relish (Rel), Dorsal and Dif/Rel heterodimer) and 

GATA (Serpent) transcription factor binding sites on 1 kb upstream of CecA2 in D. 

melanogaster. 

 

 

ATTTATTCTGTTGCTCCC(Rel)TGTAAATAAAACAATTTTAAAAATTTAAAGAATTCTATTCA

AACTTTGTTTTTTAAAGAGTTGGAGAAAAGCGAACTCTTGAATTTATACACACATTTTAAATAC

ACTTAAGAGGCATTATTTATACAGGATATTACAAATCGCTTCTTTTCCGATTTGGAAAGGCCGA

GATTATGTCTTATCT(Serpent)GTTGAAATATAATTCGTTTCACCTATAAAAGGACCAGTCT

TTTAGTTTAAATTATCA(Serpent)GTCGCTTGTCAAATACTGAAACAATTAGATTAATTTGT

GGATTTTATTTGTCCTCATCCTGACCACTTATTGGCCACAATTGGAAGCTGGCTTCGACGGGAC

ATTAGTAAGCTTAGTCATTTTAAAAGATTTCTTTGCATCTAACTATGATTCTAAATCCTCAGAA

GGACGTTGGTCTATACACCCTAAATGCTACCCTGCAAGTTGCTGAAGTCGCTTCGAAAGCAGCC

AATGTGGCAATCACTGCCAGGGGATAAAC(Rel,Dorsal)TTAAGTTAGGGTATTAT(Dorsa

l)TTATAAGAAATTAAATTAATAGATTTTATTTTATATATTTTTTGTATATTGTTATTCAAACT

GATAATG(Serpent)TAATATACGCTTTTCAAACGATCATTCCAAATCAGTTGTGGGCTTATC

G(Serpent)CAAATGATTTCGTAGTGTTTTTATTTTGATTGATTCAAAGAAGGGGTTTCCT(D

orsal)CTCTGATTCTTAGTCTCCCGCATTGACGAGGTAAAAAATCCC(Dorsal)TATGCATA

TGAAATATGCAAATTTAAAAATCCC(Dorsal)CCAATCCGACAGGTTGGTTTTGATCGGTTTG

GATTCCTCTCGTGTACTTTTCAGCCATAAAAATCCC(Dorsal)CTTTCGAGCCTTATCA(Ser

pent)GGCGCTGAACTTAAGCTGATTCGCCTATAAAAGCTCTCGGCGTTCCTGGTGCAATCAAC

AGTCGATCACTTTCCATTGCAACAGCAACATCAGAGCTATAGCTACTCTTGCAAAATCTAAAGT

CAAATAAAACCACCATGAACTTCTACAACATCTTCGTTTTCGTCGCTCTCATTCTGGCCATCAC

CATTGGACAATCGGAAGCTGGTTGGCTAAAGAAAATTGGCAAGAAAATCGTAAGTCCATTCTAT

TTGAAATTTGTTAAACCGGAAACTAACTAACTCCTTTTCATAGGAACGTGTTGGTCAGCACACT

CGCGACGCCACAATCCAGGGACTGGGAATCGCTCAACAGGCCGCCAATGTTGCAGCCACTGCTC

GAGGTTAA (CecA2 CDS) 

 

 

 

 

 

 

 

 

 



102 
 

Appendix I-7: Distribution of NF-kB-like (Relish (Rel), Dorsal and Dif/Rel heterodimer) and 

GATA (Serpent) transcription factor binding sites on 1 kb upstream of CecC in D. melanogaster. 

 

 

ATCACTGTAATATCATTTAAGACTTGTCTGCCGAATGGCTCCC(Rel)TCCAATTTGAGTAGTT

GAGCCGGCTTTTGCAACCAGTTGCGGCATTTACTGACTTACTTACGCTTCCCTGGACTCACCAA

CTAGATGCTTCGAAGTCTGAGAATGTGAATGAGGACGAGTCCTGGCGGTTATGACACAGGACTC

GCTGGCTCCTTTTGTGTCTCCGTCTCTGCCACTTGTAGCTGTCACTCAGCGGTTAATTCGAGCG

ATTTTATTTACATTTCGCAGAGGCCATGGAACCGGAAAGGAGCAGCAAGGAAGCGGAGTCAAGG

CCCAAGATGGATAAAGCGTTTTTACTTGTTAAGGAAATTAGTGGCATATCCTGACAGGGCGCCC

ATCTTCCTCGCAGCTTCGCATCCTAGATGCTCTATTCCTATATCCTTCCGCATTGTGTGTGTTT

TTGTGTGTGTGTTTTGCCTCCCTTGCTGATTTAATTCATTTGTTGTCTTTGCTGCGCGTCTATT

GTCTGCCCCTCGTTGTTGGTTTTTTATGGCTGAAATTAAAGTTACATTTTCGTGGTGGTTGATA

TTATGTGCCGATGTGCGCGAAAGCCTACATCCTGGGCCATCCCCCTCTCAAAAATCAAGTACAG

TTGCGTGATTGTGTCCTCTTTGTAAATCTAAATTTTATTTGAAAATATTGTTTAGAAGAAGTTA

GCTATTGCTTTTTGCACACATGAGAGCTAAGCGAAGAACGCTCCATTTTTACTAGCAGCTGCTC

AAACAGATTACCGAAGACAGTCTTCGTCTAACAAAGAAGGGGATCCAC(Rel,Dif/Rel)TGC

AGTCTTTCTCTTCTCGCTGCGAAAAGTTCCCCGTCGTCGCCTTATCG(Serpent)GCATCGCA

TTCTTCGCTATAAAAGCCGCCTGTGCCAGAAGTCCAGTCATCAGTCGCTCAGTTTCCACAGCAG

CTAAACAGCTAAATCGCAATCTATATATATATATATATACTAAGGAATTAAACCTAGAAAATTC

ACCATGAACTTCTACAAGATCTTCGTTTTCGTCGCCCTCATCCTGGCCATCAGCATTGGACAAT

CGGAAGCCGGTTGGCTGAAGAAACTTGGCAAGAGAATCGTAAGTTCAGCAACAAAATATATTAA

ATACTTGCAAATTTACTAATTTGTTTTATATTTACTTGCAAAGGAGCGCATTGGCCAGCACACC

CGGGATGCAACCATTCAAGGACTGGGAATTGCGCAACAGGCCGCCAATGTGGCAGCCACCGCCA

GAGGATGA (CecC CDS) 
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Appendix II-1: Distribution of NF-kB-like (Relish (Rel), Dorsal and Dif/Rel heterodimer) and 

GATA (Serpent) transcription factor binding sites on 1 kb upstream of GJ21126 in D. virilis. 

 

 

TCCAAGTGCATGGCTATTTGCAGTATGCCCCGTTCCACAGATTCAAAGTCCC(Dorsal)GCCTATC

G(Serpent)TAGGGTATGTAAAAGTAGGGGAAGACGCCGTGCACATGCATGCAACACTTTTGGCCA

TTGGCATTGGCGCCAAATATGCGCACAATGGGCACCTGTTCAACAAATATAAGGGCCTTAGCATATA

ATTAACAATTTCAAATTAGTTGCTATATTTACGCGCTTAATTTCCTTGCCGCGCAACTCCGAGTAGC

AGGGATCCAGGCCAAATACGGGTTTTTC(Dorsal,Rel)CATGTAAAAATCGGCAATTACAAGCCG

CACGGAGTAAATGCCGTCTATATCGGACATTTTCTGTTGTTTTGTGTGCAAATATAAACGTAGTATT

CATTAAAAACCAGCAACAACTTAATTTTTTGCAACTTGTTTACTTTTATGCGAATAACTGCCAGGGC

TGGCGAAACTCGTTGCGGCAACATTGTGAAATTCAATTTGCGACTCGTTACGAGTACTTGGTACTTG

CACATTCAAATAATTGCCGCCATTTAGGGCTAGCAACTAGGGCTGGCAATGCTGCACAAGTACAATG

CTGACTCGTGACAAGTACGACTACTCGTTCAAATTCAAACTTGTGGCGCCAATTAAACGTATCTATT

GTAAATTTAATGAATTCTGCATTTGTTATTAGATATATTATATTTATATGTTCTTTGCATTATATTT

ATATAAGAAATAGTTCATTGTAATTGATTCTGTGCTGTATTTTATGACATCCGGGGCCAAGCTTAGT

CTAGACTCTGCTATTGACTTTCCATTGTTGTCTTCTTTGAACAACTGCTCATCAACCGAGATGATTA

AAAGATCCCCCTGTACGTGCCCAGCCTGTGAATACGACTTGAAAGCAAAGCAGTGTCCACCGGGAAT

CCC(Dorsal,Rel,Dif/Rel)TTAGCTTGACAAAAGCGACACTTTCGCTGTATAAATACGTGGAG

CCATGCCGCTTGGCATCATCAGTTGCCAGACAAACTGCATTACAATGAAGTTGATCGTATGCCTGGG

CCTGCTACTAATCCTGGCTGTGACAAATGCGTTGACTTCTACGCATGAGGCGACAGCTCCAACGGGA

ATGGAATGGCATCCACGCCAGAAACGCGCCACCTGCGATCTGCTGAGCTTCTGGAACGTAAAGAACA

CAGCCTGTGTGGCCCACTGCCTGGCCAGGCGCTACAAGGGCGGCTACTGCAATAACAAGGCCATTTG

TGTTTGTCGGCGTTAA (GJ21126 CDS) 

 

 

 

 

 

 

 

 

 

 

 

 



104 
 

Appendix II-2: Distribution of NF-kB-like (Relish (Rel), Dorsal and Dif/Rel heterodimer) and 

GATA (Serpent) transcription factor binding sites on 1 kb upstream of GJ22479 in D. virilis. 

 

 

CAGACAGTATGACGCCAAATTCAATACAACATCGTCGATAACA(Serpent)AAGGTAAACAGCCCA

TTCAAAAGGGGTTCCAGGCAGGGGCTCAAACAACAGGCAACCACTCGACTGGTGTCAATAATAATAA

TAGCCGCAGTCCACTCGGCCAACGATGAAGACGCATTTGGTAGCCCCGATGTAGCTGATGCGCAGAA

CAAAAAAAAAACCC(Dorsal)AAACCGAAACAACTACAGATACAGATACAATACGAATAGTTACAG

ATACAAAGATACAAATACACAAACATTACGCCCGCTTGTGTACTTAACTAATCATTTTGTGTTGCTT

CTCTGTTTGTTTTTTGTGAAGATACAATTCGGCTGAATTTATTTGTTGTATCTACGCATTTGTATCT

GTATCTGTAGCTGTAGCTGTAGCTGTAGCTGTATCTGTATCTGCATCGCTTCAATAGAATCGAATCT

GCGCACTTGCAAAACAATTAAAACATTTACGAGGAAATCGAGGCATTTGTTTGGCTATGGCCAAAAT

TTTGAAGCGAACAACTTGAACGCTAATCAAAACAATCTATGGCCAAATTAATTAGGCCAATTCTTGA

AAAGAATAATAATTCTTAAAAGATTTTATGCTTATGCATAAGGCGTTAAAGTGAAAAGTACAGTTGA

AACATTTGCTTATGTTGATAAAAAAAAAGGTTTGCTCAGATTATATTCTATATAGTCTATATACTAT

TTAGCTATATGTTATTTTTTATAAGACGGAGCTAACCTATTTGCCTGAATATCAGATGTCCC(Rel)

GTTTATATTCTATGTGGTCTATATATAAATTTGGTTATCA(Serpent)GCGCTCTATGAATAATAC

CTAGAACAGCGAAATACTTCCC(Rel)CCCAGGGGAACTCCC(Rel)TTAGCTTGTTGCTGCTGAGA

CTCTGATGTTAAGCCTTGATAGAGCCAAGCCTGTGGCGTATAAAAGCCAGCTGTAGCTTCCGAGCAC

ATCATTCAGTGACAGTGACAGAGCAGTTCAAGCAAGATGAAATTTACCATACTCCTAGGCGTTCTGG

CTCTACTGGTGTGCTTGGCCCAGGCACAACCTGTCGAACAGGATTCACTCGCTGAGCGGGAGCCCGG

GGCAGTTGAGCCCATGCCACAGGACTTGCACAGCCGTCAGAAGCGTGCCACATGCGATCTGCTGAGC

GGCTTCAATGTGAATCACTCGGCCTGTGCAGCTCACTGTATTGGCCTGGGCAGGAGTGGAGGCTATT

GTAATGATAAGGCTGTTTGCGTTTGTCGACGTTGA (GJ22479 CDS) 
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Appendix II-3: Distribution of NF-kB-like (Relish (Rel), Dorsal and Dif/Rel heterodimer) and 

GATA (Serpent) transcription factor binding sites on 1 kb upstream of GJ19915 in D. virilis. 

 

 

ACAGCTGTGATATATATGTTCAAATATATAATATTTATAACAAATCAAGCTGGACAACATCTGTCAA

CTAATTATCCC(Dorsal)GATCCGTCCACTCGCCGCGTGCATCATCCCAGACAGGAAACCAGCTCT

TGGTGGGCGCATTTGCCCCATTCACGCCCAGTTCTGCATCATCGACTTGTGCCACGCCCAGCTGCAG

GTGGCAAACAGTTAGTCAGAGCTGCTAAAGTAGTTACATATATCAATTTATTACCCCGCACAGCAGA

GCCAATAATATGGCCATAATATTTATGTAAATGATTCGCAGCCGCATTTTGCACTCTGTCAAAGTTG

ACTCTCTCGACTGATGCACGTTGTGCGACTGTTTCGCTGTTTGTTTATAATATTTAAACGGGGAAAA

AAACACAGTGCACAATATTTATTTAATAATTTATTCATGCTACATGGGCATTATCA(Serpent)GC

AGCTGATAAGC(Serpent)CGCACAGACGAGACTCGTAAAAATTGAAATGAACACGAAATGCTGAA

AATGTTTTCACAGAAGCCACAAAATGCTCATAAATCAATGAATGCTAAATTAAAAAAATAAACAATA

ACACTTGCCATGTCGAATCTGTGGTCAGAGCAGAAATGTGTCATAACTATAGGCCAACTATGCCAGA

CAAATGTTTTTCCGCATGTTCAATAAAATATTTCAATAAATGTTCATATGAAAGAACAATAAAAGAA

AAATACGATTATATACGTACTCCATTGGGCAAGGCAATGCGCAAAGCAAGCAAAACAAAAAACATAA

TAAATGTTTAATTGAAGACAAACAAGTGCCAGCTCAGAAATACGCCAATTTCAACAAAAGGAATCAC

CCTGGGGAAGCAC(Rel)CCGGCAGATAAAGACAGAGCTGCGGCTCCACGGTGATTTTTTTGGTTCT

GTGCATCTTCGACTGCTGCGTGGTCTAGCTATAAAAGCTCGCTGTTCCGGCTAGATGCATTATCA(S

erpent)GTCAATCAGCTCCAGATTCACATACAACATGCAGGTTACGCTCATCGCTTTGCTCTGCTG

CATTGTCGGCTCCGCCCTGGCCATGCCCCAACCCAATCCCGAGGAGAAGCCGAAGGGAGATGTGTGG

ACTGAGCGCCAGCAGTTCAATCCGCCAAACGAGCAGCGTTTTCTTTTGGATGGCGGCTACAACAAGG

ACAAGAGCGGCAAGGATGTATGGGCCCAGGCTCAGGTGCCCGTTTGGACCAGCGAGAACAAACGTCA

CGAGTTCGATGTGATTGGCAAATATGGACAGCATCTGGGTGGACCCTGGGGCAACAGCGAGCCTTCA

TGGGGCGCGGGTGGCAACTACAGATTTCGATTTTAA (GJ19915 CDS) 
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Appendix II-4: Distribution of NF-kB-like (Relish (Rel), Dorsal and Dif/Rel heterodimer) and 

GATA (Serpent) transcription factor binding sites on 1 kb upstream of GJ19916 in D. virilis. 

 

 

TTTGAAAGTTAGCCTGAGCCCTGGACAAAAAGATTCACACAACAGCTTCGGCGATTTTTCCACTCTT

GCGGATGGAATTTTCCAAAATTTCCC(Dorsal)TGTCTTAGTGATTCAGTCAGTCGGCCAGACTGA

CCAGTCGGATTGTTAGTTAATCAATCAGTCAATCAATCACTCAGTGTGTTTTTCAATCAGTTAGTAA

GTCAGTCGGTCAGTCAGTCAGTCAATCAGTCAGTCAGTCAATCAGTCAATCAGTCAGTCAATCAGTC

AGTCAATCAGTCAGTTAGACTGTCAGTCAGTAAGTTAGACAGACAGTTAGTCAGCCACTGTGTTAAT

AAGTCTGTCAGTCATTCAGTCTCTCAACCTGTCAACCAATCAGTCAGATAATC(Serpent)AGTCA

ATCAGTCAGTCAGTCAATCAGTAACGAATTCAGTCTGTCAATCAGTCCTTCAGTCAGTTAGTCTGTC

AGTCAGTAAGTTAGACAGACAGTTAGTCAGCCACTGTGTCAATAAGTCTGTCAGTCATTCAGTCTCT

AAACCTGTCAACAAATCAGTCAGAAACTCATTCAGTCAGTCAATCAGTCTGCCAGATGAAGAATATT

AAAGGTATTTGAAGATCTTTCTTTCCGTCGACAGTCTATTAAAAAGAATTACAAACCGTATGAAAGA

CAATCTGAGAGATACGTACTTACATTATATATTTTAATATACTCATCAGTATTGCTATAATAATGTG

TTTATATGTATGTATACTATAATACTTTGTTTGAAGTAATAATGAAGGATGAATATTAAATGTATAT

CATTTACTTTGTGCGGCCAAGCGACCTTAAGATGAAAATCCC(Dorsal)CCCAGTCATAAAAAAGG

AACCACCCAGGGGAAGTAC(Rel)TAAGCAGATAACA(Serpent)TAGAACAGCGAGCTGGCAGTG

GGTCATCT(Dorsal)CACCCATCGGGTGGTGCTCGTCTTGTCTGCCTATAAAAGCAATGTTCAAGC

TGGACGCATTATCA(Serpent)GTCAATCAGCTCCAGATTCACATACAACATGCAGGTTACACTCA

TCGCTTTGCTCTGCTGCATTGTCGGCTCCGCCCTGGCCATGCCCCAACCCAATCCCGAGGAGAAGCC

GAAGGGAGATGTGTGGACTGAGCGCCAGCAGTTCAATCCGCCAAACGAGCAGCGTTTTCTTTTGGAT

GGCGGCTACAACAAGGACAAGAGCGGCAAGGATGTATGGGCCCAGGCTCAGGTGCCCGTTTGGACCA

GCGAGAACAAACGTCACGAGTTCGATGTGATTGGCAAATATGGACAGCATCTGGGTGGACCCTGGGG

CAACAGCGAGCCTTCATGGGGCGCGGGTGGCAACTACAGATTTAGATTTTAA (GJ19916 CDS) 
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Appendix II-5: Distribution of NF-kB-like (Relish (Rel), Dorsal and Dif/Rel heterodimer) and 

GATA (Serpent) transcription factor binding sites on 1 kb upstream of GJ19917 in D. virilis.  

 

 

CGTTCCTATATCAAATTACTTCAAATTAAAATGAATCATTTTCGAAGCTCTAGAACTCCC(Rel)GA

AACGGGAATTAC(Rel)AAAATGATTTTTAGGCAGAAAAAATTTGCATACATTTTTCGTTGCCAATT

TAAACTGACCTTGGTAAGTTGAGGAAGGGTTTGGCTTACACGCGCCACATATCTGGCATATAATTAT

GTGCTGTCTATGATTAAATTTGTTAAGCCCCTGTATTGGATATTATTGCTTTGTATGGCTTAAGAGT

TGCGATATTTTTAGAGATAGATATAGATAGAGAGAGAGAGAGCGAGAGAGAGGGTGAAAAAGCGAGA

GAATGAGAAAAATGTATATGGAGATAGAGATAGAGAGAGATAGAGATAGAGATAGAGATAGAGATAG

AGATAGAGATAGAGATAGAGATAGAGATAGAGATAGAGATAGAGATAGAGATAGAGATAGAGATAGA

GATAGAGATAGTG(Serpent)AGAGTGAGAGTGAGAGTGAGAGAGAGAGAGTGAGAGAGAGACAGG

GGTTTATATACATATGTCTAGAAAAAGTTTCCAATGTTGATGACCGCAGCTCGGAGATGGGAACAGA

GTATCTTCTAGTATATAGGAATATCTTAAGATAGTT(Serpent)AAGATCAATTGATCTGGTTGAT

TAACTGAACAACATTGACATTTCTTTTATTTCAGGTATAACTGCAGCTGTTCTATATTTGTGTAGTG

CCTAATTGAAGACCTTAGCATTGCTTGGCTCATCAGGCGGGGATTTAC(Rel)ATGCTGGTCTTTAT

CAACCTACCATATTATTTGCCAAGAGATCACGCATCTTATCA(Serpent)GCTGCCTTCGCCGGGT

ATTCACTTGTGAAGCACAGTCTCCCATGCCAGACAATGTGCCACAAGGGATTCCC(Rel,Dorsal)

TGCGACGGTAGAGCTTGTCTATGGGCCCCAAGCATATATAAGGCACATGGAGCCACTCATTCGTCAT

TTTAGTATCAACATCAACAATAGCAGCCACCACAGCTCAAAACCACAAGATGCAACTTAAACTCAGT

TTGCTGCTGCTCGTCCTCGGCGTCTGCGCCTGCGCCTGGGCCTATCCTAATCCGCTCCTGACAGTTG

ACGACGAGCCGGCCACACAATTGGTAAGTGCAAAGCCCAGAAGTTTGTTGAGCTTAAGACTTATGGT

GCCCGATCCCAACAAGCAGCTGGCCGAGAACTACGATTGGGCGCCCAGTGAACAGGTGGAGCAGCTT

CGCGTGCCTCGCCAACTGAATGTGCAGGGCGGCGGCAGTCCACGTCAGGGCTTCGACTTGAGCGTCA

ATGGACGCGCGCCCGTCTGGCAGAGTCCCAACGGTCGCCACTCGCTGGACGCGACGGGACAGTATTC

CCAGCACCTAGGCGGACCCTACGGCAACAGTCGGCCCAATTGGGGCGCGGGCGCACAGTATACGTTC

CGTTTCTAG (GJ19917 CDS) 
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Appendix II-6: Distribution of NF-kB-like (Relish (Rel), Dorsal and Dif/Rel heterodimer) and 

GATA (Serpent) transcription factor binding sites on 1 kb upstream of GJ22469 in D. virilis. 

 

 

TCTTGGCAGGTTTTTAATGTAGAGCTTTATGATAAATGATATGGTATTCGACTGTTGATAAGATTTT

GTTATTATATTAGGCGCATGCTTAAACCC(Dorsal)GTTAAACACAAGTTTGAACAATTTATCTTT

AGCAAAAAAGAATATCATTCAGATTTTGTTCATATAAAAAGAATTTGGTGAACAAAACGTTGGTGAA

TATATCTAAGCTTTCGATCCCAAGGCAGCTATTTATAAGCTATAGTAGCTCGATCCTTAGAACAAAA

CTTATTTTTTACAAAAAATACATGTGTCATATACCTTCCATATAATACATATATCTTCTCTTACGCA

TCACACTTGCTATGATATAATTGAAATACGCTCTACAAGCAGGGTATGCATAAAACGGAAGTAACCG

CACAAATGGTAAAGTGCATGGGAATATT(Dorsal)TACTGAAAATGTCAGTTGGCGCATTCAAAAG

GGCGCCAAAGATGAGGCTGCCTGCTGTAACATGGCCTTTGCCAGAGGAAAACTAACAAAGTGCTCTA

ATAGAGCCAAAGGGGGCTCTGGCAGTGGCAGCTGCAACAGCAGAAGTTCGCCTTAGCTAGACACGAT

GGCAACTGCTTGTTGCAGTGGGCGTGGCGTTGTGTTGACGCATGTTGCTGTTGCCTTTGAATGGCGT

CGTTGTTGCTAGTAATTTGCAATGCAAAAACAACGTAAAGTGGCTGCTGACTAGGCAGTCAACGTCG

GTTGATTCGGGGCGAAACCTGGGCATTTGGCTGCGACCTTGGCGCAAACTAAATATTCAACCAGCAC

ATTTCATATTTCGTTTTCTCAGTTTTTGTGCTCGGCTGTGCATCCC(Rel)CGCATTGAATAGTTAT

C(Serpent)AGCGCAGCTGAGCTGACCCCGTCTGGCATTTAAAGCTTATCT(Serpent)GGCGAA

CAACAAAACAAAATCCC(Dorsal)CCTGGTTGCCTGCGCTTTGCGTATAAAAACCCTGCCGCTTGG

GCGCTGTGGCATCAATCAACTAACAACTGACTTTTAGACAAGATGCAACTCAATCTGCGTGGTCTGC

TGCTGCTGCCCCTGCTGCTGGTGCTGAGCCTGAGCCTGAACCTGTCGCTAACCGAGGCGCGACATCA

TGAGGGCCGCATACCGTTTGACACCCGACCATCGCCATTCAATCCCAATCAGCCCAGGCCCGGGCCG

TACATATAG (GJ22469 CDS) 
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Appendix II-7: Distribution of NF-kB-like (Relish (Rel), Dorsal and Dif/Rel heterodimer) and 

GATA (Serpent) transcription factor binding sites on 1 kb upstream of Cec2B in D. virilis. 

 

 

CTGGTATCTGAACATCGCGGGGAATTTT(Dorsal)TCTTTGAGTCTCTCCGCAAATCGATCCACTG

GGACTCAC(Rel,Dorsal)AGCTTGCACCGCCAGAGCAGAGTAGAGCAATTCACGCAGCAAGCTGA

TAACT(Serpent)GGGAAGAAACGCTGATAACG(Serpent)CGCTATGGCAACGGAGACAGAGCA

ACAACACCTGGCTGACTTTTAAGTGTTTGCACACTAAACTGATCCGACATTGAAAATATTCATATTA

TCA(Serpent)GCCCGATCGGGTCAGTGGCATATTCACACATATTGAATACAGTTGTAGTCGGAAA

TGGGGAAGCAGAAAAACCC(Dorsal)ACGTGAAGTTTCATTCATAAATTGATTTGTAGTAAAAATG

TTGTAGTTGTCTCTGTTTCATGGCAAGCATTTTTGGTGGTTACCCGACAAATCCACTTCATATGTCA

ATCCTATCT(Serpent)GTGGGGCCAATTGCGAGCGTGCGGAAATACCC(Dorsal)AACATTTTG

GCATTGCATCTTACATGGCAAAGCTTTGTTGTGAGGATTAGAATTTTTAAATTTTGAATCTAACTTG

GGGCTTCTGACCATATCTCGAAGCTTAATAGAACTAGATACGTGAAATTTTTGGAGTCTTCTTAACT

GCAGCCTGCTTAAGTAACTTTTTCTTACAATATAATCTTTTGAATAATTATTCAGTATTAATAGATT

TTATAGAATTTATTACATATACTATAACATCCGACGTTTATGTTTAAGTCGATCATATAAATATTGT

TTACGGCATATCTTAACATTCTCTGCACTTGCTTTTGCTTTGCTTGCTTTTGATCCGTGTACTTTTT

CGCCGAGCAAAATCCC(Dorsal)CTCGTTCATCCATCAATTGTTGAGTTTTTGCGCTGCGAGGCTT

ATCA(Serpent)GCATCGGGGAGCTAT(Rel)ATGAGCTATAAAAAAGGCACTGACTGGTCGTATC

AGTCATCAGTCGCTCAGCATCTGCACCCACAGCAACAGCTCAAAGCAAAGCTCCTAGTTTCCAAGGA

ATATCCAATACCTGAACTCAATATGAACTTCTACAAGGTCTTCATCTTCGTTGCGCTCATCCTGGCC

ATCAGCTTGGGTCAATCCGAGGCTGGTTGGTTGAAGAAGATTGGCAAGAAAATCGTAAGTCTTTCAA

CTACATCTTTAGTATGAGCAATTACTTATGATAGATTTACCACTACAGGAACGCGTTGGCCAGCACA

CTCGGGATGCCACCATCCAGGGATTGGGCATTGCCCAGCAGGCTGCGAATGTGGCCGCCACGGCCAG

GGGCTAA (Cec2B CDS) 
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Appendix II-8: Distribution of NF-kB-like (Relish (Rel), Dorsal and Dif/Rel heterodimer) and 

GATA (Serpent) transcription factor binding sites on 1 kb upstream of Cec3 in D. virilis. 

 

 

AAATTAGTGGCATATCCTGACAATGGGCACATCCTGCTCCTGCTCCTAGGCTTGTGCTCGGCGTTGC

CTTCCTTGATTTAATTCATTTGTTGTCTTTGCTACGAGTCGCTTTTTGTTGCTTGTTTCTTTGTTTT

GGTGGTTGACAGTGTTTCAGTTGCCACGCCCACTAATTGTCGGCTTTGGACACGGGTACAGTTGACT

TCTCGATCCGCACTAGATTGCAATTTGCCCAGACCAAATATTATGCTTGCAAACAATTTCAAGCTAA

GCAAATGAAACGAGTTTCGGAATTGCCGCAGCCTGGTAACAAACTAATCGTTCTAAATTTTAATCAA

TAGTTATTTGTTAAATTCGGAATGGCTTGGCTTTGTATAAAAATGCCAACATCTACACACATCTGTG

CAAGCTACACTTTTAGCCTATTTATTACCAATTTCAACAAGACAATCATGTTTGTGCTTCTCATTCT

GGCCACCAGCTTGGGCCAAAGCGAGGCTGGTTGGTTGAAGAAGATTGGTTAGAGAAGTAAATATTAG

AAAATTTTAAAACAAGTATATTTGGTTTCTTTGTGCTACTAGCCATGCTCTGTGGCTCCC(Rel)AG

TTCTGCTACAGCCCCTGGCTAAAGACAGTGTTAAGTTAGGCTAAGTTTGTACATCATTTCATACTGT

CCTATATCCAATGCTCAACTTTACTCTGCCTAAAAAAAGTCTACTCTCGATATTGCAAACGAAATTT

CGATAACC(Serpent)TGCCTACCTTTTGTGTTTATTCTGCAAGCCCTGCTAGCGGGAAGCAC(Re

l)AAATTGTCTGTTCACAAACAAAATCCC(Dorsal)CGAGCCCCAACGATCGATCTGTTTTGTCTT

TGCGCTGCGAGGCTTATCA(Serpent)CCGCCGGAGAGCTATATGAGCTATAAAAGAGGCACCCAC

TGTCGTATCAGTCATCAGTCGCTCAGCATCAGCAACAAAAGCAACACCTCAAATCCCAGCTCCTAGT

TTCCAAGGAATATTCAATACTAGAACTCAATATGAACTTCTACAAGGTCTTCATCTTCGTTGCGCTC

ATCCTGGCCATCAGCTTGGGTCAATCCGAGGCTGGTTGGTTGAAGAAGATTGGCAAGAAAATCGTAA

GTCTATTAACCATATTGTTTAGTATAAACAAATACTTATTAAAGATTTACACTTACAGGAACGCATT

GGCCAGCACACTCGGGATGCCACCATCCAGGGACTGGGAATTGCCCAACAGGCTGCGAATGTGGCCG

CCACGGCCAGGGGCTAA (Cec3 CDS) 
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