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Abstract 

 To study the compositional trends associated with their systematic variation with 

petrologic grade and their fractionation, 41 elements (Na, Mg, Al, P, Ca, Sc, V, Cr, Mn, Fe, 

Co, Ni, Zn, As, Se, Br, Cd, In, Sb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, 

Os, Ir, Au Tl, Pb, Bi, Th and U) have been determined in 15 R chondrites (PRE 95411, 

ALH 85151, Y 793575, Y 983270, A 881988, MIL 07440, LAP 03639, Y 983720, Y 

983097, LAP 04840, MIL 11207, Y 980702, Y 980703, LAP 02238, PCA 91002), covering 

all petrologic types. For the determination of volatile elements (Zn, Pb, Tl, In and Cd), very 

precise isotope dilution technique coupled with ICP-MS was used followed by solvent 

extraction and anion exchange column chromatography. Bi was determined by using 

208
Pb/

209
Bi ratio. Detailed abundances of rare earth elements (REEs), Th and U were 

determined by ICP-MS using internal calibration method. 
149

Samarium spike was used for 

recovery calculation. In ICP-MS experiments, necessary isobaric and oxide interferences 

were corrected. Phosphorus was determined by ICP-AES using Be as internal standard. 

Other elemental abundances were determined by instrumental neutron activation analysis 

using a research reactor of Kyoto University Research Reactor Institute (KURRI) and the 

gamma-counting facilities of KURRI and TMU. Accuracy and precision of all analytical 

data have been ensured by analyzing the Smithsonian Allende powder repeatedly and 

comparing their abundances with the literature values. 

 CI-normalized volatile elements abundances (Pb, Bi, Tl, In and Cd) in R chondrites 

are decreasing with the increasing degree of metamorphism, excluding for the highly 

weathered MIL 11207.8 and Y 793575.44. Lead abundances in R chondrites vary from 

0.33×CI to 0.64×CI. With a similar trend, Bi (0.15-0.63×CI), In (0.15-0.56×CI), Tl (0.02-

0.79×CI) and Cd (0.03-0.81×CI) also change among the petrologic suite of R chondrites of 

this study. Distinguishing the petrologic type 3 from petrologic type 4 is difficult – only Tl 

can do so. Similarly, distinguishing the petrologic type 4 from 5/6 is also difficult – only Bi 

can separate these petrologic types. But petrologic type 3 and 5/6 can be easily 

distinguished by the CI-normalized volatile elements abundances. For unequilibrated 

chondrites, CI-normalized Bi, Tl, In and Cd abundances in R chondrites are within the 

range of ordinary chondrites. But in higher metamorphic grade, CI normalized Bi, Tl, In 

and Cd abundances in R chondrites are generally higher than those of H, L and LL 

chondrites with a few exceptions. The higher abundances of volatile elements in 
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equilibrated R chondrites are more prominent for Bi, In and Cd. For Tl, the trend of higher 

volatile elements abundances in R chondrites is also noticeable (especially for petrologic 

type 6), but somehow less conspicuous than Bi, In and Cd. For the systematic variation of 

volatile elements in R chondrites, a plausible explanation can be given; - high temperature 

early condensates were more depleted in volatile elements whereas low temperature later 

condensates were comparatively enriched with the volatile elements. If nebular 

condensation and accretion occurred simultaneously, the high temperature condensates 

were placed in the inner portion of the parent body followed by the low temperature 

condensates sequentially at the outer portion of the parent body. If R chondrite parent body 

possesses the onion-shell model, then the metamorphic heating caused the higher degree of 

recrystallization at the inner portion compared with that of outer portion. Impact can be 

responsible to convert the onion-shell parent body to rubble-pile type parent body where 

the different petrologic types are randomly distributed over the parent body.  

 CI-normalized detailed abundances of REEs in R chondrites shows a faint enrichment 

of heavy REEs compared with those of light REEs. REEs abundances vary from 1.2×CI to 

1.5×CI. Nebular process can be responsible for such small HREE-LREE fractionation in R 

chondrites. To explain the nebular process in R chondrites, an analogically well explained 

fractionated pattern of REEs, Th and U abundances in Allende meteorite can be considered. 

In Allende, HREEs are depleted compared with LREEs. According to condensation 

calculation, high temperature early condensates (e.g., perovskite, hibonite, corundum etc.) 

enriched with refractory HREEs could have been removed from the nebular gas, making 

the remaining gas enriched with less refractory LREEs. It is likely that the Allende parent 

body must have formed from such later condensates of the remaining gas. In R chondrites, 

the inclination of CI-normalized REE pattern is opposite to the Allende pattern (except 

positive Tm anomaly). A simple interpretation is that R chondrites formed in the nebula 

where early condensates were relatively abundant. Unlike the REE fractionation pattern, 

Th-U fractionation patterns are the same both in R chondrites and in Allende. In the seven 

replicate measurements of Allende powder, Th/U ratio is 4.10 ± 0.20 whereas in R 

chondrites, Th/U ratio is 3.81 ± 0.13. A subtle positive Ce anomaly (5.4 ± 1.5 %) is 

observed in CI-normalized REE abundance pattern of R chondrites. Phosphorus 

abundances in R chondrites are very close to cosmic abundance (0.9-1.1×CI). Phosphorus 

abundances show anti-correlation with La, Ce, Er and Yb.  
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 In our INAA study, CI, Cr-normalized lithophile abundance pattern in R chondrites are 

almost flat and are comparable with those of ordinary chondrites. Mean CI-normalized Na 

and Mn abundances are 1.32 ± 0.07 and 1.21 ± 0.04, respectively, which are comparable 

with those of ordinary chondrites but much higher than those of carbonaceous and enstatite 

chondrites. However, CI, Cr-normalized siderophile abundance pattern in R chondrites are 

intermediate between H and L chondrites. A mean iron content in R chondrites is 24.6 ± 0.7 

(%, 1σ, n=15, this study) whereas the mean iron contents in H, L and LL are 27.1 ± 0.7 (%, 

1σ, n=22), 21.6 ± 0.5 (%, 1σ, n=20) and 18.4 ± 0.4 (%, 1σ, n=16), respectively. Bulk Ir 

contents in R chondrites also show the same trend as iron. CI-normalized Ni/Co ratios 

(~0.9) in R chondrites are comparable with those of ordinary chondrites. Moderately 

volatile elements, Zn and Se in R chondrites are more abundant than those in ordinary 

chondrites. Both of them share the same nebular condensation temperature, but they are 

fractionated. Enstatite chondrites are the most reduced chondritic meteorites whose Se 

abundances are comparable with those in R chondrite. But Zn abundances in R chondrite 

are remarkably higher than those in EL chondrite and comparable with CM chondrite 

abundances. Higher stability of ZnO in oxidized condition can be a plausible explanation 

for this Zn enrichment. 

 This study characterizes the R chondrites depending on their bulk chemical 

compositions. And the bulk chemical composition is implemented to reveal the nebular and 

the parent body processes.   

 

 

 



 

1 
 

 

 

 

 

 

 

Chapter-1 
 

Introduction 

 

 

 

 

 

 

 

 
 

 

 

 

 



 

2 
 

1.1 Meteorites 

 Our solar system formed ~4.6 billion years ago from the collapse of a dense core 

inside an interstellar molecular cloud (Trieloff et al., 2003). The subsequent formation of 

solid bodies took place rapidly. The first stages of planetary accretion in the early solar 

system produced small bodies, or `planetesimals`, of rock and ice. Most of these first-born 

were swallowed up by the present-day planets as they grew, but some survived as asteroids, 

orbiting between Mars and Jupiter where no large planet formed to consume them. These 

asteroids suffer continuing collisions, and rocks from their interiors may find their way to 

the earth as meteorite (wood, 2003). The period of <10 milllion years over which 

planetesimals were assembled can be investigated through the study of meteorites (Allègre 

et al., 1995). 

 

1.2 Classification of meteorites 

1.2.1 Primary characteristics: Chemical composition 

 Meteorites are broadly classified into two classes – Chondrites and Nonchondrites. 

Chondrites are more pristine in character whereas nonchondrites are less pristine and 

differentiated. Using bulk chemical compositions, chondrites are divided into clans and 

subdivided into groups, identified by a letter or combination of letters. Chondrites are of 

three clans – Carbonaceous, Ordinary and Enstatite chondrites. Carbonaceous chondrites 

consist of well-established eight chondritic groups – CI (Ivuna –like), CM (Mighei-like), 

CO (Ornans-like), CV (Vigarano-like), CB (Bencubbin-like), CR (Renazzo-like), CH 

(ALH A 85005-like) and CK (Karoonda-like). Depending on the metal and iron 

abundances, ordinary chondrites are of three groups – H (high metal), L (low metal) and LL 

(low metal and low iron) whereas enstatite chondrites possess only two groups – EH (high 

metal) and EL (low metal). Enstatite chondrites are strongly reduced, with virtually all the 

iron in them occurring as metal. Beside these groups, there are two other chondritic groups 

– one is K (Kakangari-like) chondrite and another is R chondrite (Krot et al., 2005). 

 

1.2.2 Secondary characteristics: Petrologic types 

Chondrites are divided into various petrologic types based on the degree to which 

they have been thermally metamorphosed or altered. According to Van Schmus and Wood 

(1967) classification, CI chondrites were considered to be the most primitive meteorites, 

because their compositions provide the best match to solar elemental abundances. CI 
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chondrites are classified as petrologic type 1, some other carbonaceous chondrites are type 

2, relatively unmetamorphosed ordinary and enstatite chondrites are petrologic type 3, and 

petrologic types 4, 5 and 6 indicate progressively higher degree of thermal metamorphism. 

Type 7 have sometimes been recognized although it is unclear whether this type reflects the 

effects of shock as well as thermal metamorphism. Van Schmus and Wood (1967) provided 

mineralogical and textural criteria to recognize each petrologic type. McSween (1979) 

demonstrated that petrologic types 1 and 2 were the reflection of the increasing degree of 

aqueous alteration, while types 3-6 continued to be interpreted as increasing degree of 

thermal metamorphism (Fig. 1.1). Thus, the most primitive chondrites are actually 

petrologic type 3. Sears et al. (1980) subdivided type 3 chondrites into types 3.0 to 3.9, 

based on their thermoluminescence (TL) characteristics. Table 1.1 shows criteria for 

classifying chondrites according to petrologic type (Weisberg et al., 2006). 

 

 

    

 Aqueous alteration Pristine Thermal metamorphism 

Chondrite/Type 1 2 3 4 5 6 7 

CI        

CM        

CR        

CB        

CH        

CV        

CO        

CK        

H        

L        

LL        

EH        

EL        

R        

K        

           50   <200  250 600 700   800 900  

   Approximate temperature (°C) 

 

Fig. 1.1 Classification system for chondrites. A meteorite is classified by identifying its 

chemical group and petrologic type. Approximate temperatures for metamorphism or 

alteration are shown at the bottom (McSween and Huss, 2010).   
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Table 1.1 Criteria for classifying chondrites according to petrologic type (Weisberg et al., 2006). 

Criteria / 

Petrologic type 
1 2 3 4 5 6 7 

Homogeneity 

of olivine 

composition 

- > 5% mean deviation ≤5% Homogeneous 

Structurally 

state of low-Ca 

pyroxene 

- Predominantly monoclinic >20% 

monoclinic 

≤20% 

monoclinic 

Orthorhombic 

Feldspar - Minor primary grains Secondary  

<2 μm grains 

Secondary  

2-50 μm grains 

Secondary >50 μm grains 

Chondrule 

glass 

Altered or 

absent 

Mostly altered, 

some preserved 

Clear, isotropic Devitrified  Absent 

Metal: 

Maximum Ni 

(Wt%) 

- <20%;  taenite 

minor or 

absent 

>20%; Kamacite and taenite in exsolution relationship 

Sulfides: Mean 

Ni (Wt%) 

- > 0.5% <0.5% 

Matrix Fine grained 

opaque 

Mostly fine-

grained opaque 

Opaque to 

transparent 

Transparent, recrystallized 

Chondrule-

Matrix 

integration 

No chondrules Sharp chondrule boundaries Some 

chondrule can 

be discerned, 

fewer sharp 

edges 

Chondrules 

poorly 

delineated  

Primary textures destroyed 

Carbon (Wt%) 3-5 0.8-2.6 0.2-1 <0.2 

Water (Wt%) 18-22 2-16 0.3-3 <1.5 
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1.2.3 Other classification parameters: shock and weathering 

Another important secondary process affecting many chondrites is shock 

metamorphism. Stöffler et al. (1991) quantified the shock effects observed in olivine and 

plagioclase, and used these for a shock classification of ordinary chondrite. Scott et al. 

(1992) extended this shock classification to carbonaceous chondrites and Rubin et al. 

(1997) developed a scheme for enstatite by including shock effects in othopyroxene. The 

classification recognizes shock stages S1 to S6, representing increasing degree of shock 

pressure, finally culminating in completely melted rocks. Many shocked chondrites are 

breccias, formed from fragments of rocks that have been cemented together to form new 

rocks. A chondritic breccia in which all the fragments are of the same chemical group (but 

usually different petrologic types) is called monomict. A breccia containing fragments of 

different meteorite groups is called polymict.  

Terrestrial weathering has significantly altered the chemistry of some meteorites. 

Weathering leaches out certain mobile elements and introduces others, as well as oxidizes 

metals to form rust. Based on surface rustiness and the presence or absence of surficial 

deposits of evaporate minerals, Antarctic meteorites are categorized (Table 1.2a based on 

Cassidy, 1980). Depending on oxidation effects of metallic Fe-Ni and troilite visible in 

polished thin section, ordinary chondrites belong to different weathering scale (Table 1.2b; 

Wlotzka, 1993a). But for metal-poor CK and R chondrites, Rubin (2005) proposed 

weathering index which is shown in Table 1.2c. 

 

Table 1.2a Weathering categories for Antarctic meteorites. 

Weathering  

categories  

 

Description  Remarks 

A Minor rustiness Rust haloes on metal particles and rust stains along 

fractures are minor. 

 

B Moderate rustiness Large rust haloes occur on metal particles and rust 

stains on internal fractures are extensive. 

 

C Severe rustiness Metal particles have been mostly stained by rust 

throughout. 

 

e Evaporite minerals Evaporite minerals visible to naked eye. 
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Table 1.2b Weathering Scale for ordinary chondrites. 

Weathering  

Scale   

Description  

W0 No visible oxidation of metal or sulfide. A 

limonitic staining may be noticeable in 

transmitted light. 

W1 Minor oxide rims around metal and troilite; 

minor oxide veins. 

W2 Moderate oxidation of metals, about 20-60% 

being affected 

W3 Heavy oxidation of metal and troilite, 60-95% 

being replaced 

W4 Complete (>95%) oxidation of metal and 

troilite 

W5 Beginning alteration of mafic silicates, mainly 

along cracks. 

W6 Massive replacement of silicates by clay 

minerals and oxides 

 

 

Table 1.2c Weathering index for CK and R chondrites. 

Weathering  

index  

 

Description  Remarks 

Wi-0 Unweathered <5 vol% of silicates stained brown 

Wi-1 Slightly weathered  5-25 vol% of silicates stained brown 

Wi-2 Moderately weathered  25-50 vol% of silicates stained brown 

Wi-3 Significantly 

weathered  

50-75 vol% of silicates stained brown 

Wi-4 Highly weathered 75-95 vol% of silicates stained brown 

Wi-5 Severely weathered >95 vol% of silicates stained brown 

Wi-6 Extremely weathered Nearly complete brown staining of silicates. 

Significant replacement of mafic silicates by 

phyllosilicates. 

 

 

1.3 R chondrites 

 R chondrites have been recognized as a new, well-established chondritic group 

differing from carbonaceous, ordinary and enstatite chondrites since 1994 (Rubin and 

Kallemeyn, 1994; Schulze et al., 1994 and Bischoff et al., 1994). This group is named after 

the Rumuruti meteorite, the first and so far the only R chondrite fall (Schulze et al., 1994). 

The Rumuruti meteoritic shower fell in Rift valley, Kenya on 1934 (Wlotzka, 1993). 
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Previously, R chondrites were known as Carlisle Lakes-like chondrites and denoted as a 

`grouplet` by Rubin and Kallemeyn (1989) who analyzed three samples (Carlisle Lakes, 

ALH 58151 and Y 75302) of such kind. They used the term `grouplet` instead of `group`, 

as Wasson (1985) recommended that a meteoritic group should be required to have five or 

more members. Carlisle Lakes was found in Australia by 1977 and was classified as a new 

subclass of ordinary chondrites having high oxidation state (Binns and Pooley, 1979) while 

ALH 85151 and Y 75302 were discovered from Antarctica. Weisberg et al., 1991 found the 

highest Δ
17

O value (up to 2.91) for the aforesaid meteorites and distinguished them from 

the other chondritic groups. After this, Acfer 217 (Bland et al., 1992), Y 793575 (Yanai, 

1992), PCA 91002 (Marlow and Mason, 1992), Y 82002 (Nakamura et al., 1993) were also 

identified as Carlisle Lakes-type chondrites. Furthermore, clasts with strong affinities to 

Carlisle Lakes-type chondrites were discovered along with ordinary chondrite clasts in the 

Weatherford chondrite breccia (Prinz et al., 1993). The large number of these chemically 

and mineralogically related meteorites justifies the definition of a new group of chondrites 

(Rubin and Kallemeyn, 1994; and 1994 and Bischoff et al., 1994) which was R chondrite. 

 

1.4 R chondrite constituents 

1.4.1 Chondrules 

Condrule abundance in R chondrites (>40%) is much lower than those in ordinary 

chondrites and enstatite chondrites (60-80%) while in CI chondrites chondrule abundance is  

less than 5% (Scott and Krot, 2005). All of the major chondrule types (Gooding and Keil, 

1981) have been identified in R chondrites: porphyritic olivine (PO, type-I and II), 

porphyritic pyroxene (PP), porphyritic olivine-pyroxene (POP), barred olivine (BO), radial 

pyroxene (RP), cryptocrystalline (C) and granular olivine-pyroxene (GOP) (Kallemeyn et 

al., 1996). The average chondrule diameter in R chondrite is 400 μm which is intermediate 

between H (300 μm) and L (500 μm) chondrites (Scott and Krot, 2005). Bischoff et al., 

1994 found a mean chondrule diameter of 410 μm for Acfer 217. Similar mean chondrule 

diameter was found for Carlisle Lakes (460 μm), ALH 85151 (410 μm), Y 75303 (420 μm), 

Rumuruti (365 μm) and PCA 91002 (310 μm) (Rubin and Kallemeyn, 1989, 1994; Schulze 

et al., 1994 and Kallemeyn et al., 1996). Isa et al., 2014 pointed out that a chondrule size of 

400-500 μm is typical for R chondrites. 
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1.4.1.1 Al-rich chondrules 

Rout and Bischoff (2008) and Rout et al., (2010) have studied 20 R chondrites of 

different petrologic types and reported 19 Al-rich chondrules of variable sizes (upto 550 

μm) and mineralogical compositions. The dominant mineral phases in these Al-rich 

chondrules are plagioclase, fassaite, spinel, diopside and olivine while the accessory 

minerals are ilmenite and sulfides. Al-rich chondrules are also well established group of 

chondrules in ordinary chondrites, enstatitie chondrites and carbonaceous chondrites (e.g., 

Bischoff A. and Keil K, 1983, 1984; Bischoff et al., 1985; MacPherson and Huss, 2005). 

 

1.4.2 Matrix 

Based on a study of Carlisle Lakes, ALH 85151, Y 75302, Y 793575, Y 82002, 

Acfer 217, PCA 91002 and PCA 91241 Rubin and Kallemeyn (1993) determined R 

chondrite matrix abundances of 42 ± 11 vol% besides chondrules, larger mineral and lithic 

fragments. Matrix abundance in R chondrites is much higher than the ordinary (10-15%) 

and enstatite (˂0.1-10) chondrites while the highest matrix abundance is observed in CI 

(95%) chondrites (Scott and Krot, 2005). Bischoff (2000) reported a chondrule-matrix ratio 

of ~1:1 in type 3 clast from R chondrite breccias. 

 

1.4.3 Ca, Al-rich inclusions 

In 20 R chondrites of different petrologic types, Rout and Bischoff (2008) found 

101 Ca, Al-rich inclusions (CAIs). The sizes of these inclusions in R chondrites are very 

small. The largest CAI is 600 μm in size whereas most are ˂200 μm. According to the size 

of CAIs in different chondrite groups, the following sequence can be given: CV > CM ≈ 

CO > CR > RC ≥ CH > OC > EC. The abundance of CAIs in R chondrites is very low 

(<0.1%). According to the abundance of CAIs, chondrites can be arranged in the following 

way: CC > RC > OC > EC. The dominant phases in CAIs of type 3 lithologies in R 

chondrites are spinel (MgAl2O4), fassaite (Ca(Mg,Fe,Al)(Si,Al)2O6), nepheline 

(Na3KAl4Si4O16), sodalite (Na8(Al6Si6O24)Cl2) and diopside (MgCaSi2O6) and the 

accessory phases are hibonite ((Ca,Ce)(Al,Ti,Mg)12O19), anorthite (CaAl2Si2O3), olivine 

((Mg,Fe)2SiO4), ilmenite (FeTiO3) and perovskite (CaTiO3). Perovskite is only found in 

CAIs in lithologies of lower petrologic type while in higher metamorphic grade, only 

ilmenite is observed. CaO in perovskite is replaced by FeO to form ilmenite during 
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secondary alteration. In several cases, grains have cores of perovskite and rims of ilmenite. 

Similar observations were made for perovskite-ilmenite assemblage in CAIs from ordinary 

chondrites (Bischoff and Keil, 1983, 1984). 

 

1.5 Mineralogy of R chondrite 

1.5.1 Olivine 

R chondrites are olivine-rich rocks with an olivine abundance of typically 65-78% 

(e.g. Schulze et al., 1994; Kallemeyne et al., 1996) while in ordinary chondrites olivine 

abundance ranges from 40-60% (Weisberg et al., 1991). A typical olivine composition in R 

chondrites is Fa37-41 (e.g., Rubin and Kallemeyn, 1989, 1994; Weisberg et al., 1991; 

Bischoff et al., 1994; Kallemeyn et al., 1996; Isa et al., 2014) which is much higher than 

that of ordinary chondrites (Fa18-30) (Rubin, 1990; Weisberg et al., 1991). Kallemeyn et al. 

(1996) reported the olivine/low-Ca pyroxene ratio ranges from 6.7 in Carlisle Lakes to 

~140 in Rumuruti (and to ≥ 1500 in Y 793575). Ordinary chondrites contain much lower 

normative olivine/low-Ca pyroxene ratio: e.g., ~1.5 and ~2.1 in H and L chondrites, 

respectively (Dodd, 1981 cited by Kallemeyn et al., 1996). 

 

1.5.2 Pyroxene 

In equilibrated R chondrites, Ca-pyroxene by far the dominating mineral whereas in 

unequilibrated chondrites low-Ca and Ca-pyroxene occur roughly in similar proportions 

(Bischoff et al., 2011). The average modal abundances of low-Ca pyroxene and Ca-

pyroxene in R chondrites are 4.3% and 5.8%, respectively (Kallemeyn et al., 1996). Ca-

pyroxene in R chondrites is moderately higher than that in ordinary chondrite (4-5%) but 

low Ca-pyroxene is much lower than that in ordinary chondrites (H: ~29%, L: ~25%, LL: 

~18%; Van Schmus, 1969). 

 

1.5.3 Plagioclase 

 Modal abundances of plagioclase (5.5-13.0%, mean: 9.6%) in R chondrites are 

similar to those in ordinary chondrite (~10%) (Kallemeyn et al., 1996). In R chondrites, 

plagioclase are mostly albites or oligoclases (e.g., Rubin and Kallemey, 1989; Bischoff et 

al., 1994). 
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1.5.4 Sulfides 

 Isa et al., (2014) demonstrated that most of the sulfide grains in equilibrated R 

chondrites are pentlandite ((Fe,Ni)9S8) and Pyrrhotite (Fe1-xS). Monosulfide solid solution 

(Fe1-xS – Ni1-xS) is also present in equilibrated R chondrites as well as in R chondrite clasts 

in Bencubbin and Murchison. Troilite (FeS) abundance in ordinary chondrites is much 

higher than that in R chondrites (Weisberg et al., 1991). 

 

1.5.5 Oxides 

 The most abundant oxides are Cr-spinels with high TiO2 and Fe3O4 (Bland et al., 

1992; Schulze et al., 1994; Bischoff et al., 1994). Remarkably high TiO4-concentrations 

were published for spinels in Rumuruti (~6 wt%; Schulze et al., 1994), Carlisle Lakes and 

ALH 85151 (6.4 and 5.6 wt%, respectively; Rubin and Kallemeyn, 1989). Magnetite 

(Rubin and Kallemeyn, 1994), Ilmenite (Schulze et al., 1994, Bischoff et al., 1994) and 

Perovskite (Rout and Bischoff, 2008) were also reported as oxide phase in R chondrites. 

 

1.5.6 Phosphates 

 Phosphates have been reported from several chondrites (e.g., Weisberg et al., 1991; 

Bischoff et al., 1994; Schulze et al., 1994; Rubin and Kallemeyn, 1994; McCanta et al., 

2008; Endo et al., 2010). They probably occur as a minor phase (<1 vol%) in R chondrites. 

A large Cl-apatite-rich aggregate of ~500 μm × 180 μm was found in Acfer 217 (Bischoff 

et al., 1994). Beside chlorapatite in Rumuruti and Acfer 217, mirrillite was reported from 

Rumuruti (Schulze et al., 1994) and Rubin and Kallemeny (1994) determined an abundance 

of 0.3 vol% of chlorapatite and 0.2 vol% of mirrillite in PCA 91002. LAP 04840 contains 

little apatite (~0.6 vol%) as scattered euhedral and anhedral crystals with a chemically high 

proportion of OH relative to Cl and F (McCanta et al., 2008). Modal abundance of 

phosphate in R chondrites is moderately lower than those in ordinary chondrites (~0.7%, 

Van Schmus, 1969). 

 

1.5.7 Metal phase 

 Kallemeyn et al., (1996) reported that metallic Fe-Ni is extremely rare to absent in 

most of R chondrites. They analyzed Carlisle Lakes, ALH 85151, PCA91002, Y 75302, Y 

793575, Y 82002, Acfer 217 and Rumuruti and found metal phase only in Rumuruti 
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(0.005%) and in ALH 85151 (0.9%) where metal phase is Ni rich (awaruite, Ni2-3Fe). In 

ordinary chondrites metal phase is much higher than those in R chondrites (Weisberg et al., 

1991). Kamacite and Taenite are the dominating metal phases in ordinary chondrites 

whereas they are completely absent in R chondrites (Van Schmus, 1969; Weisberg et al., 

1991; Kallemeyn et al., 1996; Isa et al., 2014). 

 

1.6 Textural characteristics of R chondrites 

 Most of the R chondrites are breccias and many are regolith breccias with solar 

wind implanted gases (Weber and Schultz, 1995). For instance, Acfer 217, Rumuruti, Dar 

al Gani 013 contain unequilibrated type 3 fragments and clasts metamorphosed to various 

degrees (Bischoff et al., 1994; Schulze et al., 1994; Jäckel et al., 1996; Kallemeyn et al., 

1996). Impact melt (in Dar al Gani 013; Jäckel et al., 1996) and dark clast (in Rumuruti; 

Schulze et al., 1994) were also reported for R chondrites. 

 

1.7 Shock effects 

 Most of the R chondrites are very weakly (S2) or weakly shocked (S3) (Bischoff et 

al., 2011), using the shock classification scale for ordinary chondrites (Stöffler et al., 1991). 

Shock stage of NWA 053, NWA 753, NWA 755, NWA 4419, Dar al Gani 417, Ouzina, 

Sahara 99248 were reported as S2 (Bischoff et al., 2001; Weber and Schultz, 2001; 

Caporali et al., 2009) whereas Carlisle Lakes and Hammadah al Hamra 119 appear 

unbrecciated and have been classified as S3 chondrites (Dixon et al., 2003). The brecciated 

Rumuruti chondrite is only very weakly shocked (S2), but a vain in one of the clasts 

indicates that different fragments have experienced different degrees of shock 

metamorphism at different times in the evolution of the breccia (Schulze et al., 1994; Dixon 

et al., 2003). Acfer 217 is very weakly shocked (S2), although some fragments have 

experienced higher degrees of shock (Bland et al., 1992; Bischoff et al., 1994). Similar 

observations were made for ALH 85151 and PCA 91002 (Rubin and Kallemeyn, 1989, 

1994). Nevertheless, the complex breccia Dar al Gani 013 was classified as S1 chondrite 

(Jäckel et al., 1996). Fragments in ALH 85151 and Rumuruti exhibit significant silicate 

darkening due to the dispersion of fine-grained sulfide and chromite (Kallemeyn et al., 

1996). However, shock veins appear to be quite rare in R chondrites (Bischoff et al., 2011). 

So far, only a few have been reported in different lithologies from R chondrites, e.g., 

Rumuruti, Y 82002 and PCA 91002 (Schulze et al., 1994; Rubin and Kallemeny, 1994). 
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1.8 R chondrite chronology 

 Dixon et al., (2003) determined the 
39

Ar-
40

Ar ages for the whole-rock of Carlisle 

Lakes, Rumuruti, Acfer 2017 and PCA 91002 which were breccias except for Carlisle 

Lakes. Noticing a complicated age spectra due to the diffusive loss of radiogenic 
40

Ar to 

various extent, they reported the peak 
39

Ar-
40

Ar ages: ≥4.35 Ga (Carlisle Lakes), 

~4.47±0.02 Ga (Rumuruti), 4.30±0.07 Ga (Acfer 217) and ≥4.37 Ga (PCA 91002). R 

chondrites have relatively old 
39

Ar-
40

Ar ages that overlap those of the oldest L and LL 

chondrites (Dixon et al., 2003 and references therein). Dixon et al. (2003) interpreted that 

during parent body metamorphism, the clasts were heated to different temperatures at 

different depths in the body. At ~4.47 Ga ago, an impact caused mixing of material from 

different depth and resetting the 
39

Ar-
40

Ar ages. Rapid subsequent cooling under a rather 

thin regolith layer could have prevented further metamorphism of the clasts. Later impacts 

(~4.37 Ga ago) probably reset at least partially some of the samples. Buikin et al. (2006) 

and Trieloff et al. (2007) studied different lithologies from Rumuruti breccia and found that 

the coarse grained type 5/6 lithology has the best defined age plateau of 4.53 ± 0.01 Ga. 

 

1.9 Oxygen isotopic composition 

 Kallemeyn et al. (1996) reported the whole-rock Δ
17

O values (~2.9) for Rumuruti, 

ALH 85151 and PCA 91002, which were the highest of any known meteorites. Similar 

finding was also observed by Weisberg et al. (1991). Bischoff et al. (2011) reviewed the 

previous literature (e.g., Schulze et al., 1994; Bischoff et al., 1994; McCanta et al., 2008) 

data and calculated a mean Δ
17

O value (2.71±0.31) for R chondrites. Rubin (2011) 

demonstrated that the Δ
17

O values increase in the inner solar system with increasing of 

heliocentric distance from enstatite chondrites (0.0‰) to H, L and LL ordinary chondrites 

(0.7‰, 1.1‰ and 1.3‰, respectively) to R chondrites (2.9‰). The values peak around the 

R-chondrite location and then become increasingly negative among carbonaceous 

chondrites with increasing of distance from the Sun: CR (-1.0‰), CV-CK (-4.2‰ to -

4.6‰), CO-CM (-4.7‰ to -5.2‰) and CI (-6.5‰). Furthermore, Greenwood et al. (2000) 

measured oxygen isotopic compositions of magnetite and olivine in thin sections of PCA 

91241 and PCA 91002, and discussed about a generic linkage between R chondrites and 

ordinary chondrites. In their study, Δ
17

O values for magnetite and olivine are ranging from 

+2.5‰ to +4.3‰ and -1.2‰ to +2.9‰, respectively. Fig. 1.2 (McSween and Huss, 2010) 
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demonstrated the oxygen isotopic composition of bulk R chondrites in comparison to the 

other chondritic groups. 

 

 

 

 

Fig. 1.2 Oxygen isotopic compositions for bulk chondrites, after Clayton (2004). By 

convention, 
17

O/
16

O and 
18

O/
16

O ratios are plotted as deviations from the composition of 

standard mean ocean water (SMOW) in unit of parts per thousand (permil). The δ values 

are calculated as follows: δ
17

O = [((
17

O/
16

O)sample/(
17

O/
16

O)SMOW) - 1] × 1000, and similarly 

for δ
18

O (McSween and Huss, 2010; with the permission of Cambridge University Press). 
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1.10 Bulk chemical composition 

 The bulk chemical compositions of R chondrites are mostly done by using 

instrumental neutron activation analysis (e.g., Rubin and Kallemeyn, 1989, 1994; Bischoff 

et al., 1994, Schulze et al., 1994; Kallemeyn et al., 1996; Palme et al., 1996; Isa et al., 

2014). The general bulk chemical characteristics of R chondrites are as follows: 

(a) In bulk chemical composition, R chondrites have some affinity to ordinary 

chondrites (Palme et al., 1996; Kallemeyn et al., 1996, Greenwood et al., 2000; Isa 

et al., 2014). 

(b) The average CI, Mg-normalized lithophile element abundances are ~0.95×CI, which 

is lower than those for the carbonaceous chondrites (≥1.0×CI; Kallemyn and 

Wasson, 1981) and slightly higher than those for ordinary chondrites (~0.9×CI) 

(Kallemeyn et al., 1996). 

(c) Total Fe content in R chondrites (~24wt%) (Rubin and Kallemeyn, 1989, 1994; 

Bischoff et al., 1994, Schulze et al., 1994; Kallemeyn et al., 1996; Palme et al., 

1996; Ozaki et al., 1998; Isa et al., 2014) is intermediate between those of H 

(27.1wt%) and L (21.6wt%) chondrites  (Kallemeyn et al., 1989). 

(d) The absence of significant depletions in Mn and Na in R chondrites and ordinary 

chondrites is an important feature to distinguish these groups from carbonaceous 

chondrites (Palme et al., 1996). 

(e) Mean R chondrite abundances of refractory siderophiles (Os, Ir), common 

siderophiles (Ni, Co, Fe) and Au are intermediate between those in L chondrites and 

H chondrites (Isa et al., 2014). 

(f) The abundances of Zn and Se are much higher than those of ordinary chondrites 

(Kallemeyn et al., 1996, Palme et al., 1996, Isa et al., 2014). 

(g) Anomalous abundances of Au, Ni and Co in some R chondrites are probably due to 

terrestrial weathering (Kallemeyn et al., 1996; Bischoff et al., 1996; Palme et al., 

1996). 

 

1.11 Motivation of this work 

 Other than instrumental neutron activation analysis (INAA), some other analytical 

techniques were also applied for determining the bulk chemical composition of R 

chondrites, e.g., RNAA (Xiao and Lipschutz, 1992), XRF (Dreibus et al., 1995; Palme et al., 

1996), PGA (Ozaki et al., 1998), ICP-MS (Acken et al., 2011), MS-ID (Nakamura et al., 
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1999), etc. Bulk chemical compositions of most of the R chondrites have been analyzed by 

neutron activation analysis techniques. However, the bulk chemical data-base for R 

chondrites is still not so rich like carbonaceous, ordinary and enstatite chondrites. But to 

understand the nebular origin and the parent body processes, a greater set of bulk chemical 

composition data is an essential tool. 

 Nakamura et al., (1999) used isotope dilution technique (MS-ID) for determining 

rare earth elements in five Antarctic R chondrites. Isotope dilution technique provides a 

very precise data for the rare earth elements, but it is unable to determine the mono-isotopic 

Pr, Tb, Ho and Tm. Boynton, 1978 demonstrated that detailed REE abundance pattern as 

well as Th and U should be determined for explaining the nebular and parent body 

processes. Palme et al. (1996) applied XRF for bulk chemical analysis of only three R 

chondrites (Rumuruti, Acfer 217 and Dar al Gani 013), especially phosphorus. Phosphorus 

abundance is important for explaining the REE, Th and U abundance (Goreva and Burnett, 

2001). Boynton (1975) and Davis and Grossman (1979) demonstrated the REE 

fractionation in solar nebula in terms of fractional condensation. So, the detail abundances 

of REEs, Th and U along with the P abundance are important to ascertain the nebular 

processes of chondrites. But, for R chondrites, detail abundances of REEs, Th and U are not 

available. 

 Using RNAA, Xiao and Lipschutz (1992) analyzed one R chondrite (ALH 58151) 

for volatile elements. Volatile elemental abundances are important tool for explaining the 

nebular and/or parent body processes (Takhashi et al., 1978). Volatile elements are strongly 

depleted in chondritic meteorites compared with those of solar composition (CI meteorite). 

For explaining the volatile composition in chondrites, two-component model has been 

proposed by Anders and coworkers (e.g., Anders, 1964; Larimer and Anders, 1967).  

According to this model, the volatile elemental abundance pattern in chondrites was 

established during accretion from solar nebula. In a regime of falling temperatures, volatile 

elements would condense in succession on the fine grind dust (fraction A), but not on the 

coarse-grained chondrules-plus-metal (fraction B). The composition of fraction A would 

thus vary with temperature, while that of fraction B remains essentially fixed. Meteorites 

last to accrete would therefore be richest in volatiles. This model can approximately explain 

the systematic variation of volatile elements in type II (CM chondrites, 0.55×CI) and type 

III (CV and CO chondrites, 0.32×CI) carbonaceous chondrites relative to the type I (CI 

chondrites) carbonaceous chondrites (Larimer and Anders, 1967). Tandon and Wasson 
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(1967) reported a systematic variation of indium in a petrologic suite of L-group chondrites 

and, to explain this variation, they proposed three-component model (Tandon and Wasson, 

1968).  According to this model, elemental abundances were established during accretion, 

as in the two-component model. However, strongly depleted elements were brought in 

mainly by a third component (fraction C), strongly enriched in all volatile elements. Along 

with the two and three-component models, another condensation model was proposed 

known as multi-component model (Blander and Abdel-Gawad, 1969). In this model, 

condensation and accretion proceed simultaneously (as in two-component model), with the 

condensation efficiency on components A and B being governed by surface area, and the 

volatile content of the fine-grained dust increases with falling temperatures. However, some 

of the dust (along with chondrules) continually agglomerates to `chunks`, and thereafter 

ceases to take up volatiles on further cooling. Thus a large number of sub-components (A1, 

A2, A3 … An) are produced, each having a composition reflecting its agglomeration 

temperature. The volatile content of a given meteorite thus reflects the proportions of 

components A1 to An, rather than the accretion temperature of the meteorite itself. In all 

condensation models, condensation and accretion proceed simultaneously. 

 Metamorphism model was also proposed for explaining the volatile depletions 

(Wood, 1967; Dodd, 1969). In this model, all ordinary chondrites initially had the 

composition and mineralogy of petrologic type 3. The depletion pattern was established 

during metamorphism, with the most intensely metamorphosed meteorites losing the 

greatest proportion of volatiles. Later on, by a series of paper Lipschutz and co-workers (e. 

g., Ikramuddin and Lipschutz, 1975; Ikramuddin et al., 1976, 1977) presented their heating 

experiment and supported the metamorphism model along with the condensation model. 

That is, volatile elements are important for discussing the nebular and/or parent body 

process(es). Previously, Anders, Wasson, Lipschutz and their coworkers reported volatile 

elemental abundances in different chondritic meteorites (e.g., Keays et al., 1971; Takahashi 

et al., 1978; Tandon and Wasson, 1967, 1968; Kaczaral et al., 1989; Wang and Lipschutz, 

2007) using radiochemical neutron activation analysis. But for R chondrites, no volatile 

elemental data are available (except for ALH 85151 by Xiao and Lipschutz, 1992) for 

discussing their nebular and/or parent body process (es). So this study will focused on the 

most thermally labile trace elements - particularly Zn, Pb, Bi, In, Tl and Cd, since these are 

the most sensitive to genetic processes accompanied by significant heating (e.g., 

metamorphic heating and/or shock heating) (Lipschutz, 1997 and Wasson, 2005).  
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1.12 Objective of this study 

This work will characterize R chondrites chemically from a comprehensive study of bulk 

chemical composition by INAA, ICP-MS, ICP-AES and MS-ID experiments, in a 

significant number of R chondrites of all petrologic types. The major goals of this work are 

as follows: 

(a) Using instrumental neutron activation analysis, 24 elements (Na, Mg, Al, Ca, Sc, V, 

Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Sb, La, Sm, Eu, Yb, Lu, Os Ir and Au) will be 

analyzed for chemical characterization of R chondrites. These elemental abundances 

will be used for taxonomic study and for explaining the nebular oxidation process. 

(b) ICP-MS and ICP-AES experiments will provide the detailed REEs, Th and U, and P 

abundances, respectively. This study will explain the REEs, Th and U fractionations 

in R chondrites. 

(c) A precise volatile elemental (Zn, Cd, In, Tl, Pb and Bi) abundances will be 

presented from MS-ID experiment to explain the nebular and/or parent body 

process (es). 
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2.1 Sample information 

 R chondrite is one of the rare classes of chondritic group that comprises only about 

0.1% of the chondritic fall on Earth (Grady, 2000). But the recent discoveries of meteorites 

from Antarctica mainly by National institute of polar science (NIPR), Tokyo and US 

Antarctic search for meteorites program (ANSMET) provide the all petrologic specimen of 

R chondrites and allow us a systematic study of this group. According to the meteoritical 

society database, 152 chondrites are classified as R chondrite (upto July, 2014). To study 

the nebular and/or parent body processes of R chondrites, it is essential to consider all the 

petrologic grade samples. 

 In this study 15 antarctic R chondrites (Table 2.1) have been analyzed. Seven of 

them were obtained from National institute of polar research, Tokyo (Y-793575.44, A-

881988.68, Y-983270.56, Y-983720.81, Y-983097.81, Y-980702.61, Y-980703.71) and 

others were obtained from NASA, Johnson space center (PRE 95411.21, ALH 85151.41, 

MIL 07440.8, LAP 03639.33, LAP 04840.12, MIL 11207.8, LAP 02238.13, PCA 

91002.64). Among these samples PRE 95411, LAP 03639 and LAP 04840 were analyzed 

by Isa et al. (2014), ALH 85151 by Rubin & Kallemeyn (1989) and PCA 91002 & Y 

793575 by Kallemeyn et al. (1996) using instrumental neutron activation analysis. All 

specimens were interior chips and were free from fusion crust.  For systematic study we 

have chosen the samples to cover all types of petrologic grade (R3 to R6). Rubin and Huber 

(2005) demonstrated the weathering index for the R chondrites and showed the loss of 

some elements, presumably by leaching. This study generally avoided requesting R 

chondrites exhibiting such weathering but did include one sample of C class. Weathering 

index for Y-980702 and Y 980703 were not assigned. The available weathering indexes 

(wi) from Rubin and Huber (2005) are also mentioned in Table 2.1. The total masses of the 

individual R chondrites were ranged from 0.6g to 0.8g, except that for ALH 85151 (0.434g). 

Each of the samples was separately ground by a clean agate mortar to make homogeneous 

powder. 

 In all experiments, Smithsonian Allende (USNM 3529, split/position: 22/6) powder 

was used as a control sample.  
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Table 2.1 Ancillary data for meteorites in this study 

Meteorite Abbreviation Position Class
a
 Weathering

a
 Fayalite 

(mol%) 

Ferrosilite 

(mol%) 

Sample 

ground 

(mg) 

Sources
c
 

Mount Prestrud 95411 PRE 95411 21 R3 A/B 1-41
d
, 40

e
 15-29

 d
 829 JSC 

Allan Hills 85151 ALH 85151 41 R3.6 B(wi2)
b
 0.1-41

f
 6-30

f
 434 JSC 

Yamato 793575 Y 793575 44 R3.8 (wi4)
 b

   633 NIPR 

Asuka 881988 A 881988 68 R4 (wi3)
 b

 35
e
  619 NIPR 

Yamato 983270 Y 983270 56 R4 A 38.4-40.1
g
  623 NIPR 

Miller Range 07440 MIL 07440 8 R4 Be 38
h
 10

h
 792 JSC 

LaPaz Icefield 03639 LAP 03639 33 R4 A/B 19-38
i
 13-29

i
 821 JSC 

Yamato 983720 Y 983720 81 R4 A 39.6, (12.8-46.9)
g
  616 NIPR 

Yamato 983097 Y 983097 81 R5 A 35.0, (34.2-37.0)
g
 29.3 632 NIPR 

Yamato 980702 Y 980702 61 R6 ? 38
e
  666 NIPR 

Yamato 980703 Y 980703 71 R6 ? 39.1, (38.4-40.2)
j
  645 NIPR 

LaPaz Icefield 04840 LAP 04840 12 R6 A/B 38
 i
 30

i
 870 JSC 

Miller Range 11207 MIL 11207 8 R6 Ce 39-41
k
 20

k
 854 JSC 

LaPaz Icefield 02238 LAP 02238 13 R B(wi4)
 b

 39
e
, (27-46)

l
 18-36

 l
 760 JSC 

Pecora Escarpment 91002 PCA 91002 64 R3.8-6 A/B(wi1)
b
 1-44

f
 1-28

f
 829 JSC 

a
Antarctic Meteoritic Newsletters, 

b
Rubin and Huber (2005), 

c
JSC: Johnson Space Center, NASA, USA, 

c
NIPR: National Institute of Polar 

Research, Tokyo, Japan, 
d
Grossman (1998), 

e
Isa et al. (2014), 

f
Grossman (1994), 

g
Yamaguchi et al. (2012), 

h
Righter (2011), 

i
Connolly Jr. et 

al. (2007), 
j
Kojima et al. (2009), 

k
Righter (2012), 

l
Russell et al. (2004). 

 

 

http://www.lpi.usra.edu/meteor/metbull.php?sea=PRE+95411&sfor=names&ants=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=Rumuruti+chondrites&mblist=All&rect=&phot=&snew=0&pnt=Normal%20table&code=16797
http://www.lpi.usra.edu/meteor/metbull.php?sea=ALH+85151&sfor=names&ants=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=Rumuruti+chondrites&mblist=All&rect=&phot=&snew=0&pnt=Normal%20table&code=1016
http://www.lpi.usra.edu/meteor/metbull.php?sea=Y-793575&sfor=names&ants=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=Rumuruti+chondrites&mblist=All&rect=&phot=&snew=0&pnt=Normal%20table&code=28924
http://www.lpi.usra.edu/meteor/metbull.php?sea=A-881988&sfor=names&ants=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=Rumuruti+chondrites&mblist=All&rect=&phot=&snew=0&pnt=Normal%20table&code=4697
http://www.lpi.usra.edu/meteor/metbull.php?sea=Y+983270&sfor=names&ants=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=Rumuruti+chondrites&mblist=All&rect=&phot=&snew=0&pnt=Normal%20table&code=39892
http://www.lpi.usra.edu/meteor/metbull.php?sea=MIL+07440&sfor=names&ants=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=Rumuruti+chondrites&mblist=All&rect=&phot=&snew=0&pnt=Normal%20table&code=53216
http://www.lpi.usra.edu/meteor/metbull.php?sea=LAP+03639&sfor=names&ants=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=Rumuruti+chondrites&mblist=All&rect=&phot=&snew=0&pnt=Normal%20table&code=36049
http://www.lpi.usra.edu/meteor/metbull.php?sea=Y-983720&sfor=names&ants=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=Rumuruti+chondrites&mblist=All&rect=&phot=&snew=0&pnt=Normal%20table&code=40342
http://www.lpi.usra.edu/meteor/metbull.php?sea=Y-983097&sfor=names&ants=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=Rumuruti+chondrites&mblist=All&rect=&phot=&snew=0&pnt=Normal%20table&code=39719
http://www.lpi.usra.edu/meteor/metbull.php?sea=Y-980702&sfor=names&ants=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=Rumuruti+chondrites&mblist=All&rect=&phot=&snew=0&pnt=Normal%20table&code=37325
http://www.lpi.usra.edu/meteor/metbull.php?sea=Y+980703&sfor=names&ants=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=Rumuruti+chondrites&mblist=All&rect=&phot=&snew=0&pnt=Normal%20table&code=37326
http://www.lpi.usra.edu/meteor/metbull.php?sea=LAP+04840&sfor=names&ants=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=Rumuruti+chondrites&mblist=All&rect=&phot=&snew=0&pnt=Normal%20table&code=35005
http://www.lpi.usra.edu/meteor/metbull.php?sea=MIL+11207&sfor=names&ants=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=Rumuruti+chondrites&mblist=All&rect=&phot=&snew=0&pnt=Normal%20table&code=56070
http://www.lpi.usra.edu/meteor/metbull.php?sea=LAP+02238&sfor=names&ants=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=Rumuruti+chondrites&mblist=All&rect=&phot=&snew=0&pnt=Normal%20table&code=12505
http://www.lpi.usra.edu/meteor/metbull.php?sea=PCA+91002&sfor=names&ants=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=Rumuruti+chondrites&mblist=All&rect=&phot=&snew=0&pnt=Normal%20table&code=18293
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2.2 Experimental techniques 

 For a systematic study of bulk chemical composition, three different analytical 

techniques were used, 

a) Instrumental neutron activation analysis (INAA), 

b) Inductively coupled plasma atomic emission spectrometry (ICP-AES), and 

c) Inductively coupled plasma mass spectrometry (ICP-MS). 

In ICP-MS experiment, both internal calibration method and isotope dilution technique 

have been applied. 

 

2.3 Instrumental neutron activation analysis 

2.3.1 Sample preparation 

 About 40 mg of each powdered sample (Table 2.2) was taken into a 1cm × 1cm 

polyethylene bag and sealed. These bags were then doubly packed by another layer of 

polyethylene and sealed. At the same time, JB-1 (geological standard) and Allende were 

also prepared as standard and control samples, respectively. For correcting the 
28

Si(n,p)
28

Al, 
 

27
Al(n,p)

27
Mg and 

27
Al(n, α)

 24
Na effect in determining the Al, Mg and Na,  Al, MgO and 

Si chemical reagents were prepared for short irradiation. For long irradiation, Se, Sb, Os, Ir 

and Au chemical standards were prepared from reagents. 

 

  Table 2.2 Sample weight for INAA experiment. 

 R chondrites Sample weight (g) 

1. PRE 95411 0.04320 

2. ALH 85151 0.03976 

3. Y 793575 0.03978 

4. A 881988 0.03862 

5. Y 983270 0.04472 

6. MIL 07440 0.03951 

7. LAP 03639 0.04302 

8. Y 983720 0.04116 

9. Y 983097 0.04172 

10. Y 980702 0.04118 

11. Y 980703 0.04188 

12. LAP 04840 0.04057 

13. MIL 11207 0.04306 

14. LAP 02238 0.04151 

15. PCA 91002 0.04291 
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2.3.2 Sample irradiation and counting 

 To determine the short-lived elements, samples, standard, Allende and chemical 

reagents were irradiated separately at Kyoto University Research Reactor at 1MW for 10 

seconds.  After ~5 minutes cooling, the outer bag of the irradiated sample was changed with 

a new one and counting was taken in a HPGe detector using 300 seconds as live time. For 

long Irradiation, the samples were irradiated simultaneously at 1MW for 4hours. After six 

days of cooling and changing the outer bag, the first counting was taken for 3 hours as live 

time in HPGe detector at Radioisotope Research Center, Tokyo metropolitan university. 

Three weeks later, counting was again taken for 12 hours to determine the long-lived 

radionuclides. Twenty four elements were determined in R chondrites from different 

irradiations and counting stages (Table 2.3). 

 

Table 2.3 Elements analyzed at different irradiation and counting stage. 

 Decay  

time 

Counting  

time 

Elements determined 

Short irradiation 5 min 300 s Na, Mg, Al, Ca, V and Mn 

Long irradiation (first 

counting) 

6 days 3 hr. Na, Sc, Cr, Fe, Co, As, Br, Sb, 

Au, La, Sm, Yb and Lu 

Long irradiation (second 

counting) 

3 weeks 12 hr. Cr, Fe, Co, Ni, Ir, Os, Se, Eu 

and Zn 

 

2.3.3 Accuracy and precision 

 For all elements, JB1 (a geological reference sample issued by Geological Survey of 

Japan) was used as standard except that for Os, Ir, Au and Se. For these elements, chemical 

reagents were used as standard. Data reductions were done by using information noted in 

Table 2.4. In the possible cases, we used more than one gamma-energy (in keV) for 

elemental abundance calculations. Elemental abundances obtained by using different 

gamma-energy are in good agreement with each other. 

 To ensure the data quality, the Allende Smithsonian powder was used as a control 

sample. To do so, three replicates of Allende powder (~40 mg) were irradiated under 

identical conditions at Kyoto University Research Reactor (KURR). These samples were 

irradiated in two segments giving approximately six months of interval (June – December, 

2012). Results are shown in Table 2.5 with 1σ uncertainty (n=3). The maximum deviation 

from the mean is about 6% for Br and lower for the other elements analyzed. Relative 

standard deviations of the replicate measurements are lower than the % of uncertainty 
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generated from counting statistics. In Fig. 2.1 Allende data of this study is normalized to 

that of literature data (Kallemeyn & Wasson, 1981 and Kallemeyn et. al., 1989). For all 

elements, our data are consistent with the literature data, except for La, Sm and Ir. 

Lanthanum and Sm data are about 8% higher while Ir is ~10% lower compared with those 

of Kallemeyn & Wasson (1981) and Kallemeyn et. al. (1989). But, our La, Sm & Ir data are 

in good agreement with those of Wasson et. al. (2013). Furthermore, La & Sm were also 

determined by ICP-MS and the data of La & Sm obtained both from INAA and ICP-MS are 

consistent within the limit of uncertainty. 

 

 

 Table 2.4 Nuclear reactions, half-life and energy considered for 

 corresponding elemental determination. 

Elements Reaction Half-life Energy (keV) 

Na 
23

Na(n,ϒ)
24

Na 14.7 h 1368, 2754 

Mg 
26

Mg(n,ϒ)
27

Mg 9.46 m 1014.4 

Al 
27

Al(n,ϒ)
28

Al 2.24 m 1778.9 

Ca 
48

Ca(n,ϒ)
49

Ca 8.72 m 3084.4 

Sc 
45

Sc(n,ϒ)
46

Sc 83.8 d 889 

V 
51

V(n,ϒ)
52

V 3.75 m 1434.1 

Cr 
50

Cr(n,ϒ)
51

Cr 27.7 d 320.2 

Mn 
55

Mn(n,ϒ)
56

Mn 2.58 h 1810.7 

Fe 
58

Fe(n,ϒ)
59

Fe 44.5 d 1099, 1292 

Co 
59

Co(n,ϒ)
60

Co 5.27 y 1173, 1332 

Ni 
58

Ni(n,p)
58

Co 70.9 d 811 

Zn 
64

Zn(n,ϒ)
65

Zn 244 d 1115.5 

As 
75

As(n,ϒ)
76

As 26.3 h 559 

Se 
74

Se(n,ϒ)
75

Se 121d 264.5 

Br 
81

Br(n,ϒ)
82

Br 35.3 h 554, 777 

Sb 
121

Sb(n,ϒ)
122

Sb 2.75 d 564 

La 
139

La(n,ϒ)
140

La 1.68 d 1596 

Sm 
152

Sm(n,ϒ)
153

Sm 46.7 h 103.1 

Eu 
151

Eu(n,ϒ)
152

Eu 13.3 y 1408 

Yb 
174

Yb(n,ϒ)
175

Yb 4.19 d 396 

Lu 
176

Lu(n,ϒ)
177

Lu 6.71 d 208 

Os 
190

Os(n,ϒ)
191

Os 15.4 d 129.6 

Ir 
190

Ir(n,ϒ)
191

Ir 73.8 d 468, 604, 308, 296 

Au 
197

Au(n,ϒ)
198

Au 2.69 d 411.8 
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Table 2.5 Major and trace element abundances obtained by INAA for Allende (uncertainties are due to counting statistics, 1σ). 

  June, 2012  December, 2012  Average SD RSD  Literature data 

  1  2 3  (n=3) (1σ) (%)  a b c 

Na ppm 3270 ± 20  3390 ± 20 3340  ± 20  3330 60 1.8  3290 3290 3360 

Mg % 15.3 ± 1.6  14.7 ± 1.2 14.9 ± 1.2  15.0 0.3 2.1  14.8 14.9  

Al % 1.71 ± 0.02  1.74 ± 0.02 1.68 ± 0.02  1.71 0.03 1.8  1.76 1.77  

Ca % 1.66 ± 0.21  1.79 ± 0.16 1.81 ± 0.18  1.75 0.08 4.7  1.88 1.84 1.78 

Sc ppm 11.32 ± 0.02  11.09 ± 0.03 11.23 ± 0.03  11.21 0.12 1.1  11.23 11.27 10.9 

V ppm 92.8 ± 3.1  95.7 ± 4.2 96.1 ± 3.8  94.9 1.8 1.9  99.5 98.2  

Cr ppm 3600 ± 20  3570 ± 20 3630 ± 20  3600 30 0.9  3630 3640 3650 

Mn ppm 1470 ± 50  1490 ± 60 1430 ± 60  1460 30 2.1  1450 1450 1460 

Fe % 23.4 ± 0.1  23.8 ± 0.1 23.8 ± 0.1  23.7 0.2 1.0  23.7 23.7 23.7 

Co ppm 661 ± 3  669 ± 4 655 ± 4  662 7 1.1  662 661 666 

Ni % 1.42 ± 0.04  1.37 ± 0.03 1.41 ± 0.03  1.40 0.03 1.9  1.33 1.36 1.36 

Zn ppm 114 ± 10  109 ± 10 118 ± 11  114 5 4.0  119 116 117 

As ppm 1.51 ± 0.30  1.49 ± 0.20 1.56 ± 0.20  1.52 0.04 2.4  1.56 1.57 1.59 

Se ppm 8.19 ± 0.34  8.29 ± 0.28 8.05 ± 0.30  8.18 0.12 1.5  8.23 8.17 8.27 

Br ppb 1.50 ± 0.38  1.68 ± 0.42 1.53 ± 0.46  1.57 0.10 6.1  1.55 1.58 1.62 

Sb ppb 84 ± 16  87 ± 19 81 ± 17  84 3 3.6  83 82 85 

La ppb 537 ± 29  520 ± 21 532 ± 30  530 9 1.7  490 498 499 

Sm ppb 335 ± 8  319 ± 7 327 ± 7  327 8 2.5  299 304 308 

Eu ppb 115 ± 15  111 ± 14 117 ± 16  114 3 2.7  113 114 115 

Yb ppb 320 ± 60  330 ± 50 320 ± 40  320 10 3.1  320 330 320 

Lu ppb 44 ± 9  48 ± 8 46 ± 8  46 2 4.3  46 48 45 

Os ppb 840 ± 90  790 ± 90 820 ± 90  820 30 3.1  828 833 812 

Ir ppb 702 ± 5  707 ± 5 713 ± 5  707 6 0.8  785 789 757 

Au ppb 141 ± 5  146 ± 4 143 ± 4  143 3 1.8  145 144 146 
a
Kallemeyn and Wasson (1981) 

b
Kallemeyn et. al. (1989) 

c
Wasson et. al. (2013) 
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Fig. 2.1 Literature (Kallemeyn & Wasson, 1981 and Kallemeyn et. al., 1989) normalized elemental abundances of Allende. Gray rectangles 

represent the uncertainty (1σ, n=17, standard deviation of all the tabulated values for Allende in Kallemeyn & Wasson, 1981 and Kallemeyn 

et. al., 1989), blank squares represent this work with 1σ uncertainty (n=3) and gray circles represent the data from Wasson et. al., 2013. 
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2.4 Inductively coupled plasma mass spectrometry 

 In this study, Plasma-Quad 3 spectrometer (Fisons Instruments, UK) and iCAP Q 

ICP-MS (Thermo SCIENTIFIC, USA) were used. Both of them are quadrupole 

spectrometers. For the determination of REEs, Th and U, internal calibration method was 

used but among the REEs, only Sm was determined by both internal calibration method as 

well as isotope dilution technique for recovery calculation. The volatile elements (Pb, Zn, 

Cd, In, Tl) were determined by isotope dilution technique and Bi was determined by using 

Pb/Bi ratio. Zinc, Cd, In and Tl were determined by iCAP Q ICP-MS after chemical (Tl 

only) and column (Zn, Cd and In) separation. 

 

2.4.1 Internal calibration method for REEs, Th and U determination 

2.4.1.1 Sample preparation 

 Typically 20 mg (Table 2.6) of each powdered sample was dissolved in closed 

screw-top Teflon vessel (Thermo scientific) at about 150°C for 24 hours using 0.2 ml 

concentrated HF, 0.1 ml concentrated HNO3 and 0.1 ml concentrated HClO4. After 

evaporation to dryness of the acid mixture, approximately 0.1 ml concentrated HClO4 was 

added and placed back on the hot plate with closed cap for over night. After drying up, 

approximately 0.1 ml concentrated HCl was added and the Teflon vessel was allowed to 

heat again for dryness. Addition of 0.1 ml HCl and drying up cycle was repeated twice to 

ensure the digestion of oxides and dissolution of fluoride. Then necessary amounts of 1M 

HNO3 was added to the sample to prepare stock solutions having ~300 dilution factor (Fig. 

2.2). No residual grains were observed in stock solutions. 

 

2.4.1.2 149
Samarium spike 

 A samarium spike enriched with 
149

Sm (
149

Sm/
147

Sm = 316.7) was also added 

during the sample digestion (Table 2.6 and Fig. 2.2). The Sm spike solution was calibrated 

using Spex (USA) standard solution of Sm by reverse isotope dilution method. Using Sm 

isotope dilution data, the percent of recovery during sample preparation was corrected 

(Table 2.6). In this experiment, for all samples, percent of recovery was more than 96%. 

Samarium is a middle rare earth element. Chemical characteristic of rare earth elements are 

almost similar, though the chemical properties of REEs can change from light to heavy rare 

earth elements slightly. So in this experiment, the mid-rare earth element, Sm is used for 

recovery calculation. To do so, Sm was determined in samples both by isotope dilution 
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techniques as well as by internal calibration method. Isotope dilution technique is only 

depending on the isotopic ratio and is independent of recovery percentages, whereas 

internal calibration method is dependent on percent of recovery. So by comparing the data 

obtained from isotope dilution technique and internal calibration method, percent of 

recovery can be accurately corrected to obtain the accurate result for the other rare earth 

elements. 

 

Teflon Container 

                         Sample (~20mg) and 
149

Sm spike 

                         0.2 ml Conc. HF, 0.1 ml Conc. HNO3, 0.1 ml 70% HClO4 

Heating at 100
0
C (Closed Cap, 5 hr.) 

 

Heating at 150
0
C (Closed Cap, over night) 

  

Heat to Dryness at 150
0
C (Open Cap, 3hr.) 

0.2 ml 70% HClO4 

Heating at 150
0
C (Closed Cap, over night) 

 

Heat to Dryness at 150
0
C (Open Cap, 3hr.) 

0.2 ml Conc. HCl 

                                                                              × 2 

Heat to Dryness at 100
0
C (Open Cap, 3hr.)   

                           0.2 ml Conc. HNO3 and Milli Q 

Stock Solution (Dilution Factor: ×300, 1 M HNO3) 

 

Fig. 2.2 Acid Digestion procedure for REEs, Th and U determination. 

 

2.4.1.3 Standards 

 For REEs, Th and U analyses, a custom multi-element standard stock solution from 

Spex, USA was used. To correct the signal drift in this study, In, Tl and Bi were used as 

internal standards. The linear interpolation correction between In and Tl was applied for 

REEs while only Bi was used for Th and U determinations. 
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 Table 2.6 Sample and 
149

Sm Spike weight and the % of recovery in 

 this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.1.4 Determination of REEs, Th and U 

 The concentrations of REEs, Th and U were determined by ICP-MS using a 

Plasma-Quad 3 spectrometer (Fisons Instruments, UK) following the procedure of 

Shinotsuka and Ebihara (1997) with small modification. The instrument was always 

optimized to obtain maximum count rates for In. Counts were taken for 5 voltage points on 

the peak top to provide a single mass peak intensity reading. Background corrections were 

made for the 5% HNO3 carrier solution. 

 Four sets of interference correcting solutions, set-1 (only Ce), set-2 (Ba & Pr), set-3 

(Sm, Tb & Gd) and set-4 (only Nd), were prepared for the correction of 135
Ba

16
O

+
, 

140
Ce

16
O

+
, 

140
Ce

16
O

1
H

+
, 

 141
Pr

16
O

+
, 

141
Pr

16
O

1
H

+
, 

143
Nd

16
O

+
, 

147
Sm

16
O

+
, 

146
Nd

16
O

1
H

+
, 

149
Sm

16
O

+
, 

156
Gd

16
O

+
 

and 
159

Tb
16

O
+ 

species in measuring 
151

Eu, 
156

Gd, 
157

Gd, 
158

Gd, 
159

Tb, 
163

Dy, 
165

Ho, 
172

Yb 

and 
175

Lu, respectively (Table 2.7). For REEs, Th and U determinations, about 1000 

dilution factor was used. 

Allende (22/6) Sample [g] 
149

Sm_Spike [g] Recovery [%] 

A1 0.02997 0.04910 99.2 

A2 0.02982 0.02758 97.8 

A3 0.03044 0.02713 96.7 

A4 0.02043 0.01839 99.3 

A5 0.02003 0.01846 99.2 

    

R-Chondrites    

PRE 95411.21 0.02026 0.01004 99.5 

ALH 85151.41 0.02009 0.00988 98.4 

Y 793575.44 0.02004 0.01012 98.4 

Y 983270.56 0.02000 0.01019 99.7 

A 881988.68 0.02031 0.01020 98.1 

MIL 07440.8 0.02049 0.01009 99.1 

LAP 03639.33 0.02009 0.01007 100 

Y 983720.81 0.02062 0.00998 99.6 

Y 983097.81 0.02066 0.01008 98.7 

LAP 04840.12 0.01956 0.01006 99.9 

MIL 11207.8 0.02027 0.01002 99.2 

Y 980702.61 0.01995 0.00995 98.6 

Y 980703.71 0.02005 0.01011 98.2 

LAP 02238.13 0.01951 0.01006 99.6 

PCA 91002.64 0.02002 0.01016 99.5 
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Table 2.7 Interference correction 

 

 

 

2.4.1.5 Accuracy and precision 

 Precision and accuracy of this study were checked by repeated analyses of Allende 

homogenized powders and comparing our data with literature data. In ICP-MS experiments 

five replicates of Smithsonian Allende samples have been analyzed from September to 

November 2013 in three segments. Results of ICP-MS experiments for Allende are shown 

in Table 2.8. Relative standard deviations (in %, 1σ, n=5) for all the elements are less than 

2%, except those for U, Er & Tm. For U, relative standard deviation (RSD) is 4% while for 

Er & Tm RSDs are less than 3%. In Fig 2.3 we have compared our Allende data with the 

literature data (Pourmand et. al., 2012; Makishima & Nakamura, 2006; Shinotsuka et. al., 

1995; Jarosewich et. al., 1987; Nakamura, 1974; Wakita & Schmitt, 1970; Tatsumoto et. al., 

1973; Chai et. al., 2003; Dauphas & Pourmand, 2011) after normalizing those data to CI-

mean value (Anders & Grevesse, 1989). All the Allende replicates are consistent with the 

literature data. In ICP-MS experiment, we monitored 
139

La, 
140

Ce, 
141

Pr, 
143

Nd, 
146

Nd, 
147

Sm, 

149
Sm, 

151
Eu, 

153
Eu, 

156
Gd, 

157
Gd, 

158
Gd, 

159
Tb, 

163
Dy, 

165
Ho, 

167
Er, 

169
Tm, 

172
Yb, 

175
Lu, 

232
Th and 

238
U. Elemental abundances calculated by using different isotopes (e.g., 

143
Nd & 

146
Nd) were in good agreement with each other. Interference from 

135
Ba

16
O

+
, 

140
Ce

16
O

+
, 

140
Ce

16
O

1
H

+
, 

141
Pr

16
O

+
, 

141
Pr

16
O

1
H

+
, 

143
Nd

16
O

+
, 

147
Sm

16
O

+
, 

146
Nd

16
O

1
H

+
, 

149
Sm

16
O

+
, 

156
Gd

16
O

+
 and 

159
Tb

16
O

+ 
in measuring 

151
Eu, 

156
Gd, 

157
Gd, 

158
Gd, 

159
Tb, 

163
Dy, 

165
Ho, 

172
Yb 

and 
175

Lu, respectively, were corrected. Interference of 
140

Ce
16

O
+
 in measuring 

156
Gd is 

~11% and the combined interference of 
140

Ce
16

O
1
H

+
 &

 141
Pr

16
O

+
 in measuring 

157
Gd is ~3% 

while in all other cases, interference is less than 1%. 

Nuclide Interference from [%] 
151

Eu 
135

Ba
16

O
+
 0.32 

156
Gd 

140
Ce

16
O

+
 10.5 

157
Gd 

140
Ce

16
O

1
H

+
, 

 141
Pr

16
O

+
 2.74 

158
Gd 

141
Pr

16
O

1
H

+
 0.05 

159
Tb 

143
Nd

16
O

+
 0.88 

163
Dy 

147
Sm

16
O

+
, 

146
Nd

16
O

1
H

+
 0.09 

165
Ho 

149
Sm

16
O

+
 0.77 

172
Yb 

156
Gd

16
O

+
 0.38 
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Lu 

159
Tb

16
O

+
 0.40 
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Table 2.8 REE, Th and U abundances (in ppb) obtained by ICP-MS for the Allende powder and compared with literature values. 

 
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th U 

This work                 

 A1 528 1334 200 1033 331 117 403 71.3 474 105 312 53.1 317 46.0 63.2 14.4 

 A2 536 1323 204 1035 337 116 405 72.4 476 101 295 53.0 319 45.4 63.5 14.9 

 A3 523 1316 201 1023 331 114 398 70.5 465 97.2 291 51.5 310 44.5 61.2 15.7 

 A4 516 1352 205 1024 338 114 409 72.7 486 102 292 53.1 313 46.2 61.7 14.8 

 A5 522 1317 198 1024 337 117 402 72.1 486 102 295 53.4 321 45.7 62.8 15.9 

 Mean 525 1328 202 1028 335 116 403 71.8 477 102 297 52.8 316 45.6 62.5 15.2 

 RSD
a
 1.4 1.1 1.5 0.5 1.0 1.0 1.0 1.2 1.8 2.7 3.0 1.4 1.4 1.5 1.6 4.0 

                 

Literature data                 

 TIMS (ID)
b
 507 1325  1004 330 113 414  504  303  315 46.5 62.2 15.3 

 ICP-MS
c
 503 1260 197 997 318 108 394 69.0 466 95.0 288 49.6 311 45.6 61.0 15.4 

 ICP-MS
d
 534 1320 206 1060 338 111 411 73.5 491 106 284 51.8 317 45.1 55.1 15.4 

 ICP-MS
e
 547.7 1374 212.2 1087 345.6 118.3 446.8 80.7 544.3 108.8 316.5 55.1 328.3 46.0 58.64 15.54 

 ICP-MS
f
 516 1290 201 1020 329 114 417 76.2 508 107 310 55.9 325 45.9 59.4 15.2 

 Compiled
g
 520 1330 210 990 330 120 430 81 430 100 300  290 51   

a
Relative standard deviation (1σ; %). 

b
ID: isotope dilution. Nakamura (1974) for REEs. Tatsumoto et al. (1973) for Th and U. 

c
Shinotsuka et al. (1995) 

d
Makishima and Nakamura (2006) 

e
Pourmand et al. (2012) for REEs. Dauphas and Pourmand (2011) for Th and U by ID-ICP-MS. 

f
Barrat et al. (2012) 

g
Mean values of Jarosewich et al. (1987). Two-digit numbers are listed as significant figures for REEs except Ce, for which a three-digit 

number is given. 
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Fig. 2.3 CI- (Anders & Grevesse, 1989) normalized REEs, Th and U abundance patterns in 

Allende (of this study) are shown at the top while in the bottom the average REEs, Th and 

U abundances (thick red line) with 1σ uncertainty (shadow) are compared with the 

literature values. 
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2.4.2 Isotope dilution techniques (Zn, Cd, In, Tl and Pb determination) 

 Isotope dilution (ID) is an analytical method suitable to obtain reliable data for 

elemental abundances. But, for monoisotopic elements (e.g., Bi, Pr, Tb, Ho, Tm) ID-

technique cannot be applied. In ID experiment, spike is added to the sample. Spike 

possesses a different isotopic composition compared with that of sample. For instance, 

natural isotopic composition of In is 
113

In : 
115

In = 4.29 : 95.71(Berglund and Wieser, 2011) 

whereas spike isotopic composition of In is 
113

In : 
115

In = 93.41 : 6.59.  

 Quantitative determination of concentration is based on the measurement of isotopic 

ratio of elements in the sample-spike mixture (e.g., Watters et al., 2003). Measuring isotope 

ratios has the advantage that it is robust according to a variety of instrument operation 

settings. A changing sensitivity of the detector system with time and spikes that occur when 

large droplet of analyte get injected into the plasma both affect the total ion counts during 

one analysis. Since these parameters influence the measurements of different isotopes and 

elements (e.g., Pb and Bi) in nearly the same way, the reproducibility of count 

measurements can be improved when isotope and element ratio (e.g., Pb and Bi) are 

calculated (Willbold et al., 2003). Once the isotopic compositions of spike and sample 

attain the equilibrium, isotopic ratio in sample-spike mixture does not change significantly 

at different stages of analytical procedure (e. g., solvent extraction, column chromatography 

etc.). So, the use of ID technique can eliminate the recovery problem which is more 

common for external calibration technique (Van Heuzen et al. 1989).  

 Following the error propagation law, any statistical error in the isotope ratio 

measurement is increased by an ʻ error magnification factor ʼ. This factor depends on the 

measured isotopic ratio of the sample/spike mixture. Accordingly, an optimum value for the 

measured isotopic ratio (Ropt) has to be obtained to keep the error magnification factor as 

low as possible. So, before adding spike solution to a sample, an optimum sample/spike 

ratio must be obtained associated with the Ropt. Ropt can be obtained from the following 

equation [1]- 

 

𝑅𝑜𝑝𝑡 =  √
𝐴𝑛𝐴𝑠

𝐵𝑛𝐵𝑠
 ……………………………….[1] 

Where,  

 An, Bn = Natural abundances of isotope A and B 

 As, Bs = Spike abundances of isotope A and B 
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By using the optimum spike ratio Ropt from equation [1], the amount of spike solution (Ms) 

added to a sample can be calculated by equation [2]- 

 

 

𝑀𝑠 =  

𝑋𝑀𝑛

𝐴𝑤𝑛
(𝐴𝑛 − 𝑅𝑜𝑝𝑡𝐵𝑛)

𝑌
𝐴𝑤𝑠

(𝐵𝑠𝑅𝑜𝑝𝑡 − 𝐴𝑠)
  ……………………………….[2] 

 

Where,  

 X   =  Elemental concentration of sample (initially assumed)  

 Y   =  Elemental concentration of calibrated spike 

 Mn  =  Weight of the sample 

 Awn  =  Elemental atomic weight in sample 

 Aws  =  Elemental atomic weight in spike 

 

Following equation [2], a specific amount of spike (Ms) is added to the sample. In this 

study, spike was added to the samples before dissolution procedure started. Then elemental 

abundances are calculated from the measured isotopic ratio (Rm) of sample-spike mixture 

by ICP-MS, following equation [3] – 

 

𝑅𝑚  =   
𝐶𝑜𝑢𝑛𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑(𝑖𝑠𝑜𝑡𝑜𝑝𝑒 𝐴)

𝐶𝑜𝑢𝑛𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑(𝑖𝑠𝑜𝑡𝑜𝑝𝑒 𝐵)
 =  

𝐴𝑛𝑋𝑀𝑛

𝐴𝑤𝑛
 +  

𝐴𝑠𝑌𝑀𝑠

𝐴𝑤𝑠

𝐵𝑛𝑋𝑀𝑛

𝐴𝑤𝑛
 +  

𝐵𝑠𝑌𝑀𝑠

𝐴𝑤𝑠

 ………………….[3] 

or, X =    

𝑌𝑀𝑠

𝐴𝑤𝑠
(𝐴𝑠 −  𝑅𝑚𝐵𝑠)

𝑀𝑛

𝐴𝑤𝑛
(𝑅𝑚𝐵𝑛 − 𝐴𝑛)

 ……………………………….[4] 

 

The accuracy of the determined elemental concentration depends on the accuracy of the 

determined isotopic ratio (e. g., 
113

In : 
115

In) or elemental ratio (e. g., 
208

Pb : 
209

Bi). In ICP-

MS measurement light ions are more deflected compared with those of heavy ions due to 

the mutual repulsion in the ion beam and caused the mass fractionation (MF) in 

determining the isotopic and (or) elemental ratios (Heumann et al., 1998). Thus, MF is an 

important factor for the accurate determination of isotopic ratios and their application to ID 

technique. Tentatively, the MF can be expressed as (Heumann et al., 1998),- 
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MF [𝑎𝑚𝑢−1] = [

𝑅𝑡𝑟𝑢𝑒

𝑅𝑚
− 1] ×

1

∆𝑚𝐴,   𝐵
 ……………………………….[4] 

 

Where Rtrue is the true ratio of two isotopes A and B on one element obtained from 

tabulated isotopic composition of elements (Berglund and Wieser, 2011), Rm is the 

measured isotopic ratio by ICP-MS and ∆𝑚𝐴,   𝐵  is the mass difference between both 

isotopes in amu. Generally, in-run mass fractionations are corrected by using normalizing 

isotopic ratios with constant natural abundances or certified isotopic abundances (e. g., Pb 

isotopic abundances). Mass fractionations of this study have been corrected by using Spex 

solution for Zn, Cd, In, Tl and Sm. But, for Pb, NIST SRM981 was used for correcting the 

mass fractionation. Natural isotopic abundances for Zn, Cd, In, Tl and Sm, were taken from 

Berglund and Wieser (2011) and for Pb isotopic abundances were taken from NIST 

certificate for SRM981. Isotopic abundances and the atomic weights used in this study are 

listed in Table 2.9 and 2.10. 

 

 

 

Table 2.9 Isotopic compositions of Pb in Pb standards, spike, Allende and JB2. 

 Isotopic abundances (%) Atomic 

weight  
204

Pb 
206

Pb 
207

Pb 
208

Pb 

NIST SRM981
a
 1.4255 24.1442 22.0833 52.3470 207.2393 

Spex
b
 1.348 25.28 21.07 52.30 207.2256 

Spike
b
 0.008 2.102 92.48 5.410 207.0328 

Allende
c
 1.816 20.435 20.800 56.949 207.3107 

JB2
d
 1.3664 25.065 21.2641 52.3045 207.2314 

a
NIST certificate (1973) 

b
Cosmochemistry laboratory, TMU data (2014) 

c
Tatsumoto et al. (1973) 

d
Baker et al. (2004) 
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Table 2.10 Isotopic compositions of Zn, Cd, In and Tl in nature and in Spikes. 

   Natural  Spike 

   Isotopic 

abundance 

(%)
a
 

 Atomic 

weight 

 Isotopic 

abundance 

(%) 

Atomic 

weight 

Zn 
64

Zn  49.1704  65.45065  1.43 66.97145 

 
66

Zn  27.731    3.77  

 
67

Zn  4.0401    89.63  

 
68

Zn  18.4483    5.1  

 
70

Zn  0.6106    0.06  

 
 

       

Cd 
106

Cd
 

 1.25  112.508  <0.01 111.0137 

 
108

Cd  0.89    <0.01  

 
110

Cd  12.49    0.34  

 
111

Cd  12.80    96.11  

 
112

Cd  24.13    2.02  

 
113

Cd  12.22    0.5  

 
114

Cd  28.73    0.91  

 
116

Cd  7.49    0.08  

 
 

       

In 
113

In
 

 4.29  114.9142  93.41 113.1318 

 
115

In
 

 95.71    6.59  

 
 

       

Tl 
203

Tl
 

 29.524  204.410  98.15 203.037 

 
205

Tl
 

 70.476    1.85  
a
Berglund and Wieser (2011) 

 

 

2.4.2.1 Sample preparation  

 R chondrites and Allende samples were weighed (~100 mg) and mixed together 

with the 
67

Zn, 
113

In, 
111

Cd, 
203

Tl and 
207

Pb spikes in a 10ml Savillex Teflon PFA screw cap 

container. 
67

Zn, 
113

In, 
203

Tl and 
207

Pb spikes were added as a composite spike whereas 
111

Cd 

spike was added separately. After adding 0.2ml con. HNO3, 0.2ml con. HClO4 and 0.4ml 

con. HF to the samples, the tightly capped containers were put on a hot plate for 24 hours 

for digestion. The samples were dried stepwise after Yokoyama et al. (1999) to decompose 

fluorides. To make sure that the fluorides were decomposed, 0.2ml of con. HClO4 was 

further added and dried. After this, 0.2ml of 6M HCl was added and the digested sample 

was dried to decompose any remaining fluorides (Makishima et al., 2010). Addition of 6M 

HCl and drying up cycle was repeated three times. Then 10ml stock solution-1 was 

prepared in 3M HNO3 having dilution factor of ~100. From this stock solution-1, Pb and Bi 

measurement solution was prepared (dilution factor: ~1000) in 1M HNO3. 
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 Stock solution-1 was dried. Addition of 6M HCl and drying up cycle was repeated 

three times. 6ml of 6M HCl and few drops of H2O2 (for the conversion of Fe
2+

 to Fe
3+

) 

were added to the digested residue and heat at 120°C with closed cap, overnight. This 

solution was cooled gently to prepare stock solution-2. Stock solution-2 will be used for 

solvent extraction (for Tl determination) and ion-exchange column chromatography (for Zn, 

In and Cd determination). 

 For solvent extraction, stock solution-2 and 10 ml of diisopropyl ether were put into 

a quick-fit separating funnel and shack for 15 minutes by a shaker. Organic phase 

(diisopropyl ether) was then separated from the aqueous phase. In the aqueous phase, again 

10 ml of diisopropyl ether was added and after shacking, organic phase was separated. This 

solvent extraction processes were performed 3 to 4 times. Thallium is partitioned into the 

organic phase along with iron. This iron was then back extracted by successive addition and 

removal of 1M HBr. The organic phase was evaporated to dry out. The measurement 

solution for Tl was prepared in 1M HNO3.  

 Aqueous phase was then dried out and the digested sample was redissolved in 3M 

HCl. This sample solution was loaded onto an anion-exchange resin (Dowex® 1 × 8, Cl 

form) column (column volume, C.V. = 2ml). The column was previously equilibrated with 

3M HCl. 6C.V. of 3M HCl were eluted through the column for separating the matrix. Zinc 

and In were separated by eluting 18 C.V. of 0.06M HCl while Cd was separated by 1M 

HNO3. All the measurement solutions were prepared in 1M HNO3. Dilution factors for 

preparing the measurement solution are given in Table 2.11. 
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Fig. 2.4 Procedure for the determination of Zn, Pb, Cd, Bi, Tl and In. 

 

Table 2.11 Dilution factors for preparing measurement solution. 

Measurement solution for  Dilution factor 

Pb and Bi 1000 

Zn 10,000 

In 50 

Cd 100 

Tl 25 

 

 

 

2.4.2.2 Spikes 

 For isotope dilution analyses, 
67

Zn, 
113

In, 
111

Cd, 
203

Tl and 
207

Pb enriched isotopes 

were used. Before adding spike solution to a sample, an optimum isotopic ratio must be 

calculated in order to reduce the error magnification factor. To minimize the preparation 

time, composite spike for Zn, In, Tl and Pb was prepared whereas Cd spike was added 

separately. Cadmium spike was separated from the composite spike, because 
113

Cd has an 

isobaric interference on 
113

In. In the same way, two sets of spikes were also prepared for 

procedure blank. Calibration of spike was done by using standard stock solution from Spex, 

USA (by reverse isotope dilution method). Spikes concentrations are given in Table 2.12. 
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Table 2.12 Calibration of composite spikes. 

 

Composite Spike for R-

chondrites_SI#24:   

Composite Spike for 

Blank_SI#25: 

 

n=3 SD RSD 

  

n=3 SD RSD 

Zn_ppm: 110.2 0.5 0.5 

 

Zn_ppm: 0.986 0.008 0.8 

In_ppb: 96.30 0.10 0.1 

 

In_ppb: 2.49 0.01 0.4 

Tl_ppb: 161.3 0.6 0.4 

 

Tl_ppb: 4.05 0.02 0.5 

Pb_ppm: 2.343 0.004 0.2 

 

Pb_ppb: 18.85 0.04 0.2 

         

 

Cd_spike for R chondrites: 

SI#17-2   

Cd_spike for blank:  

SI#17-3 

 

n=3 SD RSD 

  

n=3 SD RSD 

Cd_ppb: 611.0 1.1 0.2 

 

Cd_ppb: 1.72 0.01 0.9 

 

 

2.4.2.3 Sample information 

 Sample and Spike weights used in this experiment are shown in Table 2.13. Along 

with the Allende and R chondrites, seven sets of blank samples have also been prepared for 

blank correction. 

Table 2.13 Sample and spikes weight 

Name Sample_[g] Comp. Spike_[g] Cd_Spike_[g] 

Allende (22/6)    

A1 0.09950 0.07375 0.07634 

A2 0.10040 0.07418 0.07652 

A3 0.10411 0.07430 0.04030 

A4 0.09990 0.07434 0.04038 

    

R chondrites    

PRE 95411.21 (R3) 0.10139 0.07398 0.07636 

ALH 85151.41 (R3.6) 0.10106 0.07404 0.07631 

Y 793575.44 (R3.8) 0.10212 0.07291 0.07518 

Y 983270.56 (R4) 0.10236 0.07408 0.07641 

A 881988.68 (R4) 0.10058 0.07406 0.07525 

MIL 07440.8 (R4) 0.10262 0.07408 0.07637 

LAP 03639.33 (R4) 0.10105 0.07418 0.07632 

Y 983720.81 (R4) 0.10072 0.07390 0.07633 

Y 983097.81 (R4) 0.10195 0.07479 0.04040 

LAP 04840.12 (R6) 0.10320 0.07445 0.04048 

MIL 11207.8 (R6) 0.10098 0.07440 0.03853 

Y 980702.61 (R6) 0.10017 0.07449 0.04280 

Y 980703.71 (R6) 0.10071 0.07464 0.04045 

LAP 02238.13 (R) 0.10074 0.07461 0.04057 

PCA 91002.64 (R3.8-6) 0.10052 0.07426 0.04067 
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2.4.2.4 Determination of volatile elements (Zn, Pb, Bi, Tl, In and Cd) 

 Lead abundances in R chondrites as well as in Allende were determined by isotope 

dilution technique. Being a mono-isotopic element, Bi cannot be analyzed by using isotope 

dilution technique. Using 
208

Pb/
209

Bi ratio, Bi was determined with a comparable accuracy 

of isotope dilution technique. Zinc, Cd, In and Tl were determined by solvent extraction 

followed by column chromatography. Interference of 
132

Ba
2+

, 
134

Ba
2+

 and 
136

Ba
2+

 were 

corrected for 
66

Zn, 
67

Zn and 
68

Zn isotopes, respectively. Isobaric interferences of 
110

Pd and 

112
Sn and the oxide interferences of 

94
Zr

16
O

+
, 

94
Mo

16
O

+
, 

95
Mo

16
O

+
, 

96
Zr

16
O

+
 and 

96
Mo

16
O

+
 

were corrected for Cd determination. For In determination isobaric interference from 
113

Cd 

was corrected. 

 

2.4.2.5 Accuracy and precision 

 Precision and accuracy of this study were checked by repeated analysis of 

Smithsonian Allende homogenized powder (USNM 3529, split/position: 22/6) and JB2 

(basalt standard provided by Geological Survey of Japan) and comparing our data with the 

literature data. In this study four replicates of Smithsonian Allende sample have been 

analyzed for all volatile elements (Zn, Pb, Bi, Tl, In and Cd). But for Pb and Bi, additional 

three replicate measurements have been performed. Replicate measurements of JB2 (basalt 

standard provided by Geological Survey of Japan) were also performed for ensuring the 

data quality as well as for the method validation. 

 

Lead and Bismuth 

 Lead and Bi abundances in Allende are shown in Table 2.12a. For the determination 

of Pb abundances, Pb isotopic composition of Allende (from Tatsumoto et al., 1973) is used. 

The precision of this study is around 3% (1σ). We monitored 
204

Pb, 
206

Pb, 
207

Pb and 
208

Pb 

and Pb abundances in Allende were calculated from 
204

Pb/
207

Pb, 
206

Pb/
207

Pb and 
208

Pb/
207

Pb 

ratios which were found to be internally consistent. Accuracy of our experiment has been 

checked by comparing our data with those of literature data (Table 2.17 and 2.18). There is 

a range of Pb abundance data for Allende meteorite:  

 (1) Using external calibration method, Makishima and Nakamura (1997) determined 

Pb in four replicates of Smithsonian Allende powder. They used standard bracketing 

method for each solution where Spex solution was used as standard and only 
208

Pb isotope 
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was monitored in their study. Their determined Pb abundance is 1.69 ± 0.16 ppm (RSD: 

9.1%, n = 4).   

 (2) Makishima and Nakamura (2006) analyzed Pb abundance in Smithsonian 

Allende powder using Spex standard. They used 
149

Sm as internal standard and monitored 

only 
208

Pb. Their determined Pb abundances are 1.08 and 1.09 ppm in a duplicate 

measurement of Allende powder which were about 35% lower than their previously 

(Makishima and Nakamura, 1997) reported value. 

 (3) Barrat et al. (2012) analyzed Pb abundances in six replicates of Smithsonian 

Allende powder (USNM 3529, split/position: 14/2, 14/22 and 15/3) using BHVO2 as 

standard. They used 
169

Tm as internal standard and monitored only 
208

Pb. Their determined 

Pb abundance is 1.27 ± 0.05 ppm (RSD: 4.1%, n = 6). 

 (4) Strack et al. (2012) analyzed a 30g chunk sample of Allende meteorite using 

isotope dilution method. They monitored only 
207/208

Pb following the procedure of Willbold 

et al. (2003). Their Pb abundance is 1.52 ± 0.26 ppm (17.3%, n = 39). 

 In external calibration techniques, terrestrial standards (e.g., Spex and BHVO2) 

were used whose Pb isotopic composition is different than those of cosmochemical samples 

(here Allende). For instance, 
208

Pb abundance in BHVO2 is 52.08% (Baker et al. 2004) 

whereas 
208

Pb abundance in Allende is 56.95% (Tatsumoto et al., 2007). So the slope of the 

calibration line using terrestrial standards will be lower than that of cosmochemical samples 

and may provide an erroneous data for Pb.  

 On the other hand, isotope dilution technique is free from the slope of calibration 

line. But we need to use an appropriate Pb isotopic composition to determine the Pb 

abundances in cosmochemical samples. Tatsumoto et al. (1973) determined the Pb isotopic 

composition as well as the Pb abundance (by MS-ID) in Allende sample. Their obtained 

value is 1097 ppb Pb in Smithsonian Allende powder. They used four significant figures in 

reporting the Pb abundance, which imply that their precision was much better than those of 

other literature data (mentioned in Table 2.18). So, in Fig. 2.6, Pb abundances in Allende 

meteorite of this study as well as the previous literature data are normalized to Tatsumoto et 

al. (1973) data. Except A4, all data of our experiment are in good agreement with 

Tatsumoto et al. (1973). Nevertheless, Allende powder is known to be heterogeneous for Pb 

(Barrat et al., 2012) and our data is within the range of Jarosewich et al. (1987). 

 In Bi determination, we used Pb/Bi ratio. For calibrating the Pb/Bi line, Spex 

solution was used. But Spex and Allende have different Pb isotopic composition. So their 
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corresponding calibration lines will have different slopes as shown schematically in Fig. 2.5. 

As the isotopic abundance of 
209

Bi is 100%, the slope of the calibration line is solely 

dependent on the isotopic abundance of 
208

Pb. To eliminate the problem regarding isotopic 

variation, our experimental counts per second (cps) were normalized by the corresponding 

isotopic abundances both for the Spex and Allende samples. The reproducibility for Bi 

determination is 7.8% and the Bi abundances in Allende meteorites are in good agreement 

with those of literature data (Chicago mean). 

 

 

 

Fig. 2.5  Schematic calibration lines for Spex and Allende showing the effect of isotopic 

 variation on the slope of calibration line. 

 

 

 Other than the cosmochemical standard (here Allende), in this study six replicates 

of JB2 (basalt standard provided by Geological Survey of Japan) were also analyzed for Pb 

and Bi. Lead-isotopic composition from Baker et al. (2004) for JB2 was used for Pb 

determination by MS-ID. Lead and Bi abundances in JB2 are summarized in Table 2.19. 

Lead and Bi abundances in JB2 are in good agreement with those of literature data (Imai et 

al.,1995;  Makishima et al., 1997; Jochum and Jenner, 1994 and Makishima and Nakamura, 

2006). 
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Zinc 

 Spectral interference is a major concern in measuring accurate isotopic ratios in 

mass spectrometry. There are several sources of spectral interferences; isobaric ions, multi-

charged cations of single atoms and molecular ions. The first two interferences can be 

easily eliminated by chemical separation of corresponding interfering elements. The 

contribution of molecular ions can also be decreased by separating co-existing elements, 

especially, in thermal ionization mass spectrometry. In ICP-MS, however, such a 

contribution doesn’t change significantly even with the separation of matrix elements, 

because most molecular ions are contributed from ambient gases (Ar and air) and solvents, 

and these ions are unavoidably introduced into the ICP-MS instrument. Table 2.14 

summarizes Zn isotopes and their possible spectral interferences. In the isotopic 

measurement of Zn, 
64

Zn and 
70

Zn have isobaric interferences of 
64

Ni and 
70

Ge, 

respectively, and, hence, the remaining three isotopes (
66

Zn, 
67

Zn and 
68

Zn) were monitored 

for isotope dilution calculation. These three isotopes of Zn, however, may sustain 

interferences of double-charged Ba isotopes, 
132

Ba, 
134

Ba and 
136

Ba, respectively. In the 

matrix separation ICP-MS, these interferences can be eliminated by chemical separation. In 

ICP-MS without matrix-separation, their contributions were corrected by measuring both 

Ba and Zn standard solutions. As 
136

Ba has higher isotope abundances than those of 
132

Ba 

and 
134

Ba, 
136

Ba
+
 was monitored together with Zn

+
 in order to correct interferences of Ba

2+
. 

The correction was carried out by applying mathematical equations to the analytical results 

of the Ba standard solution. In this calculation, mass fractionation of Zn and Ba were 

always considered. Zinc contents were determined by using 
66

Zn/
67

Zn and 
67

Zn/
68

Zn ratios 

in isotope dilution calculation. 

 

Table 2.14 Relative isotope abundances of Zn and possible mass interferences. 

Zn isotope Possible mass interferences 

64 
48

Ca
16

O
+
, 

48
Ti

16
O

+
, 

24
Mg

40
Ar

 +
, 

50
Ti

14
N

+
, 

50
V

14
N

 +
, 

50
Cr

14
N

 +
, 

52
Cr

12
C

+
, 

64
Ni

+
 

66 
50

Ti
16

O
+
, 

50
V

16
O

+
, 

50
Cr

16
O

+
, 

26
Mg

40
Ar

 +
, 

52
Cr

14
N

+
, 

54
Cr

12
C

 +
, 

54
Fe

12
C

 +
, 

132
Ba

2+
 

67 
51

V
16

O
 +

, 
27

Al
40

Ar
 +

, 
53

Cr
14

N
 +

, 
55

Mn
12

C
 +

, 
134

Ba
2+

 

68 
52

Cr
16

O
 +

, 
54

Cr
14

N
 +

, 
54

Fe
14

N
 +

, 
56

Fe
12

C
 +

, 
136

Ba
2+

,
 136

Ce
2+

 

70 
54

Cr
16

O
 +

, 
54

Fe
16

O
 +

, 
56

Fe
14

N
 +

, 
58

Fe
12

C
 +

, 
58

Ni
12

C
 +

, 
70

Ge
+
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 Table 2.15 and 2.16 summarize analytical results of the two reference samples (JB2 

and Allende) for Zn by ICP-MS with chemical separation of matrix elements. Literature 

values are shown for comparison. Individual Zn values were determined within 1% as 

relative standard deviation (1σ) for twenty times repeated measurements for one 

experimental run. Replicate analyses also gave highly reproducible values as well as the Zn 

values calculated by using 
66

Zn/
67

Zn and 
68

Zn/
67

Zn ratios are internally consistent. Our Zn 

values are in excellent agreement with literature values for the two reference samples (JB2 

and Allende), implying that the data obtained are accurate as well as precise. This further 

proves that the chemical procedure used is effective in reducing possible interferences. It 

also became obvious that molecular ions from ambient gas and solvent didn’t affect Zn 

values under the experimental condition of this study.  

 

Table 2.15 Zinc abundance in JB2. 

 
Zn (ppm) 

 Without matrix separation  Matrix separation 

 
66

Zn/
67

Zn 
68

Zn/
67

Zn  
66

Zn/
67

Zn 
68

Zn/
67

Zn 

This work 
  

 
  

JB2-1 107 ± 1 127 ± 2  105 ± 1 104 ± 1 
JB2-2 106 ± 1 130 ± 2  107 ± 1 106 ± 1 

JB2-3 108 ± 2 118 ± 3  105 ± 1 104 ± 1 
JB2-4 112 ± 1 137 ± 2    

JB2-5 120 ± 1 135 ± 2    

JB2-6 109 ± 1 137 ± 3    

Average : 110 131  106 105 

SD : 5 7  1 1 

RSD [%] : 5 6  1 1 

      

Literature data      

Imai et al. (1995) 108 

Makishima and Nakamura (2006) 107 ± 10 

 

 

Zinc was also determined by ICP-MS without matrix separation for the two reference 

samples (JB2 and Allende). Two different analytical modes (STD mode and KED mode) 

were applied for Allende sample. Analytical results are summarized in Table 2.15 and 2.16. 

Literature data and mean values of matrix-separation ICP-MS data (Table 2.15 and 2.16) 

also are given for comparison. 
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Table 2.16 Zinc abundance in Allende. 

 
Zn (ppm): Without matrix separation 

 STD mood  KED mood 

 
66

Zn/
67

Zn 
68

Zn/
67

Zn  
66

Zn/
67

Zn 
68

Zn/
67

Zn 

This work 
  

 
  

Allende 121 ± 1 120 ± 1  127 ± 3 125 ± 2 
Allende 118 ± 1 117 ± 1  123 ± 2 122 ± 2 
Allende* 186 ± 2 185 ± 2  196 ± 5 193 ± 4 
Average : 120 119  125 124 

Uncertainty : 1 1  2 1 

Uncertainty [%] : 0.8 0.8  1.6 0.8 

      

Literature data Table 2.13 

*Excluded from the mean 

  

 For Allende (Table 2.16) good agreement can be seen in Zn data between 
66

Zn/
67

Zn-

based values and 
68

Zn/
67

Zn-based values in STD mode and their values are in excellent 

agreement with a literature value as well as mean values of matrix-separation ICP-MS 

(Table 2.13), which clearly implies that neither double-charged Ba ions nor molecular ions 

affect Zn values for Allende. As a trial, the Ba
2+

 contribution was considered in calculating 

KED mode data. As seen in Table 2.16, Zn values by KED mode are a little higher than 

those from STD mode, but both data are mostly consistent with each other. Because a 

Ba/Zn content ratio in Allende (0.043) (Jarosewich et al., 1987) is low, the correction for 

Ba
2+

 was found to be less than 1% in both KED and STD modes. 

 Between the two reference samples (JB2 and Allende) analyzed in this study, Ba/Zn 

ratios for JB-2 (2.1) (Imai et al., 1995) is much higher than that for Allende (0.043) 

(Jarosewich et al., 1987). Geological rock samples like JB-2, generally have higher Ba/Zn 

content ratios than chondritic meteorites like Allende. Therefore, the correction of Ba
2+

 

may become necessary for the determination of Zn for such geological samples. For JB-2, 

either Ba
2+

- uncorrected Zn data are shown in Table 2.15. For JB-2, without the correction 

for Ba
2+

, Zn values obtained by 
68

Zn/
67

Zn ratio are systematically larger (by 30%) than the 

literature value (and matrix-separation values) by both STD and KED mode measurements. 

Being different from the case for 
68

Zn/
67

Zn ratio, Zn values obtained by 
66

Zn/
67

Zn ratio for 

STD mode data are consistent with the literature values even without the correction for Ba. 

This is because the contribution of 
132

Ba
2+

 to 
66

Zn
+
 is about 80 times smaller than that of 

136
Ba

2+
 to 

68
Zn

+
.  
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Cadmium, Indium and Thallium 

 Cadmium, In and Tl abundances in four replicate measurements of Allende (Table 

2.20) are consistent with those of literature data. Cadmium was determined by using 

110
Cd/

111
Cd and 

112
Cd/

111
Cd ratio and were found to be internally consistent.  

 Replicate measurements of Allende are also consistent with the literature data (Paul 

and Lipschutz, 1990 and the references therein). In Fig 2.7, Allende data from this study as 

well as Chicago means (Paul and Lipschutz, 1990 and the references therein) are 

normalized to Purdue means (Paul and Lipschutz, 1990 and the references therein) for Zn, 

Cd, Bi, Tl and In, and are found to be consistent with the literature abundances within the 

limit of uncertainty.    
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Table 2.17 Lead and Bi abundances in Smithsonian Allende powder. 
 

 Weight  208/207 Pb  206/207 Pb  204/207 Pb  208Pb-209Bi 

 [g]  ppm SD RSD  ppm SD RSD  ppm SD RSD  ppb SD RSD 

140527                  

Allende (22/6) 0.09950  1.04 0.03 3.3 

 

1.01 0.04 3.8 

 

1.06 0.04 3.9 

 

45.2 0.6 1.4 

Allende (22/6) 0.10040  1.14 0.03 3.0 

 

1.14 0.04 3.2 

 

1.14 0.04 3.6 

 

43.0 0.7 1.7 

140701                  

Allende (22/6) 0.10411  1.09 0.01 0.7  1.06 0.01 0.9  1.11 0.03 2.4  51.9 0.5 1.0 

Allende (22/6) 0.09990  1.42* 0.01 0.5  1.53* 0.01 0.9  1.37* 0.03 1.8  42.0* 1.0 2.3 

140413                  

Allende (22/6) 0.01069  1.17 0.03 2.8  1.18 0.03 2.6  1.18 0.07 6.1  47.6 0.6 1.2 

Allende (22/6) 0.01093  1.17 0.02 2.0  1.20 0.02 1.9  1.16 0.05 4.6  42.1 0.5 1.1 

Allende (22/6) 0.01084  1.20 0.03 2.6  1.22 0.04 2.9  1.18 0.06 5.2  44.8 0.6 1.3 

Mean    1.14    1.14    1.14    45.8   

SD    0.06    0.08    0.05    3.6   

RSD [%]   5.2    7.3    4.1    7.8   

*Excluded from the mean. Lead isotopic composition of Smithsonian Allende powder is used from Tatsumoto et al. (1973). 

 

Table 2.18 Literature data for Pb and Bi in Allende meteorite (all samples are Smithsonian powder unless otherwise indicated). 
 

  Pb  Bi  References  

  [ppm]  [ppb]   

Purdue mean    48.6 ± 3.4  Paul and Lipschutz (1990) and the references therein 

Chicago mean    46.4 ± 2.8  Paul and Lipschutz (1990) and the references therein 

MS-ID  1.097    Tatsumoto et al. (1973) 

MS-ID  1.52 ± 0.26    Stracke et al. (2012) [~30 g chunk sample]  

ICP-SFMS  1.27 ± 0.05    Barrat et al. (2012) 

ICP-QMS  1.09  42.0  Makishima and Nakamura (2006) 

FI-ICP-MS  1.69    Makishima and Nakamura (1997) 

Compiled  1.39 ± 0.25    Recommended value from Jarosewich et al. (1987) 
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Fig. 2.6 Lead abundance in Allende meteorite is normalized to the Pb abundance obtained 

by MS-ID data (Tatsumoto et al., 1973). 
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Table 2.19 Lead and Bi abundance in JB2. 

JB2 Pb (ppm)  Bi 

 
208

Pb/
207

Pb 
206

Pb/
207

Pb 
204

Pb/
207

Pb  (ppb) 

This work      

JB2-1 5.44 ± 0.16 5.10 ± 0.19 5.69 ± 0.18  28.6 ± 0.5 

JB2-2 4.96 ± 0.11 4.86 ± 0.12 5.16 ± 0.16  29.2 ± 0.5 

JB2-3 4.93 ± 0.10 4.72 ± 0.10 5.09 ± 0.22  28.8 ± 0.5 

JB2-4 5.83 ± 0.03 5.79 ± 0.03 5.83 ± 0.03  29.0 ± 0.6 

JB2-5 5.25 ± 0.02 5.21 ± 0.02 5.24 ± 0.02  29.0 ± 0.5 

JB2-6 5.17 ± 0.03 5.14 ± 0.04 5.13 ± 0.03  28.3 ± 0.6 

Average : 5.26 5.14 5.36  28.8 

SD : 0.34 0.37 0.32  0.3 

RSD [%] : 6.4 7.2 6.0  1.1 

      

Literature data
a
      

Recommended 5.36  33 

Imai et al. (1995) 5.16  33 

Makishima et al. (1997) 5.28   

Jochum and Jenner (1994) 4.94  30 

Makishima and Nakamura (2006) 4.88  27.9 

*Lead isotopic composition is taken from Baker et al. (2004) for JB2.  
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Table 2.20 Zinc, Pb, Cd, Bi, Tl and In abundances in Allende meteorite. 

Allende Zn Pb Cd Bi Tl In 

 (ppm) (ppm) (ppb) (ppb) (ppb) (ppb) 

This work       

Allende-1 122 ± 1 1.05 ± 0.03 457 ± 14 45.1 ± 0.6 56.7 ± 1.0 30.2 ± 0.8 

Allende-2 126 ± 1 1.14 ± 0.03 470 ± 13 43.0 ± 0.7 57.1 ± 1.0 29.5 ± 0.8 

Allende-3 119 ± 1 1.09 ± 0.01 453 ± 4 51.9 ± 0.5 57.5 ± 0.3 30.4 ± 0.9 

Allende-4 119 ± 2 1.42 ± 0.01 471 ± 3 42.1 ± 1.0 57.7 ± 0.3 29.2 ± 0.4 

Average 122 1.18 463 45.6 57.3 29.8 

SD 3 0.17 9 4.4 0.4 0.6 

RSD 2.7 14.3 2.0 9.7 0.8 1.9 

       

Literature data       

Purdue mean
a
 116 ± 7  505 ± 56 48.6 ± 3.4 61.0 ± 4.7 30.3 ± 3.4 

Chicago mean
a
 116 ± 12  466 ± 30 46.4 ± 2.8 61.2 ± 3.9 28.8 ± 6.7 

Compiled
b
 110 ± 5 1.39 ± 0.25    29 ± 1 

MS-ID
c
  1.097     

MS-ID
d
  1.52 ± 0.26     

ICP-SFMS
e
  1.27 ± 0.05     

ICP-QMS
f
  1.09  42.0 56.5 28.1 

FI-ICP-MS
g
  1.69     

a
Paul and Lipschutz (1990) and the references therein; 

b
Recommended data from Jarosewich et al. (1987); 

c
Tatsumoto et al. (1973); 

d
Stracke 

et al. (2012) ~ 30 g Allende chunk samples (n=39); 
e
Barrat et al. (2012); 

f
Makishima and Nakamura (2006); 

g 
Makishima and Nakamura 

(1997). 
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Fig. 2.7 Purdue-mean (Paul and Lipschutz, 1990) normalized Zn, Cd, Bi, Tl and In 

 abundances in Allende meteorite of this work. Black diamond represents Purdue-

 mean normalized Chicago-mean value.  
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2.5 Inductively coupled plasma atomic emission spectrometry for P determination  

 Phosphorus abundances in R chondrites were determined by ICP-AES using SPS 

7800 (SSI-nanotechnology products, Chiba, Japan) following the procedure of Asoh and 

Ebihara (2013) with small modification. To do so, commercially available high purity 

phosphorus standard solution and beryllium solution (as internal monitor) were used. 

Analytical wavelengths of 213.648 nm and 234.861 nm were chosen for phosphorus and 

beryllium measurements, respectively, to have minimal spectral interference. Matrix 

matching method was used rather than ion-exchange separation. For ICP-AES experiment, 

we use the same stock solution of ICP-MS experiment (for REE, Th and U determination) 

with ~600 dilution factor. 

 

2.5.1 Accuracy and precision 

 Accuracy and precision of ICP-AES experiment have been ensured by repeated 

analyses of Allende samples. The reproducibility of seven replicate measurements was just 

1.8% (1σ) and the P abundances in this experiment are in good agreement with those of 

literature data (Table 2.21). Wolf and Palme (2001) used XRF coupled with standard 

addition method and reported a very precise (0.67%, 1σ) P data for Allende. In Fig 2.8, P 

abundances of this experiment were normalized to that of wolf and Palme (2001) and found 

to be consistent within the limit of uncertainty.  

 

Table 2.21 Phosphorus abundance (with 1σ uncertainty) in Allende sample obtained by 

ICP-AES and compared with literature data. 

Allende 

(A, Split/Position: 22/6) 

P 

(ppm) 

A1 1046 ± 26 

A2 1053 ± 25 

A3 1058 ± 19 

A4 1094 ± 21 

A5 1074 ± 23 

Average (n=5) 1065 

SD 19 

RSD (1σ, %) 1.8 

  

Jarosewich et. al. (1987) 1048 

Wolf & Palme (2001) 1052 

Stracke et. al. (2012) 1067 
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Fig. 2.8  Literature (Wolf and Palme, 2001) normalized phosphorus abundances in Smithsonian Allende powder. Individual uncertainties 

 are due to the standard deviation of replicate (n=3) measurements of same sample by Inductively Coupled Plasma Mass 

 Spectrometry. Average of this study is also presented with the standard deviation (n=5). 
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3.1 Major, minor and trace elemental abundance: INAA data 

 Using instrumental neutron activation analysis, bulk chemical composition of  

twenty four elements (Na, Mg, Al, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Sb, La, 

Sm, Eu, Yb, Lu, Os Ir and Au) in R chondrites have been determined (Table 3.1). In Fig 3.1, 

CI, Cr-normalized abundance pattern is shown. Ivuna-like carbonaceous chondrites (CI) are 

supposed to have the representative chemical composition of the solar nebula (e.g., Anders 

and Ebihara, 1982; Anders and Grevesse, 1989; Lodders, 2003; Palme and Jones, 2003). So, 

by normalizing chemical abundances of R chondrites by CI abundance (Anders and 

Grevesse, 1989), we can have the idea about the elemental fractionations. CI-normalized 

abundances are generally further normalized by Mg abundance to remove the effect of 

dilution by water and organic matter in CI chondrites (Davis, 2005). But in this study, CI 

normalized abundances were further normalized by Cr abundance instead of Mg abundance 

since the analytical uncertainty (1σ, from counting statistics) for Cr is lower than that for 

Mg. 

 In Fig 3.1, individual R chondrites and R-mean (n=15, red line) are plotted along 

with the ordinary chondrites (H, L and LL) (Kallemeyn et al., 1989). Elements are plotted 

in terms of volatility to right (Lodders, 2003). Lithophile elemental abundance pattern in R 

chondrites are almost flat and are comparable with that of ordinary (Kallemeyn et al., 1989) 

chondrites (Fig 3.1). This flat lithophile abundance pattern is also consistent with Isa et al. 

(2014). A mean CI-normalized Na and Mn abundances are 1.32 ± 0.07 and 1.21 ± 0.04, 

respectively, which are comparable with those of ordinary chondrites (Kallemeyn et al., 

1989) but higher than those of carbonaceous (Kallemeyn and Wasson, 1981; Kallemeyn et 

al., 1991) and enstatite (Kallemeyn and Wasson, 1986) chondrites. In carbonaceous and 

enstatite chondrites, CI-normalized Na and Mn abundances are less than unity. Siderophile 

elemental abundance pattern is intermediate between H and L chondrites. But the volatile 

elements (Zn and Se) abundances are higher than those of ordinary chondrites. A mean iron 

content in R chondrites is 24.6 ± 0.7 (%, 1σ, n=15, this study) whereas the mean iron 

contents are 27.1 ± 0.7 (%, 1σ, n=22), 21.6 ± 0.5 (%, 1σ, n=20) and 18.4 ± 0.4 (%, 1σ, 

n=16) in H, L and LL chondrites (Kallemeyn et al., 1989), respectively. That is, bulk iron 

contents in R chondrites are intermediate between H and L chondrites. Bulk Ir contents in R 

chondrites also show the same trend. CI-normalized Ni/Co ratios (~0.9) in R chondrites are 

comparable with those of ordinary chondrites (Kallemeyn et al., 1989). 
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Table 3.1 Major and trace element abundances obtained by INAA for R chondrites of this work (uncertainties are due to counting statistics, 

1σ). 

  PRE 95411.21 

(R3) 

ALH 85151.41 

(R3.6) 

Y 793575.44 

(R3.8) 

Y 983270.56 

(R4) 

A 881988.68 

(R4) 

Na ppm 6460 ± 20 6280 ± 20 6710  ± 30 5620  ± 20 6730 ± 20 

Mg % 13.3 ± 1.1 13.9 ± 1.2 12.4 ± 1.1 13.0 ± 1.1 13.6 ± 1.2 

Al % 1.01 ± 0.01 1.02 ± 0.01 1.01 ± 0.01 0.99 ± 0.01 1.07 ± 0.01 

Ca % 1.22 ± 0.18 1.21 ± 0.19 1.10 ± 0.16 1.27 ± 0.18 1.27 ± 0.20 

Sc ppm 7.60 ± 0.03 7.57 ± 0.03 7.86 ± 0.04 7.55 ± 0.03 7.74 ± 0.04 

V ppm 66.0 ± 3.1 69.9 ± 3.2 70.9 ± 3.4 68.0 ± 3.1 70.6 ± 3.2 

Cr ppm 3610 ± 20 3590 ± 20 3650 ± 20 3570 ± 20 3560 ± 20 

Mn ppm 2470 ± 90 2420 ± 90 2270 ± 90 2330 ± 90 2570 ± 90 

Fe % 24.7 ± 0.1 24.6 ± 0.1 25.2 ± 0.1 24.3 ± 0.1 22.8 ± 0.1 

Co ppm 732 ± 8 694 ± 7 639 ± 6 645 ± 6 476 ± 5 

Ni % 1.66 ± 0.01 1.41 ± 0.01 1.15 ± 0.01 1.25 ± 0.01 0.741 ± 0.006 

Zn ppm 148 ± 12 153 ± 12 146 ± 12 161 ± 14 152 ± 15 

As ppm 2.06 ± 0.21 1.65 ± 0.15 2.18 ± 0.27 1.85 ± 0.21 1.95 ± 0.23 

Se ppm 12.3 ± 1.0 15.0 ± 0.8 15.3 ± 0.8 15.8 ± 1.1 10.7 ± 1.0 

Br ppb 950 ± 190 470 ± 100 430 ± 150 590 ± 160 710 ± 180 

Sb ppb 97.6 ± 16.8 68.2 ± 12.8 70.3 ± 24.6 73.1 ± 15.0 74.5 ± 15.1 

La ppb 287 ± 19 285 ± 17 293 ± 36 272 ± 29 309 ± 24 

Sm ppb 197 ± 5 197 ± 3 204 ± 5 200 ± 6 196 ± 5 

Eu ppb 82 ± 15 68 ± 16 76 ± 14 79 ± 14 67 ± 12 

Yb ppb 200 ± 31 197 ± 40 215 ± 35 185 ± 37 203 ± 44 

Lu ppb 29 ± 5 30 ± 4 33 ± 7 34 ± 7 34 ± 6 

Os ppb 740 ± 90 670 ± 130 690 ± 90 450 ± 60 470 ± 70 

Ir ppb 598 ± 6 602 ± 7 637 ± 6 613 ± 6 507 ± 4 

Au ppb 150 ± 1 73.0 ± 0.9 62.5 ± 1.0 63.2 ± 0.8 134 ± 1 

 

(Continued) 
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Table 3.1 

 

  MIL 07440.8 

(R4) 

LAP 03639.33 

(R4) 

Y 983720.81 

(R4) 

Y 983097.81 

(R5) 

LAP 04840.12 

(R6) 

Na ppm 6840 ± 30 7050 ± 30 6210  ± 20 7120 ± 20 6830 ± 20 

Mg % 13.8 ± 1.2 12.5 ± 1.1 13.2 ± 1.1 14.1 ± 1.2 14.0 ± 1.2 

Al % 1.02 ± 0.01 1.03 ± 0.01 1.05 ± 0.01 1.04 ± 0.01 1.04 ± 0.01 

Ca % 1.12 ± 0.19 1.28 ± 0.18 1.07 ± 0.18 1.16 ± 0.18 1.13 ± 0.18 

Sc ppm 7.79 ± 0.04 8.04 ± 0.04 8.04 ± 0.03 7.91 ± 0.04 7.74 ± 0.04 

V ppm 65.8 ± 3.0 64.9 ± 2.8 67.3 ± 3.0 67.0 ± 3.0 63.6 ± 3.1 

Cr ppm 3660 ± 20 3580 ± 20 3660 ± 20 3650 ± 20 3660 ± 20 

Mn ppm 2480 ± 90 2340 ± 90 2410 ± 90 2480 ± 90 2420 ± 90 

Fe % 25.2 ± 0.1 24.6 ± 0.1 25.1 ± 0.1 23.5 ± 0.1 24.8 ± 0.1 

Co ppm 674 ± 7 726 ± 7 494 ± 5 713 ± 7 673 ± 7 

Ni % 1.17 ± 0.01 1.46 ± 0.01 0.969 ± 0.005 1.34 ± 0.01 1.34 ± 0.01 

Zn ppm 149 ± 11 155 ± 11 147 ± 12 172 ± 14 163 ± 14 

As ppm 2.32 ± 0.30 1.96 ± 0.30 1.75 ± 0.20 2.02 ± 0.25 1.94 ± 0.19 

Se ppm 15.4 ± 0.8 12.8 ± 0.9 12.1 ± 0.8 13.3 ± 1.1 14.0 ± 0.9 

Br ppb 590 ± 180 720 ± 230 590 ± 150 810 ± 210 380 ± 90 

Sb ppb 95.9 ± 16.1 100 ± 20 91.7 ± 16.1 49.5 ± 13.6 53.5 ± 16.3 

La ppb 286 ± 24 262 ± 28 270 ± 26 328 ± 26 284 ± 20 

Sm ppb 190 ± 7 193 ± 6 195 ± 4 205 ± 6 189 ± 5 

Eu ppb 61 ± 17 87 ± 17 87 ± 14 86 ± 16 88 ± 17 

Yb ppb 239 ± 38 217 ± 37 190 ± 25 205 ± 33 247 ± 36 

Lu ppb 34 ± 7 29 ± 6 37 ± 6 36 ± 5 35 ± 8 

Os ppb 660 ± 90 650 ± 130 700 ± 90 509 ± 84 565 ± 76 

Ir ppb 604 ± 3 552 ± 3 554 ± 3 536 ± 6 566 ± 6 

Au ppb 199 ± 1 66.9 ± 1.6 82.3 ± 1.1 178 ± 1 176 ± 1 

 

(Continued) 
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Table 3.1 

 

  MIL 11207.8 

(R6) 

Y 980702.61 

(R6) 

Y 980703.71 

(R6) 

LAP 02238.13 

(R) 

PCA 91002.64 

(R3.8-6) 

Na ppm 6570 ± 20 6490 ± 20 6730 ± 20 6540 ± 20 6520 ± 20 

Mg % 14.3 ± 1.2 14.4 ± 1.2 15.1 ± 1.3 13.8 ± 1.2 12.9 ± 1.1 

Al % 1.06 ± 0.01 1.06 ± 0.01 1.32 ± 0.02 1.02 ± 0.01 1.01 ± 0.01 

Ca % 1.27 ± 0.18 1.33 ± 0.19 1.09 ± 0.16 0.94 ± 0.15 1.20 ± 0.17 

Sc ppm 8.23 ± 0.03 7.86 ± 0.04 8.17 ± 0.04 7.79 ± 0.03 7.75 ± 0.04 

V ppm 71.4 ± 3.1 64.5 ± 3.0 70.9 ± 3.2 67.8 ± 3.0 67.7 ± 3.1 

Cr ppm 3630 ± 20 3640 ± 20 3700 ± 20 3640 ± 20 3580 ± 20 

Mn ppm 2440 ± 90 2460 ± 90 2370 ± 90 2310 ± 90 2280 ± 90 

Fe % 25.5 ± 0.1 24.2 ± 0.1 24.7 ± 0.1 24.6 ± 0.1 25.1 ± 0.1 

Co ppm 655 ± 7 649 ± 6 678 ± 7 707 ± 7 719 ± 7 

Ni % 1.19 ± 0.01 1.20 ± 0.01 1.26 ± 0.01 1.48 ± 0.01 1.45 ± 0.01 

Zn ppm 158 ± 13 140 ± 11 133 ± 12 169 ± 14 146 ± 13 

As ppm 2.38 ± 0.21 1.87 ± 0.22 2.24 ± 0.28 1.46 ± 0.19 2.02 ± 0.19 

Se ppm 10.9 ± 0.7 12.2 ± 1.1 12.2 ± 0.9 14.1 ± 0.9 14.3 ± 1.0 

Br ppb 270 ± 70 1270 ± 310 1350 ± 340 780 ± 180 990 ± 190 

Sb ppb 94.8 ± 15.3 79.7 ± 14.6 76.9 ± 16.9 95.7 ± 17.5 71.6 ± 14.7 

La ppb 330 ± 30 293 ± 20 321 ± 21 296 ± 21 309 ± 19 

Sm ppb 211 ± 5 201 ± 5 206 ± 7 195 ± 5 201 ± 5 

Eu ppb 87 ± 12 87 ± 16 73 ± 14 86 ± 14 73 ± 12 

Yb ppb 198 ± 31 212 ± 29 217 ± 33 180 ± 44 209 ± 35 

Lu ppb 32 ± 5 29 ± 6 28 ± 6 30 ± 6 31 ± 7 

Os ppb 670 ± 90 680 ± 90 620 ± 70 1110 ± 110 640 ± 100 

Ir ppb 616 ± 6 537 ± 5 549 ± 6 633 ± 7 598 ± 7 

Au ppb 218 ± 1 169 ± 1 171 ± 1 307 ± 2 174 ± 1 
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Fig. 3.1 CI, Cr-normalized elemental abundances for the R chondrites and compared with H, L and LL chondrites mean value (Kallemeyn et 

al., 1989). Heavy red lines represents the mean value for R chondrites of this study with 1σ uncertainty (n=15). Lithophile elements are 

plotted at the top and siderophile and chalcophile elements at the bottom. Elements are arranged from left to right in order of decreasing 

nebular condensation temperature. 
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3.2  REEs, Th and U abundances: ICP-MS data 

 Detailed abundances of REEs, Th and U in R chondrites are listed in Table 3.2. 

Uncertainties (1σ) are due to repeated scanning of ICP-MS instrument (n=30). For all 

elements uncertainties (in %) are less than 4% except that for U (RSD ˂ 5%). R- Chondrite 

mean value is calculated from the average of 15 R chondrites of this study and RSD is less 

than 5%, except that for U (RSD = 5.3%). CI-normalized REE, Th & U abundance patterns 

are shown in Fig. 3.2. In the CI-normalized abundance patterns heavy rare earth elements 

(HREE) are faintly enriched compared with the light rare earth elements (LREE) and show 

a subtle positive Ce anomaly.  
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Table 3.2 REE, Th, and U abundances (in ppb with 1σ uncertainty) obtained by ICP-MS for R chondrites of this work. 

 

 PRE 

95411.21 

ALH 

85151.41 

Y 

793575.44 

Y 

983270.56 

A 

881988.68 

MIL 

07440.8 

LAP 

03639.33 

Y 

983720.81 

 (R3) (R3.6) (R3.8) (R4) (R4) (R4) (R4) (R4) 

La 302 ± 5 301 ± 4 292 ± 5 289 ± 4 310 ± 6 300 ± 5 288 ± 7 284 ± 7 

Ce 824 ± 14 817 ± 10 803 ± 11 811 ± 11 854 ± 14 817 ± 13 828 ± 17 821 ± 17 

Pr 115 ± 2 114 ± 2 115 ± 2 115 ± 2 116 ± 2 113 ± 2 114 ± 2 117 ± 2 

Nd 593 ± 9 597 ± 10 604 ± 9 602 ± 10 602 ± 12 587 ± 12 587 ± 11 593 ± 11 

Sm 196 ± 5 192 ± 5 199 ± 6 199 ± 5 199 ± 6 188 ± 5 191 ± 5 192 ± 5 

Eu 75.3 ± 1.8 76.0 ± 1.4 77.7 ± 1.5 74.1 ± 1.6 78.0 ± 1.7 75.8 ± 1.4 73.2 ± 1.7 77.2 ± 2.5 

Gd 260 ± 7 263 ± 6 264 ± 5 257 ± 7 267 ± 6 256 ± 6 261 ± 6 256 ± 8 

Tb 47.7 ± 1.0 47.5 ± 0.8 48.1 ± 1.0 46.8 ± 1.0 48.7 ± 0.9 47.2 ± 1.1 48.7 ± 1.2 47.3 ± 1.5 

Dy 320 ± 6 321 ± 5 322 ± 5 312 ± 5 326 ± 4 315 ± 6 330 ± 6 317 ± 5 

Ho 73.3 ± 1.0 73.3 ± 1.1 73.2 ± 1.2 70.8 ± 1.5 74.4 ± 1.3 72.0 ± 1.5 75.7 ± 1.1 72.7 ± 1.3 

Er 213 ± 4 212 ± 4 210 ± 4 204 ± 4 216 ± 3 209 ± 5 221 ± 5 208 ± 3 

Tm 33.0 ± 0.8 33.0 ± 0.8 32.2 ± 0.6 31.6 ± 0.6 33.7 ± 0.7 32.1 ± 0.7 34.3 ± 0.8 32.3 ± 0.9 

Yb 214 ± 3 216 ± 4 219 ± 3 207 ± 4 221 ± 4 212 ± 4 228 ± 6 220 ± 4 

Lu 32.3 ± 0.6 32.6 ± 0.7 31.8 ± 0.8 30.7 ± 0.7 33.3 ± 0.6 32.6 ± 0.6 34.8 ± 1.0 32.0 ± 0.8 

         

Th 38.8 ± 0.9 40.3 ± 1.0 41.1 ± 1.0 37.6 ± 1.1 41.2 ± 1.0 41.1 ± 1.4 42.3 ± 1.1 42.5 ± 1.2 

U 10.4 ± 0.4 11.1 ± 0.3 10.7 ± 0.3 9.87 ± 0.34 11.4 ± 0.6 10.2 ± 0.3 11.2 ± 0.4 11.6 ± 0.4 

 

 

 

 

  

 

(Continued) 
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Table 3.2  
 

 Y 

983097.81 

LAP 

04840.12 

MIL 

11207.8 

Y 

980702.61 

Y 

980703.71 

LAP 

02238.13 

PCA 

91002.64 

R chondrites 

(Mean) 

 (R5) (R6) (R6) (R6) (R6) (R) (R3.8-6) ppb SD RSD 

La 324 ± 4 284 ± 3 321 ± 4 314 ± 4 318 ± 4 306 ± 4 323 ± 4 304 14 4.6 

Ce 887 ± 11 768 ± 8 873 ± 9 835 ± 9 837 ± 12 799 ± 11 846 ± 11 828 30 3.6 

Pr 121 ± 2 108 ± 2 121 ± 2 117 ± 2 118 ± 2 115 ± 2 120 ± 3 116 3 2.9 

Nd 616 ± 9 548 ± 8 613 ± 9 596 ± 10 601 ± 9 580 ± 10 604 ± 10 595 16 2.7 

Sm 206 ± 5 185 ± 4 209 ± 6 204 ± 6 206 ± 5 198 ± 8 208 ± 9 198 7 3.8 

Eu 77.8 ± 1.9 71.7 ± 1.6 77.3 ± 1.5 76.7 ± 1.7 78.1 ± 2.0 74.1 ± 1.7 77.9 ± 1.7 76.0 2.0 2.6 

Gd 269 ± 7 246 ± 7 271 ± 6 264 ± 6 264 ± 7 257 ± 6 265 ± 7 261 6 2.4 

Tb 49.2 ± 1.0 45.6 ± 0.8 49.9 ± 1.1 48.8 ± 1.1 49.0 ± 0.7 47.2 ± 1.0 49.2 ± 1.4 48.1 1.1 2.4 

Dy 328 ± 6 306 ± 6 333 ± 6 326 ± 6 328 ± 5 318 ± 5 330 ± 7 322 8 2.4 

Ho 75.6 ± 1.1 70.6 ± 1.4 76.3 ± 1.6 75.6 ± 1.2 75.7 ± 1.4 73.6 ± 1.4 75.2 ± 1.6 73.9 1.8 2.5 

Er 219 ± 4 206 ± 4 223 ± 4 219 ± 4 221 ± 5 214 ± 5 222 ± 4 214 6 2.9 

Tm 33.5 ± 0.6 31.5 ± 0.6 33.8 ± 0.8 33.3 ± 0.7 34.0 ± 0.8 32.6 ± 0.8 33.8 ± 1.0 33.0 0.9 2.7 

Yb 223 ± 4 213 ± 4 227 ± 5 226 ± 5 227 ± 5 218 ± 4 227 ± 5 220 7 3.0 

Lu 34.2 ± 0.6 32.9 ± 0.8 34.7 ± 0.9 34.6 ± 1.0 34.9 ± 1.0 33.5 ± 0.7 34.2 ± 0.9 33.3 1.3 3.9 

           

Th 40.7 ± 1.9 37.9 ± 0.9 41.1 ± 1.1 41.4 ± 1.0 41.8 ± 1.0 38.7 ± 1.9 40.1 ± 3.1 40.4 1.5 3.8 

U 11.0 ± 0.9 9.58 ± 0.37 10.6 ± 0.4 10.6 ± 0.4 10.8 ± 0.4 9.90 ± 0.76 10.1 ± 1.2 10.6 0.6 5.8 

RSD: 1σ and n=15 
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Fig. 3.2: CI- (Anders & Grevesse, 1989) normalized REEs, Th and U abundance patterns in 

R chondrites with 1σ uncertainty (triangles represent R3 – R3.4, diamonds represent R4, 

circles represent R5 – R6 and blank cross represent brecciated R chondrites). 
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3.3 Phosphorus abundance in R chondrites: ICP-AES data 

 Table 3.4 shows the phosphorus abundances in R chondrites of this study as well as 

the literature values from Palme et al. (1996). In this study, mean phosphorus abundance is 

1230 ± 70 ppm, which is consistent with that for the fall R chondrite- Rumuruti. In Fig 3.3, 

CI-normalized phosphorus abundances in R chondrites of this study along with the 

literature values and phosphorus abundances in other chondritic groups (Wasson and 

Kallemeyn, 1988) are plotted. In most of the cases, phosphorus abundances are comparable 

with that of CI chondrites. Phosphorus abundances in other chondritic groups are 

comparatively lower than the R chondrites.  

 

 Table 3.4 Phosphorus abundance (with 

1σ uncertainty) in R chondrites obtained 

by ICP-AES and compared with literature 

data. 

 

R chondrites P 

 (ppm) 

This work  

PRE 95411.21 (R3) 1221 ± 17 

ALH 85151.41 (R3.6) 1273 ± 39 

Y 793575.44 (R3.8) 1267 ± 20 

Y 983270.56 (R4) 1403 ± 50 

A 881988.68 (R4) 1152 ± 24 

MIL 07440.8 (R4) 1261 ± 47 

LAP 03639.33 (R4) 1252 ± 22 

Y 983720.81(R4) 1309 ± 4 

Y 983097.81(R5) 1101 ± 29 

LAP 04840.12 (R6) 1316 ± 8 

MIL 11207.8 (R6) 1260 ± 17 

Y 980702.61(R6) 1208 ± 36 

Y 980703.71(R6) 1234 ± 48 

LAP 02238.13 (R) 1290 ± 36 

PCA 91002.64 (R3.8-6) 1224 ± 49 

Average : 1254 

SD : 70 

RSD [%] : 5.6 

  

Literature data
a
  

Acfer 217 (R3.8-5) 1217 

Rumuruti (R3.8-6) 1260 

Dar al Gani 013 (R3.5-6) 1320 
 a

Palme et al. (1996) 
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Fig. 3.3 CI-(Anders & Grevesse, 1989) normalized phosphorus abundances in R chondrites 

along with the literature values for R chondrites (Palme et al., 1996) and the other 

chondritic group (Wasson and Kallemeyn, 1988). 
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3.4 Volatile elements abundances in R chondrites: MS-ID 

 Lead and Bi abundances in R chondrites are shown in Table 3.5. There is a 

significant difference in Pb isotopic composition between the terrestrial and cosmochemical 

samples. First we assume that Pb isotopic composition in R chondrites is similar with that 

of Allende meteorite (Bouvier et al., 2007). Then the Pb-isotopic composition was 

determined in this study and was found to be similar (within the analytical uncertainty) with 

that of Allende Pb-isotopic composition determined by Bouvier et al. (2007). In this study, 

204
Pb, 

206
Pb, 

207
Pb and 

208
Pb isotopes were monitored and 

207
Pb spike was used. So, it was 

possible to determine Pb abundance from 
204

Pb/
207

Pb, 
206

Pb/
207

Pb and 
208

Pb/
207

Pb ratios. In 

isotope dilution technique, if inappropriate isotopic abundances is used for data reduction, 

then each ratios (here 
204

Pb/
207

Pb, 
206

Pb/
207

Pb and 
208

Pb/
207

Pb) will provide inconsistent data. 

In our calculation, we get internally consistent Pb abundance data from different isotopic 

ratios which imply that our assumption about the Pb isotopic composition of R chondrites 

was applicable without significant compromising of data accuracy. In contrast to all other R 

chondrites of this study, MIL 11207.8 (weathering category: Ce) gives different Pb 

abundances from different isotopic ratios (here 
204

Pb/
207

Pb, 
206

Pb/
207

Pb and 
208

Pb/
207

Pb). A 

probable effect of terrestrial weathering on such variation will be discussed in discussion 

part. Bismuth abundances in R chondrites were determined from Pb/Bi. Relative standard 

deviations for Bi abundances are less than 3%. 

 Zinc abundances in R chondrites were determined from 
66

Zn/
67

Zn and 
68

Zn/
67

Zn 

ratio. They are internally consistent and also consistent with the INAA data (except for 

some cases, MS-ID data is little bit higher than those of INAA data. But the % of 

uncertainty in MS-ID data is about one-third of the % of uncertainty in INAA data. 

Similarly, for Cd determination, 
110

Cd/
111

Cd and 
112

Cd/
111

Cd ratios were used and were 

found to be internally consistent, except for LAP 02238.13. Zinc, Cd, In and Tl abundances 

in R chondrites are shown in Table 3.6 to 3.8, sequentially. All the data shown in these 

tables are blank corrected. In Table 3.9, procedure blank data are shown. Except some 

contamination (shown in italics in Table 3.9), procedure blank is mostly comparable with 

those of instrumental uncertainty. In the case of Tl, for some samples (Y 793575.44, A 

881988.68, MIL 07440.8 and LAP 03639.33), relative standard deviation is higher than 

those of the other R chondrites. These R chondrites contain a very low amount of Tl. 
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Table 3.5 Lead and Bi abundances in R chondrites. 

 

 

R chondrites  208/207 Pb 

 

206/207 Pb 

 

204/207 Pb 

 

208Pb-209Bi 

  

 ppm ± [%] 

 

ppm ± [%] 

 

ppm ± [%] 

 

ppb ± [%] 

1 PRE 95411.21 (R3)  1.33 0.03 2.6 

 

1.30 0.04 2.8 

 

1.34 0.04 3.1 

 

57.4 0.6 1.0 

2 ALH 85151.41 (R3.6)  1.26 0.03 2.7 

 

1.25 0.04 2.9 

 

1.27 0.04 3.1 

 

53.6 0.9 1.7 

3 Y 793575.44 (R3.8)  0.373 0.033 8.9 

 

0.385 0.035 9.2 

 

0.371 0.035 9.5 

 

13.6 0.4 2.9 

4 Y 983270.56 (R4)  0.942 0.034 3.6 

 

0.904 0.04 3.9 

 

0.965 0.04 4.4 

 

42.4 0.5 1.2 

5 A 881988.68 (R4)  1.04 0.03 3.2 

 

1.01 0.04 3.7 

 

1.06 0.04 3.8 

 

34.4 0.5 1.5 

6 MIL 07440.8 (R4)  1.05 0.03 3.2 

 

1.01 0.04 3.6 

 

1.07 0.04 3.9 

 

46.3 0.7 1.6 

7 LAP 03639.33 (R4)  0.948 0.034 3.5 

 

0.851 0.035 4.1 

 

1.003 0.043 4.3 

 

64.8 0.9 1.4 

8 Y 983720.81 (R4)  0.950 0.034 3.5 

 

0.872 0.04 4.2 

 

0.99 0.04 4.2 

 

39.0 0.6 1.6 

9 Y 983097.81 (R4)  0.963 0.007 0.7 

 

0.946 0.01 1.3 

 

0.98 0.02 2.2 

 

16.8 0.5 2.9 

10 LAP 04840.12 (R6)  0.807 0.008 0.9 

 

0.807 0.011 1.4 

 

0.802 0.025 3.1 

 

26.9 0.4 1.6 

11 MIL 11207.8 (R6)  2.28 0.02 0.7 

 

2.88 0.03 0.9 

 

2.03 0.03 1.7 

 

49.3 0.7 1.5 

12 Y 980702.61 (R6)  0.864 0.008 1.0 

 

0.863 0.009 1.0 

 

0.870 0.022 2.6 

 

25.8 0.5 2.1 

13 Y 980703.71 (R6)  0.846 0.009 1.0 

 

0.843 0.008 0.9 

 

0.863 0.022 2.6 

 

26.7 0.7 2.5 

14 LAP 02238.13 (R)  1.19 0.01 0.9 

 

1.20 0.01 1.2 

 

1.18 0.03 2.2 

 

56.0 1.0 1.7 

15 PCA 91002.64 (R3.8-6)  1.59 0.01 0.8 

 

1.58 0.02 1.1 

 

1.60 0.03 2.0 

 

71.7 0.9 1.3 

Uncertainties (1σ) are due to standard deviation of 20 scans of single sample by ICP-MS (iCAP – Thermo Scientific) and for blank 

correction. 
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Table 3.6  Zinc abundances in R chondrites. 

  

66/67 Zn 

 

68/67 Zn 

 

INAA 

  

ppm ± [%] 

 

ppm ± [%] 

 

ppm ± [%] 

1 PRE 95411.21 (R3) 164 1 0.8 

 

163 2 1.1 

 

148 12 8.1 

2 ALH 85151.41 (R3.6) 172 1 0.9 

 

172 1 0.7 

 

148 12 8.1 

3 Y 793575.44 (R3.8) 164 1 0.8 

 

164 2 1.0 

 

135 12 8.9 

4 Y 983270.56 (R4) 156 2 1.0 

 

157 1 0.9 

 

161 14 8.7 

5 A 881988.68 (R4) 161 1 0.8 

 

161 2 1.0 

 

152 15 9.9 

6 MIL 07440.8 (R4) 166 2 1.1 

 

166 2 1.1 

 

148 11 7.4 

7 LAP 03639.33 (R4) 150 1 1.0 

 

151 1 1.0 

 

155 11 7.1 

8 Y 983720.81 (R4) 156 1 0.8 

 

156 1 0.7 

 

147 12 8.2 

9 Y 983097.81 (R4) 174 2 1.1 

 

190 2 1.2 

 

172 14 8.1 

10 LAP 04840.12 (R6) 168 2 1.0 

 

169 2 1.2 

 

163 14 8.6 

11 MIL 11207.8 (R6) 167 1 0.9 

 

167 2 0.9 

 

158 13 8.2 

12 Y 980702.61 (R6) 133 1 0.9 

 

133 2 1.2 

 

143 11 7.7 

13 Y 980703.71 (R6) 135 1 0.8 

 

136 2 1.2 

 

133 12 8.0 

14 LAP 02238.13 (R) 161 1 0.8 

 

162 1 0.9 

 

169 14 8.0 

15 PCA 91002.64 (R3.8-6) 156 2 1.1 

 

156 2 1.0 

 

146 13 8.9 

 

 

 

 

 

Table 3.7 Cadmium abundances in R chondrites. 

  

 110/111 Cd 

 

112/111 Cd 

  

 ppb ± [%] 

 

ppb ± [%] 

1 PRE 95411.21 (R3)  527 16 3.0 

 

518 16 3.0 

2 ALH 85151.41 (R3.6)  238 10 4.1 

 

238 8 3.5 

3 Y 793575.44 (R3.8)  77.8 7.3 9.4 

 

80.5 4.6 5.7 

4 Y 983270.56 (R4)  258 9 3.5 

 

255 8 3.0 

5 A 881988.68 (R4)  243 10 4.2 

 

239 9 3.9 

6 MIL 07440.8 (R4)  232 10 4.1 

 

237 9 3.6 

7 LAP 03639.33 (R4)  230 9 3.7 

 

228 10 4.2 

8 Y 983720.81 (R4)  228 19 8.1 

 

206 12 5.9 

9 Y 983097.81 (R4)  20.0 1.5 7.4 

 

16.5 2.2 13.4 

10 LAP 04840.12 (R6)  179 2 1.1 

 

172 5 3.2 

11 MIL 11207.8 (R6)  215 3 1.2 

 

207 9 4.1 

12 Y 980702.61 (R6)  170 2 1.2 

 

160 8 5.3 

13 Y 980703.71 (R6)  179 2 1.2 

 

172 7 3.9 

14 LAP 02238.13 (R)  291 3 1.1 

 

247 13 5.2 

15 PCA 91002.64 (R3.8-6)  556 5 1.0 

 

550 8 1.5 

Uncertainties (1σ) are due to standard deviation of 20 scans of single sample by ICP-MS 

(iCAP – Thermo Scientific) and for blank correction. 
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Table 3.8 Indium and Tl abundances in R chondrites. 

  

 113/115 In  203/205 Tl 

  

 ppb ± [%]  ppb ± [%] 

1 PRE 95411.21 (R3)  44.5 1.2 2.6  112.3 1.3 1.1 

2 ALH 85151.41 (R3.6)  36.9 0.5 1.4  51.4 1.0 2.0 

3 Y 793575.44 (R3.8)  15.8 0.4 2.7  2.41 0.9 39.2 

4 Y 983270.56 (R4)  31.5 4.1 13.0  42.0 1.0 2.4 

5 A 881988.68 (R4)  32.9 0.9 2.9  2.90 0.94 32.6 

6 MIL 07440.8 (R4)  29.1 3.6 12.4  7.49 0.95 12.6 

7 LAP 03639.33 (R4)  25.3 1.1 4.4  6.63 0.95 14.3 

8 Y 983720.81 (R4)  29.9 0.9 2.9  35.6 1.0 2.7 

9 Y 983097.81 (R4)  12.1 0.3 2.3  2.88 0.08 2.9 

10 LAP 04840.12 (R6)  38.9 0.6 1.7  37.4 0.3 0.7 

11 MIL 11207.8 (R6)  39.5 0.7 1.7  17.2 0.1 0.8 

12 Y 980702.61 (R6)  28.3 0.5 1.6  6.17 0.07 1.1 

13 Y 980703.71 (R6)  28.1 0.4 1.6  6.58 0.07 1.1 

14 LAP 02238.13 (R)  31.8 0.5 1.5  51.3 0.3 0.5 

15 PCA 91002.64 (R3.8-6)  42.3 0.8 1.9  84.1 0.5 0.6 

Uncertainties (1σ) are due to standard deviation of 20 scans of single sample by ICP-MS 

(iCAP – Thermo Scientific) and for blank correction. 

 

 

 Volatile elemental abundances in R chondrites are summarized in Table 3.10. In 

Table 3.10, 
208/207

Pb, 
68/67

Zn and 
112/111

Cd date are chosen for their relatively lower 

uncertainty. CI-normalized Zn, Pb, Bi, In, Tl and Cd abundances are plotted in Fig. 3.4. 

Except Zn, all the elements show systematic variation with the petrologic types with few 

exceptions. In Fig. 3.4, triangles represent R3 – R3.8, squares represent R4, diamond 

represents R5, circles represent R6 chondrites.  
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Table 3.9 Procedure blank (1σ). 

  Zn  Pb  Bi  In  Tl  Cd 

  ppm ± [%]  ppm ± [%]  ppb ± [%]  ppb ± [%]  ppb ± [%]  ppb ± [%] 

140527 
   

 
   

 
   

 
 

  

 
   

 
   

Blank-1 56 45 80.4  0.0125 0.0005 4.0  0.81 0.08 9.3  0.24 0.05 19.3  1.26 0.03 2.6  9.17 2.03 22.2 

Blank-2 94 32 34.0  0.0071 0.0004 5.6  1.07 0.10 9.7  0.35 0.06 18.4  1.37 0.04 2.7  3.52 0.52 14.8 

Blank-3 54 10 18.5  0.0079 0.0004 5.1  0.64 0.05 8.4  0.28 0.09 31.5  2.93 0.12 3.9  2.59 0.42 16.1 

    
 

   
 

   
 

   
 

   
 

   
140701 

   
 

   
 

   
 

   
 

   
 

   
Blank-4 0.72 0.08 11.2  0.0095 0.0004 4.7  1.02 0.08 8.1  1.33 0.06 4.2  0.25 0.01 4.6  4.79 0.28 5.9 

Blank-5 14.6 0.8 5.5  0.0036 0.0004 11.3  0.42 0.08 19.2  1.22 0.04 3.2  0.28 0.01 4.4  1.89 0.12 6.2 

Blank-6 0.62 0.06 9.6  0.0266 0.0012 4.4  0.78 0.07 8.7  1.51 0.07 4.7  0.34 0.01 3.9  1.80 0.11 5.9 

Blank-7 0.80 0.07 8.5  0.0027 0.0004 13.4  0.49 0.11 23.2  7.90 0.23 2.9  0.34 0.02 5.3  2.59 0.10 3.9 

    
 

   
 

   
 

   
 

   
 

   
140413 

   
 

   
 

   
 

   
 

   
 

   
Blank-8 

   
 0.0815 0.00297 3.6  1.58 0.11 6.7  

   
 

   
 

   

    
 

   
 

   
 

   
 

   
 

   
Average : 0.71 

  
 0.006 

  
 0.63 

  
 0.82 

  

 0.30 
  

 2.9 
  

SD : 0.09 
  

 0.003 
  

 0.17 
  

 0.59 

  

 0.04 
  

 1.1 
  

RSD [%] : 12.6      46.7      28      72     
 14      39     

Italics are suspected to be contaminated. 
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Table 3.10 Zinc, Pb, Bi, In, Tl and Cd abundances for R chondrites of this study. Zn, Pb, In, Tl and Cd were determined by isotope dilution 

technique whereas Bi was determined from Pb/Bi ratio.  
 

R chondrites Type Weathering*  Zn Pb In Bi Cd Tl 

    (ppm) (ppm) (ppb) (ppb) (ppb) (ppb) 

This work          

PRE 95411.21 R3 A/B  164 ± 1 1.33 ± 0.03 44.5 ± 1.2 57.4 ± 0.6 527 ± 16 112.3 ± 1.3 

ALH 85151.41 R3.6 B(wi2)  172 ± 1 1.26 ± 0.03 36.9 ± 0.5 53.6 ± 0.9 238 ± 10 51.4 ± 1.0 

Y 793575.44 R3.8 (wi4)  164 ± 1 0.373 ± 0.033 15.8 ± 0.4 13.6 ± 0.4 77.8 ± 7.3 2.41 ± 0.94 

          

Y 983270.56  R4 A  156 ± 2 0.942 ± 0.034 31.5 ± 4.1 42.4 ± 0.5 258 ± 9 42.0 ± 1.0 

A 881988.68 R4 (wi3)  161 ± 1 1.04 ± 0.03 32.9 ± 0.9 34.4 ± 0.5 243 ± 10 2.90 ± 0.94 

MIL 07440.8  R4 Be  166 ± 2 1.05 ± 0.03 29.1 ± 3.6 46.3 ± 0.7 232 ± 10 7.49 ± 0.95 

LAP 03639.33 R4 A/B  150 ± 1 0.948 ± 0.034 25.3 ± 1.1 64.8 ± 0.9 230 ± 9 6.63 ± 0.95 

Y 983720.81 R4 A  156 ± 1 0.950 ± 0.034 29.9 ± 0.9 39.0 ± 0.6 228 ± 19 35.6 ± 1.0 

          

Y 983097.81 R5 A  174 ± 2 0.963 ± 0.007 12.1 ± 0.3 16.8 ± 0.5 20.0 ± 1.5 2.88 ± 0.08 

LAP 04840.12 R6 A/B  168 ± 2 0.807 ± 0.008 38.9 ± 0.6 26.9 ± 0.4 179 ± 2 37.4 ± 0.3 

MIL 11207.8 R6 Ce  167 ± 1 2.28 ± 0.02 39.5 ± 0.7 49.3 ± 0.7 215 ± 3 17.2 ± 0.1 

Y 980702.61 R6 ?  133 ± 1 0.864 ± 0.008 28.3 ± 0.5 25.8 ± 0.5 170 ± 2 6.17 ± 0.07 

Y 980703.71 R6 ?  135 ± 1 0.846 ± 0.009 28.1 ± 0.4 26.7 ± 0.7 179 ± 2 6.58 ± 0.07 

          

LAP 02238.13  R B(wi4)  161 ± 1 1.19 ± 0.01 31.8 ± 0.5 56.0 ± 1.0 291 ± 3 51.3 ± 0.3 

PCA 91002.64  R3.8-6 A/B(wi1)  156 ± 2 1.59 ± 0.01 42.3 ± 0.8 71.7 ± 0.9 556 ± 5 84.1 ± 0.5 

Uncertainties (1σ) are due to standard deviation of 20 scans of single sample by ICP-MS (iCAP – Thermo Scientific) and for blank 

correction. 
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Fig. 3.4: CI-normalized abundances of Zn, Pb, Bi, In, Tl and Cd in a petrologic suite of R 

chondrites. Triangles represent R3 – R3.8, squares represent R4, diamonds represent R5, 

circles represent R6. 
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4.1 Comparison with Literature data and possible terrestrial weathering 

 Out of the 15 R chondrites of this study, PRE 95411, LAP 03639 and LAP 04840 

(Isa et al., 2014), ALH 85151 (Rubin & Kallemeyn, 1989) and PCA 91002, Y 793575 

(Kallemeyn et al., 1996) were previously analyzed by instrumental neutron activation 

analysis. In Fig. 4.1, elemental abundances of this study are normalized to the respective 

literature data. From Isa et al., 2014, no data for Mg, Al and V are available. In the 

literature-normalized plot, most of the data are in good agreement with those of literature 

data except that for Au and Br. In Table 4.1, scattered values of Au are shown from this 

study and the literature data as well. Even the different replicates of a same meteorite show 

very scattered abundance (Rubin et al., 1989; Kallemeyn et al., 1996, Xiao and Lipschutz, 

1992) for Au. Rubin and Kallemeyn, 1994 suggested that the heterogeneities in Au 

abundances were caused by terrestrial weathering, i.e., that Au was redistributed in the 

meteorites by ground water transportation and electrochemical precipitation. Bromine 

values in R chondrites are appreciably scattered in this study as well as in literature data. 

These scattered values are also suspected to be a result of terrestrial weathering. Other than 

Au and Br, in Y 793575 and A 881988, Ni and Co abundances show some variation 

compared with that of literature data. In calculating the mean Ni and Co abundances in R 

chondrites, Isa et al. (2014) rejected the values from Y 793575 and A 881988, suspecting a 

probable weathering. 

Table 4.1 Scattered gold abundances in R chondrites 

R chondrites This study 

[ppb] 

Literature data 

[ppb] 

PCA 91002.64 174  

PCA 91002.20
a
  34.0 

PCA 91002.20
a
  194 

PCA 91002.23
a
  242 

PCA 91002.23
a
  62.0 

   

Y-793575.44 62.5  

Y-793575.100
a  107 

Y-793575.100
a  125 

   

ALH 85151.41 73.0  

ALH 85151.5
b
  73 
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b
  71 
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c
  136 

a
Kallemeyn et al., 1996; 

b
Rubin et al., 1989 

c
Xiao and Lipschutz, 1992 
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Fig. 4.1  Bulk chemical composition of this study is normalized by the literature data for comparison. PRE 95411, LAP 03639, LAP 04840 

(Isa et al., 2010), ALH 58150 (Rubin & Kallemeyn, 1989), Y-793575, PCA 91002 (Kallemeyn et al., 1996) are the common R chondrites in 

this work. 
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 Rumuruti is the only fall R chondrite so far (Schulze et al., 1994) and is terrestrially 

unweathered. In Fig 4.2 Rumuruti normalized elemental abundances in R chondrites of this 

study along with the literature data (Rubin and Kallemeyn, 1989; Rubin and Kallemeyn, 

1994; Kallemeyn et al., 1996; Isa et al., 2014 and Palme et al., 1996) are plotted. Yellow 

circles with red outlining represent the R chondrites of this study whereas the blank circles 

represent the literature data. For normalization, Rumuruti abundances were taken from 

Kallemenyn et al. (1996). For most of the elements, elemental abundances of this study lie 

within the 20% limit of the Rumuruti chondrite. The spreading of the abundances in Fig 4.2 

also represents the analytical uncertainty. But the analytical uncertainties (1σ, counting 

statistics) for Au, Co and Ni are <3.0%, <1.0% and <2.0%, respectively. So the large 

variation of Au abundances in this study as well as in previous work is probably due to 

terrestrial weathering. For Co and Ni, only in few cases depleted abundances are observed 

which are not due to analytical uncertainties. 

 The analytical uncertainties for Br is ~30%, but the variations of Br abundances in 

Rumuruti normalized plot (Fig 4.2) are more than 30%. So, Br in R chondrites is suspected 

to be terrestrially altered. For Arsenic and Sb, the analytical uncertainties range from 20 to 

25% which are comparable with their variations in Fig 4.2. Sodium, Mn, Zn and Se 

abundances of this study are consistent with those of literature data (Fig 4.1 and 4.2).  

 In this study, Pb abundances were determined by isotope dilution technique 

assuming the same Pb isotopic composition in R chondrites as in Allende. Four isotopes 

(
204

Pb, 
206

Pb, 
207

Pb and 
208

Pb) were monitored in ICP-MS experiment and the spike was 

enriched with 
207

Pb. So, Pb abundances were measured from 
204

Pb/
207

Pb, 
206

Pb/
207

Pb and 

208
Pb/

207
Pb isotopic ratio. For all R chondrites, Pb abundances obtained from 

204
Pb/

207
Pb, 

206
Pb/

207
Pb and 

208
Pb/

207
Pb isotopic ratio are internally consistent, except for MIL 11207.8. 

In Fig 4.3, Pb abundances (in ppm) are plotted obtained from different isotopic ratios where 

MIL 11207.8 is far away from the regression line. A reasonable assumption is that Pb 

isotopic composition in MIL 11207.8 was somehow changed due to terrestrial weathering. 

Its weathering category is Ce (Severe rustiness with the presence of evaporates) which is 

also concomitant with the terrestrial alteration. 
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Fig. 4.2 Rumuruti normalized elemental abundances for R chondrites. Yellow circles with red outline represent the R chondrites analyzed in 

this study and the blank circles represent the previous works (Rubin and Kallemeyn, 1989; Rubin and Kallemeyn, 1994; Kallemeyn et al., 

1996; Isa et al., 2014 and Palme et al., 1996). 
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Fig. 4.3 Lead abundances in R chondrites have determined by isotope dilution method 

assuming the same isotopic compositon in R chondrites as in Allende. Using 
207

Pb spike, 

we measured Pb abundance from 
204

Pb/
207

Pb, 
206

Pb/
207

Pb and 
208

Pb/
207

Pb ratios. For all R 

chondrites Pb abundances are internally consistent, except for MIL 11207.8 which implies 

that MIL 11207.8 possesses a different Pb isotopic composition compared with those of 

other R chondrites. A simple explanation is Pb isotopic composition of MIL 11207.8 is 

altered by terrestrial weathering. 
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4.2 Taxonomic study: A bulk chemical composition approach  

 Kallemeyn et al. (1996) showed that Zn/Mn vs. Al/Mn plot can distinguishe the 

established chondritic groups as Al, Mn and Zn are widely separated in terms of nebular 

condensation temperatures. In Fig. 4.4 R chondrites of this study are well fit with the R 

chondrite classification depending on the bulk chemical compositions.  

 

 
 

Fig. 4.4 Various chondritic groups from distinct compositional clusters on a plot of Zn/Mn 

vs. Al/Mn along with the R chondrites of this study and of previous works (Rubin and 

Kallemeyn, 1989, 1994; Bischoff et al., 1994, Schulze et al., 1994; Kallemeyn et al., 1996; 

Palme et al., 1996; Isa et al., 2014). These three elements are widely separated in terms of 

nebular condensation temperatures (Al > Mn > Zn). R chondrites of this study tightly 

clustered with literature works and widely separated from that of other established 

chondritic groups (Kallemeyn and Wasson, 1981, 1986; Kallemeyn et al., 1989, 1991).  
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4.3 Nebular processes 

4.3.1 Oxidation  

 Figure 4.5 shows the correlation of Zn and Se contents in various types of 

chondrites. Selenium is a chalcophile and mostly partitioned into the sulfide while Zn is 

found in almost all sorts of mineralogical phases in meteorites (Allen and Mason, 1973). 

Both of them share the same nebular condensation temperature (McSween and Huss, 2010), 

but they are fractionated. Enstatite chondrites are the most reduced chondritic meteorites 

whose Se abundances are comparable with those in the most oxidized noncarbonaceous R 

chondrite. But Zn abundances in R chondrite are remarkably higher than those in EL 

chondrite and comparable with CM chondrite abundances. Higher stability of ZnO in 

oxidized condition can be a plausible explanation for this Zn enrichment. 
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Fig. 4.5 Zinc vs. Selenium plot for various chondritic groups along with the R chondrites of 

this study and of previous works (Rubin and Kallemeyn, 1989, 1994; Bischoff et al., 1994, 

Schulze et al., 1994; Kallemeyn et al., 1996; Palme et al., 1996; Isa et al., 2014). R 

chondrites are closely lying to the carbonaceous chondrite line and are distinctly separated 

from ordinary chondrites (Kallemeyn and Wasson, 1981, 1986; Kallemeyn et al., 1989, 

1991). 
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4.3.2 HREE-LREE fractionation 

 It can be noticed that heavy rare earth elements (HREEs) are faintly enriched 

compared with light rare earth elements (LREEs) (Fig. 3.2). CI-normalized Nd/Yb and 

Pr/Tm ratios are plotted in Fig. 4.3. These ratios for R chondrites are systematically lower 

than CI values. Apparently, HREEs (represented by Tm and Yb) are enriched compared 

with LREEs (represented by Pr and Nd). In our ICP-MS experiment, we have corrected the 

interferences from LREE (oxides & hydroxides) and Ba on HREE determination, although 

in most of the cases such interference is less than 1%. 
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Fig. 4.6 CI normalized (Anders and Grevesse, 1989) Pr/Tm-Nd/Yb plot to represent the 

HREE enrichment (represented by Tm and Yb) compared with that of LREE (represented 

by Pr and Nd). Here triangle presents the petrologic type 3, diamonds for type 4, circles for 

type 5 and 6, and blank plus for brecciated R chondrites.   
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 Two possible explanations can be given for such HREE-LREE fractionation: (1) As 

La and other common REEs reside primarily in Ca-phosphate and to lesser extent in Ca-

pyroxene in metamorphosed ordinary chondrites (Ebihara and Honda, 1983, 1984), it can 

be considered that the faint HREE-LREE fractionation observed here may be due to the 

heterogeneous distribution of these minerals in R chondrites. If this is so, the relative 

standard deviations (RSDs) for specific REEs in highly metamorphosed R chondrites (R5 – 

R6) should be lower compared with those of RSDs in R chondrites (R3 – R4) of low 

metamorphic grade. But in this study, no such significant variations have been observed. 

(2) Nebular process can be responsible for such small HREE-LREE fractionation in R 

chondrites. To explain the nebular process in R chondrites, an analogically well explained 

fractionated pattern of REEs, Th and U abundances in Allende meteorite can be considered. 

In Allende, HREEs are depleted compared with LREEs (Fig. 2.3). According to Boynton 

(1975) and Davis and Grossman (1979), high temperature early condensates (e.g., 

perovskite, hibonite, corundum etc.) enriched in refractory HREEs could have been 

removed from the nebular gas, making the remaining gas enriched in less refractory LREEs. 

It is likely that the Allende parent body formed from such later condensates of the 

remaining gas. In R chondrites, the inclination of CI-normalized REE pattern is opposite to 

the Allende pattern (except positive Tm anomaly) (Fig. 3.2). A simple interpretation is that 

R chondrites formed in the nebula where early condensates were relatively abundant.  

 

4.3.3 Thorium-Uranium fractionation  

 REE fractionation pattern in R chondrites is opposite to that of Allende, however, Th-

U fractionation patterns are the same both in R chondrites and in Allende. In the seven 

replicate measurements of Allende powder of this study, Th/U ratio is 4.10 ± 0.20 and is 

consistent with the literature (Tatsumoto et al., 1973, Shinotsuka et al., 1995; Makishima & 

Nakamura, 2006; Dauphas & Pourmand, 2011 and Barrat et al., 2012) value (3.90 ± 0.20). 

In R chondrites of this study, Th/U ratio is 3.81 ± 0.13. 

 Thorium and Er have the same nebular condensation temperature while U is less 

refractory compared with Th and Er (McSween and Huss, 2010). In Fig. 4, CI-normalized 

Th/Er and U/Er ratios are plotted. Obviously U/Er values are smaller but Th/Er values are 

larger than their corresponding CI ratios for most R chondrites. This suggests that in R 

chondrites Th and U are fractionated from CI chondrite values. 
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Fig. 4.7 CI normalized (Anders and Grevesse, 1989) U/Er-Th/Er plot to represent the 

thorium-uranium fractionation in R chondrites. Here triangle presents the petrologic type 3, 

diamonds for type 4, circles for type 5 and 6, and blank plus for brecciated R chondrites. 
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4.4 Systematic variation of volatile elements in R chondrites 

 Among the 15 R chondrites of this study, MIL 11207.8 is heavily altered by 

terrestrial weathering. Y 793575.44 and LAP 02238.13 also represent some terrestrial 

alteration (Table 2.1). Gold abundances in Y 793575 is very low whereas in MIL 11207 is 

high. The same trend is observed in Fig. 4.8 for Pb, Bi, In, Tl and Cd abundances. So it 

would be a reasonable assumption that these two meteorites (MIL 11207 and Y 793575) are 

terrestrially altered than the other R chondrites in this study. Earlier works by Purdue and 

Chicago groups showed that the volatile elements are not much altered in lightly weathered 

finds (Laul et al., 1970; Keays et al., 1971; Case et al., 1973; Laul et al., 1973; Binz et al., 

1976; Takahashi et al., 1798 etc.). So the rests of the R chondrites are not heavily altered 

and the volatile elements represent their pristine abundances. If highly weathered MIL 

11207 and Y 793575 are disregarded, then we can observe a systematic variation of Pb, Bi, 

In, Tl and Cd in Fig. 4.8. In Fig. 4.8 brecciated and type 3 R chondrites are both showed by 

triangles as their volatile elements abundances are comparable with those of petrologic type 

3. It would be reasonable to assume that LAP 02238.13 and PCA 91002.64 belong to type 3 

clast.  

 In Fig 4.9 average CI-normalized abundances of petrologic type 3, 4 and 5/6 are 

plotted. MIL 11207.8 and Y 793575.44 are excluded from the average and LAP 02238.13 

and PCA 91002.64 are included in type 3 average. Refractory siderophile elements (Ir, Co, 

Ni) and moderately volatile elements (Au, Se, Zn) do not show any fractionation within the 

petrologic types 3 to 6. But highly volatile elements (Pb, Bi, In, Tl, Cd) show fractionation 

within the petrologic types. Sometimes it is difficult to separate the petrologic types 3 from 

4 or petrologic types 4 from 5/6, but petrologic types 3 and 6 can easily be distinguished 

from their volatile elements abundances. So, in the petrologic suite of R chondrites of this 

study, volatile elements are more depleted in higher petrologic types compared with those 

of lower petrologic types.  

 Other than volatile elements, in Fig. 4.8 and 4.9, refractory siderophile elements (Ir, 

Co and Ni) and moderately volatile element Au are plotted. Being siderophile elements, Ir, 

Co, Ni and Au are generally partitioned into the metal phase of chondrites. But R 

chondrites have almost no metal phase. So, the siderophile elements are believed to be 

partitioned into sulphides. Except Au, other siderophile elements are terrestrially unaltered 

(with very minor exception for Co and Ni). Among the volatile elements Zn, Bi and Cd are 

considered as lithophile; Se, In and Tl are chalcophile and only Pb is considered to be a 
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siderophile (Lodders et al. 2009). Selenium and Zn are unfractionated within the petrologic 

suite of R chondrites whereas Pb, Bi, In, Tl and Cd show systematic variation. The general 

trend for Pb and Bi are similar to that of In, Tl and Cd. So we can reasonably assume that 

the systematic variation of volatile elements with the petrologic types is not due to the 

terrestrial weathering. Two possible explanations can be given for such systematic 

variation- accretional condensation and (/or) parent body heating. 
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Fig. 4.8 CI-normalized abundances of Ir, Co, Ni, Se, Zn, Pb, In, Bi, Cd and Tl in a petrologic suite of R chondrites. Triangles represent R3 – 

R3.8, squares represent R4, diamond represents R5 and circles represent R6 R chondrites. 
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Fig. 4.9 CI-normalized abundances of Ir, Co, Ni, Se, Zn, Pb, In, Bi, Cd and Tl in a 

petrologic suite of R chondrites. Type-3 is represented by blue triangles and is the average 

of PRE 95411.21, ALH 85151.41, LAP 02238.13 and PCA 91002.64. Type 4 is represented 

by red squares and is the average of Y 983270.56, A 881988.68, MIL 07440.8, LAP 

03639.33 and Y 983720.81. Type 5/6 is represented by green circles and is the average of 

Y 983097.81, LAP 04840.12, Y 980702.61 and Y 980703.71. Error bars are due the 

standard deviation of corresponding R chondrites. Refractory siderophiles (Ir, Co, Ni) and 

moderately volatiles (Se, Zn) do not show any fractionation within the petrologic type 3 to 

6. But highly volatile elements (Pb, Bi, In, Tl, Cd) show fractionation within the petrologic 

type.  
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4.4.1 Volatile elements abundances in R chondrites: Comparison with Ordinary 

chondrites 

 From the INAA data of this study as well as from literature data (e.g., Kallemyn et 

al. 1996; Isa et al., 2014 etc.), it is quite noticeable that in R chondrites, lithophile elements 

abundances are comparable to those of ordinary chondrites, siderophile elements 

abundances are intermediate between H and L chondrites and only volatile elements (Zn 

and Se) showed significant enrichment compared with those of ordinary chondrites (Fig. 

3.1). Bulk chemical compositions of R chondrites obtained from INAA experiment do not 

show any systematic variation with the petrologic types. But in this study, volatile elements 

(Pb, Bi, Tl, In and Cd) in R chondrites show a systematic variation with the petrologic 

types (section 4.3). Tandon and Wasson (1967) also found a systematic variation of In 

content in a petrologic suite of L chondrites. According to the previous studies (e.g., 

Greenwood et al., 2000), there is some linkage among the R chondrites and ordinary 

chondrites. So, the volatile elements abundances (Bi, Tl, In and Cd) of R chondrites are 

compared with those of ordinary chondrites in Fig. 4.10. Previously volatile elements in 

chondrites have been studied by RNAA mostly by Anders and Lipschutz and their co-

workers (e.g., Keays et al., 1971, Laul et al., 1973, Takahashi et al., 1978 and Kaczaral et 

al., 1989). So, Pb data were not available from their study. In Fig 4.10a, 4.10b, 4.10c and 

4.10d CI-normalized Bi, Tl, In and Cd abundances are plotted, respectively to compare the 

R chondrites abundances with those of ordinary chondrites. In our sample list, we have only 

one R chondrite of petrologic type 5. 

 In Fig. 4.10, for unequilibrated chondrites, CI-normalized Bi, Tl, In and Cd 

abundances in R chondrites are within the range of ordinary chondrites. But in higher 

metamorphic grade, CI normalized Bi, Tl, In and Cd abundances in R chondrites are 

generally higher than those of H, L and LL chondrites with few exception. The higher 

abundances of volatile elements in equilibrated R chondrites are more prominent for Bi, In 

and Cd. For Tl, the trend of higher volatile elements abundances in R chondrites is also 

noticeable (especially for petrologic type 6), but somehow less conspicuous than Bi, In and 

Cd. References of literature data for H, L and LL chondrites are given in corresponding 

figure captions. 
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Fig. 4.10a CI-normalized abundances of Bi in R chondrites (of this study) are compared 

with those of H, L and LL chondrites according to their petrologic types. Triangles, squares, 

diamond and circles represent the petrologic type 3, 4, 5 and 6, respectively. Red, black, 

green and blue colors represent the R, H, L and LL chondrites, respectively. For H, L and 

LL chondrites literature values are used from Laul et al., 1973; Wang et al., 2007; Dennison 

et al., 1987; Laul et al., 1970a and Friedrich et al., 2003. 
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Fig. 4.10b CI-normalized abundances of Tl in R chondrites (of this study) are compared 

with those of H, L and LL chondrites according to their petrologic types. Triangles, squares, 

diamond and circles represent the petrologic type 3, 4, 5 and 6, respectively. Red, black, 

green and blue colors represent the R, H, L and LL chondrites, respectively. For H, L and 

LL chondrites literature values are used from Laul et al., 1973; Wang et al., 2007; Dennison 

et al., 1987; Laul et al., 1970b and Friedrich et al., 2003. 
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Fig. 4.10c CI-normalized abundances of In in R chondrites (of this study) are compared 

with those of H, L and LL chondrites according to their petrologic types. Triangles, squares, 

diamond and circles represent the petrologic type 3, 4, 5 and 6, respectively. Red, black, 

green and blue colors represent the R, H, L and LL chondrites, respectively. For H, L and 

LL chondrites literature values are used from Laul et al., 1973; Wang et al., 2007; Dennison 

et al., 1987; Tandon and Wasson, 1967 and Friedrich et al., 2003. 
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Fig. 4.10d CI-normalized abundances of Cd in R chondrites (of this study) are compared 

with those of H, L and LL chondrites according to their petrologic types. Triangles, squares, 

diamond and circles represent the petrologic type 3, 4, 5 and 6, respectively. Red, black, 

green and blue colors represent the R, H, L and LL chondrites, respectively. For H, L and 

LL chondrites literature values are used from Laul et al., 1973; Wang et al., 2007; Lingner 

et al., 1987; Dennison and Lipschutz, 1987 and Friedrich et al., 2003. 
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4.4.2 Condensation model 

 R chondrites and ordinary chondrites show systematic variation of volatile elements 

abundances with the petrologic types. In contrast to R chondrites and ordinary chondrites, 

carbonaceous chondrites do not show such variation. Among the carbonaceous chondrites, 

only CK chondrites are metamorphosed and possessing all petrologic types (CK3 to CK6). 

Even in CK chondrites no systematic variation of volatile elements abundances were 

observed with the petrologic types (Isa et al. 2011). Instead of showing systematic variation 

with petrologic types, carbonaceous chondrites show depletion with constant factor 

compared with CI meteorite (Larimer and Anders, 1967). To explain the elemental 

abundance pattern in chondritic meteorites, Anders and Larimer (Anders, 1964; Larimer 

and Anders, 1967) proposed two component nebular condensation model. According to the 

two-component model, the elemental abundance pattern was established during accretion 

from the solar nebula and the condensation was followed by a simultaneous accretion. In a 

regime of falling temperatures, elements would condense in succession on the fine-grained 

dust (fraction A), but not on the coarse-grained chondrules-plus-metal (fraction B). The 

composition of fraction A (low temperature condensate: matrix) would thus vary with 

temperature, while that of fraction B (high temperature condensate) remains essentially 

fixed. Meteorites last to accrete would therefore be richest in volatiles. Being situated in the 

outermost layers of the parent body, they would also be least metamorphosed. Thus a strict, 

yet non-causal correlation between trace element depletion and metamorphism would result.   

 To explain the systematic variation of In contents in a petrologic suite of L 

chondrites, Tandon and Wasson (1968) proposed three component condensation model. In 

this model elemental abundance pattern was established during accretion, as in the two 

component model. However, strongly depleted elements were brought in mainly by a third 

component (fraction C), strongly enriched in all volatile elements. All three components are 

assumed to have fixed composition. Now we need to evaluate the validity of nebular 

condensation models for R chondrites: 

 According to the condensation calculation of Keays et al. (1971) for two component 

model, the theoretical condensation curve for Tl and Bi has a slope near 1 for low degree of 

condensation. But once the solubility limit of Bi is reached the curve changes its slope and 

flattens abruptly then rises very sharply with a slope of 90°. Assuming a three component 

model, Tl and Bi correlation curve should have 45°. In Fig. 4.11a, observed trend of Tl and 
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Bi is shown with an arbitrary drawn correlation line of 45° slope. The data points in Fig. 

4.11a, seems to be fit for both two and three component model.  

 From the prediction of three component model, In-Bi curve should have a slope 45°. 

But in the observed slope of In-Bi curve (Fig. 4.11b) for R chondrites is fairly less than 45°. 

An even better test is provided by linear three element plots (e.g., X/Z vs. Y/Z), as are 

commonly used to resolve isotopic components of noble gases. It is a property of such a 

plot that all compositions obtained by mixing two components of fixed composition lie 

along a straight line joining the two components. Inasmuch as the volatiles in the three 

component model are contributed only by fractions A and C, both of fixed composition, 

three element plots should yield straight lines. But the observe trend (Fig. 4.11c) of Bi/In 

and Tl/In ratios do not fall on a straight line.  
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Fig. 4.11a Observed trend of Tl and Bi data. Only an arbitrary correlation line (dashed line) 

is drawn. Brown triangles, blue squares, black diamond, green circles and red triangles 

represent petrologic types 3, 4, 5, 6 and brecciated R chondrites, respectively.  
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Fig. 4.11b Observed trend of In and Bi data. Only a correlation line (dashed line) of slope 

45° is drawn arbitrary. Brown triangles, blue squares, black diamond, green circles and red 

triangles represent petrologic types 3, 4, 5, 6 and brecciated R chondrites, respectively. 
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Fig. 4.11c Observed trend of Bi/In and Tl/In data. No linear correlation is observed as 

expected by three component model. 
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 According to the two component model, volatile elements abundances depend on 

the modal abundance of matrix (fraction A). The modal abundances of matrix are 90%, 

70% and 40% in CI, CM and CV chondrites, respectively (Scott and Krot, 2005), which are 

nearly closer to the two component prediction. In the case of ordinary chondrites, volatile 

elements are not depleted by a constant factor. So the prediction of 25% modal abundance 

of matrix component (Larimer and Anders, 1967) is not concomitant with the observed 

depletion of volatile elements in ordinary chondrites. The modal abundances of matrix are 

10-15% and 35% for ordinary and R chondrites, respectively (Scott and Krot, 2005). Two 

component model is thus an idealized model that can be applicable to carbonaceous 

chondrites, most efficiently.  

 

4.4.3 Metamorphic model 

 Similar to the ordinary chondrites, volatile elements are not depleted by a constant 

factor in R chondrites. R chondrites/CI ratios for highly volatile elements (Pb, Bi, Tl, In and 

Cd) appear to be randomly distributed over the range 0.81 – 0.02. To explain the depletion 

pattern for ordinary chondrites metamorphism model was proposed (Wood, 1967 and Dodd, 

1969). According to this model, all ordinary chondrites initially had the composition and 

mineralogy of petrologic type 3. The depletion pattern was established during 

metamorphism, with the most intensely metamorphosed meteorites losing the greatest 

proportion of volatiles. Later on, Lipschutz and co-workers (e. g., Ikramuddin and 

Lipschutz, 1975; Ikramuddin et al., 1976, 1977) presented their heating experiments and 

supported the metamorphism model along with the condensation model. To explain the 

volatile elements depletion pattern by condensation model followed by metamorphism, a 

layered parent body with an internal heat source is needed. Based on the experimental 

observations, Wood (2003) and Trieloff et al. (2003) demonstrated the onion-shell model 

for H chondrites, where low petrologic type chondrites reside at the outer surface of the 

parent body while higher petrologic types gradually positioned into the inner portion of the 

parent body (Fig. 4.12). In the onion-shell model, decay of 
26

Al was advocated as the most 

probable heat source. The signature of 
26

Al was proved by the presence of its decay product 

(excess 
26

Mg) in refractory inclusions and chondrules (Russell et al., 1996; Kita et al., 

1998). Depending on the model calculation, Miyamoto et al. (1981) drew the same 

conclusion as Wood (2003) did. 
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Fig. 4.12 Sketches of onion-shell and rubble-pile configurations for ordinary chondrite 

parent bodies. Numbers identified regions of different petrologic type (this figure is taken 

from McSween and Patchen, (1989) after the permission of Harry Y. McSween) 

 

 

 

 So, the condensation model followed by thermal metamorphism can be invoked to 

explain the systematic variation of highly volatile elements in a petrologic suite of R 

chondrites. Up to this point, there are close similarities between the parent body formation 

of R chondrites and ordinary chondrites.  

 CI-normalized volatile elements abundances in unequilibrated R chondrites are 

comparable with those of unequilibrated ordinary chondrites but with the higher degree of 

metamorphism, volatile elements abundances are getting higher value compared with those 

of corresponding metamorphic grade of ordinary chondrites (Fig. 4.10). Two reasonable 

assumptions can be made at this stage: (1) The agglomeration temperature for R chondrites 

was lower than ordinary chondrites or, (2) Internal heating for metamorphic 

recrystallization was somehow lower for R chondrites than the ordinary chondrites.  

 A serious problem with associating the volatile loss with metamorphism is that 

heating only causes the elements to enter the local gas phase, but no net loss occurs if this 

gas remains in local voids until the asteroid cools down below the evaporation temperature 

(Wasson, 2005). 
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4.4.4 Impact and the parent body of R chondrites 

 Rubin (2004) examined a detailed mineralogical study in several equilibrated 

ordinary chondrites to study the thermal and shock histories of chondritic asteroids and 

concluded that collisional events caused all equilibrated ordinary chondrites to reach shock 

stages S3-S6. Equilibrated ordinary chondrites which are now classified as S1 or S3, 

underwent the postshock annealing. 
39

Ar-
40

Ar isotopic age is one of the meteoritic 

chronometer that was reset due to impact heating (Bogard, 1995). So, Rubin (2004) argued 

for the impact history for petrologic type-6 ordinary chondrites. According to Rubin (2004), 

39
Ar-

40
Ar isotopic age ranges from 4.44 - 4.45 Ga when impacts were prevalent and most 

ordinary chondrites were thermally metamorphosed.  

 Dixon et al., (2003) determined the 
39

Ar-
40

Ar ages for the whole-rock of Carlisle 

Lakes, Rumuruti, Acfer 2017 and PCA 91002 which were breccias except for Carlisle 

Lakes. Noticing a complicated age spectra due to recoil of 
39

Ar and diffusive loss of 

radiogenic 
40

Ar to various extent, they reported the peak 
39

Ar-
40

Ar ages: ≥4.35 Ga (Carlisle 

Lakes), ~4.47±0.02 Ga (Rumuruti), 4.30±0.07 Ga (Acfer 217) and ≥4.37 Ga (PCA 91002). 

R chondrites have relatively old 
39

Ar-
40

Ar ages that overlap those of the oldest L and LL 

chondrites (Dixon et al., 2003 and references therein). Following Rubin’s (2004) arguments 

for ordinary chondrites, we can assume that impacts were prevalent for R chondrites as well. 

Asteroid growth involved random collisions that randomly mixed early-condensed and late 

condensed objects (Wasson, 2005). Apparently, early condensed objects were depleted in 

volatile elements and are more thermally metamorphosed compared with those of late 

condensed objects. For this we need to consider rubble-pile structure instead of onion-shell 

model (Fig. 4.12). In rubble-pile structure, objects with different metamorphic grades are 

assembled together without following any sequence.   
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 In our INAA study, CI, Cr-normalized lithophile abundance pattern in R chondrites 

are almost flat and are comparable with those of ordinary chondrites. Mean CI-normalized 

Na and Mn abundances are 1.32 ± 0.07 and 1.21 ± 0.04, respectively, which are comparable 

with those of ordinary chondrites but higher than those of carbonaceous and enstatite 

chondrites. However, CI, Cr-normalized siderophile abundance pattern in R chondrites are 

intermediate between H and L chondrites. A mean iron content in R chondrites is 24.6 ± 0.7 

(%, 1σ, n=15, this study) whereas the mean iron contents in H, L and LL are 27.1 ± 0.7 (%, 

1σ, n=22), 21.6 ± 0.5 (%, 1σ, n=20) and 18.4 ± 0.4 (%, 1σ, n=16), respectively. Bulk Ir 

contents in R chondrites also show the same trend as iron. CI-normalized Ni/Co ratios 

(~0.9) in R chondrites are comparable with those of ordinary chondrites. Moderately 

volatile elements, Zn and Se in R chondrites are more abundant than those in ordinary 

chondrites. Selenium is a chalcophile and mostly partitioned into the sulfide while Zn is 

found in almost all sorts of mineralogical phases in meteorites. Both of them share the same 

nebular condensation temperature, but they are fractionated. Enstatite chondrites are the 

most reduced chondritic meteorites whose Se abundances are comparable with those in R 

chondrite. But Zn abundances in R chondrite are remarkably higher than those in EL 

chondrite and comparable with CM chondrite abundances. Higher stability of ZnO in 

oxidized condition can be a plausible explanation for this Zn enrichment. 

 In CI-normalized REE, Th and U abundance patterns, heavy rare earth elements 

(HREE) are faintly enriched compared with those of light rare earth elements (LREE). CI-

normalized Nd/Yb and Pr/Tm ratios for R chondrites are systematically lower than CI 

values. Apparently, HREEs (represented by Tm and Yb) are enriched compared with 

LREEs (represented by Pr and Nd). In our ICP-MS experiment, we have corrected the 

interferences from LREE (oxides and hydroxides) and Ba on HREE determination, 

although in most cases such interference is less than 1%. Nebular process can be 

responsible for such small HREE-LREE fractionation in R chondrites. To explain the 

nebular process in R chondrites, an analogically well explained fractionated pattern of 

REEs, Th and U abundances in Allende meteorite can be considered. In Allende, HREEs 

are depleted compared with LREEs. According to condensation calculation, high 

temperature early condensates (e.g., perovskite, hibonite, corundum etc.) enriched in 

refractory HREEs could have been removed from the nebular gas, making the remaining 

gas enriched in less refractory LREEs. It is likely that the Allende parent body formed from 

such later condensates of the remaining gas. In R chondrites, the inclination of CI-
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normalized REE pattern is opposite to the Allende pattern (except positive Tm anomaly). A 

simple interpretation is that R chondrites formed in the nebula where early condensates 

were relatively abundant. Unlike the REE fractionation pattern, Th-U fractionation patterns 

are the same both in R chondrites and in Allende. In the seven replicate measurements of 

Allende powder, Th/U ratio is 4.10 ± 0.20, whereas in R chondrites, Th/U ratio is 3.81 ± 

0.13. A subtle positive Ce anomaly (5.4 ± 1.5 %) is observed in CI-normalized REE 

abundance pattern of R chondrites. 

 Highly volatile elements abundances in R chondrites show a systematic variation 

with the petrologic types, except for MIL 11207.8 and Y 793575.44. In higher 

metamorphic grade, volatile elements abundances are lower compared with those of lower 

metamorphic grade. Following the condensational accretion as in two component model, 

early condensates were depleted in volatile elements and placed in the inner portion of 

chondritic parent body. On the other hand, later condensates were comparatively enriched 

in volatile elements than those of early condensates and placed in the outer layer of the 

parent body. Thus, the higher metamorphic R chondrites are the inner portion of the parent 

body and the lower R chondrites are the outer portion if we consider the onion-shell model 

for R chondrites. However, chondritic materials faced a random impact during accretion. 

So the early condensates and the later condensates were mixed together without following a 

sequence and resulting a rubble-pile type parent body.  
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