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Chapter 1

Introduction

A manifold M is called a real Bott manifold if there is a sequence of RP1-bundle

M = Mn
RP1

−→Mn−1
RP1

−→ · · · RP
1

→ M1
RP1

−→ {pt} (1.1)

such that for each i ∈ {1, · · · , n}, Mi
RP1

−→ Mi−1 is the projective bundle of the
Whitney sum of a real line bundle and the trivial real line bundle over Mi−1.
The sequence (1.1) is called a real Bott tower of depth n and it is a real analogue
of a Bott tower introduced by Grossberg and Karshon in [12].

Among several characterizations by group actions, the Halperin-Carlsson
conjecture is true for all real Bott manifold. The Halperin-Carlsson torus con-
jecture says that if there is an almost free torus action T k on a closed n-manifold
M , the following inequality holds:

2k ≤
n∑
j=0

bj . (1.2)

Here bj = rankHj(M ;Z) is the j-th Betti number of M . See [31] for details
and the references therein, see also [14]. Another characterization of real Bott
towers is that each RP1-bundle is the Seifert fibration which is introduced by
Conner-Raymond and any real Bott manifold M is diffeomorphic to a euclidean
space form (Riemannian flat manifold).

In this thesis, we study a generalization of the real Bott tower from the
viewpoint of fiberation. We shall construct the geometric fiber bundles in the
sense of Bott tower.

In Chapter 2, we review the theory of Seifert fibration. Especially we state
two fundamental theorems of the Seifert fibration. Namely they are Realiza-
tion theorem end Rigidity theorem of Seifert manifold. See Theorem2.9 and
subsection2.7.

In Chapter 3, we revisit the classical results of the Calabi construction of
euclidean space forms with nonzero b1 = rankH1(M ;Z) [4] and the Conner-
Raymond injective torus actions [8]. Let T k be a k-dimensional torus (k ≥ 1).
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Given an effective T k-action on a closed manifold M , the orbit map at x ∈M is
defined to be ev(t) = tx (∀ t ∈ T k). Put π1(T k) = H1(T k;Z) = Zk and π1(M) =
π. The map ev induces a homomorphism ev# : Zk→π and a homomorphism
ev∗ : Zk→H1(M ;Z). According to the definition of Conner-Raymond [8], if ev#

is injective, the action (T k,M) is said to be injective. (Refer to [23, Theorem
2.4.2, also Subsection 11.1] for the definition to be independent of the choice
of the base point x ∈ M .) Classically it is known that ev# is injective for
closed aspherical manifolds [7]. On the other hand, if ev∗ : Zk→H1(M ;Z) is
injective, the T k-action is said to be homologically injective [8]. In Section 3.1,
we shall prove the following theorem to show that if ev∗ : H1(T k;Z)→H1(M ;Z)
is injective, then ev∗ : Hi(T

k;Z)→Hi(M ;Z) is also injective for i ≤ k.

Theorem 1.1. If (T k,M) is a homologically injective action on a closed n-
manifold M , then

kCj ≤ bj (j = 0, . . . , k). (1.3)

In particular the Halperin-Carlsson conjecture (3.1) is true.

The torus actions are known as homological injective actions on the following
closed manifolds:

(1) Every effective T k-action on a compact euclidean space form.

(2) Every holomorphic action of the complex torus T kC on a compact Kähler
manifold.

As a consequence the Halperin-Carlsson conjectue is true.
(1) is true more generally for effective T k-actions on compact nonpositively

curved manifolds. (See [11].) For (2) this characterization for holomorphic torus
actions is originally observed by Carrell [5]. (See also [23, Theorem, p.244].)
In Section 3.2 we shall give a proof concerning the existence of torus actions
common to both the Calabi theorem and the Conner-Raymond theorem as our
motivation (cf.Theorem 1.2).

Theorem 1.2. Let M be an n-dimensional compact euclidean space form. Sup-
pose that rankH1(M) = k > 0. Then M admits a homologically injective T k-
action. Moreover rankC(π) = k.

Corollary 1.3. There is no torus action on a compact Riemannian flat mani-
fold with b1 = 0.

In Chapter 4, from the view point of the fibration, we introduce the general-
ized notion of real Bott tower, namely S1-fibred nilBott tower. It is a sequence
of an iterated Seifert fiber bundle with fiber a circle which terminates at a point.

M = Mn
S1

−→Mn−1
S1

−→ · · · S
1

−→M1
S1

−→ {pt}. (1.4)

The top space M of (1.4) is called an S1-fibred nilBott manifold of dimension
n. We see easily that M turns out to be a closed aspherical manifold and each

fiber bundle Mi
S1

−→Mi−1 induces a group extension of fundamental groups;

1−→Z→πi−→πi−1−→1. (1.5)

2



Associated to each group extension (1.5) there is an equivariant principal bundle:

R→Xi
pi−→ Xi−1. (1.6)

Here Xi is the universal covering of Mi and put π1(Mi) = πi and π1(M) = π.

In particular, Seifert fiber bundle Mi
S1

−→Mi−1 means that each πi normalizes
R. Then we prove the following results.

Theorem 1.4. Suppose that M is an S1-fibred nilBott manifold.

(I) If every cocycle of H2
φ(πi−1,Z) which represents a group extension (1.5)

is of finite order, then M is diffeomorphic to a Riemannian flat manifold
Rn/Γ which has a Seifert fibration S1→Rn/Γ−→R̂n/Γ̂.

(II) If there exists a cocycle of H2
φ(πi−1,Z) which represents a group extension

(1.5) is of infinite order, then M is diffeomorphic to an infranilmanifold
N/Γ which has a Seifert fibration S1→N/Γ−→N̂/Γ̂. In addition, M can-
not be diffeomorphic to any Riemannian flat manifold.

Up to 3 dimension, S1-fibred nilBott manifold is classified.

Proposition 1.5. The 3 dimensional S1-fibred nilBott manifolds of finite type
are those of G1, G2, B1, B2, B3, B4.

(Masuda and Lee [22] also proved the similar results. )

Proposition 1.6. Any 3-dimensional S1-fibred nilBott manifold of infinite type
is either a Heisenberg nilmanifold N/∆(k) or an Heisenberg infranilmanifold
N/Γ(k).

Real Bott manifolds consist of G1, G2, B1, B3 among these G1, G2, B1, B2,
B3, B4. (Refer to the classification of 3-dimensional Riemannian flat manifolds
by Wolf [36]. We quote the notations Gi, Bi there.)

As in (1.5), a 3 dimensional S1-fibred nilBott manifold M gives a group
extension:

1−→Z→π3−→π2−→1

where π2 is the fundamental group of a Klein Bottle K or a torus T 2. Then
this group extension gives a 2-cocycle in the group cohomology H2

φ(π2,Z) with
a homomorphism φ : π2→Aut(Z) = {±1}. Conversely we have shown

Theorem 1.7. Every cocycle of H2
φ(π2,Z) can be realized as a diffeomorphism

class of a 3-dimensional S1-fibred nilBott manifold.

In Chapter 5 we shall introduce a notion of holomorphic torus-Bott tower
to complex manifolds. It is thought of a complex version of S1-fibred nilBott
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tower. Namely, a holomorphic torus-Bott tower is a sequence of holomorphic
Seifert fiber bundles by complex torus fiber T 1

C:

M = Mn→Mn−1→ . . .→M1→{pt}. (1.7)

The top space M of the tower (1.7) is said to be a holomorphic torus-Bott
manifold of dimension 2n. See Definition 5.1 of Section 5.1 more precisely.
Inductively from (1.7), M turns out to be a closed aspherical manifold. Then
it is shown that the fundamental group Γ of M is virtually nilpotent. Let
E(N) = N oK be the semidirect product of a simply connected nilpotent Lie
group N with a compact group K in which K is a maximal compact subgroup
of the automorphism group Aut(N). When we forget a complex structure on
M , it is proved that M is diffeomorphic to an infranilmanifold N/ρ(Γ) where
ρ : Γ→E(N) is a discrete faithful representation. In particular, using Seifert
rigidity, two holomorphic torus-Bott manifolds with isomorphic fundamental
groups are diffeomorphic.

In Section 5.1 we introduce a notion of holomorphic torus-Bott tower and
prove some topological results.

By a holomorphic nilmanifold we shall mean a complex nilmanifold with left
invariant complex structure. Refer to [32] for the recent results of deformation
of left invariant nilpotent Lie algebras. On the other hand, denote by T kC a
complex k-dimensional torus. Recall the structure theorem from S. Murakami’s
classical result [30].

Theorem 1.8. Let T 1
C→Y−→T kC be a principal holomorphic torus bundle. Then

Y is biholomorphic to a holomorphic nilmanifold N/∆ where N is a 2-step nilpo-
tent Lie group with left invariant complex structure containing a discrete uni-
form subgroup ∆.

To study the holomorphic rigidity of our holomorphic torus-Bott manifolds,
we need to generalize this result to the case of holomorphic torus bundles more
generally orbibundles over holomorphic infranilmanifolds (infranilorbifolds). We
refer to [23], [5] for holomorphic Seifert fibration.We shall prove the following.

Theorem 1.9. Let M be a 2n-dimensional holomorphic torus-Bott manifold
which is a holomorphic fiber bundle over M̂ with fiber T 1

C. Then M is biholo-
morphic to a holomorphic infranilmanifold N/Γ in which N/Γ has a holomorphic
Seifert fibration T 1

C→N/Γ−→N̂/Γ̂ such that M̂ is biholomorphic to a holomor-
phic infranilmanifold N̂/Γ̂.

The proof of this theorem is organized as follows: As the fundamental group
of M is virtually nilpotent, the smooth classification implies that M is diffeo-
morphic to an infranilmanifold N/Γ. Even if N/Γ supports a complex struc-
ture, it does not follow that M is biholomorphic to N/Γ. However N has a
central extension: 1→C→N−→N̂→1 in this case. Assume inductively that M̂
is biholomorphic to a holomorphic infranilmanifold N̂/Γ̂. Then we can find a
nilpotent Lie group N ′ isomorphic to N which has the following properties. N ′

admits a E(N ′)-invariant complex structure J for which the central extension
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1→C→N ′−→N̂→1 becomes a principal holomorphic bundle. Moreover N ′ is
biholomorphic to the complex space Cn, indeed this fact is due to Oka’s princi-
ple which says that the universal covering (N ′, J) is biholomorphic as a principal
holomorphic bundle with the product (C × N̂ , J0 × Ĵ) inductively. Speculat-
ing on the cohomology exact sequence induced from a short exact sequence

1→Z2 i→ C j−→ T 1
C→1;

· · ·H1
φ(Γ̂; hol(N̂ ,C))

j−→ H1
φ(Γ̂; hol(N̂ , T 1

C))
δ−→ H2

φ(Γ̂;Z2)→· · · ,

we can show that M is biholomorohic to a holomorphic infranilmanifold N ′/Γ′

where Γ′ ≤ EJ(N ′) which is the semidirect product N ′ o K ′ invariant under
the complex structure J . There we construct a deformation N ′/Γ′ of N/Γ, see
Theorem 1.1 below. Of course, N ′/Γ′ is nothing but N/Γ topologically.

In Section 5.1, we prove some topological results. In Section 5.2, we construct
complex structures on holomorphic infranilmanifolds. In Section 5.3, we study
holomorphic infranil-actions and holomorphic Seifert actions on holomorphic
torus-Bott manifold M . In Section 5.4, we prove the following theorem which
is a key tool to prove Theorem 1.9.

Theorem 1.10. Let (Γ, N, ) be a holomorphic Seifert action as above. Then
there exist a nilpotent Lie group N ′ and a discrete subgroup Γ′ ≤ EJ(N ′) for
which the quotient N/Γ is biholomorphic to the holomorphic infranilmanifold
N ′/Γ′.

In Section 5.6, we apply Theorem 1.9 to show the following.

Theorem 1.11. A holomorphic torus-Bott manifold M of finite type is biholo-
morphic to a complex euclidean space form Cn/Γ with holonomy group L(Γ)

lying in

n∏
i=1

Hi where Hi is either one of {1}, Z2, Z4, Z6.

An example of finite type is a Kähler Bott tower, that is each Mi is a Kähler
manifold such that T 1

C→Mi→Mi−1 is a Kähler submersion. (See Section 5.6.2.)
It is shown in Theorem 5.14 that every Kähler Bott manifold M is biholo-
morphic to a complex euclidean space form Cn/Γ of Theorem 5.11. In Sec-
tion 5.7 we study holomorphic torus-Bott manifolds of infinite type. As the
fundamental group of such a manifold is virtually nilpotent (but never virtu-
ally abelian), it is a non-Kähler manifold. It would be difficult to obtain a
holomorphic classification of holomorphic torus-Bott manifolds of infinite type.
We shall consider which non-Kähler geometric structure exists on holomorphic
torus-Bott manifolds of infinite type. In Theorem 5.19, we provide two classes
of geometric structure; (i) A 2n+2-dimensional locally homogeneous locally con-
formal Kähler manifold M = R×N/Γ where N is the Heisenberg nilpotent Lie
group and Γ ≤ R× (N o U(n)) is a discrete uniform subgroup. (ii) A complex
2n + 1-dimensional locally homogeneous complex contact manifold L/Γ where
L = L2n+1 is a complex 2n + 1-dimensional complex nilpotent Lie group and
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Γ is a discrete uniform subgroup of L o (Sp(n) · S1). In particular, L3 is the
Iwasawa nilpotent Lie group. Up to this stage we found the above two geometric
structures on non-Kähler holomorphic torus-Bott manifolds of infinite type. In
the future we propose to find other geometric structures.
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Chapter 2

Seifert fiberation

2.1 Infrahomogeneous space

Let G be a simply connected Lie group, and Aut(G) denote the group of auto-
morphisms of G onto itself. Put A(G) = Go Aut(G). A(G) becomes a group;

(g, α) · (h, β) = (g · α(h), α · β)

(g, h ∈ G,α, β ∈ Aut(G)). A(G) is called the affine group of G. Here, letting
X = G, an affine action (A(G), X) is obtained as follows:

((g, α), x) = g · α(x).

Let H ⊂ Aut(G) be a compact subgroup (for example, maximal compact sub-
group, finite groups). Form a subgroup E(G) = G oH ⊂ A(G). Consider the
action (E(G), X). We note that if H is compact, then it is easy to check the
following.

Lemma 2.1 (Proper action). (E(G), X) is a proper action.

By Lemma 2.1, if π ⊂ E(G) is a discrete subgroup, we obtain a properly
discontinuous action (π,X).

Definition 2.2. The quotient space X/π is said to be an infrahomogeneous
orbifold. When π has no elements of finite order, π is said to be torsionfree, and
X/π is called an infrahomogeneous manifold.

Example 2.3.

(1) Taking the vector space Rn as G it gives the usual affine
group A(n) = Rn o GL(n,R). If H is a maximal compact subgroup
O(n) of GL(n,R), we have the euclidean group E(Rn) = Rn o O(n). A
discrete uniform subgroup π of E(n) is called a crystallographic group. If
π ⊂ E(n) is a torsionfree crystallographic group, π is called a Bieberbach
group. Moreover, the infrahomogeneous space Rn/π is an euclidean space
form, that is a Riemannian flat manifold.
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(2) When G is a simply connected nilpotent Lie group N , for any torsionfree
discrete uniform subgroup π ⊂ E(N ), N/π is called an infranilmanifold.

We have the fundamental classical result for crystallographic groups.

Theorem 2.4 (Bieberbach first theorem). Let π ⊂ E(n) be a crystallographic
group, then Rn ∩ π ∼= Zn and π/Rn ∩ π is a finite group.

The above theorem is extended to the almost crystallographic groups. See
[10] for instance.

Theorem 2.5 (Auslander-Bieberbach theorem). Let π be a torsionfree discrete
uniform subgroup of E(N ), then N ∩ π is a maximal normal nilpotent subgroup
of π and π/N ∩ π is a finite group.

2.2 Nil Geometry

Let

1→∆→π→F→1 (2.1)

be a group extension where π is a torsionfree group, ∆ is a torsionfree finitely
generated nilpotent group, and F is a finite group. By Mal’cev’s existence
theorem, there is a (simply connected) nilpotent Lie group N containing ∆ as
a discrete uniform subgroup. The rest of this section is to review the following
realization theorem obtained in [18].

Theorem 2.6 (Realization). There exists a discrete faithful representation ρ :
π→E(N ) such that ρ|∆ = id. In particular, N/ρ(π) is an infranil-manifold.

In order to prove this theorem, we need several facts. So we shall prepare
them in turn.

2.3 2-cocycle

(i) φ(α)(φ(β)(n)) = f(α, β)φ(αβ)(n)f(α, β)−1

(ii) f(α, 1) = f(1, α) = 1,

(iii) φ(α)(f(β, γ))f(α, βγ) = f(α, β)f(αβ, γ),

where n ∈ G and α, β, γ ∈ Q. Then f defines a group E which is the product
G×Q with the group law:

(n, α)(m,β) = (n · φ(α)(m) · f(α, β), αβ). (2.1)

Then there is a φ-group extension 1→G→E ν−→ Q→1 where ν(n, α) = α and
the group E is denoted by G×(f,φ) Q.
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Conversely, given a group extension 1→G→E ν−→ Q→1, we can associate E
with a φ- group extension. Choose a section q : Q→E (ν ◦q = id), and q(1) = 1.
A function φ : Q→Aut(G) is defined to be

φ(α)(n) = q(α)nq(α)−1 (∀α ∈ Q,∀n ∈ G).

Both q(αβ), q(α)q(β) are mapped to αβ ∈ Q, so there is an element f(α, β) ∈ G
such that f(α, β)·q(αβ) = q(α)q(β). Then it is easily checked that f : Q×Q→G
satisfies the above (i) (ii) (iii).

Let Opext(Q,G, φ) be the set of all congruence classes of φ- group exten-
sions. Then an element [f ] ∈ Opext(Q,G, φ) is represented by an extension
1→G→E→Q→1 with E = G ×(f,φ) Q. It is easy to check that [f1] = [f2] ∈
Opext(Q,A, φ) if and only if there is a function λ : Q→C(G) such that

f1(α, β) = δ1λ(α, β) · f2(α, β) (∀ α, β ∈ Q). (2.2)

Here C(G) is the center of G and δ1 is defined by

δ1λ(α, β) = φ(α)(λ(β))λ(α)λ(αβ)−1.

For simplicity, we write it as f1 = δ1λ · f2.
In particular, when G is an abelian group A, φ : Q→Aut(A) is a homomor-

phism and hence A is a Q-module. So there is the group cohomology H2
φ(Q,A)

and f is a 2-cocycle by (iii), i.e. [f ] ∈ H2
φ(Q,A). Therefore any extension

1→A→E→Q→1 corresponds to a cocycle [f ] ∈ H2
φ(Q,A). It is easy to check

the following.

Proposition 2.7. Suppose that A is an abelian group. Then there is a one-to-
one correspondence between H2

φ(Q,A) and Opext(Q,A, φ).

Remark 2.8. Suppose Q = F is a finite group and f : F×F→Rn is a 2-cocycle
relative to φ : F→Aut(Rn). Put h : F→Rn;

h(α) =
∑
τ∈F

f(α, τ). (2.3)

Then

δ1h(α, β) = φ(α)(h(β))− h(αβ) + h(α)

=
∑
τ∈F

φ(α)(f(β, τ))−
∑
τ∈F

f(αβ, τ) +
∑
τ∈F

f(α, τ)

=
∑
τ∈F

(f(αβ, τ)− f(α, βτ) + f(α, β))−
∑
τ∈F

f(αβ, τ) +
∑
τ∈F

f(α, τ)

= |F |f(α, β)

Thus δ1 1
|F |h = f . It implies that

H2
φ(F ;Rn) = 0. (2.4)
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2.4 Pushout

Let π, ∆ and N be as before and 1→∆→π→Q→1 a group extension which
is represented by [f ] ∈ Opext(Q,∆, φ). Given a function φ : Q→Aut(∆),
Mal’cev’s unique extension theorem implies that each automorphism φ(α) :
∆→∆ extends uniquely to an automorphism φ̄(α) : N→N . In particular, this
gives a correspondence φ̄ : Q→Aut(N ). Note that it is not necessarily a homo-
morphism. In general it satisfies

φ̄(α)(φ̄(β)(x)) = f(α, β)φ̄(αβ)(x)f(α, β)−1 (x ∈ N ). (2.1)

Then the “pushout” πN = {(x, α) | x ∈ N , α ∈ Q} can be constructed. Its
group law is defined by (x, α) · (y, β) = (xφ̄(α)(y)f(α, β), αβ);

1 −−−−→ N −−−−→ πN −−−−→ Q −−−−→ 1x x ||

1 −−−−→ ∆ −−−−→ π −−−−→ Q −−−−→ 1.

(2.2)

This group (extension) πN is also represented by [f ] ∈ Opext(Q,N , φ̄).

2.5 Existence of the Seifert construction

Let W be a contractible smooth manifold. Suppose that a group Q acts properly
discontinuously on W such that the quotient space W/Q is compact. Given a
group extension:

1 −−−−→ ∆ −−−−→ π
ν−−−−→ Q −−−−→ 1, (2.1)

we shall show that there is an action of π on N ×W which is compatible with
the left translations of N . Let Diff(N ×W ) be the group of all diffeomorphisms
of N × W onto itself. N is a subgroup of Diff(N × W ) via an embedding:

l(n)(m,α) = (nm,α).
We denote DiffF(N × W ) the normalizer of l(N ) in Diff(N × W ). Let

Map(W,N ) be the set of smooth maps from W into N . Then DiffF(N ×W )
coincides with the group Map(W,N )o (Aut(N )×Diff(W )) with the group law:

(λ1, g1, h1)(λ, g, h) = ((g1 ◦ λ ◦ h−1
1 ) · λ1, g1g, h1h)

and
(λ, g, h)(x,w) = (g(x) · λ(hw), hw) (2.2)

for (x,w) ∈ N ×W , defines an action on N ×W . See [18].
We call the set (∆, π,Q,W ) a smooth data for the group extension (2.1).

The following theorem is obtained in [18].

Theorem 2.9. For any smooth data (∆, π,Q,W ), there exists a continuous
homomorphism Ψ : π→DiffF(N ×W ) such that Ψ|∆ = l .
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Ψ is called the Seifert construction of the smooth data (∆, π,Q,W ). We shall
review the proof of [18].

Proof. Using the pushout (2.1) in § 2.4, if we show that there exists a continuous
homomorphism Ψ̄ : πN→DiffF(N × W ) such that Ψ̄|N = l, then a Seifert
construction Ψ : π→DiffF(N ×W ) is obtained as a restriction. Suppose there
exists a Ψ̄. For (n, α) ∈ πN , if we put Ψ̄(1, α) = (λ, g, h) ∈ Map(W,N ) o
(Aut(N )×Diff(W )), then Ψ̄(n, α) = `(n)Ψ̄(1, α) = (n · λ, g, h). Then it is easy
to check that

Ψ̄(n, α) = (n · λ(α), µ(n) ◦ φ̄(α), α)

where λ : Q→Map(W,N ) satisfies

f(α, β) = (φ̄(α) ◦ λ(β) ◦ α−1) · λ(α) · λ(αβ)−1 (α, β ∈ Q), (2.3)

where f be a function representing the group extension (2.1). Therefore to
guarantee the existence of such Ψ̄, we have only to find a map λ satisfying the
condition (2.3). Remark that if N is a vector space V then Map(W,V ) is a
topological group with Q-action by

α · λ(w) = φ̄(α)(λ(α−1w)). (2.4)

So we have a group cohomology H2
φ̄
(Q,Map(W,V )). Then note that

H2
φ̄(Q,Map(W,V )) = 0

for any vector space V . This vanishing is obtained by using Shapiro’s lemma.
(See [23], page 251, Lemma 8.4.)

By induction, we suppose that the statement is true for any nilpotent Lie
group whose dimension is less than dim N . Let C be the center of N and put
N1 = N/C, πN1 = πN/C. Consider the group extension

1 −−−−→ N −−−−→ πN ν−−−−→ Q −−−−→ 1yp yp ∥∥∥
1 −−−−→ N1 −−−−→ πN1

ν1−−−−→ Q −−−−→ 1,

(2.5)

with a section q1 = p◦q of ν1 where q is a section to ν. The section q1 determines
f1 : Q ×Q→N1 and φ̄1 : Q→Aut(N1) as in §2.3. We suppose by induction on
the dimension of N that there exists λ1 : Q→Map(W,N1) such that

f1(α, β) = (φ̄1(α) ◦ λ1(β) ◦ α−1) · λ1(α) · λ1(αβ)−1

Choose any lift λ′ : Q→Map(W,N ) of λ1 so that λ1 = p ◦ λ′. Put

g(α, β) = (φ̄(α) ◦ λ′(β) ◦ α−1) · λ′(α) · λ′(αβ)−1,

then there exists an element c(α, β) ∈ Map(W, C) such that

f(α, β) = c(α, β) · g(α, β).

11



Since both f and g satisfy (iii) in §2.3, c is also a 2-cocycle. That is [c] ∈
H2
φ̄
(Q,Map(W, C)) which vanishes because C is a vector space. So there is a

function η : Q→Map(W, C) such that

c(α, β) = (φ̄1(α) ◦ η(β) ◦ α−1) · η(α) · η(αβ)−1.

Put λ = η · λ′ : Q→Map(W,N ), then λ satisfies (2.3).

Remark 2.10. Let 1→Z→πi−→πi−1→1 be a group extension as in (1.5).
Then πi acts on the universal cover Xi of Mi as freely. Assume that Ψi :
πi→Diff(Xi) is the representation homomorphism for this action (πi, Xi), then
Ψi : πi→Ψi(πi) is the Seifert construction of the smooth data (Z, πi, πi−1, Xi−1).

2.6 Infranilmanifold

Let (∆, π, F, {pt}) be a smooth data with finite group F and f a function rep-
resenting the given group extension 1→∆→π→F→1. In the same way as the
proof of Theorem 2.9, we can obtain a 1-chain χ : F→N such that f = δ1χ;

f(α, β) = φ̄(α)(χ(β))χ(α)χ(αβ)−1 (α, β ∈ F ). (2.1)

We shall repeat the construction of χ for our use. Let f̄ : F × F→N/C be a
function which represents 1→N1→πN1→F→1, then we suppose f̄ = δ1λ̄ for
some function λ̄ : F→N/C by induction. Choose a lift λ : F→N of λ̄. It is easy
to see the function g = f · (δ1λ)−1 is a cocycle lying in C, that is [g] ∈ H2

φ̄
(F, C).

As H2
φ̄
(F, C) = 0 from (2.4), there is a map µ : F→C such that δ1µ = g. Then

f = δ1(µ · λ) and the 1-chain χ denoted by µ · λ.
Now define an automorphism of N h(α) : N→N for each α ∈ F to be

h(α)(x) = χ(α)−1 · φ̄(α)(x) · χ(α) (x ∈ N ).

Using (2.1), we can prove that h(αβ) = h(α)h(β) for α, β ∈ F . Therefore
h : F→Aut(N ) is a homomorphism. Since Aut(N ) is a noncompact Lie group,
it has a maximal compact group K. Then the finite subgroup h(F ) is conjugate
to a subgroup of K. We can assume that h(F ) ⊂ K.

Define ρ : π→E(N ) to be

ρ((n, α)) = (nχ(α), h(α)) (n ∈ ∆, α ∈ F ). (2.2)

It is easy to check that ρ is a homomorphism. We define an action of π on N
to be

((n, α), x) = ρ(n, α)(x) = nφ̄(α)(x)χ(α) ((n, α) ∈ π). (2.3)

Theorem 2.6 is obtained by the following proposition.

Proposition 2.11. The action (π,N ) is a properly discontinuous free action.
In particular, ρ is a faithful representation.
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Proof. First note that ρ|∆ = id, so ∆ is contained in ρ(π). Since ∆ acts as
left translations of N from (2.2), it acts properly discontinuously and freely.
Moreover since ∆ is a finite index subgroup of ρ(π) from (2.1), ρ(π) acts properly
discontinuously on N .

Let (n, α) ∈ Ker ρ be an element of π. Then ((n, α), x) = x (∀x ∈ N ) by
(2.3). As π acts properly discontinuously, (n, α) is of finite order. On the other
hand, π is torsionfree, we obtain (n, α) = 1 and so ρ is faithful.

The following remark shows that ρ is a Seifert construction (cf.Theorem
2.9).

Remark 2.12. Let A(N )
∗

be a group which is the product N × Aut(N ) with
the group law:

(n, α) · (m,β) = (α(m) · n, α · β)

for n,m ∈ N , and α, β ∈ Aut(N ). The action (A(N )∗,N ) is obtained as
follows:

((n, α), x) = α(x) · n
for x ∈ N . Then there is an isomorphism δ : A(N )

∗→A(N ) defined by δ(n, α) =
(n, µ(n−1)(α)). Here µ : N→Aut(N ) denote the conjugation homomorphism:

µ(n)(x) = nxn−1.

It is easily checked that

((n, α), x) = (δ(n, α), x)

This shows that the affine action (A(N ),N ) coincides with the above action
(A(N )∗,N ).

Remark 2.13. There is a commutative diagram.

1 −−−−→ N −−−−→ E(N ) −−−−→ K −−−−→ 1x x ∪

1 −−−−→ N ∩ ρ(π) −−−−→ ρ(π) −−−−→ H −−−−→ 1.

(2.4)

By the theorem of Auslander-Bieberbach, N∩ρ(π) is a maximal normal nilpotent
subgroup of ρ(π). Note that ∆ ⊂ N ∩ ρ(π), so if ∆ is maximal, then ∆ =
N ∩ ρ(π).

2.7 Seifert rigidity

Let ∆i be a discrete uniform subgroup of a simply connected nilpotent Lie group
Ni (i = 1, 2) respectively. Let Ψ1, Ψ2 be Seifert constructions for smooth data
(∆1, π1, Q1,W1), (∆2, π2, Q2,W2) respectively. Suppose there exists an isomor-

phism θ : π1→π2 inducing isomorphisms θ̄ : ∆1→∆2, θ̂ : Q1→Q2. Furthermore
(Q1,W1) is equivariantly diffeomorphic to (Q2,W2). with respect to θ̂. Then
Seifert rigidity shows that (Ψ2(π1),N1 ×W1) is equivariantly diffeomorphic to
(Ψ1(π2),N2 ×W2). See [18], page 441.
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Chapter 3

Injective Torus actions

3.1 The Halperin-Carlsson conjecture on homo-
logically injective actions

The Halperin-Carlsson torus conjecture says that if there is an almost free torus
action T k on a closed n-manifold M , the following inequality holds:

2k ≤
n∑
j=0

bj . (3.1)

Here bj = rankHj(M ;Z) is the j-th Betti number of M . See [31] for details and
the references therein, see also [14].

Let T k be a k-dimensional torus (k ≥ 1). Given an effective T k-action on
a closed manifold M , the orbit map at x ∈ M is defined to be ev(t) = tx
(∀ t ∈ T k). Put π1(T k) = H1(T k;Z) = Zk and π1(M) = π. The map ev induces
a homomorphism ev# : Zk→π and a homomorphism ev∗ : Zk→H1(M ;Z). Ac-
cording to the definition of Conner-Raymond [8], if ev# is injective, the action
(T k,M) is said to be injective. (Refer to [23, Theorem 2.4.2, also Subsection
11.1] for the definition to be independent of the choice of the base point x ∈M .)
Classically it is known that ev# is injective for closed aspherical manifolds [7].
On the other hand, if ev∗ : Zk→H1(M ;Z) is injective, the T k-action is said to
be homologically injective [8].

Theorem 3.1. If (T k,M) is a homologically injective action on a closed n-
manifold M , then

kCj ≤ bj (j = 0, . . . , k). (3.2)

In particular the Halperin-Carlsson conjecture (3.1) is true.

Proof. A homologically injective T k-action on M induces a central group ex-
tension:

1→Zk→π−→Q→1. (3.3)
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As the cocycle [f ] ∈ H2(Q;Zk) representing (3.3) has finite order (cf. [23,
Lemma11.6.5.]), there exists an integer ` such that ` ·f = δ1λ̃ for some function
λ̃ : Q→Zk. If we put

λ =
λ̃

`
: Q→Rk, (3.4)

then f = δ1λ. Let Rk be the universal covering of T k. Then Rk acts properly
and freely on the universal covering M̃ such that M̃ = Rk ×W where W =
M̃/Rk is a simply connected smooth manifold. Then it follows from [7] that the
π−action on Rk ×W is equivalent with

(n, α)(x,w) = (n+ x+ λ(α), αw) (∀ (n, α) ∈ π, ∀ (x,w) ∈ Rk ×W ). (3.5)

By [23, Lemma11.6.6], π has a splitting subgroup π′ = Zk × Q′. There
exists an element h ∈ Map(W,Rk) such that G̃ : Rk ×W→Rk ×W defined by
G̃(x,w) = (x + h(w), w) is an equivariant diffeomorphism with respect to the
π′-action of (3.5) and the product action of Zk ×Q′ (cf. [23, Theorem 7.3.2]).

Putting Rk ×W/π′ = T k ×
Q′
W as a quotient space, G̃ induces a diffeomor-

phism G : T k ×
Q′
W→T k×W/Q′. Let q : T k×W→T k ×

Q′
W be the covering map

(q(t, w) = [t, w]). Then

G ◦ q(t, w) = G([t, w]) = (t exp 2πih(w), [w]). (3.6)

Noting (3.5), π induces an action of Q on M̃/Zk = T k ×W such that

α(t, w) = (t exp 2πiλ(α), αw) (∀ α ∈ Q). (3.7)

F = Q/Q′ has an induced action on T k ×
Q′
W by α̂[t, w] = [t exp 2πiλ(α), αw]

(∀ α̂ ∈ F ) which gives rise to a covering map:

F→T k ×
Q′
W

ν−→ T k ×
Q
W = M. (3.8)

For any α ∈ Q, consider the commutative diagram:

Hj(T
k ×W )

α∗−−−−→ Hj(T
k ×W )yq∗ yq∗

Hj(T
k ×Q′W )

α̂∗−−−−→ Hj(T
k ×Q′W )

(3.9)

in which Hj(T
k)⊗H0(W ) ≤ Hj(T

k×W ). By the formula (3.7), the Q-action on
the T k-summand is a translation by exp 2πiλ(α) ∈ T k so the homology action
α∗ on Hj(T

k) ⊗ H0(W ) is trivial. If Hj(T
k ×
Q′
W )F denotes the subgroup left

fixed under the homology action for every element α̂ ∈ F , it follows

q∗(Hj(T
k)⊗H0(W )) ≤ Hj(T

k ×
Q′
W )F . (3.10)
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Using the transfer homomorphism (see [3]), ν of (3.8) induces an isomorphism:

ν∗ : Hj(T
k ×
Q′
W ;Q)F−→Hj(M ;Q).

Specifically, ν∗ : q∗(Hj(T
k;Q)⊗H0(W ;Q))→Hj(M ;Q) is injective.

On the other hand, let q′ : W→W/Q′ be the projection q′(w) = [w]. Define
a homotopy Ψθ : T k ×W→T k ×W/Q′ (θ ∈ [0, 1]) to be

Ψθ(t, w) = (t exp 2πi(θ · h(w)), [w]).

Then Ψ0 = id × q′ ' G ◦ q from (3.6). As G∗ ◦ q∗ = id × q′∗ : Hj(T
k;Q) ⊗

H0(W ;Q)→Hj(T
k;Q) ⊗H0(W/Q′;Q) is obviously isomorphic, it implies that

q∗ : Hj(T
k;Q) ⊗H0(W ;Q)−→Hj(T

k ×
Q′
W ;Q) is injective. If p = ν ◦ q : T k ×

W→M is the projection, then p∗ : Hj(T
k;Q)⊗H0(W ;Q)−→Hj(M ;Q) is also

injective. This implies

kCj ≤ bj (j = 0, . . . , k).

3.2 Calabi construction and torus actions

In [8, § 7], Conner and Raymond have stated that Calabi’s theorem [4] shows
the existence of a T k-action with k = rankH1(M ;Z) > 0. We agree that the
Calabi construction induces such actions. However when we look at a proof
of Calabi’s theorem ([36, p.125]), it is not easy to find such T k-actions for a
given compact euclidean space form with nonzero b1. Regarding the proof, let
ν : π→Zk be the projection onto the direct summand Zk of H1(M ;Z). Then
there is a group extension 1→Γ→π→Zk→1 in which Γ is the fundamental group
of a euclidean space form Mn−k = Rn−k/Γ. In general an element γ ∈ π has
the form ([

a
b

]
,

(
A B
0 I

))
(a ∈ Rn−k, b ∈ Rk).

The holonomy group L(π) = {
(
A B
0 I

)
} does not necessarily leave the sub-

space 0×Rk invariant. (In particular, Zn ∩ (0×Rk) is not necessarily uniform
in 0×Rk.) So we have to find another decomposition to get a T k-action on M .

Lemma 3.2. Let π be an n-dimensional Bieberbach group such that the rank of
π/[π, π] is positive k > 0. Then there exists a faithful representation ρ : π→E(n)
such that the euclidean space form Rn/ρ(π) admits an effective T k-action.

Proof. By the hypothesis, there is a group extension 1→Γ→π ν−→ Zk→1. Since
π is a Bieberbach group, it admits a maximal normal finite index abelian sub-
group Zn. Put ν(Zn) = B. Consider the commutative diagram of the group
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extensions:

1 −−−−→ Γ
ι−−−−→ π

ν−−−−→ Zk −−−−→ 1x x x
1 −−−−→ Γ ∩ Zn ι−−−−→ Zn ν−−−−→ B −−−−→ 1.

(3.1)

Since π/Zn ν̂→ Zk/B is surjective, B is a free abelian subgroup of rank k. By
the embedding ι̂ : Γ/Γ ∩ Zn ≤ π/Zn, Γ ∩ Zn is a finite index subgroup of Γ.
It follows easily that Γ ∩ Zn is a maximal normal abelian subgroup of Γ. We
may put Γ ∩ Zn = Zn−k so that Zn = Zn−k × B. Putting Q = π/Zn−k and
F = Γ/Zn−k is a finite group, we have the group extensions:

1 −−−−→ Zn−k i−−−−→ π
µ−−−−→ Q −−−−→ 1, (3.2)

where

1 −−−−→ F
ι̂−−−−→ Q

ν̂−−−−→ Zk −−−−→ 1 (3.3)

is also a group extension. As µ|Zn = ν from (3.1), (3.2) has the commutative
diagram:

1 −−−−→ Zn−k ι−−−−→ π
µ−−−−→ Q −−−−→ 1

||
x xι′

1 −−−−→ Zn−k ι−−−−→ Zn µ−−−−→ B −−−−→ 1

(3.4)

Since (3.2) is not necessarily central, let φ : Q→Aut(Zn−k) be the conjugation
homomorphism. As Zn = Zn−k × B and φ|B = id, if [f ] ∈ H2

φ(Q;Zn−k) is

the representative cocycle of (3.2), then ι′∗[f ] = 0 in H2(B;Zn−k). Then [f ]
is a torsion because τ ◦ ι′∗ = (Q : B) : H2

φ(Q;Zk)→H2
φ(Q;Zk) still holds for

the transfer homomorphism τ : H2(B;Zn−k)→H2
φ(Q;Zn−k). (Compare [3].)

Therefore there is a function λ : Q→Rn−k similarly as in (3.4) such that

` · λ(Q) ≤ Zn−k. (3.5)

Let Zk act on Rk by translations and by (3.3) ν̂ : Q→Zk ≤ E(k) defines a
properly discontinuous action of Q on Rk;

α(w) = ν̂(α) + w (∀ α ∈ Q, ∀ w ∈ Rk).

Let γ = (n, α) ∈ π. By [7] (cf. [23]), we have a properly discontinuous action of
π on Rn = Rn−k × Rk:

γ

[
x
w

]
=

[
n+ φ̄(α)(x) + λ(α)

ν̂(α) + w

]
=

([
n+ λ(α)
ν̂(α)

]
,

(
φ̄(α)

Ik

))[
x
w

]
.

Noting φ|B = id, the image φ(Q) is finite in Aut(Zn−k) which implies φ(Q) ≤
O(n−k) up to conjugacy. As π is torsionfree and acts properly discontinuously,
we obtain a faithful homomorphism ρ : π→ρ(π) ≤ E(n) defined by

ρ(n, α) =

([
n+ λ(α)
ν̂(α)

]
,

(
φ̄(α)

Ik

))
. (3.6)
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Therefore we have a compact euclidean space form Rn/ρ(π).

We prove that Rn/ρ(π) admits a T k-action. Noting (3.4), (3.5), we define a
subgroup of Zn by

B̃ = {(−` · λ(β), ` · β) ∈ Zn |β ∈ B}. (3.7)

It is isomorphic to B ∼= Zk. As φ|B = id,

ρ(−` · λ(β), ` · β) =

([
0

` · ν̂(β)

]
, In

)
∈ 0× Rk. (3.8)

Thus ρ(B̃) is a translation subgroup with rank k:

ρ(B̃) ≤ (0× Rk) ∩ ρ(π). (3.9)

Since (0× Rk)/ρ(B̃) is compact, so is (0× Rk)/(0× Rk) ∩ ρ(π). We may put

(0× Rk)/(0× Rk) ∩ ρ(π) = T k.

Moreover, from (3.6) a calculation shows that

ρ(n, α) ·
([

0
y

]
, In

)
=

([
0
y

]
, In

)
· ρ(n, α), (3.10)

i.e. each y ∈ Rk centralizes ρ(π);

0× Rk ≤ CE(n)(ρ(π)). (3.11)

We denote that Isom(Rn/ρ(π))0 is the identity component of euclidean isome-
tries of Rn/ρ(π). From (3.11) we have the following covering groups (cf. [24],
[23, §11.7]):

1 −−−−→ C(ρ(π)) −−−−→ CE(n)(ρ(π)) −−−−→ Isom(Rn/ρ(π))0x x x
1 −−−−→ (0× Rk) ∩ ρ(π) −−−−→ (0× Rk) −−−−→ T k

Hence Rn/ρ(π) admits a T k-action.

We prove Theorem 1.2. The Bieberbach theorem implies that M is affinely
diffeomorphic to Rn/ρ(π). By Lemma 3.2, M admits a T k-action where k =
b1. Let rankC(π) = `. As every effective torus action on a closed aspherical
manifold is injective, b1 ≤ ` (cf. [7], [23]). It is well known that if the fundamental
group of a compact euclidean space form contains a nontrivial center Z`, then it
admits a T `-action. By Theorem 1.1 and (1)(below Theorem 1.1), ` ≤ b1. This
shows that rankH1(M) = rankC(π).
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Chapter 4

S1-fibred nilBott tower

4.1 S1-fibred nilBott tower

Let M be a closed aspherical manifold which is the top space of an iterated
S1-bundle over a point:

M = Mn→Mn−1→ . . .→M1→{pt}. (4.1)

Suppose X is the universal covering of M and each Xi is the universal covering
of Mi and put π1(Mi) = πi (i = 1, . . . , n− 1) and π1(M) = π.

Definition 4.1. An S1-fibred nilBott tower is a sequence (4.1) which satisfies
I, II and III below. The top space M is said to be an S1-fibred nilBott manifold
(of depth n).

I. Each Mi is a fiber space over Mi−1 with fiber S1.

II. For the group extension

1→Z→πi−→πi−1→1 (4.2)

associated to the fiber space I, there is an equivariant principal bundle:

R→Xi
pi−→ Xi−1. (4.3)

III. Each πi normalizes R.

The purpose of this section is to prove the following results.

Theorem 4.2. Any S1-fibred nilBott manifold M is diffeomorphic to an infranil-
manifold.

Proof. Given a group extension (4.2), we suppose by induction that there exists
a torsionfree finitely generated nilpotent normal subgroup ∆i−1 of finite index
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in πi−1 such that the induced extension ∆̃i is a central extension:

1 −−−−→ Z −−−−→ πi −−−−→ πi−1 −−−−→ 1

||
x x

1 −−−−→ Z −−−−→ ∆̃i −−−−→ ∆i−1 −−−−→ 1.

(4.4)

It is easy to see that ∆̃i is a torsionfree finitely generated normal nilpotent
subgroup of finite index in πi. Then πi is a virtually nilpotent subgroup, that
is 1→∆̃i→πi−→Fi→1 where Fi = πi/∆̃i is a finite group. Let Ñi, Ni−1 be
a nilpotent Lie group containing ∆̃i, ∆i−1 as a discrete cocompact subgroup
respectively. Let A(Ñi) = ÑioAut(Ñi) be the affine group. If K̃i is a maximal
compact subgroup of Aut(Ñi), then the subgroup E(Ñi) = Ñi o K̃i is called
the euclidean group of Ñi. Then there exists a faithful homomorphism (see
Theorem2.6):

ρi : πi−→E(Ñi) (4.5)

for which ρi|∆̃i
= id and the quotient Ñi/ρi(πi) is an infranilmanifold. The

explicit formula is given by the following

ρi((n, α)) = (n · χ(α), µ(χ(α)−1) ◦ φ̄(α)) (4.6)

for n ∈ ∆̃i, α ∈ Fi where χ : Fi→Ñi, φ̄ : Fi→Aut(Ñi). As ∆̃i ≤ Ñi, there is a
1-dimensional vector space R containing Z as a discrete uniform subgroup which
has a central group extension (cf. [34]):

1→R→Ñi−→Ni−1→1

where Ni−1 = Ñi/R is a simply connected nilpotent Lie group. As Z ≤ R ∩ ∆̃i

is discrete cocompact in R and R ∩ ∆̃i/Z→∆̃i/Z ∼= ∆i−1 is an inclusion, noting
that ∆i−1 is torsionfree, it follows that R∩∆̃i = Z. We obtain the commutative
diagram in which the vertical maps are inclusions:

1 −−−−→ Z −−−−→ ∆̃i −−−−→ ∆i−1 −−−−→ 1y y y
1 −−−−→ R −−−−→ Ñi −−−−→ Ni−1 −−−−→ 1.

(4.7)

On the other hand, (4.5) induces the following group extension:

1 −−−−→ Z −−−−→ πi
pi−−−−→ πi−1 −−−−→ 1∥∥∥ ρi

y ρ̂i

y
1 −−−−→ Z −−−−→ ρi(πi) −−−−→ ρ̂i(πi−1) −−−−→ 1.

(4.8)

Since ∆̃i and Ñi centralizes Z and R respectively, ρ̂i is a homomorphism from
πi−1 into E(Ni−1). The explicit formula is given by the following:

ρ̂i((n̄, α)) = (n̄ · χ̄(α), µ(χ̄(α)−1) ◦ φ̂(α)) (4.9)
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for n̄ ∈ ∆i−1, α ∈ Fi where χ̄ = pi ◦ χ : Fi→Ni−1, φ̂ : Fi→Aut(Ni−1);

φ̂(α)(x̄) = φ̄(α)(x).

Using (4.3) and Mal’cev’s unique extension property (compare [34]), it is easy

to check that the above φ̂ : Fi→Aut(Ni−1) is a well-defined homomorphism.
Thus we obtain an equivariant fibration:

(Z,R) −−−−→ (ρi(πi), Ñi)
νi−−−−→ (ρ̂i(πi−1), Ni−1). (4.10)

Suppose by induction that (πi−1, Xi−1) is equivariantly diffeomorphic to the
infranil-action (ρ̂i(πi−1), Ni−1) as above. We have two Seifert fibrations from
(4.3):

(Z,R)→(πi, Xi)
pi−→ (πi−1, Xi−1)

and (4.10):

(Z,R)→(ρi(πi), Ñi)
νi−→ (ρ̂i(πi−1), Ni−1).

As ρi : πi→ρi(πi) is isomorphic such that ρi|Z = id, the Seifert rigidity implies
that (πi, Xi) is equivariantly diffeomorphic to (ρi(πi), Ñi). This shows the in-
duction step. If M = X/π, then (π,X) is equivariantly diffeomorphic to an
infranil-action (ρ(π), Ñ) for which ρ : π→E(Ñ) is a faithful representation.

We have shown that M is diffeomorphic to an infranilmanifold Ñ/ρ(π).

4.2 The S1-fibred nilBott manifold of finite type
and infinit type

According to the following case (I), (II), we prove that Ñ is isomorphic to a
vector space for (I) or Ñ is a nilpotent Lie group but not a vector space for (II)
respectively.

Definition 4.3. Suppose M is an S1-fibred nilBott manifold M .

(I) If every cocycle of H2
φ(πi−1,Z) which represents a group extension (4.2)

is of finite order, then M is said to be of finite type.

(II) If there exists a cocycle of H2
φ(πi−1,Z) which represents a group extension

(4.2) is of infinite order, then M is of infinite type.

Theorem 4.4. S1-fibred nilBott manifold M is of finite type, if and only if M
is diffeomorphic to a Riemannian flat manifold.

Proof. Let M be of finite type. As every cocycle of H2
φ(πi−1,Z) represent-

ing a group extension (4.2) is finite, the cocycle in H2(∆i−1,Z) for the in-
duced extension of (4.4) that 1→Z→∆̃i−→∆i−1→1 is also finite. By induction,
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suppose that ∆i−1 is isomorphic to a free abelian group Zi−1. Then the co-
cycle in H2(Zi−1,Z) is zero, so ∆̃i is isomorphic to a free abelian group Zi.
Hence the nilpotent Lie group Ni is isomorphic to the vector space Ri. This
shows the induction step. In particular, πi is isomorphic to a Bieberbach group
ρi(πi) ≤ E(Ri). As a consequence X/π is diffeomorphic to a Riemannian flat
manifold Rn/ρ(π).

On the other hand, suppose that πj is virtually free abelian for any j ∈
{1, · · · , i − 1} and the cocycle [f ] ∈ H2

φ(πj ,Z) is of infinite order in H2
φ(πj ,Z).

Note that πj contains a torsionfree normal free abelian subgroup Zj . As in

(4.4), there is a central group extension of ∆̃i:

1 −−−−→ Z −−−−→ πi −−−−→ πi−1 −−−−→ 1

||
x xi

1 −−−−→ Z −−−−→ ∆̃i −−−−→ Zi−1 −−−−→ 1

(4.1)

where [πi−1 : Zi−1] < ∞. Recall that there is a transfer homomorphism τ :
H2(Zi−1,Z)→H2

φ(πi−1,Z) such that

τ ◦ i∗ = [πi−1 : Zi−1] : H2
φ(πi−1,Z)→H2

φ(πi−1,Z),

see [3, (9.5) Proposition p.82] for example. The restriction i∗[f ] gives the bottom
extension sequence of (4.1). If i∗[f ] = 0 ∈ H2(Z2,Z), then 0 = τ ◦ i∗[f ] =
[πi−1 : Zi−1][f ] ∈ H2

φ(πi−1,Z). So i∗[f ] 6= 0. Therefore ∆̃i (respectively Ñi) is
not abelian (respectively not isomorphic to a vector space). As a consequence,
Ñ is a simply connected (non-abelian) nilpotent Lie group.

Apparently there is no inter between finite type and infinite type. And
S1-fibred nilBott manifolds are of finite type until dimension 2.

Remark 4.5. Let M be an S1-fibred nilBott manifold of finite type, then ρ(π) is
a Bieberbach group (cf.Theorem 4.3). By the Bieberbach Theorem, ρ(π) satisfies
a group extension

1→Zn→ρ(π)−→H→1 (4.2)

where Zn = ρ(π) ∩Rn, and H is the holonomy group of ρ(π). We may identify
ρ(π) with π whenever π is torsionfree.

Proposition 4.6. Suppose M is an S1-fibred nilBott manifold of finite type.
Then the holonomy group of π is isomorphic to the power of cyclic group of
order two (Z2)s in O(n) (0 ≤ s ≤ n).

Proof. Let M be an S1-fibred nilBott manifold of finite type. Recall an equiv-
ariant fibration:

(Z,R)→(πi, Ñi)
pi−→ (πi−1, Ni−1).

If f is a cocycle in H2
φ(πi−1,Z) for Case I representing (4.2), then there exists

a map λ : πi−1→R such that

f(α, β) = φ̄(α)(λ(β)) + λ(α)− λ(αβ) (α, β ∈ πi−1) (4.3)
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(see [7]). Moreover let (n, α) ∈ πi and (x,w) ∈ Ñi = R×Ni−1, then the action
of πi is given by

(n, α)(x,w) = (n+ φ̄(α)(x) + λ(α), αw) (4.4)

(n ∈ Z, α ∈ πi−1). As we have shown in Case I of Theorem 4.3, Ni−1/πi−1 is a
Riemannian flat manifold Ri−1/πi−1, we may assume that

αw = bα +Aαw (w ∈ Ri−1)

(bα ∈ Ri, Aα ∈ O(i − 1)) in the above action of (4.4). Then the above action
(4.4) has the formula:

(n, α)

[
x
w

]
=

((
n+ λ(α)

bα

)
,

(
φ̄(α) 0
0 Aα

))[
x
w

]
, (4.5)

where

[
x
w

]
∈ Ñi = R × Ri−1 = Ri. Suppose inductively that {Aα |α ∈

πi−1} ≤ (Z2)i−1. Here

(Z2)i−1 = {

 ±1
. . .

±1

} ≤ O(i− 1). (4.6)

Since φ̄(πi−1) ≤ {±1}, the holonomy group Hi of πi is isomorphic to (Z2)s, ( 0 ≤
s ≤ i). This proves the induction step.

4.3 3-dimensional S1-fibred nilBott towers

By the definition of S1-fibred nilBott manifold Mn of depth n, M2 is either a
torus or a Klein bottle. In particular, M2 is a Riemannian flat manifold. A 3-
dimensional S1-fibred nilBott manifold M3 is either a Riemannian flat manifold
or an infranil-Heisenberg manifold in accordance with the finite type or infinite
type.

On the other hand, there are 10-isomorphism classes G1, . . . ,G6, B1, . . . ,B4

of 3-dimensional Riemannian flat manifolds. (Refer to Wolf [36] for the classi-
fication of 3-dimensional Riemannian flat manifolds.) Among these, real Bott
manifolds consist of 4; G1, G2, B1, B3. (See [26].) We shall show that B2, B4 are
S1-fibred nilBott manifolds.

4.3.1 3-dimensional S1-fibred nilBott manifolds of finite
type

G1: T 3. Holonomy group {1}. The identity Bott matrix I3.
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G2: T 3/Z2. Holonomy group Z2 = 〈α〉.

α(z1, z2, z3) = (−z1, z̄2, z̄3)

The Bott matrix A =

 1 1 1
0 1 0
0 0 1

.

B1: T 3/Z2 = S1 ×K. Holonomy group Z2 = 〈α〉.

α(z1, z2, z3) = (−z1, z2, z̄3)

The Bott matrix A =

 1 0 1
0 1 0
0 0 1

.

B3: T 3/(Z2)2. Holonomy group (Z2)2 = 〈α, β〉.

α(z1, z2, z3) = (−z1, z̄2, z̄3)

β(z1, z2, z3) = (z1,−z2, z̄3)

The Bott matrix A =

 1 1 1
0 1 1
0 0 1

.

B2: Let T 3/Z2 whose holonomy group Z2 = 〈α〉 acts on T 3;

α(z1, z2, z3) = (−z1z3, z2z3, z̄3)

There is no such description of Bott matrix in this case. Define S1-action
on T 3 by

t(z1, z2, z3) = (tz1, tz2, z3).

Then it is easy to see that this S1-action induces an S1-action on T 3/Z2.
This gives a principal bundle

S1→T 3/Z2−→K

where K is a Klein bottle. Letting π1(K) = G, there is an central exten-
sion

1→Z→π→G→1.

More precisely, if 〈t1, t2, t3, α̃〉 is a set of generators, then

1→〈t1, t2〉→π−→〈ᾱt̄3〉→1.

Here the quotient group G = 〈t̄1, t̄2, t̄3, ᾱ〉. Moreover, it is easy to see that
But t̄1 = ᾱ2, t̄2 = t̄−1

1 . Moreover, it follows

ᾱ(t̄1, t̄2)ᾱ−1 = (t̄1, t̄
−1
2 ),

that is ᾱ induces an action of Z2 on T 2 by α(z1, z2) = (−z1, z̄2) so R2/G =
T 2/〈α〉 = K.
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B4: T 3/(Z2)2. Holonomy group (Z2)2 = 〈α, β〉.

α(z1, z2, z3) = (−z1, z̄2, z̄3)

β(z1, z2, z3) = (z1,−z2,−z̄3)

If we define −1-action to be z 7→ −z̄, then the nil-Bott matrix A = 1 1 1
0 1 −1
0 0 1

 but not a Bott matrix.

Denote the (Z2)2-action on T 2 by

α̂(z1, z2) = (−z1, z̄2)

β̂(z1, z2) = (z1,−z2).

The quotient manifold is the Klein bottle T 2/(Z2)2 = (S1×RP1)/Z2 = K. The
projection P (z1, z2, z3) = (z1, z2) is equivariant with respect to the (Z2)2-action
so the quotient

T 3/(Z2)2→K→S1→{pt}
is a nil-Bott tower with S1-fiber.

Proposition 4.7. The 3-dimensional S1-fibred nilBott manifold of finite type
are those of G1, G2, B1, B2, B3, B4.

Proof. Since the holonomy group are the product of Z2 by Proposition 4.6, the
remaining cases are either G6 or B2 from the list [36]. Moreover, by Corollary ??,
an S1-fibred nilBott manifold M of finite type admits a homologically injective
T k-action for k = RankH1(M) (k ≥ 1). In particular, Zk is a direct summand of
H1(M). By the classification of the first homology (cf. [36]), H1(M ;Z) = Z4+Z4

for G6. So it cannot admit a structure of S1-fibred nilBott manifold. For the
Riemannian flat 3-manifold corresponding to B2, it follows H1(M ;Z) = Z + Z
(cf. [36]). We have shown that there is a S1-fibred nilBott tower: M→K→S1.

4.3.2 3-dimensional S1-fibred nilBott manifolds of infinite
type

Any 3-dimensional S1-fibred nilBott manifold M3 of infinite type is an infranil-
Heisenberg manifold. The 3-dimensional simply connected nilpotent Lie group
N3 is isomorphic to the Heisenberg Lie group N which is the product R×C with
group law:

(x, z) · (y, w) = (x+ y − Imz̄w, z + w).

Then a maximal compact Lie subgroup of Aut(N) is U(1)o 〈τ〉 which acts on N

eiθ(x, z) = (x, eiθz), (eiθ ∈ U(1)).

τ(x, z) = (−x, z̄).
(4.1)

27



A 3-dimensional compact infranilmanifold is obtained as a quotient N/Γ where
Γ is a torsionfree discrete uniform subgroup of E(N) = N o (U(1) o 〈τ〉). See
[10].
Let

S1→M3→M2

be an S1-fibred nilBott manifold of infinite type which has a group extension
1→Z→π3→π2→1. As before this group extension contains a central group
extension 1→Z→∆̃3−→∆2→1. Since R ⊂ N is the center, this induces the
commutative diagram of central extensions (cf. (4.7)):

1 −−−−→ Z −−−−→ ∆̃3 −−−−→ ∆2 −−−−→ 1y y y
1 −−−−→ R −−−−→ N −−−−→ C −−−−→ 1.

(4.2)

Using this, we obtain an embedding:

1 −−−−→ Z −−−−→ π3 −−−−→ π2 −−−−→ 1y ρ

y ρ̂

y
1 −−−−→ R −−−−→ E(N) −−−−→ Co (U(1) o 〈τ〉) −−−−→ 1.

(4.3)

Note that C o (U(1) o 〈τ〉) = R2 o O(2) = E(2). Since R ∩ π3 = Z from (4.3),
ρ̂(π2) is a Bieberbach group in E(2) so that R2/ρ̂(π2) is either T 2 or K.

Define L : E(N)→U(1) o 〈τ〉 to be the canonical projection.

Case (i). Suppose L(π3) = {1}. Then ρ̂(π2) ≤ C. So we may assume π3 = ∆̃3

from (4.2). For each k ∈ Z, we introduce the nilpotent group ∆(k) which is a
subgroup of N generated by

c = (2k, 0), a = (0, k), b = (0, ki).

Put Z = 〈c〉 which is a central subgroup of ∆(k). It is easy to see that

[a, b] = c−k. (4.4)

Then ∆̃3 ≤ N is isomorphic to ∆(k) for some k ∈ Z. Since R is the center of N,
we have a principal bundle

S1 = R/Z→N/∆(k)−→C/Z2.

Then the euler number of the fibration is ±k. (See [29] for example.)

Case (ii). Suppose that the holonomy group of π3 is nontrivial. Then we note
that L(π3) = Z2 ≤ U(1) o 〈τ〉, but not in U(1). By (4.7) L(π3) = L(π2), first
remark that L(π2) is not contained in U(1). For this, suppose that (b, A) is
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an element of π2 ≤ R2 o O(2). Then for any x ∈ R2, (b, A)x 6= x, because
the action of π2 on R2 is free. Therefore det(A − I) = 0. This implies that if
A ∈ SO(2) = U(1), then A = I. So L(π2) = L(π3) is not contained in U(1).

Suppose that there exists an element g ∈ π3 such that L(g) = (eiθ, τ) ∈
U(1) o 〈τ〉. Noting (4.1), it follows L(g)2 = 1. Then L(π3) = (U(1) ∩ L(π3)) ·
〈L(g)〉. Let π′3 = L−1(U(1)∩L(π3)) ≤ π3 which has the commutative diagram:

1 −−−−→ Z −−−−→ π3
p3−−−−→ π2 −−−−→ 1

||
x x

1 −−−−→ Z −−−−→ π′3 −−−−→ π′2 −−−−→ 1.

(4.5)

Here π′2 = p3(π′3). Since π′2 also acts on R2 freely, it follows L(π′2) = L(π′3) =
U(1) ∩ L(π3) = {1}. Hence L(π2) = L(π3) = Z2 = 〈L(g)〉. In particular M2 is
the Klein bottle K.

Let n = (x, 0) be a generator of Z ≤ N. Choose h ∈ π3 with L(h) = 1
such that the subgroup 〈p3(g), p3(h)〉 is the fundamental group of K. It has a
relation p3(g)p3(h)p3(g)−1 = p3(h)−1. Then 〈n, g, h〉 is isomorphic to π3. In
particular, those generators satisfy

ghg−1 = nkh−1 (∃ k ∈ Z),

gng−1 = L(g)n = τn = n−1, hnh−1 = L(h)n = n.
(4.6)

On the other hand, fix a non-zero integer k. Let Γ(k) be a subgroup of E(N)
generated by

n = ((k, 0), I) , α =

(
(0,

k

2
), τ

)
, β = ((0, ki), I) , (4.7)

where (a, x) ∈ N = R× C ≤ E(N).
Note that α2 = ((0, k), I). Then it is easily checked that

αβα−1 = nkβ−1, αnα−1 = n−1, βnβ−1 = n. (4.8)

1 −−−−→ R −−−−→ E(N) −−−−→ Co (U(1) o 〈τ〉) −−−−→ 1x x x
1 −−−−→ 〈n〉 −−−−→ Γ(k) −−−−→ 〈α̂, β̂〉 −−−−→ 1.

(4.9)

Then the subgroup generated by α̂2, β̂ is isomorphic to the subgroup of trans-

lations of R2; t1 =

[
k
0

]
, t2 =

[
0
k

]
. Let T 2 = R2/〈t1, t2〉. Then it is easy to

see that the quotient γ = [α̂] of order 2 acts on T 2 as

γ(z1, z2) = (−z1, z̄2). (4.10)
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As a consequence, R2/〈α̂, β̂〉 = T 2/〈γ〉 turns out to be K. So M3 = N/Γ(k) is
an S1-fibred nilBott manifold:

S1→N/Γ(k)→K

where S1 = R/〈n〉 is the fiber (but not an action).

Compared (4.6) with Γ(k), π3 is isomorphic to Γ(k) with the following com-
mutative arrows of isomorphisms:

1 −−−−→ Z −−−−→ π3 −−−−→ π2 −−−−→ 1y y y
1 −−−−→ 〈n〉 −−−−→ Γ(k) −−−−→ 〈α̂, β̂〉 −−−−→ 1.

(4.11)

As both (π3, X3) and (Γ(k),N) are Seifert actions, the isomorphism of (4.11) im-
plies that they are equivariantly diffeomorphic, that is, M3 = X3/π3

∼= N/Γ(k).
This shows the following.

Proposition 4.8. A 3-dimensional S1-fibred nilBott manifold M3 of infinite
type is either a Heisenberg nilmanifold N/∆(k) or a Heisenberg infranilmanifold
N/Γ(k).

4.3.3 Realization of S1-fibration over a Klein Bottle K

Let Q be a fundamental group of a Klein Bottle K, then Q has a presentation:

{g, h | ghg−1 = h−1}. (4.12)

A group extension 1→Z→π→Q→1 for any 3-dimensional S1-fibred nilBott man-
ifold over K represents a 2-cocycle in H2

φ(Q,Z) for some representation φ. Con-
versely, given any representation φ : Q→Aut(Z) = {±1}, we shall prove that
any element of H2

φ(Q,Z) can be realized as an S1-fibred nilBott manifold.

We must consider following cases of a representation φ:

Case 1. φ(g) = 1, φ(h) = 1,
Case 2. φ(g) = 1, φ(h) = −1,
Case 3. φ(g) = −1, φ(h) = 1,
Case 4. φ(g) = −1, φ(h) = −1.

Suppose φi (i = 1, 2, 3, 4) is the representation φ for Case i. Any element
of H2

φi
(Q,Z) gives rise to a group extension

1→Z→π p−→ Q→1.

Then π is generated by g̃, h̃, n such that 〈n〉 = Z and p(g̃) = g, p(h̃) = h. There
exists k ∈ Z which satisfies

g̃h̃g̃−1 = nkh̃−1. (4.13)
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Put π = iπ(k) for each k ∈ Z and [fk] denotes the 2-cocycle of H2
φi

(Q,Z)
representing iπ(k). Note that [f0] = 0.

Case 1: Since φ1 is trivial, H2
φ1

(Q,Z) = H2(Q,Z) ≈ H2(K,Z) ≈ Z2, and
the group 1π(k) satisfies the following presentation:

g̃ng̃−1 = n, h̃nh̃−1 = n, g̃h̃g̃−1 = nkh̃−1. (4.14)

Lemma 4.9. The groups 1π(0), 1π(1) are isomorphic to B1, B2 respectively.

Proof. First we shall discuss 1π(0). Let g̃, h̃, n ∈ 1π(0) be as above. Put ε = g̃,
t1 = g̃2, t2 = n and t3 = h̃. Remark that a group generated by ε, t1, t2, t3
coincides with 1π(0). Using the relation (4.14),

ε2 = t1,

εt2ε
−1 = g̃h̃g̃−1 = h̃−1 = t−1

2 ,

εt3ε
−1 = g̃ng̃−1 = n = t3.

Compared these relations with those of B1, 1π(0) is isomorphic to B1 (due to
the Wolf’s notation [36]).

Second, we shall discuss 1π(1). Let g̃, h̃, n ∈ 1π(1) be as above. Put ε = g̃,
t1 = g̃2, t2 = g̃−2n and t3 = h̃. A group generated by ε, t1, t2, t3 coincides with

1π(1). By using the relation (4.14),

ε2 = t1,

εt2ε
−1 = g̃g̃−2ng̃−1 = g̃−1ng̃−1 = g̃−2n = t1,

εt3ε
−1 = g̃hg̃−1 = g̃2g̃−2nh̃−1 = t1t2t

−1
3 .

This implies that 1π(1) is isomorphic to B2. (See [36].)

For arbitrary k ∈ Z, we have the following.

Proposition 4.10. The group extension 1π(k) is isomorphic to B1, or B2 in
accodance with k is even or odd.

Proof. Take [f1] ∈ H2
φ1

(Q,Z) ≈ Z2 by Lemma 4.9, then

n = g̃h̃g̃−1h̃ = (0, g)(0, h)(−f1(g−1, g), g−1)(0, h)

= f1(g, h)− f1(g−1, g) + f1(gh, g−1) + f1(h−1, h),
(4.15)

and so

nk = kf1(g, h)− kf1(g−1, g) + kf1(gh, g−1) + kf1(h−1, h). (4.16)

Since [kf1] ∈ H2
φ1

(Q,Z), we can construct a group Hk which is represented by
(kf1, φ1). Then Hk is generated by the elements n and g′ = (0, g), h′ = (0, h)
satisfying that

(n, α)(m,β) = (n+ φ1(α)(m) + kf1(α, β), αβ)

(∀n,m ∈ Z,∀α, β ∈ Q).

31



It follows

g′h′g′−1h′ = (0, g)(0, h)(−kf1(g−1, g), g−1)(0, h)

= kf1(g, h)− kf1(g−1, g) + kf1(gh, g−1) + kf1(h−1, h)

= nk (from (4.16)).

Thus we obtain g′h′g′−1 = nkh′−1. In view of (4.13), a correspondence g′ 7→ g̃,
h′ 7→ h̃ gives an isomorphism Ψ of the group extensions:

1 −−−−→ Z −−−−→ Hk −−−−→ Q −−−−→ 1

id

y Ψ

y id

y
1 −−−−→ Z −−−−→ 1π(k) −−−−→ Q −−−−→ 1.

(4.17)

If we recall that [fk] (resp. [k · f1] ) represents 1π(k) (resp. Hk), then it follows
[fk] = k · [f1]. Noting that [f1] is a two torsion element, the result follows.

Case 2: Let φ2(g) = 1, φ2(h) = −1, then 2π(k) has the following presenta-
tion.

g̃ng̃−1 = n, h̃nh̃−1 = n−1, g̃h̃g̃−1 = nkh̃−1, (4.18)

for some k ∈ Z.

Proposition 4.11. The groups 2π(0), 2π(1) are isomorphic to B3, B4 respec-
tively.

Proof. Let g̃, h̃, n ∈ 2π(0) be as before. Put α = h̃g̃, ε = h̃−1, t1 = g̃2, t2 = h̃−2

and t3 = n. Note that the group generated by α, ε, t1, t2, t3 coincides with 2π(0).
Using the relation (4.18),

α̃2 = (h̃g̃)2 = h̃h̃−1g̃g̃ = g̃2 = t1,

ε2 = t2,

εαε−1 = h̃−1h̃g̃h̃ = h̃−1g̃ = t2α,

αt2α
−1 = h̃g̃h̃−2g̃−1h̃−1 = h̃−2 = t−1

2 ,

alt3α
−1 = h̃g̃ng̃−1h̃−1 = n−1 = t−1

3 ,

εt1ε
−1 = h̃−1g̃2h̃ = h̃−1g̃h̃−1g̃ = h̃−1h̃g̃g̃ = g̃2 = t1,

εt3ε
−1 = h̃−1nh̃ = n−1 = t−1

3 .

Since these relations correspond to those of B3 (cf. [36]), 2π(0) is isomorphic to
B3.

Let g̃, h̃, n ∈ 2π(1) be as above. Put α = h̃g̃, ε = n−1h̃−1, t1 = n−1g̃2,
t2 = h̃−2, and t3 = n−1. Using the relation (4.18), we obtain the following
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presentation:

α̃2 = (h̃g̃)2 = h̃nh̃−1g̃g̃ = n−1g̃2 = t1,

ε2 = t2,

εαε−1 = n−1h̃−1h̃g̃h̃n = h̃−1g̃n = t2t3α,

αt2α
−1 = h̃g̃h̃−2g̃−1h̃−1 = h̃−2 = t−1

2 ,

αt3α
−1 = h̃g̃n−1g̃−1h̃−1 = n = t−1

3 ,

εt1ε
−1 = n−1h̃−1n−1g̃2h̃n = n−1g̃2 = t1,

εt3ε
−1 = n−1h̃−1n−1h̃n = n = t−1

3 .

This implies that 2π(1) is isomorphic to B4. (See [36])

Proposition 4.12. H2
φ2

(Q,Z) is isomorphic to Z2.

Proof. We first show thatH2
φ2

(Q,Z) is a 2-torsion group. LetQ′ be the subgroup

of Q generated by g, h2 ∈ Q satisfying that gh2g−1 = (ghg−1)2 = h−2. We have
a commutative diagram:

1 −−−−→ Z −−−−→ 2π(k)
p−−−−→ Q −−−−→ 1

||
x x

1 −−−−→ Z −−−−→ π′
p−−−−→ Q′ −−−−→ 1

(4.19)

where π′ is the subgroup of 2π(k) generated by n, g̃, h̃2. Note that

g̃h̃2g̃−1 = nkh̃−1nkh̃−1 = h̃−2.

Since the subgroup 〈g̃, h̃2〉 of π′ maps isomorphically onto Q′ and a restriction
φ2

∣∣Q′ = id, it follows π′ = Z × Q′. This shows that the restriction homo-

morphism ι∗ : H2
φ2

(Q,Z)→H2(Q′,Z) is the zero map, equivalently ι∗[fk] = 0.
Using the transfer homomorphism τ : H2(Q′,Z)→H2

φ2
(Q,Z) and by the prop-

erty τ ◦ ι∗([f ]) = [Q : Q′][f ] = 2[f ] (∀ [f ] ∈ H2
φ2

(Q,Z)), we obtain 2[f ] = 0.
Let [fk] be a 2-cocycle of 2π(k). Similarly as in the proof of Proposition 4.10

we obtain
[fk] = k · [f1]. (4.20)

As a consequence, H2
φ2

(Q,Z) is isomorphic to Z2.

The following is obvious using Proposition 4.11 and Proposition 4.12.

Corollary 4.13. The group extension 2π(k) is isomorphic to B3 or B4 in ac-
cordance with k is even or odd.

Case 3: The group 3π(k) has the following presentation for some k ∈ Z;

g̃ng̃−1 = n−1, h̃nh̃−1 = n, g̃h̃g̃−1 = nkh̃−1. (4.21)
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Lemma 4.14. The groups 3π(0), 3π(k) are isomorphic to G2, Γ(k) respectively.
(cf. (4.7).)

Proof. Let g̃, h̃, n ∈ 3π(0) be as before. Put α = g̃, t1 = g̃2, t2 = h̃ and t3 = n.
Note that the group generated by α, t1, t2, t3 coincides with 3π(0). By using the
relation (4.21), it is easy to check that:

α2 = t1,

αt2α
−1 = t−1

2 ,

αt3α
−1 = t−1

3 .

And so 3π(0) is isomorphic to G2. (See [36].)

Suppose g̃, h̃, n ∈ 3π(k) (k 6= 0). By the relations (4.6) and (4.21), 3π(k) is
isomorphic to Γ(k) (cf. (4.7)).

Proposition 4.15. H2
φ3

(G,Z) is isomorphic to Z.

Proof. From Theorem 4.3 and Lemma 4.14, Γ(k) represents the torsionfree el-
ement [fk] in H2

φ3
(G,Z). Moreover as in the proof of Proposition 4.10, we can

show that [fk] = k · [f1]. Therefore H2
φ3

(G,Z) is isomorphic to Z.

Case 4. The group 4π(k) has the following presentation.

g̃ng̃−1 = n−1, h̃nh̃−1 = n−1, g̃h̃g̃−1 = nkh̃−1. (4.22)

Put α = g̃h̃. It is easy to check that

αnα−1 = n, h̃nh̃−1 = n−1, αh̃α = nkh̃−1. (4.23)

In view of (4.18), this implies that 4π(k) is isomorphic to 2π(k).

We have shown that any element of H2
φi

(Q,Z) can be realized an S1-fibred
nilBott manifold M3, and obtain the following table:

Case 1 Case 2 and 4 Case 3
H2
φ(Q,Z) Z2 Z2 Z

[f ] = 0 B1 B3 G2

π1(M3) [f ] 6= 0:torsion B2 B4 -
[f ]:torsionfree - - Γ(k)
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4.3.4 Realization of S1-fibration over T 2

Let Z2 be the fundamental group of a torus T 2 generated by α, β. Given a
representation φ : Z2→Z = {±1}, we shall show that any element of H2

φ(Z2,Z)

can be realized as an S1-fibred nilBott manifold.

We must consider following cases of a representation φ:

Case 5. φ(α) = 1, φ(β) = 1,
Case 6. φ(α) = 1, φ(β) = −1,
Case 7. φ(α) = −1, φ(β) = −1.

Suppose φi (i = 5, 6, 7) is the representation φ for Case i. Any element of
H2
φi

(Z2,Z) gives rise to a group extension

1→Z→π p−→ Z2→1.

Then π is generated by α̃, β̃, m such that 〈m〉 = Z and p(α̃) = α, p(β̃) = β.
There exists k ∈ Z which satisfies

α̃β̃α̃−1 = mkβ̃ (4.24)

Put π = iπ(k) for each k ∈ Z and [fk] denotes the 2-cocycle of H2
φi

(Z2,Z) rep-
resenting iπ(k). Note that [f0] = 0.

Case 5: The group 5π(k) has the following presentation.

α̃mα̃−1 = m, β̃mβ̃−1 = m, α̃β̃α̃−1 = mkβ̃, (4.25)

for some k ∈ Z. Compared these relations with (4.4),

Proposition 4.16. The groups 5π(0), 5π(k) are isomorphic to π1(T 3), π1(∆(−k))
respectively.

Similarly as in the proof of Proposition 4.15, we obtain

Proposition 4.17. H2
φ5

(Z2,Z) is isomorphic to Z.

Case 6: The group 6π(k) has the following presentation.

α̃mα̃−1 = m, β̃mβ̃−1 = m−1, α̃β̃α̃−1 = mkβ̃, (4.26)

for some k ∈ Z.

Proposition 4.18. The groups 6π(0), 6π(1) are isomorphic to B1, B2 respec-
tively.

Proof. First let k = 0. Put m = h̃, α̃ = n, β̃ = g̃, then we can check easily that

6π(0) is isomorphic to 1π(0). So 6π(0) is isomorphic to B1.
Suppose k = 1. Put m = n, α̃ = g̃, m−1β̃ = h̃, then it is easy to check that

6π(1) is isomorphic to B2.
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Moreover similarly as in the proof of Proposition 4.12, we obtain

Proposition 4.19. H2
φ6

(Z2,Z) is isomorphic to Z2.

Case 7: The group 7π(k) has the following presentation.

α̃m−1α̃−1 = m, β̃mβ̃−1 = m−1, α̃β̃α̃−1 = mkβ̃, (4.27)

for some k ∈ Z. Then it is easy to check that 7π(k) is isomorphic to 6π(k) if we
put g = α̃β̃.

We have shown that any element of H2
φ(Z2,Z) can be realized an S1-fibred

nilBott manifold M3, and we obtain the following table:

Case 5 Case 6 and 7
H2
φ(Z2,Z) Z Z2

[f ] = 0 G1 B1

π1(M3) [f ] 6= 0:torsion - B2

[f ]:torsionfree ∆(k) -
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Chapter 5

Holomorphic torus Bott
tower

5.1 Holomorphic torus-Bott tower

Suppose that there is a tower of fiber bundles:

M = Mn→Mn−1→ . . .→M1→{pt}. (5.1)

Each (Mm, Jm) is a complex manifold such that

T 1
C −−−−→ Mm −−−−→ Mm−1 (5.2)

is a holomorphic fiber bundle (m = 1, . . . , n) which induces a group extension:

1→Z2→πm−→πm−1→1. (5.3)

For m = 1, M1 = T 1
C with π1 = Z2. Let (Xm, Jm) be the universal covering

space of Mm (m = 1, . . . , n) such that X1 = C.

Definition 5.1. The holomorphic torus-Bott tower is a tower of (5.1) which
satisfies the following condition:

(1) There is an equivariant holomorphic principal bundle:

(Z2,C)→(πm, Xm, Jm)
pm−→ (πm−1, Xm−1, Jm−1)

associated with the group extension (5.3).

(2) Each πm normalizes the holomorphic action of C.

We call the top space M (= Mn) a holomorphic torus-Bott manifold (of depth n).
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There are several remarks. The condition (2) for m is equivalent to say
that T 1

C→Mm−→Mm−1 is a Seifert fiber space in the smooth case. It is not
necessarily true that the universal covering Xm is biholomorphic to the product
C × Xm−1. So contrary to the smooth case, holomorphic Seifert actions are
not described explicitly on the product C × Xm−1 in general. However, our
holomorphic Seifert actions on the universal covering of a holomorphic torus-
Bott manifold can be described. In fact, let (X, J) (= (Xn, Jn)) be the universal
covering of a holomorphic torus-Bott manifold M = Mn. Put (Xn−1, Jn−1) =
(X̂, Ĵ).

Proposition 5.2. (X, J) is biholomorphic as a holomorphic principal bundle
to the product (C× X̂, J0 × Ĵ).

Proof. By Definition 5.1, X1 = C. We assume inductively that X̂ = Xn−1 is
biholomorphic to Cn−1. By (2) of Definition 5.1, C→X−→X̂ is a holomorphic
principal bundle. When Ah is the sheaf of germs of (local) holomorphic functions
on X̂, Oka’s principle says that H1(X̂, Ah) = 0. See [16, p.167-8]. Thus (X, J)
is holomorphically bundle isomorphic to the product (C× X̂, J0 × Ĵ).

5.1.1 Holomorphic Seifert action

As a consequence of Proposition 5.2, the holomorphic action of π on (X, J)
is a holomorphic action of π on (C × X̂, J0 × Ĵ). Assume that (π̂, X̂, Ĵ) is a

holomorphic action. Let (Z2,C)→(π,C× X̂, J)
p−→ (π̂, X̂, Ĵ) be an equivariant

holomorphic principal bundle as in (1) of Definition 5.1.

• The group extension 1→Z2→π−→π̂→1 represents a cocycle f : π̂× π̂→Z2

such that each element γ ∈ π is viewed as (n, α) ∈ Z2× π̂ with group law:

(n, α)(m,β) = (n+ φ(α)(m) + f(α, β), αβ).

Here φ : π̂→Aut(Z2) is the homomorphism induced by conjugation of π.

Since π normalizes the left translations C on C× X̂ by (2) of Definition 5.1, we
can describe the action of π explicitly;

• There is a holomorphic map χ(α) : (X̂, Ĵ)→(C, J0) for each α ∈ π̂ such
that the action (π,C× X̂) is described as

(n, α)(x,w) = (n+ φ̄(α)(x) + χ(α)(αw), αw) (5.4)

(∀ (n, α) ∈ π, ∀ (x,w) ∈ C× X̂.) Here φ̄ : π̂→Aut(C) is a unique extension
of φ.

By the definition, (π,X) is a holomorphic Seifert action (cf. [9],[23],[5]).
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5.1.2 Topology of holomorphic torus-Bott manifold

From (5.3) there is a homomorphism induced by conjugation: φ : πm−1→Aut(Z2).
Since each element of πm is almost complex and normalizes C, there exists a
matrix P ∈ GL(2,R) such that

P−1 · φ(πm−1) · P ≤ U(1).

If we let P−1 · φ(α) · P =

(
cos θ − sin θ
sin θ cos θ

)
for α ∈ πm−1, then the trace

condition shows that cos θ = 0,±1

2
,±1. It follows respectively

φ(α) =

(
0 −1
1 0

)±1

,

(
1 1
−1 0

)±1

,

(
±1 0
0 ±1

)
. (5.5)

So φ extends uniquely to an automorphism: φ̄ : πm−1→AutJ(C) = C∗ such as

φ̄(α) = ±i, e±iπ/3 or ± 1 (∀ α ∈ πm−1) respectively. (5.6)

In particular φ̄(πm−1) is a cyclic group of order 1, 2, 4 or 6.

Lemma 5.3. Each πm is virtually nilpotent.

Proof. As Z2 = π1, we suppose inductively that πm−1 is virtually nilpotent.
Since φ(πm−1) ≤ Aut(Z2) is a finite cyclic group, we choose a finite index
normal nilpotent subgroup ∆m−1 of πm−1 such that φ(∆m−1) = {1}. Then the
group extension of (5.3) induces a central extension:

1 −−−−→ Z2 −−−−→ πm −−−−→ πm−1 −−−−→ 1

||
x x

1 −−−−→ Z2 −−−−→ ∆m −−−−→ ∆m−1 −−−−→ 1.

(5.7)

And hence ∆m is nilpotent which proves the induction step.

Given a holomorphic torus-Bott manifold M , there is a holomorphic fiber
bundle : T 1

C→M−→Mn−1. As the fundamental group π of M is virtually nilpo-
tent, there exist a simply connected nilpotent Lie group N and a discrete faithful
homomorphism ρ : π→Γ ≤ E(N) such that the quotient N/Γ is an infranilman-
ifold. (Compare [1] for instance.) It follows from Seifert rigidity for nil-fiber
([19], see also [18],[23]) that

Proposition 5.4. Any holomorphic torus-Bott manifold M is diffeomorphic to
an infranilmanifold N/Γ.

Moreover, the diffeomorphism h between them preserves the fiber, i.e. there
is the commutative diagram of equivariant diffeomorphisms:

(Z2,C) −−−−→ (π,X)
p−−−−→ (π̂, X̂)

id

y h̃

y ĥ

y
(Z2,C) −−−−→ (Γ, N)

p−−−−→ (Γ̂, N̂)

(5.8)
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5.2 Invariant metric on a nilpotent Lie group

5.2.1 Holomorphic infranilmanifolds

Let N be a simply connected nilpotent Lie group with left invariant complex
structure J . Denote by AutJ(N) the group of automorphisms of N which
preserve J , i.e. α∗ ◦J = J ◦α∗ on T1N . Choose a maximal compact subgroup K
from AutJ(N) and put EJ(N) = NoK. Each element h = (a, α) ∈ EJ(N) acts
on N as h(x) = a ·α(x) (∀ x ∈ N). Then EJ(N) = N oK acts holomorphically
on N . If Γ is a discrete (torsionfree) uniform subgroup of EJ(N), a quotient
N/Γ is said to be a holomorphic infranilorbifold (infranilmanifold). It is well
known that a finite cover of N/Γ is a nilmanifold.

5.2.2 Construction of E(N)-invariant complex structure

Let N be a simply connected nilpotent Lie group which has a central group
extension: 1→C→N π−→ N̂→1. Let E(N) = N oK be the semidirect product.
As C is normal in E(N), π induces an equivariant (continuous) homomorphism

π : (E(N), N)→(E(N̂), N̂). (5.1)

As K ≤ Aut(N) normalizes C, there is a homomorphism ρ : K→GL(2,R). In
order to be holomorphic on C, we require that ρ(K) ≤ U(1) ≤ GL(1,C) =
Aut(C). Equivalently, for ∀ k ∈ K,

k∗ ◦ J0 = J0 ◦ k∗ on TC. (5.2)

Suppose that Ĵ is a left invariant complex structure on the 2n−2-dimensional
nilpotent Lie group N̂ . Similarly as before, EĴ(N̂) denotes the holomorphic

semidirect product N̂ o K̂ of N̂ with a compact group K̂ ≤ AutĴ(N̂).

Proposition 5.5. There exists a E(N)-invariant complex structure on N under
the requirement (5.2). Moreover,

(C, J0)→(N, J)
π−→ (N̂ , Ĵ)

is a principal holomorphic bundle.

Proof. Choose an N -invariant Riemannian metric on N and average it by the
compact group K. Since K normalizes N , this gives a E(N)-invariant Rie-
mannian metric g on N . Let TC⊥ = {X ∈ TN | g(X,A) = 0, ∀A ∈ TC}.
As g is E(N)-invariant and C is normal in E(N), it is easy to see that TC⊥
is E(N)-invariant. Then the projection π : N→N̂ induces an isomorphism
π∗ : TC⊥→TN̂ at each point of N . Define an almost complex structure J on
TC⊥ by the following correspondence at each point of N :

π∗JX = Ĵπ∗X. (5.3)
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Let J0 be the standard complex structure on Ck (k ≥ 1). If we note that
TN = TC⊕ TC⊥, then we define

J(A+X) = J0A+ JX (A ∈ TC, X ∈ TC⊥). (5.4)

It follows that J is an almost complex structure on N . Since E(N) leaves
invariant TC⊥ and normalizes C, the decomposition is preserved by any element
h ∈ E(N); h∗A+h∗X ∈ TC⊕TC⊥. Using (5.1), the hypothesis that Ĵ is E(N̂)-
invariant shows that

π∗(h∗JX) = π(h)∗π∗(JX) = π(h)∗Ĵπ∗(X)

= Ĵπ(h)∗π∗(X) = Ĵπ∗(h∗X)

= π∗(Jh∗X),

and so h∗JX = Jh∗X (∀X ∈ TC⊥). As C is the center of N , x∗J0 = J0x∗
on TC (∀ x ∈ N). Each α ∈ K satisfies that α∗J0 = J0α∗ on TC by our
requirement (5.2). In particular, if h = (x, α) ∈ E(N), then h∗J0 = J0h∗ on
TC. Taking into account these equalities,

Jh∗(A+X) = J0h∗A+ Jh∗X

= h∗J0A+ h∗JX = h∗J(A+X),

and hence J is E(N)-invariant. Obviously (C, J0)→(N, J)
π−→ (N̂ , Ĵ) is an al-

most complex principal fiber bundle with respect to J . Let ϕ : (π−1(U), J)→(U×
C, J0×Ĵ) be a local trivialization isomorphism for this bundle. As Ĵ is a complex
structure by the hypothesis, so is J on N .

5.2.3 Trivialization

Let (C, J0)→(N, J)
π−→ (N̂ , Ĵ) be a principal holomorphic bundle from Proposi-

tion 5.5. We assume that (N̂ , Ĵ) is biholomorphic to (Cn−1, J0). By Proposition
5.2 we have

Corollary 5.6. (N, J) is biholomorphic as a holomorphic principal bundle to
the product (C× N̂ , J0 × Ĵ).

Let EJ(N) = N o K be the holomorphic semidirect product. Choose a
torsionfree discrete cocompact subgroup Γ from EJ(N) so that N/Γ is a holo-
morphic infranilmanifold.

5.3 Holomorphic infranil action

We observe that a holomorphic infranilmanifold N/Γ will be a holomorphic
Seifert manifold.

The central group extension 1→C→N π−→ N̂→1 is viewed as a holomorphic
principal bundle by Proposition 5.5. Under the hypothesis in Subsection 5.2.3,
Corollary 5.6 shows that N = C× N̂ biholomorphically with group law

(x, z) · (y, w) = (x+ y + f(z, w), z · w). (5.1)
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Here f : N̂ × N̂→C is a 2-cocycle. Put E(N) = EJ(N) for brevity. Since E(N)
normalizes C, there is a commutative diagram of the exact sequences:

1 −−−−→ C −−−−→ N
π−−−−→ N̂ −−−−→ 1

||
y y

1 −−−−→ C −−−−→ E(N)
π−−−−→ N̂ ◦K −−−−→ 1

(5.2)

where we put E(N)/C = N̂ ◦ K. As E(N) is the semidirect product N o K,
N̂ ◦K has the group law; for α = a ◦ k, β = b ◦ h ∈ N̂ ◦K,

α · β = ak(b) ◦ kh.

As K ≤ Aut(N), there is a homomorphism ρ̂ : K→Aut(N̂). If we recall that
K̂ is the maximal compact subgroup of Aut(N̂), ρ̂(K) ≤ K̂ up to conjugate. It
follows that

N̂ ◦K = N̂ o ρ̂(K) ≤ E(N̂). (5.3)

Let φ : N̂ ◦K→Aut(C) be a homomorphism induced by the conjugation from
(5.2). Then E(N) is viewed as the set C× (N̂ ◦K) with group law

(x, α) · (y, β) = (x+ φ(α)(y) + f̄(α, β), α · β) (5.4)

in which f̄ : N̂ ◦K × N̂ ◦K→C is a 2-cocycle extending f on N̂ × N̂ of (5.1).
The action of E(N) on N is interpreted in terms of group law (5.4): E(N) ×
E(N)→E(N)−→N ; let α = a ◦ k ∈ N̂ ◦K with (x, α) ∈ E(N) and b ∈ N̂ with
(y, b) ∈ N . Then

(x, α) · (y, b) = (x+ φ(α)(y) + f̄(α, b), ak(b) ◦ k)

7→ (x+ φ(α)(y) + f̄(α, b), ak(b)) ∈ N.
(5.5)

As in Section 5.2.1, E(N) normalizes C so the holomorphic action of E(N)
on N induces a holomorphic action of N̂ ◦K on N̂ by αb = ak(b) (∀ α = a ◦ k ∈
N̂ ◦ K, ∀ b ∈ N̂). Associated with the group extensions of (5.2), we obtain a
holomorphic Seifert fibration by the definition of Section 5.1.1:

(C,C) −−−−→ (E(N), N)
π−−−−→ (N̂ ◦K, N̂)

where N = C × N̂ biholomorphically. Let ∀ (y, w) ∈ N . If h = (x, α) ∈ E(N)
with α (= a ·k) ∈ N̂ ◦K, then as in (5.4) the holomorphic Seifert action implies
that there is a holomorphic map µ(α) : (N̂ , Ĵ)→(C, J0) such that

h(y, w) = (x+ φ(α)(y) + µ(α)(αw), αw). (5.6)

Using µ (cf. [23]), f̄ : N̂ ◦K × N̂ ◦K→C is described as f̄(α, β) = δ1µ(α, β)(w)
(∀ w ∈ N̂), i.e.

f̄(α, β) = φ(α)(µ(β)(α−1 · w)) + µ(α)(w)− µ(αβ)(w)

(∀ α, β ∈ N̂ ◦K, ∀ w ∈ N̂).
(5.7)

Here the set hol(N̂ ,C) is a N̂ ◦ K̂-module defined by

(α · g)(w) = φ(α)(g(α−1 · w)) (∀ g ∈ hol(N̂ ,C), ∀ α ∈ N̂ ◦K). (5.8)

42



5.3.1 Holomorphic Seifert manifold

Consider a torsionfree discrete uniform subgroup Γ lying in E(N) = EJ(N):

1 −−−−→ Z2 −−−−→ Γ
π−−−−→ Γ̂ −−−−→ 1

∩ ∩ ∩

1 −−−−→ C −−−−→ E(N)
π−−−−→ N̂ ◦K −−−−→ 1.

(5.9)

Here Z2 = C ∩ Γ and Γ̂ = π(Γ). Then the group extension of Γ is represented
by a 2-cocycle [f ] ∈ H2

φ(Γ̂;Z2) where φ = φ|Γ̂ : Γ̂→Aut(Z2) is a homomorphism

restricted to Γ̂. Note that Z2 is a Γ̂-module through φ. In view of (5.6), we
have shown that

Proposition 5.7. Given a holomorphic infranil-action of Γ̂ (i.e. Γ̂ ≤ EĴ(N̂)), a
holomorphic infranil-action of Γ on (N, J) is a holomorphic Seifert action of Γ
on (C× N̂ , J0× Ĵ) which can be determined by a holomorphic map µ(α) : N̂→C
for each α ∈ Γ̂ such as

(n, α)(x,w) = (n+ φ(α)(x) + µ(α)(αw), αw)

(∀ (n, α) ∈ Γ, ∀ (x,w) ∈ N).
(5.10)

Moreover, the cocycle f representing the group extension of Γ in (5.9) satisfies
δ1µ = f as in (5.7).

Comparing (5.5) with (5.10), it follows that

f̄(α,w) = µ(α)(αw) (∀ α ∈ Γ̂, ∀ w ∈ N̂). (5.11)

5.4 Deformation of nilpotent Lie groups

Let hol(N̂ ,C) be the set of all holomorphic maps from (N̂ , Ĵ) to C. It is endowed
with a Γ̂-module as in (5.8), similarly for hol(N̂ , T 1

C) and Z2 (cf.Section 5.3.1).

Recall that a short exact sequence 1→Z2 i→ C j−→ T 1
C→1 induces a long

cohomology exact sequence (cf. [23], [5]):

→H1
φ(Γ̂;Z2)

i−−−−−→ H1
φ(Γ̂; hol(N̂ ,C))

j−−−−−→ H1
φ(Γ̂; hol(N̂ , T 1

C ))

δ−−−−−→ H2
φ(Γ̂;Z2)→· · ·

(5.1)

Put µ̂ = j ◦ µ : N̂→T 1
C for a holomorphic function µ of Proposition 5.7.

Then (5.10) implies that δ[µ̂] = [f ] by the definition. For any element [ν] ∈
H1(Γ̂; hol(N̂ ,C)), we have an element j[ν] · [µ̂] such that δ(j[ν] · [µ̂]) = [f ]. Note
that j maps µ + ν to jν · µ̂. From Proposition 5.7, δ1µ = f and so it follows
δ1(µ+ ν) = f which still defines the same group extension: 1→Z2→Γ−→Γ̂→1.
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We study a holomorphic Seifert action of Γ by this replacement µ+ ν which
is given by

(n, α)(x,w) = (n+ φ(α)(x) + µ(α)(αw) + ν(α)(αw), αw)

(n ∈ Z2, α ∈ Γ̂, (x,w) ∈ N).
(5.2)

Theorem 5.8. There exists a nilpotent Lie group N ′ isomorphic to N such that
the complex structure J is invariant under E(N ′). The above action (Γ, N) is
equivariantly biholomorphic to an infranil-action of Γ′ on N ′, (i.e.Γ′ ≤ EJ(N ′)).
Here Γ′ is a discrete uniform subgroup isomorphic to Γ. Specifically the quotient
N/Γ is biholomorphic to the holomorphic infranilmanifold N ′/Γ′. (In particular
∆′ = Γ′ ∩N ′ is a finite index subgroup of Γ′ such that N ′/∆′ is a holomorphic
nilmanifold.)

Proof. First when we take a Γ̂-module Map(N̂ ,C) consisting of smooth maps
from N̂ to C instead of hol(N̂ ,C), we note that

Hq
φ(Γ̂; Map(N̂ ,C)) = 0 (q ≥ 1).

(See [7], [23].)
If [ν] ∈ H1

φ(Γ̂; hol(N̂ ,C)) is relaxed to be in H1
φ(Γ̂; Map(N̂ ,C)), then there is

an element λ ∈ Map(N̂ ,C) such that δ1λ = ν, i.e. ν(α)(αw) = δ1λ(α)(αw) =
α ◦ λ(αw)− λ(αw), it follows (cf. (5.8))

ν(α)(αw) = φ(α)(λ(w))− λ(αw) (∀ α ∈ Γ̂, ∀ w ∈ N̂). (5.3)

A function f ′ : N̂ × N̂→C is defined to be

f ′(z, w) = f(z, w) + δ1λ(z, w) (z, w ∈ N̂). (5.4)

As 1→C→N→N̂→1 is a central extension, δ1λ(z, w) = z·λ(w)−λ(z·w)+λ(z) =
λ(z) + λ(w) − λ(z · w). It is easy to see that δ1f ′ = 0 so f ′ is a 2-cocycle in
H2(N̂ ;C). Let N ′ = C× N̂ be the product with group law:

(x, z) ◦ (y, w) = (x+ y + f ′(z, w), z · w).

N ′ becomes a Lie group. Moreover, if ϕ : N→N ′ is a map defined by

ϕ(x, z) = (x− λ(z), z), (5.5)

then

ϕ((x, z) · (y, w)) = ϕ(x+ y + f(z, w), z · w)

= (x+ y + f(z, w)− λ(z · w), z · w)

= (x+ y + f(z, w) + δ1λ(z, w)− λ(z)− λ(w), z · w)

= (x+ y + f′(z, w)− λ(z)− λ(w), z · w)

= (x− λ(z), z) ◦ (y − λ(w), w) = ϕ(x, z) ◦ ϕ(y, w).

(5.6)

Thus ϕ : N→N ′ is a Lie group isomorphism.
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Let λ : N̂→C be the map as above. We extend λ to N̂ ◦K. Let α = a · k ∈
N̂ ◦K. Since K ≤ Aut(N), evaluated at 1 ∈ N , we simply put

λ̄(α) = λ(a). (5.7)

We can define a 2-cocycle f̄ ′ : (N̂ ◦K)× (N̂ ◦K)→C to be

f̄ ′(α, β) = f̄(α, β) + δ1λ̄(α, β) (α, β ∈ N̂ ◦K), (5.8)

where
δ1λ̄(α, β) = φ(α)(λ̄(β))− λ̄(αβ) + λ̄(α). (5.9)

Then we have a group G as the set C× (N̂ ◦K) with group law:

(x, α) ◦ (y, β) = (x+ φ(α)(y) + f̄ ′(α, β), αβ). (5.10)

By construction, there is an exact sequence: 1→N ′→G π−→ K→1. As N ′ is
a simply connected nilpotent Lie group, it follows that G = N ′ oK ′ for which
π maps K ′ isomorphically onto K. In particular, G = E(N ′). As in (5.6), if we
define ϕ̄ : E(N)→E(N ′) = G to be

ϕ̄(x, α) = (x− λ̄(α), α), (5.11)

then

ϕ̄((x, α) · (y, β)) = (x+ φ(α)(y) + f̄(α, β)− λ̄(αβ), αβ)

= (x+ φ(α)(y) + f̄(α, β) + δ1λ̄(α, β)

− φ(α)(λ̄(β))− λ̄(α), αβ)

= (x+ φ(α)(y) + f̄′(α, β)

− φ(α)(λ̄(β))− λ̄(α), αβ)

= (x− λ̄(α), α) ◦ (y − λ̄(β), β) = ϕ̄(x, α) ◦ ϕ̄(y, β).

(5.12)

Hence ϕ̄ : E(N)→E(N ′) is an isomorphism. By the formula (5.11), ϕ̄|C = id

and the induced homomorphism ϕ̂ : N̂→N̂ of ϕ̄ is id on N̂ ◦K. There induces
the following exact sequences:

1 −−−−→ C −−−−→ E(N)
π−−−−→ N̂ ◦K −−−−→ 1

id

y ϕ̄

y id

y
1 −−−−→ C −−−−→ E(N ′)

π−−−−→ N̂ ◦K −−−−→ 1.

(5.13)

We recall the infranil-action of E(N ′) on N ′. As in (5.5), for α = a◦k ∈ N̂◦K
with (x, α) ∈ E(N ′) and w ∈ N̂ with (y, w) ∈ N ′, it follows

(x, α) ◦ (y, w) = (x+ φ(α)(y) + f̄ ′(α,w), ak(w) ◦ k)

7→ (x+ φ(α)(y) + f̄ ′(α,w), αw) ∈ N ′
(5.14)

where αw = ak(w). So we put this infranil-action (E(N ′), N ′) as

(x, α) ◦′ (y, w) = (x+ φ(α)(y) + f̄ ′(α,w), αw) (5.15)
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Let Γ ≤ E(N) be as above. As in (5.9), there is the commutative diagram:

1 −−−−→ Z2 −−−−→ Γ
π−−−−→ Γ̂ −−−−→ 1

id

y ϕ̄

y id

y
1 −−−−→ Z2 −−−−→ ϕ̄(Γ)

π−−−−→ Γ̂ −−−−→ 1

∩ ∩ ∩

1 −−−−→ C −−−−→ E(N ′)
π−−−−→ N̂ ◦K −−−−→ 1.

(5.16)

Using (5.11), (5.3) and (5.8), (5.9), the action (5.2) becomes

(n, α)(x,w) = (n+ φ(α)(x) + µ(α)(αw) + ν(α)(αw), αw)

= (n+ φ(α)(x) + f̄(α,w) + φ(α)(λ̄(w))− λ̄(αw), αw)

= (n+ φ(α)(x) + f̄(α,w) + δ1λ̄(α,w)− λ̄(α), αw)

= (n+ φ(α)(x) + f̄ ′(α,w)− λ̄(α), αw)

= (n− λ̄(α), α) ◦′ (x,w) = ϕ̄(n, α) ◦′ (x,w),

(5.17)

where ◦′ is defined in (5.14). Hence the action of (Γ, N) is equivalent with the
infranil-action of ϕ̄(Γ) on N ′ defined in (5.15).

On the other hand, there is a E(N ′)-invariant complex structure J ′ on N ′

by Proposition 5.5 such that (N ′, J ′) is biholomorphic to (C × N̂ , J0 × Ĵ) by
Corollary 5.6. By Proposition 5.7, there exists an element µ′(α) ∈ hol(N̂ ,C)
(∀ α ∈ Γ̂) for which a holomorphic infranil-action of ϕ̄(Γ) on (N ′, J ′) is obtained
as

ϕ̄(n, α) ◦′ (x,w) = (n+ φ(α)(x) + µ′(α)(αw), αw). (5.18)

Compared this with (5.17), we obtain

µ(α)(αw) + ν(α)(αw) = µ′(α)(αw). (5.19)

For arbitrary A ∈ TC, V ∈ TN̂ , calculate

(n, α)∗J(A, V ) = (n, α)∗(J0A, ĴV )

= (φ(α)(J0A) + µ(α)∗(α∗ĴV ) + ν(α)∗(α∗ĴV ), α∗ĴV )

= (J0φ(α)(A) + J0µ(α)∗(α∗V ) + J0ν(α)∗(α∗V ), Ĵα∗V )

= (J0φ(α)(A) + J0µ
′(α)∗(α∗V ), Ĵα∗V )

= J ′(φ(α)(A) + µ′(α)∗(α∗V ), α∗V )

= J ′ϕ̄(n, α)∗(A, V ).

(5.20)

As (n, α)∗J = J(n, α)∗ on TN , it follows J ′ = J on C × N̂ = N = N ′.
And hence the holomorphic action (Γ, N, J) is equivariantly biholomorphic to
(ϕ(Γ), N ′, J). Equivalently the quotient N/Γ is biholomorphic to the holomor-
phic infranilmanifold N ′/ϕ̄(Γ).
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5.5 Holomorphic classification

Let M be a holomorphic torus-Bott manifold of dimension 2n. By Definition 5.1,
X1 = C. We assume inductively that Xn−1 is biholomorphic to Cn−1. By (2)
of Definition 5.1, C→X = Xn−→X̂ = Xn−1 is a holomorphic principal bundle.
Thus by Corollary 5.6, (X, J) is biholomorphic to the product (C× X̂, J0 × Ĵ)
as a holomorphic bundle. Hence the action on the universal covering (X,π, J)
is identified with a holomorphic Seifert action (C× X̂, π, J0 × Ĵ) as in (5.4).

Consider the associated group extension 1→Z2→π−→π̂→1 which represents
a 2-cocycle [f ] ∈ Hφ(π̂;Z2). As (π,C×X̂) is a holomorphic Seifert action, there

is a holomorphic map χ(α) : N̂→C for each α ∈ π̂ such that

(n, α)(x,w) = (n+ φ̄(α)(x) + χ(α)(αw), αw)

(∀ (n, α) ∈ π, ∀ (x,w) ∈ C× N̂),
(5.1)

which satisfies that

δ[χ̂] = [f ]. (5.2)

By Corollary 5.4, X/π is diffeomorphic to an infranilmanifold N/π. Suppose
that (X̂, π̂, Ĵ) is equivariantly biholomorphic to (N̂ , π̂, Ĵ) for which π ≤ E(N) =
N o K. Since φ : π̂→Aut(Z2) satisfies that φ(π̂) ≤ U(1) from (5.6), we may
assume that K satisfies the requirement (5.2) of Proposition 5.5. (In fact, as N
centralizes C and NoK normalizes C, the conjugation map ρ : NoK→GL(2,R)
satisfies that ρ(N o K) = ρ(K) ≤ O(2) in general. Taking U(1) ≤ O(2), we
choose K0 ≤ K such that ρ(K0) ≤ U(1) instead of K. As ρ(π) = φ(π̂) ≤ U(1),
it follows π ≤ N oK0 which satisfies the requirement obviously.)

By Proposition 5.5, there exists a E(N)-invariant complex structure J such
that π ≤ EJ(N), i.e. the action (N, π) is a holomorphic infranil-action. As
(N, J) is biholomorphic to (C × N̂ , J0 × Ĵ) by Corollary 5.6, Proposition 5.7
implies that there is a holomorphic map µ(α) : N̂→C such that

(n, α)(x,w) = (n+ φ̄(α)(x) + µ(α)(αw), αw). (5.3)

It follows also

δ[µ̂] = [f ]. (5.4)

As both [χ̂] and [µ̂] belong to H1
φ(π̂,hol(N̂ ,C)), there exists an element [ν] ∈

H1
φ(π̂,hol(N̂ ,C)) such that

[µ̂]−1[χ̂] = [ν̂]. (5.5)

This implies that j(χ(α)(w)) = j(µ(α)(w) + ν(α)(w)) ∈ T 1
C (∀ w ∈ N̂). We may

assume that (up to constant)

χ = µ+ ν : π̂−→hol(N̂ ,C). (5.6)

Theorem 5.9. Let M be a holomorphic torus-Bott manifold of dimension 2n
and (X,π, J) its universal covering. There exists a nilpotent Lie group N ′ with
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E(N ′)-invariant complex structure J such that the action (X,π, J) is equivari-
antly biholomorphic to a holomorphic infranil-action (N ′, π′, J) (π′ ≤ EJ(N ′)).
Specifically, a 2n-dimensional holomorphic torus-Bott manifold M is biholomor-
phic to a holomorphic infranilmanifold N ′/π′.

Proof. We suppose inductively that (X̂, π̂, Ĵ) is equivariantly biholomorphic to
(N̂ , π̂, Ĵ). Then the action (X,π) is equivariantly biholomorphic to a holomor-
phic action (N, π, J) such that

(n, α)(x,w) = (n+ x+ µ(α)(αw) + ν(α)(αw), α · w).

Applying Theorem 5.8 to this action, there is a holomorphic infranil geome-
try (EJ(N ′), N ′) such that the complex quotient N/π is biholomorphic to a
holomorphic infranilmanifold N ′/Γ′ for a torsionfree discrete subgroup Γ′ ≤
EJ(N ′).

5.6 Application

Let M = Mn→Mn−1→ . . .→M1→{pt} be a holomorphic torus-Bott tower as
in (5.1). Each holomorphic fiber bundle induces a group extension

1→Z2→πm−→πm−1→1

which represents a 2-cocycle in H2
φ(πm−1;Z2) (m = 1, . . . , n). See (5.3).

Definition 5.10. A holomorphic torus-Bott tower is of finite type if each 2-
cocycle has finite order in H2

φ(πm−1;Z2). Otherwise (i.e. there exists a cocycle
of infinite order), a holomorphic torus-Bott tower is said to be of infinite type.

5.6.1 Holomorphic torus-Bott manifold of finite type

Since U(n) is the maximal compact unitary subgroup in GL(n,C), the affine
group AC(n) = Cn o GL(n,C) has the complex euclidean subgroup EC(n) =
Cn o U(n). If Γ is a torsionfree discrete uniform subgroup in EC(n), then the
quotient Cn/Γ is a compact complex euclidean space form. Γ is said to be a
Bieberbach group.

Theorem 5.11. If M is a 2n-dimensional holomorphic torus-Bott manifold of
finite type, then M is biholomorphic to a complex euclidean space form Cn/Γ
(Γ ≤ EC(n)). Moreover the holonomy group L(Γ) ≤ U(n) is isomorphic to the

product


H1

H2

. . .

Hn

 where Hi is either one of {1}, Z2, Z4 or

Z6.
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Proof. Put (X,π) = (Xn, πn−1), (π̂, X̂) = (πn−1, Xn−1). Let

(Z2,C)→(π,X)
p−→ (π̂, X̂) (5.1)

be an equivariant principal holomorphic bundle (cf. (5.1)). Inductively suppose
that X̂/π̂ is biholomorphic to a complex euclidean space form Cn−1/Γ̂ (Γ̂ ≤
EC(n − 1)). As π̂ ∼= Γ̂, π̂ has a normal free abelian subgroup Z2(n−1) of finite
index. Consider the commutative diagram as in (5.9):

1 −−−−→ Z2 −−−−→ π −−−−→ π̂ −−−−→ 1

|| ∪ ∪

1 −−−−→ Z2 −−−−→ ∆ −−−−→ Z2(n−1) −−−−→ 1.

(5.2)

Note that φ(π̂) ≤ Aut(Z2) is a finite cyclic group. Taking a finite index sub-
group if necessary, we may assume that the lower sequence is a central group
extension. The cocycle of H2

φ(π̂;Z2) restricts to an element of a free abelian

group H2(Z2(n−1);Z2). Since the cocycle representing (5.2) is a torsion in
H2
φ(πm−1;Z2) by the hypothesis, it is zero in H2(Z2(n−1);Z2), i.e. the lower

group extension splits; ∆ ∼= Z2 × Z2(n−1) = Z2n.
On the other hand, M is biholomorphic to a holomorphic infranilmanifold

N/Γ for ∃ Γ ≤ EJ(N) by Theorem 5.9. In particular, Γ has a finite index
subgroup Γ′ isomorphic to Z2n. As Γ′ is a discrete uniform subgroup of N,
the Mal’cev uniqueness property implies that N is isomorphic to Cn. (Note
that N is isomorphic to a vector space R2n. The complex structure J on N is
equivalent to the standard complex structure J0 = J0 × J0 on Cn = C × Cn−1

by Corollary 5.6. Thus (N, J) is holomorphically isomorphic to Cn.) If we note
that K belongs to Aut(Cn) = GL(n,C) in this case, it follows K = U(n) so that
EJ(N) = EC(n). Since Γ ≤ EC(n), M is biholomorphic to a complex euclidean
space form Cn/Γ.

We may identify M = Cn/Γ. Let L : AffC(n) = CnoGL(n,C)→GL(n,C) be
the holonomy homomorphism. It remains to describe the structure of the holon-
omy group L(Γ) of Cn/Γ. First of all note that L(Γ) ≤ U(n). The (Bieberbach)
group Γ has an extension as in (5.2):

1→Z2→Γ
p−→ Γ̂→1 (5.3)

where Cn−1/Γ̂ is a 2(n−1)-dimensional complex euclidean space. As Γ normal-
izes C (≥ Z2), we have

L((n, α)) = {
(
φ̄(α) 0
0 Bα

)
} ≤ U(n) (∀ (n, α) ∈ Γ). (5.4)

If we recall that Γ̂ ≤ EC(n − 1) = Cn o U(n − 1), then the action of Γn−1 on
Cn−1 is described as

α(y) = (bα, Bα)(y) = bα +Bα(y) (α ∈ Γ̂, y ∈ Cn−1).
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By the induction hypothesis we assume that L(Γ̂) = {Bα} ≤ Πn
i=2Hi where

each Hi is isomorphic to either one of {1}, Z2, Z4 or Z6.
Noting H1 = φ({α}) = {±1}, {±i} or {e±iπ/3} from (5.6), it follows from

(5.4) that L(Γ) ≤ Πn
i=1Hi. This proves the induction step.

Remark 5.12. By the hypothesis [f ] ∈ H2
φ(Γ̂;Z2) has finite order, say `. Let

` · f = δ1λ̃ for some function λ̃ : Γ̂→Z2. Putting λ = `/λ̃ : Γn−1→C, it follows

f = δ1λ. (5.5)

Associated with the extension (5.3), we have another holomorphic Seifert action
of Γ on Cn:

(n, α)(x, y) = (n+ φ(α)(x) + λ(α), αy)

(∀ (n, α) ∈ Γ, ∀ (x, y) ∈ Cn).
(5.6)

Then for (n, α) ∈ Γ, the Seifert action (5.6) of Γ on C×Cn−1 = Cn is identified
with the euclidean action;

(n, α)

[
x
y

]
=

([
n+ λ(α)

bα

]
,

(
φ(α) 0
0 Bα

))[
x
y

]
. (5.7)

If we put

ρ((n, α)) =

([
n+ λ(α)

bα

]
,

(
φ(α) 0
0 Bα

))
, (5.8)

then this gives a faithful homomorphism ρ : Γ−→EC(n). We obtain a compact
complex euclidean space form Cn/ρ(Γ). By the Bieberbach theorem, Γ is con-
jugate to ρ(Γ) by some element f ∈ A(2n) = R2n o GL(2n,R). Two complex
euclidean space forms Cn/Γ and Cn/ρ(Γ) are affinely diffeomorphic. In general
they are different holomorphic Bieberbach classes.

Remark 5.13. We have a similar result to an S1-fibred nilBott manifold of fi-
nite type. In fact, it is diffeomorphic to an euclidean space form with holonomy
group isomorphic to (Z2)s (0 ≤ s ≤ n). (Compare [19].)

5.6.2 Kähler Bott tower

An example of finite type is a Kähler torus-Bott manifold, i.e. a torus-Bott

manifold which admits a Kähler structure. More precisely, let T 1
C→Mm

pm−→
Mm−1 be a holomorphic torus-Bott tower as in (5.2). Suppose that

(1) Each Mm supports a Kähler form Ωm.

(2) Let C→Xm
pm−→ Xm−1 be the equivariant principal holomorphic bundle

in which pm is a Kähler submersion.
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(3) C leaves invariant Ωm (m = 1, . . . , n).

Then (5.2) is said to be a Kähler Bott tower. The top space M = Mn is said to
be a Kähler Bott manifold.

The following theorem is inspired by the result of Carrell [5]. (See [19] also.)

Theorem 5.14. Let (M,Ω) be a Kähler Bott manifold. Then M is biholomor-
phic to the complex euclidean space form Cn/Γ where L(Γ) = Πn

i=1Hi.

Proof. To apply Theorem 5.11, it suffices to show that each cocycle [f ] represent-
ing (5.3) is of finite order in H2

φ(πm−1;Z2). In fact, there is a central group ex-

tension 1→Z2→∆m
pm−→ ∆m−1→1 from (5.7). Put T 1

C = C/Z2, Ym = Xm/∆m,
and Ym−1 = Xm−1/∆m−1. Then Mm has a finite covering Ym which admits a
principal holomorphic fibration:

T 1
C→Ym

qm−→ Ym−1. (5.9)

Then it is proved in [5], also [19] that the Kähler isometric action of T 1
C is

homologically injective, i.e. the obit map ev(t) = ty at a point y ∈ Ym induces an
injective homomorphism ev∗ : H1(T 1

C;Z) = Z2→H1(Ym;Z). This implies that
∆m has a finite index normal splitting subgroup so the representative cocycle of
πm in H2

φ(πm−1;Z2) has finite order. (See [8] for details.) By Theorem 5.11, M
is biholomorphic to a complex euclidean space form Cn/Γ with holonomy group
L(Γ) = Πn

i=1Hi.

Remark 5.15. It follows from the result of Hasegawa [14], Baues-Cortés [2]
that a compact aspherical Kähler manifold with virtually solvable fundamental
group is biholomorphic to a complex euclidean space form. As the fundamental
group of a Kähler Bott manifold is virtually nilpotent by Lemma 5.3, the above
theorem is obtained from this result except for the holonomy group characteri-
zation.

5.7 Holomorphic torus-Bott tower of infinite type

We study a holomorphic torus-Bott tower of infinite type. It is hard to determine
a holomorphic classification of holomorphic torus-Bott manifolds of infinite type
in higher dimension. Recall the following facts about holomorphic torus-Bott
manifolds of infinite type.

• The fundamental group is virtually nilpotent (but not abelian).

• A holomorphic torus-Bott manifold of infinite type is a non-Kähler mani-
fold.
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5.7.1 4-dimensional holomorphic torus-Bott manifolds

It follows from the classification of complex surfaces that a 4-dimensional holo-
morphic torus-Bott manifold is finitely covered by either T 2

C or S1×N/∆ where
N is a 3-dimensional Heisenberg Lie group isomorphic to the 3× 3-upper trian-
gular unipotent matrices with lattice ∆.

Proposition 5.16. A 4-dimensional holomorphic torus-Bott manifold is biholo-
morphic to either T 2

C/F or S1 ×N 3/∆ where F is a finite group of U(2) or ∆
is a discrete uniform subgroup of N o U(1).

5.7.2 6-dimensional examples of infinite type

As a special case of 6-dimensional holomorphic torus-Bott manifolds of infinite
type, there is a nontrivial holomorphic principal torus bundle over a complex

2-torus which is a holomorphic principal nilmanifold : T 1
C→N3/Γ

q3−→ T 2
C. N3

is a 2-step nilpotent Lie group with a left invariant complex structure. There
is a classification of six dimensional nilpotent Lie algebras with left invariant
complex structure in [33], [35]. As b1 is either 4 or 5 in this case except for C3,
the classification gives

Proposition 5.17. A 6-dimensional holomorphic torus-Bott manifold over a
4-dimensional complex euclidean space form is biholomorphic to the quotient
of the following nilpotent Lie group by a cocompact subgroup acting properly
discontinuously.

• C3

• N 3 ×N 3 (Lie algebra h2).

• R+ ×N 5 (Lie algebra h3).

• The Iwasawa Lie group L3 (Lie algebra h5).

• The Nilpotent Lie group corresponding to h4.

• The Nilpotent Lie group corresponding to h6.

• R3 ×N 3 (Lie algebra h8).

Remark 5.18. Here N8 = R3×N 3 is viewed as R×R→N8→R2×C. There is
another exact sequence: 1→C→N8−→R+×N 3→1 such that [N8,N8] = R ≤ C.
Note that this is a splitting exact sequence N8 = C × (R+ × N 3) but the base
space R+ ×N 3 is not C2.

It is interesting to find which non-Kähler geometric structure exists on a
holomorphic torus-Bott manifold of infinite type. We have found two such
classes in general dimension. The following result is obtained from [15] and [21].

Theorem 5.19.
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(i) A 2n + 2-dimensional compact infranilmanifold M admits a locally con-
formal Kähler structure if and only if M = R × N/Γ where N is the
Heisenberg nilpotent Lie group and Γ ≤ R × (N o U(n)) is a discrete
cocompact subgroup. In this case M has the holomorphic torus fibration
over the complex euclidean orbifold:

T 1
C→M−→Cn/Γ.

Some finite cover M ′ of R × N/Γ is a holomorphic torus-Bott manifold
of infinite type:

M ′
T 1
C−−−−→ TnC −−−−→ · · · −−−−→ {pt}.

(ii) There exist a 2(2n+1)-dimensional complex nilpotent Lie group L = L2n+1

and a torsionfree discrete cocompact subgroup Γ of the semidirect product
Lo(Sp(n)·S1) such that a 2(2n+1)-dimensional complex infranilmanifold
L/Γ admits a complex contact structure. L/Γ supports a holomorphic
torus bundle over the quaternionic euclidean orbifold:

T 1
C→L/Γ−→Hn/∆.

Moreover, some finite cover M ′ of L/Γ is a holomorphic torus-Bott man-
ifold of infinite type:

M ′
T 1
C−−−−→ T 2n

C −−−−→ · · · −−−−→ {pt}.

Here L3 is the Iwasawa complex nilpotent Lie group.
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