Actions

lation Sciences


https://core.ac.uk/display/235006251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




my supervisor Professor
Professor Takashi Sakai
ith them.

ful comments about the

ort.

tropolitan University for












. sequence of RP!-bundle

s {pt) (1.1)

projective bundle of the
| line bundle over M;_;.
, and it is a real analogue
in [12].

5, the Halperin-Carlsson
erin-Carlsson torus con-
"k on a closed n-manifold

(1.2)

M. See [31] for details
acterization of real Bott
1 which is introduced by
comorphic to a euclidean

1
ral Bott tower from the
tric fiber bundles in the

tion. Especially we state
[amely they are Realiza-
d. See Theorem2.9 and

e Calabi construction of
;7) [4] and the Conner-
mensional torus (k > 1).



anifold M, the orbit map at x € M is
(TF) = H\(T*;Z) = ZF and 71 (M) =
| evy 7Z¥ -7 and a homomorphism
nition of Conner-Raymond [8], if ev
be injective. (Refer to [23, Theorem
sion to be independent of the choice
t is known that evy is injective for
ther hand, if ev, : Zk—>H1(M;Z) is
logically injective [8]. In Section 3.1,
w that if ev, : Hy(T*; Z)—H,(M;Z)
7)) is also injective for i < k.



'variant principal bundle:
(1.6)

;) =m; and m (M) = 7.

. that each 7; normalizes
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subgroup A.

o study the holomorphic rigidity of our holomorphic torus-Bott manifolds,

ed to generalize this result to the case of holomorphic torus bundles more

ally orbibundles over holomorphic infranilmanifolds (infranilorbifolds). We
o [23], [5] for holomorphic Seifert fibration.We shall prove the following.

. tower is a sequence of holomorphic
r T

.. = Mi—{pt}. (1.7)

said to be a holomorphic torus-Bott
n 5.1 of Section 5.1 more precisely.
> a closed aspherical manifold. Then
I' of M is virtually nilpotent. Let
; of a simply connected nilpotent Lie
h K is a maximal compact subgroup
en we forget a complex structure on
to an infranilmanifold N/p(T") where
ntation. In particular, using Seifert
1ifolds with isomorphic fundamental

f holomorphic torus-Bott tower and

mean a complex nilmanifold with left
for the recent results of deformation
On the other hand, denote by Té a
sructure theorem from S. Murakami’s



bundle. Moreover N’ is
ct is due to Oka’s princi-
olomorphic as a principal
) inductively. Speculat-
a short exact sequence

H D522

¢ infranilmanifold N’ /T
N’ x K' invariant under
iation N'/T" of N/T, see
V/T" topologically.

Section 5.2, we construct
In Section 5.3, we study
actions on holomorphic
following theorem which



Sp(n) - S1). In particular, L3 is the
age we found the above two geometric
us-Bott manifolds of infinite type. In
tric structures.



(E(G), X) is a proper action.

G) is a discrete subgroup, we obtain a properly

enote the group of auto-
A(G) becomes a group;

roup of G. Here, letting
WS:

, maximal compact sub-
1 C A(G). Consider the
n it is easy to check the






at A is an abelian group. Then there is a one-to-

2(Q, A) and Opext(Q, A, ).

J)—1, we can associate F
vog=id), and ¢(1) = 1.

1€ G).

s an element f(«, 8) € G
1ecked that f: QxQ—G

lasses of ¢- group exten-
esented by an extension
check that [f1] = [f2] €
+C(G) such that

3 e Q). (2.2)

— Aut(A) is a homomor-
1p cohomology H g(Q, A)
Therefore any extension
), A). Tt is easy to check



—1—@—1 a group extension which

Given a function ¢ : Q— Aut(A),
ies that each automorphism ¢(«) :
sm ¢(a) : N—N. In particular, this
ote that it is not necessarily a homo-

N (z)f(a, B)7F (xz € N). (2.1)
N,a € Q} can be constructed. Its
O() (1) f (e, B), aBB);
Q 1
| (2.2)
Q 1.

nted by [f] € Opext(Q, N, ¢).

10
ort construction

Suppose that a group @ acts properly
ent space W/Q is compact. Given a

Y, Q 1, (2.1)

thh IS <Taob %l%lk/%lbig:& m,Q, W), there exists a continuous

P —
))'EU }zfzf]%b(eﬂl Vi eddmwh that \II|A =l

lizer of [(N) in Diff(N x W). Let
om W into N. Then Diff* (N x W)
1t(NV) x Diff (W)) with the group law:

Ao h171) : >\17glgu hlh)

r) - Mhw), hw) (2.2)

N x W. See [18].
. data for the group extension (2.1).



ta (A, m,Q, W). We shall
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rem 2.6 is obtained by the following proposition.

¢ is also a 2-cocycle. That is [¢] €
e C is a vector space. So there is a

) () - n(eB)
tisfies (2.3). O

\=*/






14



15

A homologically injective T*-action on M induces a central group ex-
10
1-ZF sr—Q—1. (3.3)

OoI11S

cture on homo-
s a homologically injective action on a closed n-

S <b; (1=0,...,k). 2
feis dn glmo(s)f: freé t)orus (3.2)
Jasditychmldsture (3.1) is true.

(3.1)

. See [31] for details and

n effective T*-action on
efined to be ev(t) = tz
= 7. The map ev induces
v, 1 ZF—H (M; 7). Ac-
4 is injective, the action
m 2.4.2, also Subsection
f the base point z € M.)
aspherical manifolds [7].
the T*-action is said to



nting (3.3) has finite order (cf.[23,
uch that ¢- f = §'\ for some function

SR (3.4)

vering of 7" k. Then R* acts properly
uch that M = R¥ x W where W =
fold. Then it follows from [7] that the

,a) €, (z,w) € R x W).  (3.5)

ing subgroup ©' = ZF x Q’. There
at G : R¥ x W—RF x W defined by
. diffeomorphism with respect to the
of ZF x Q' (cf. [23, Theorem 7.3.2]).

lotient space, G induces a diffeomor-

¥ x W—T"* x W be the covering map
Q/

(t exp 2mih(w), [w]). (3.6)

M /ZF = T* x W such that

),aw) (Ya € Q). (3.7)
5</ W by aft,w] = [texp 2mii(a), aw]
ap:

k X W = M. (3.8)

ive diagram:
> Hj (Tk X W)
16
lq* (3.9)
> Hj (Tk XqQ! W)

By the formula (3.7), the @-action on

mid(a) € T* so the homology action

T'* x W)¥ denotes the subgroup left
Ql

element & € F, it follows

< H;(T* X w)E. (3.10)
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induces an isomorphism:

2).

) is injective.

tion ¢/ (w) = [w]. Define

By the hypothesis, there is a group extension 1—I'—7 — Z¥—1. Since

Bieberbach group, it admits a maximal normal finite index abelian sub-
. Put »(Z") = B. Consider the commutative diagram of the group

= id x ¢ : H;(T*;Q) ®
ymorphic, it implies that
tive. If p=voq:TF x

1 Q)—H,;(M;Q) is also

O

imensional Bieberbach group such that the rank of
n there faithful representation p : m—E(n)

fxists a
}ﬁrw@ﬁ }Rﬂsadmits an effective T*-action.

labi’s theorem [4] shows
> 0. We agree that the
vhen we look at a proof
\d such T*-actions for a
Regarding the proof, let
| Z* of Hy(M;Z). Then
is the fundamental group
al an element v € 7 has

€ R).

iecessarily leave the sub-

s not necessarily uniform
0 get a T*-action on M.



T (3.1)
Y+ B 1.

free abelian subgroup of rank k. By
1 Z™ is a finite index subgroup of T'.
| normal abelian subgroup of I'. We
n—k x B. Putting Q = 7/Z"* and
» group extensions:

L Q 1, (3.2)

Lk 1 (33)
om (3.1), (3.2) has the commutative

m

Q 1
T, (3.4)
B

1

: Q—Aut(Z"F) be the conjugation

1olp = id, if [f] € HZ(Q:Z"") is

"[f] = 0 in H?(B;Z"*). Then [f]
2(Q;Z7)—=HZ(Q; ZF) still holds for

") = HZ(Q; 2" %), (Compare [3].)
similarly as in (3.4) such that

/AL (3.5)

, M

by (3.3) 7 : Q—ZF < E(k) defines a

€ Q,"w e RF).

ve a properly discontinuous act1011180f

2 )]

in Aut(Z"~*) which implies ¢(Q) <
ee and acts properly discontinuously,
sp(m) < E(n) defined by

’< P(a) . )) (3.6)



/p(T).

» (3.4), (3.5), we define a

B}. (3.7)
€0 x R*, (3.8)
(3.9)

k)N p(w). We may put

' p(nva)a (310)

(3.11)

nent of euclidean isome-
covering groups (cf. [24],

— Isom(R"/p(7r))°

I

— Tk
19

O

mplies that M is affinely
- a T*-action where k =
n on a closed aspherical
n that if the fundamental
wtrivial center Z¢, then it
ieorem 1.1), ¢ < by. This
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| nilBott tower is a sequence (4.1) which satisfies
yace M is said to be an S*-fibred nilBott manifold

wer

top space of an iterated

t1. (4.1)

is the universal covering
\[) = .



; 1S a central extension:

— w1 — 1

T (4.4)

— Ay — 1.
finitely generated normal nilpotent
a virtually nilpotent subgroup, that
is a finite group. Let N;, N;,_1 be
1 as a discrete cocompact subgroup
> the affine group. If K; is a maximal
subgroup E(N;) = N; x K; is called
xists a faithful homomorphism (see
(V) (4.5)

i/pi(m;) is an infranilmanifold. The

(x(2)™") 0 é(a)) (4.6)

F¢—>Aut(]\~fi). As A; < N;, there is a
as a discrete uniform subgroup which

N;,_1—1

‘nilpotent Lie group. As Z < RN Ai
>A,;/Z =~ A;_; is an inclusion, noting
\Ai = 7Z. We obtain the commutative
clusions:

— Ai—l — 1
J (4.7)
— N;_1 —— 1.

ollowing group extension: 22

pi—> Ti—1 — 1
p,il (4.8)

—> ﬁi(’ﬂ'ifl) — 1.

ectively, p; is a homomorphism from
s given by the following:

(X (@) 71) 0 $l) (4.9)



Fi—>Aut(Ni,1);

compare [34]), it is easy
-defined homomorphism.

is an S!-fibred nilBott manifold M.
~1), Ni—1). (4.10)

ntly diffeomorphic to the
o Seifert fibrations from

)

Vi—1)-

le Seifert rigidity implies
N;). This shows the in-
ntly diffeomorphic to an
ithful representation.

O

wmilmanifold N /p(r).

Id of finite type

at N is isomorphic to a
ot a vector space for (II)



ark 4.5. Let M be an S*-fibred nilBott manifold of finite type, then p(m) is
berbach group (cf. Theorem 4.3). By the Bieberbach Theorem, p(m) satisfies
up extension

e abelian group Z'~!. P& +ho(c)— H—1 (4.2)
%phlﬁ(;‘? A ]l@e,e ﬁptflﬁl%sg{ﬁ)é%o%nomy group of p(w). We may identify
AFRIIE L EREEF L, TRST e LIS

is isomorphic to a Bieberbach group

s diffeomorphic to a Riemannian flat

is virtually free abelian for any j €
i,Z) is of infinite order in Hi(ﬂ'j, 7).
1al free abelian subgroup Z’7. As in
') Aii

— Mj—1 — 1

Ti (4.1)
Lz 1

ere is a transfer homomorphism 7 :

(i—1, Z)HHQQB(W'L'—M Z)7

The restriction i*[f] gives the bottom
€ H?*(Z*,7), then 0 = 7 o i*[f] =
0. Therefore A; (respectively N;) is
0 a vector space). As a consequence,
potent Lie group. O

finite type and infinite type. And
pe until dimension 2.



X N;_1, then the action

, QW) (4.4)

orem 4.3, Ni—l/ﬂ'i—l is a
that

. Then the above action

I)a] e

luctively that {A,|a €

(i —1). (4.6)

somorphic to (Z2)®%, (0 <
O

ott towers

\dephl tedditysBdthanatrix Is.

nian flat manifold. A 3-
Yiemannian flat manifold
the finite type or infinite

es G1,...,Gs, B1,...,B,
 Wolf [36] for the classi-
Among these, real Bott
1all show that Bs, B, are

nanifolds of finite

25









is obtained as a quotient N/I" where
up of E(N) = N x (U(1) x (r)). See

*)MQ

te type which has a group extension

extension contains a central group
C N is the center, this induces the
s (cf. (4.7)):

A, 1
l (4.2)
C 1
T2 — 1

| (4.3)

% (U(L) % (7)) —— 1.

= E(2). Since RN 73 = Z from (4.3),
t R2/p(mo) is either T2 or K.

canonical projection.
1) < C. So we may assume 3 = Ag
the nilpotent group A(k) which is a
k), b= (0, ki).
f A(k). It is easy to see that
—k

: (4

me k € Z. Since R is the center of N,

k)—C/Z>.
+k. (See [29] for example.)

up of 73 is nontrivial. Then we note
"U(1). By (4.7) L(w3) = L(ms), first
(1). For this, suppose that (b, A) is



2, (b, A)x # x, because
= 0. This implies that if
ot contained in U(1).

1 that L(g) = (', 7) €
L(ms) = (U(1) N L(ms)) -
e commutative diagram:

— 1
(4.5)
— 1.

follows L(mh) = L(w) =
(9)). In particular Ms is

» h € w3 with L(h) = 1
tal group of K. It has a
is isomorphic to m3. In

4.6
(h)n =n. (4.6)

¢) be a subgroup of E(N)

0,ki), 1), (4.7)
| that
l=n (4.8)
(1) —2% 1
(4.9)
— 1

o the subgroup of trans-

1,t2). Then it is easy to

(4.10)



’e must consider following cases of a representation ¢:

1. ¢(g) =1, ¢(h) =1,

3. ¢(g) = _17 ¢(h) = 17
4 6lg) = 1, o(h) = 1.

ippose ¢; (i = 1,2,3,4) is the representation ¢ for Case i. Any element
ii(Q, 7) gives rise to a group extension

1—5Z—1 25 Q—1.

ms_ out to be K. So M3 = N/I'(k) i ~ -
7 is generated by g, h, n such that (Sn> =Z and p(g) = g, p(h) = h. There

s k € Z which satisfies

N—K ~ -
) ghg~t =nkhL. (4.13)

action).

rphic to I'(k) with the following com-

— My —— 1

J (4.11)

— (&, ) —— 1.

\ctions, the isomorphism of (4.11) im-
phic, that is, M3 = X3/7T3 = N/F(k/’)



> 2-cocycle of H<z25@ (Q,2)

| ~ H*(K,Z) ~ 7, and

“ht (4.14)



osition 4.11. The groups om(0), 2m(1) are isomorphic to Bs, Bs respec-
.

9),9~")(0,h)
)+ kfi(gh,g™ ") + kfi(h™", h)

v of (4.13), a correspondence ¢’ — g,
up extensions:

Q 1
idl (4.17)
Q 1.

ents 17(k) (resp. Hy), then it follows
rsion element, the result follows. [

ien o7 (k) has the following presenta-

1o ghg™t =nFR, (4.18)









5 57(0), 57(k) are isomorphic to i (T?), w1 (A(—k))

f Proposition 4.15, we obtain
2

rated by «, 8. Given a
ny element of H3(Z?,Z)

n ¢:

Case i. Any element of

nd p(a) = o, p(8) = B.

(4.24)

eycle of HE (72,7) rep-

tation.

- mk 3, (4.25)



roposition 4.12, we obtain



(227((:)—)(71'7”, Xm, Jm) p_m> (7Tm717Xm713 Jmfl)

associated with the group extension (5.3).

rphic torus-Bott tower is a tower of (5.1) which

Bott

er
it}. (5.1)

1 (5.2)
luces a group extension:
(5.3)

e the universal covering



lition (2) for m is equivalent to say
space in the smooth case. It is not
» X, is biholomorphic to the product
ase, holomorphic Seifert actions are
> X Xy—1 in general. However, our
sal covering of a holomorphic torus-
t (X, J) (= (Xn, Jn)) be the universal
ifold M = M,,. Put (anl,t]nfl) =



ott manifold

wtion: ¢ : 1 — Aut(Z?).
nalizes C, there exists a

€ Mm_1, then the trace

ectively
1 0
0 41 > . (5.5)

» Aut ;(C) = C* such as

espectively. (5.6)

or 6.



LD y pie} D\lV}-lllV&[lallb all ‘o 1o 110li1llal 111 D\l\/), 1L 15 Uaby LvO SCC ullal 1L O
is E(N)-invariant. Then the projection 7 : N —N induces an isomorphism
7, : TC*—=TN at each point of N. Define an almost complex structure J on
TC* by the following correspondence at each point of N:

T JX = Jr. X, (5.3)

y nilpotent Lie group

)oiiti(an 5.5. There exists a E(N)-invariant complex structure on N under
11101Ads
squirernent (5.2). Moreover,

ie group with left invariant complex o
roup of automorphisfs ~(5cﬁ)2”v‘(1{%/7];1ilzhi> (N, J)
oose a maximal compact subgroup K

O Rehledlomerplia Y@ Blg(N) acts

7(N) = N x K acts holomorphically

form subgroup of E;(N), a quotient

orbifold (infranilmanifold). It is well

anifold.

variant complex structure

Jie group which has a central group
= N x K be the semidirect product.
ivariant (continuous) homomorphism

(BE(N), N). (5.1)
homomorphism p : K—GL(2,R). In
e that p(K) < U(1) < GL(1,C) =
cx on TC. (5.2)

ox structure on the 2n—2-dimensional

re, E;(N) denotes the holomorphic
mpact group K < Autj(N).



> 1). If we note that

olomorphic as a holomorphic principal bundle to
- TCH). 5.4

te holbficodplle) de@avdsrect product. Choose a

prasbEYe P afipel AV ) so that N/T is a holo-
'pothesis that J is E(N)- 41

infPanil action
X)
hic infranilmanifold N/T" will be a holomorphic

ntbr-6E-NY 2ok Ne—sJh s viewed as a holomorphic
u=5 Jy ol nslerTt@e Byyothesis in Subsection 5.2.3,
1 thévi hihdjomarphicelly with group law

w) = (z+y+f(z,w),z w). (5.1)

A+ X),

[,J) = (N,J) is an al-
et @ (7 (U), J)=(Ux
undle. As J is a complex

O

hic bundle from Proposi-
n=1"Jo). By Proposition



N) = E;(N) for brevity. Since E(N)
ram of the exact sequences:

5 N —1

l (5.2)
T 3 NoK —— 1
V) is the semidirect product N x K,
=boheNoK,
) o kh.

m p K—)Aut(ZA\Af). If we recall that
1t(N), p(K) < K up to conjugate. It

K) < E(N). (5.3)

sm induced by the conjugation from
(N o K) with group law

)(y) + f(a, B),a- B) (5.4)

wycle extending f on N x N of (5.1).
n terms of group law (5.4): E(N) x
“with (z,a) € E(N) and b € N with

+ f(a, b), ak(b) o k)
) + f(a, b),ak(b)) € N. (5:5)

= so the holomorphic action of E(N)
K on N by ab=ak(d) (Yo =aok e
oup extensions of (5.2), we obtain a
tion of Section 5.1.1:

—" » (NoK,N)
5V (y,w) € N. If h = (z,a) € E(N)

he holomorphic Seifert action implies
7, J)—=(C, Jp) such that 42

+ ula)(aw), aw). (5.6)
s described as f(a, 8) = ' (o, B)(w)

) + Mfa)(w) — p(ap)(w) (5.7)
v € N).
defined by

- hol(N,C),"a € N o K). (5.8)



soyuclite 1—«wv4o — ~ —/~7 Lco—1 LUIUULGs 4 10Ull5

£.[23], [5]):

13T hol(N, ©)) —L— HL (s hol(N, TE)) 51)
HY( )

or a holomorphic function p of Proposition 5.7.
= [f] by the definition. For any element [v] €
element j[v] - [fz] such that 6(j[v]-[a]) = [f]- Note
From Proposition 5.7, §'i = f and so it follows
les the same group extension: 157227 —T—1.

ng in E(N) = E;(N):
— 1
(5.9)

{ — 1.

nsion of I' is represented
(Z?) is a homomorphism

¢. In view of (5.6), we



of I by this replacement p + v which

(o) (aw) + v(a)(aw), aw)

,(x,w) € N). (5:2)



vy NoK. Leta=a-k¢e
nply put

(5.7)
o be
NoK), (5.8)
). (5.9)
group law:
3), af). (5.10)

G s K—1. As N is
, G = N’ x K’ for which
E(N’). Asin (5.6), if we

(5.11)
3)
»
), af) (5.12)
), af)
z, o) o p(y, B).

formula (5.11), ¢c = id
n N o K. There induces

N

— 1

i (5.13)

({ —— 1.

5.5), for & = ack € NoK
lows

ak(w) o k)

aw) € N (5.14)

V'), N') as

w), aw) (5.15)



, there is the commutative diagram:

s
— — 1

(5.16)

:

s
S

-
D e

" 3> NoK —— 1.
tion (5.2) becomes

() + v(a)(aw), aw)
v)(AM(w)) — AMaw), aw)

\(a, w) — Aa), aw) (5.17)
a), aw)
,a) o (z,w),

ction of (I', N) is equivalent with the
15).

nvariant complex structure J’ on N’
iholomorphic to (C x N,Jy x J) by
exists an element z/(e) € hol(N,C)
action of @(I") on (N, J’) is obtained

@) +H(@ew)aw).  (5.15)
) = b)), (519)
)

() (0 V), @ JV) 46
Jov(a)y(a, V), Ja, V) (5.20)
fa*V)

/)

vsJ =JonCxN =N = N
J) is equivariantly biholomorphic to
//T" is biholomorphic to the holomor-

O



on 2n. By Definition 5.1,
1orphic to C*~1. By (2)
1orphic principal bundle.
product (C x X, Jy x J)
versal covering (X, m, J)
7, Jo x J) as in (5.4).

—7m—1 which represents
phic Seifert action, there

1 that

), aw)

- C x N), (5:1)
(5.2)

manifold N/m. Suppose

J) for which 7 < E(N) =

J(1) from (5.6), we may 47
sition 5.5. (In fact, as N

nap p: NxK—GL(2,R)

Taking U(1) < O(2), we

As p(m) = ¢(7) < U(1),
obviously.)

omplex structure J such

phic infranil-action. As

ary 5.6, Proposition 5.7
lomvinphic torus-Bott manifold of dimension 2n

ering. There exists a nilpotent Lie group N’ with
v), qw). (5.3)

(5.4)
 exists an element [v] €
(5.5)

= T4 (Yw e N). We may

(5.6)



that the action (X, m,J) is equivari-
anil-action (N’ 7', J) (7' < Ej(N')).
- torus-Bott manifold M is biholomor-

/7.






hat L(T) = {Bs} < O ,H,; where
y ZQ, Z4 or Z@.

{e7/3} from (5.6), it follows from
> induction step. O






hic torus-Bott manifolds

x surfaces that a 4-dimensional holo-
ered by either T2 or S* x N'/A where
» isomorphic to the 3 x 3-upper trian-
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