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Abstract

In this thesis we study inferability in the limit from positive data for the
classes of bounded and unbounded unions of certain class of languages. In
order to show inferability, we put an emphasis on a characteristic set of a
given language.

This thesis consists of two parts: one for bounded unions, and the other
for unbounded unions. In both cases, the notion of characteristic sets plays
an important role to show inferability and to construct learning algorithms
concretely.

We consider a class of languages called a closed set system C. For bounded
unions, we consider the bounded union ∪≤kC of closed set systems C and we
assume the following three conditions: (1) C is Noetherian, (2) C is compact,
and (3) a characteristic set of a given closed set in ∪≤kC can be constructed
from its characteristic set in C. Then we have a learning algorithm of ∪≤kC
concretely under these conditions, by using the notion of hypergraphs. We
give two examples of closed set systems that satisfy the above three condi-
tions, and apply our algorithm to them.

For unbounded unions, we consider the unbounded union C⋆ of closed set
systems such that there exists an algorithm for generating a characteristic set
consisting of one element. We construct a learning algorithm of C⋆ concretely,
and give two examples. Furthermore, we investigate relation between those
examples and transaction databases, and attempt to apply our algorithm to
the transaction databases.



0.1 Introduction

In this thesis we study inferability of classes of bounded or unbounded unions
of certain closed set systems, and we consider concrete learning algorithms
of them.

Machine learning is originally to study algorithms to simulate the mech-
anism that human beings learn from their experiences. Today, after develop-
ment of information technology, machine learning is more used as theoretical
basics of getting patterns or tendencies behind given large quantity of data,
and expected to be progressed further.

There are a few models in machine learning. In this thesis our approach
is called identification in the limit from positive data. Identification in the
limit from positive data is defined as follows:
Given an enumerable set U (elements of U are called words) and a class L of
subsets of U (elements of this class are called languages). Every language is
labeled by the elements of some enumerable set H, called a hypothesis space.
For a language L, an enumeration of L is called a positive data of L. Let P
is an algorithm that runs as follows. Let L is an unknown given language of
L and suppose that a positive data σ of L is given. When the elements of σ
are presented one by one, then each time P outputs a hypothesis of language
that seems to be indicated by the positive data. If the outputs of P converge
to a hypothesis that indicates a given language, then we say that P identifies
L from σ in the limit. If P identifies L from σ in the limit for every L ∈ L
and every positive data σ of L, then we say that P identifies L from positive
data in the limit.

The idea of identification in the limit is introduced by Gold [7]. In 1980,
Angluin [1] gave a necessary and sufficient condition for identifying a given
language from positive data ((EC1) in Theorem 1.2). Angluin also pre-
sented an instance of a class of languages that is inferable from positive data
for the first time. After that, some sufficient conditions more convenient to
deal with than Angluin’s have been presented, such as existence of charac-
teristic sets ((C2) in Definition 1.3) and finite elasticity ((C3)). However,
those conditions are not always appropriate for constructing a learning algo-
rithm concretely. Therefore, concrete learning algorithms are needed for the
languages that decided identifiable by such conditions. A class of unions of
languages, that is we considered in this thesis, is a typical instance in such cir-
cumstances. Our goal is to construct learning algorithms for classes of unions
of languages called closed set systems concretely under certain conditions.
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A class of unions of languages is the class of subsets of U that can be
expressed as the set unions of finite number of languages. If the number
of languages is bounded uniformly, the class is called bounded unions of
languages. Otherwise, then it is called unbounded unions. A class of unions
of languages can be regarded as a class that deals with the combinations of
languages. It is, however, not easy to handle a class of unions of languages. In
particular, in case of unbounded unions, the condition for identifying a class
of unbounded unions of languages seems to be fairly strong by the results of
de Brecht et al. [2].

We deal with closed set systems as classes of unions of languages. A
closed set system is a class constructed by using a mapping called a closure
operator. One can say that closed set systems are appropriate to deal with
some algebraic objects, such as vector spaces, as the target of learning.

In this thesis we consider both bounded and unbounded unions. In both
cases, we suggest new conditions for constructing learning algorithms and
construct learning algorithms concretely by using the conditions. We also
present a few instances that satisfy the conditions and apply the algorithms
to them.

This thesis goes as follows: In Chapter 1 we review definitions and the-
orems about the inferability from positive data and closed set systems. We
summarize preliminaries from algebra, such as the definition of ideals of poly-
nomial ring, in Chapter 2. Then in Chapter 3, we investigate that how the
algebraic preliminaries are connected to the theory of inductive inference. In
Chapter 4 we consider the case of classes of bounded unions of languages. In
§4.1 we introduce the condition (∗) for constructing an algorithm learning
a class of bounded unions of languages, and construct a learning algorithm
by making use of (∗) concretely. We present two instances of applications of
the learning algorithm in §§4.2 and 4.3. Chapter 5 proceeds similarly for the
case of unbounded unions. We introduce the condition (⋆) and give a learn-
ing algorithm for unbounded unions in §5.1, and then we present instances
in §§5.2 – 5.4. We conclude our argument in Chapter 6.
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Chapter 1

Preliminaries from Inductive
Inference

1.1 Inferability from Positive Data

In this article, a language L is a subset of some countable set U such that L
is expressed L(G) by some finite expression G. We call this finite expression
a hypothesis. A set of all hypotheses H is called a hypothesis space. Let L
be the set of all languages {L(G) | G ∈ H}. We assume that L is uniformly
recursive, that is, there is a recursive function f(w, G) such that f(w, G) = 1
if and only if w ∈ L(G) for every w ∈ U and G ∈ H.

A positive data (or positive presentation) of L ∈ L is an infinite sequence
σ : s1, s2, . . . of elements of L such that L = {s1, s2, . . .}. An inference algo-
rithm M is that:
• M receives incrementally elements of a positive data σ of a language,
• M outputs a hypothesis Gn ∈ H when M receives n-th element of σ.
L is inferable in the limit from positive data if there exists an inference algo-
rithm M satisfies that for all L ∈ L and an arbitrary positive data of L, the
output sequence of M converges to a hypothesis G such that L(G) = L.

It is known that inferability of a class of languages L can be characterized
as follows:

Definition 1.1 Let L be a language of L. A finite subset S of L is called a
finite tell-tale of L in L if L′ ∈ L includes S, then L′ ̸⊂ L. In other words,
L is a minimal language in the class {L′ ∈ L | S ⊆ L′} with respect to set
inclusion.
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Theorem 1.2 ([1]) L is inferable in the limit from positive data if and only
if: (EC1) there exists a procedure to enumerate elements of a finite tell-tale
of every L ∈ L.

Moreover, there are some sufficient conditions for inferability of L.

Definition 1.3 1. Let L be a language of L. A finite subset S ⊆ L is called
a characteristic set of L in L if L′ ∈ L includes S, then L ⊆ L′, that is, L is
the minimum language in the class {L′ ∈ L | S ⊆ L′}.
2. L has infinite elasticity if there exists an infinite sequence w0, w1, . . . of
elements of U and infinite sequence L1, L2, . . . of languages of L such that,
for every n, Ln contains w0, . . . , wn−1 but wn. L has finite elasticity if it does
not have infinite elasticity.
3. L has finite thickness if the set {L ∈ L | w ∈ L} is finite for any w ∈ U .

Theorem 1.4 ([10],[13]) Consider the following conditions:
(C2) For each L in L, there exists a characteristic set of L in L,
(C3) L has finite elasticity,
(C4) L has finite thickness.
Then it holds that;

(C4)⇒ (C3)⇒ (C2)⇒ (EC1).

In particular, (C2), (C3) and (C4) are sufficient conditions for inferability
of L.

Let L′ be a subclass of L. Then, it clearly holds that:

Proposition 1.5 1. If L is inferable from positive data, then L′ is.
2. If L ∈ L has a characteristic set in L, then the characteristic set is also
a characteristic set of L in L′.

1.2 Closed Set System

First we define a closure operator. Let 2U be the power set of U .

Definition 1.6 A mapping C : 2U → 2U is called a closure operator if C
satisfies:
(CO1) X ⊆ C(X),
(CO2) X ⊆ Y ⇒ C(X) ⊆ C(Y ), and
(CO3) C(C(X)) = C(X)
for each X, Y ∈ 2U .
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A set X ⊆ U is called closed if X = C(X). A closed set system C is the
class of all closed sets of a closure operator. A closed set system can be
characterized by the property intersection closed as the following way.

Proposition 1.7 1. Let C be a closed set system. C is intersection closed,
that is, the intersection of arbitrary number of closed sets of C is an element
of C.
2. Let F be a class of subsets of U . Suppose that F is intersection closed
and, for each S ⊆ U , there is at least one X ∈ F such that S ⊆ X. Then
there is a closure operator C such that the closed set system associated with
C is F .

Proof. 1. Let {Xi} ⊆ C. Since ∩Xi ⊆ Xi, C(∩Xi) ⊆ C(Xi) = Xi for
every i. This implies C(∩Xi) ⊆ ∩Xi. On the other hand, C(∩Xi) ⊇ ∩Xi by
(CO1). Therefore C(∩Xi) = ∩Xi, thus ∩Xi is closed.
2. For A ⊆ U , we define C(A) = ∩{X ∈ F | A ⊆ X}. Since F is intersection
closed, C(A) is in F . It is easy to verify that C becomes a closure operator.

Remark 1.8 In a closed set system, the union of closed sets is not necessarily
closed.

Remark 1.9 According to the proposition above, a subclass of a closed set
system is closed set system if it is intersection closed and there exists an
element of the subclass for each subset of U .

In the following, we regard a closed set system C as a class of languages and
assume that it is recursive.

Definition 1.10 Let X is a closed set of C. If there is a finite set Y ⊆ U
such that X = C(Y ), then X is called a finitely generated closed set.

Lemma 1.11 ([2]) Let X = C(Y ) be a closed set. The followings are equiv-
alent:
1. Y is finite,
2. Y is a finite tell-tale of X, and
3. Y is a characteristic set of X.

An immediate consequence of Lemma 1.11 and Theorem 1.2 is as follows:

Corollary 1.12 C is inferable from positive data if and only if every closed
set is finitely generated.
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Proof. (⇒) If C is inferable, then C satisfies (EC1) by Theorem 1.2, so each
closed set X of C has a finite tell-tale Y . By Lemma 1.11, it holds C(Y ) = X
and X is finitely generated.
(⇐) Let X be an arbitrary closed set of C and Y be a finite generating set
of X. By Lemma 1.11, Y is a characteristic set of X. Hence C satisfies the
condition (C2). By applying Theorem 1.4, it is shown that C is inferable
from positive data.

Next we define a Noetherian closed set system.

Definition 1.13 A closed set system C is Noetherian if there is no closed
sets C1, C2, . . . of C such that C1 ( C2 ( . . ., that is, C contains no infinite
strictly ascending chain of closed sets.

It is known that

Theorem 1.14 ([2, Theorem 7]) A closed set system C is Noetherian if and
only if C has finite elasticity.

Hence it follows that:

Corollary 1.15 Let C be a Noetherian closed set system.
1. Every closed set C of C is finitely generated.
2. Every closed set C of C has a characteristic set.
3. C is inferable from positive data.

From Remark 1.9, a intersection closed subclass of a closed set system inherits
the properties such as inferability. Henceforth, we regard a intersection closed
subclass of a closed set system as a closed set system.

1.3 Bounded and Unbounded Unions of Closed

Set Systems

We start this section by defining the bounded union of languages.

Definition 1.16 Let L be a class of languages and k be a fixed positive
integer. The bounded union ∪≤kL of L is the class defined by

∪≤kL = {L1 ∪ . . . ∪ Lm | m ≤ k, Li ∈ L (i = 1, . . . , m)}.
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It is known that

Theorem 1.17 ([19]) If L has finite elasticity, then ∪≤kL also has finite
elasticity. In particular, ∪≤kL is inferable from positive data.

If L is a language of L, then L can be regarded as an element of ∪≤kL. We
use the next lemma in the proof of Lemma 4.7.

Lemma 1.18 Let L be a language of L and S be a characteristic set of L
in ∪≤kL. Then S becomes a characteristic set of L in L.

Proof. Obviously S ⊆ L and S is finite. By the definition of characteristic
set, every element L1∪. . .∪Lm of ∪≤kL that includes S satisfies L ⊆ L1∪. . .∪
Lm. Since m and L1 ∪ . . .∪Lm are arbitrary, this implies that every element
L′ of L that includes S satisfies L ⊆ L′. Therefore S is a characteristic set
of L in L.

We need the following definition later.

Definition 1.19 ∪≤kL is said to be compact if it satisfies the following con-
dition:
For each m ≤ k and L,Li ∈ L (i = 1, . . . , m), if L ⊆ L1 ∪ . . . ∪ Lm, then
there exists i0 such that L ⊆ Li0 .

Next, the unbounded union of languages is defined as follows:

Definition 1.20 ([15]) Let L be a language. The unbounded union L∗ of L
is the class

L∗ = {L1 ∪ . . . ∪ Lm | ∀m ∈ N, Li ∈ L (i = 1, . . . , m)}.

where N denotes the set of all positive integers {1, 2, . . .}.

Remark 1.21 For an element of ∪≤kL or L∗, we always assume that the
expression L1 ∪ . . .∪Lm is not redundant, that is, Li ̸⊆ Lj for any i, j(i ̸= j)
in the following.

In [2], de Brecht et al. gave a necessary and sufficient condition for unbounded
unions of closed set systems to be inferable.

Theorem 1.22 ([2]) Let L be a closed set system. L∗ is inferable from
positive data if and only if every closed set L ∈ L is equal to a union of
finitely many closed sets generated by a single element.
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1.4 Transaction Databases

Let I be a countable set {p1, p2, . . .} and we regard I as the set of items.

Definition 1.23 A finite subset of I is called itemset. A transaction database
D over I is a sequence of itemsets X1, X2, . . .. Elements of D are called trans-
actions of D.

For a subset X ⊆ I, the support of X in D is defined by {i ∈ N | X ⊆ Xi}
and denoted by t(X). Note that t(∅) = N. t is a mapping that maps 2I to
2N. By definition clearly holds that

Lemma 1.24 Let X,Y ⊆ I. If X ⊆ Y then t(X) ⊇ t(Y ).

Definition 1.25 The number of elements of t(X) is called the frequency of
X and denoted by |X|. An itemset X ⊆ I is called closed if |Y | < |X| for
every Y ) X. To avoid confusions, we call this DB-closed here.

Remark 1.26 By Lemma 1.24, one can express the definition of DB-closed
as follows: X is DB-closed if t(Y ) ( t(X) for every Y ) X.

Note that every DB-closed itemset X is finite. In fact, if X is infinite, then
t(X) is empty. So X can not be closed. Next we define another mapping
ι : 2N → 2I . For a set of indexes A ⊆ N, ι(A) = {pi | pi ∈ Xa for every
a ∈ A}. If A = ∅, we define ι(∅) = I. Similarly to t, it holds:

Lemma 1.27 Let A,B ⊆ N. If A ⊆ B then ι(A) ⊇ ι(B).

It is known that:

Proposition 1.28 ι ◦ t : 2I → 2I is a closure operator on I.

Proof. Let X, Y ⊆ I. (CO1) Let pi in X. Since every element of t(X)
includes pi, pi ∈ ι(t(X)).
(CO2) Assume that X ⊆ Y . Let pi in ι ◦ t(X). pi ∈ ι(t(X)) implies that, for
every a ∈ t(X), pi ∈ Xa. Now t(Y ) ⊆ t(X) by Lemma 1.24, so we have that
pi ∈ Xa for every a ∈ t(Y ). Therefore pi ∈ ι(t(Y )).
(CO3) Since (CO1) and (CO2), ι◦t(X) ⊆ ι◦t(ι◦t(X)). Let pi ∈ ι◦t(ι◦t(X)).
Then pi ∈ Xa for every a ∈ t(ι(t(X))). Now, one can show that A ⊆ t ◦ ι(A)
in a similar way of (CO1). Thus t(ι(t(X))) ⊇ t(X), so we have pi ∈ Xa for
every a ∈ t(X). This means pi ∈ ι(t(X)).
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Remark 1.29 Similarly, one can show that t◦ι : 2N → 2N becomes a closure
operator on N.

Then the closure operator ι ◦ t makes DB-closed sets closed. More precisely,

Proposition 1.30 Let X is an itemset. Then, X is DB-closed if and only
if X is closed with respect to ι ◦ t.

Proof. ⇒) Suppose that X is DB-closed but closed. Let Y = ι(t(X)). Since
X is not closed, X ( Y . Then t(X) ) t(Y ) since X is DB-closed. By Re-
mark 1.29, we have t(X) ) t(Y ) = t(ι(t(X))) ⊇ t(X). This is contradiction.
⇐) Suppose that X = ι(t(X)) and X is not DB-closed. Since X is not DB-
closed, there exists Y ) X such that t(X) = t(Y ). t(X) = t(Y ) implies that
X = ι(t(X)) = ι(t(Y )) ⊇ Y . This contradicts to X ( Y .

9



Chapter 2

Preliminaries from Algebra

2.1 Ideals of Polynomial ring

We refer to [6] for details in this section. We denote the set of all polynomials
of n variables with Q-coefficients by Q[x1, . . . , xn].

Definition 2.1 A nonempty subset I of Q[x1, . . . , xn] is called an ideal if it
satisfies the following two conditions:
1. For each f, g ∈ I, f ± g ∈ I, and
2. For each f ∈ I and h ∈ Q[x1, . . . , xn], hf ∈ I.

We denote the set of all ideals by I.

Definition 2.2 For a finite subset F = {f1, . . . , fr} ⊂ Q[x1, . . . , xn], we
define the ideal generated by f1, . . . , fr, which is denoted by ⟨f1, . . . , fr⟩ or
⟨F ⟩, as follows:

⟨F ⟩ :=
{ r∑

i=1

hifi | hi ∈ Q[x1, . . . , xn]
}
.

Similarly, for a subset S of Q[x1, . . . , xn] that is not necessarily finite,

⟨S⟩ :=
{∑

finite

hff | f ∈ S, hf ∈ Q[x1, . . . , xn]
}
.

S is called a generating set of I if I = ⟨S⟩.
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An ideal I is called finitely generated if there exists a finite subset F ⊂ I
such that I = ⟨F ⟩. The following theorem is well known as the consequence
of Hilbert’s basis theorem in algebra.

Theorem 2.3 ([6]) 1. Every ideal of Q[x1, . . . , xn] is finitely generated.
2. There is no infinite ascending chain of ideals of Q[x1, . . . , xn]. That is, If
Ij’s are ideals and I1 ⊆ I2 ⊆ . . ., then there exists N such that IN = IN+1 =
IN+2 = . . ..

LetM be the set of all monomials.

Definition 2.4 An ideal I is called a monomial ideal if there exists a set of
monomials F ⊆M such that I = ⟨F ⟩.

Monomial ideals are characterized as follows:

Proposition 2.5 Let I be an ideal of Q[x1, . . . , xn]. The following four con-
ditions are equivalent:
(a) I is a monomial ideal,
(b) I is generated by the set of all monomials in I,
(c) for each f ∈ I, every monomial occurring in f is also in I, and
(d) I is generated by a set of finitely many monomials.

We denote the class of all monomial ideals by MI. By Proposition 2.5, it
clearly holds that:

Lemma 2.6 Let I be a monomial ideal. 1. Let m be a monomial. Suppose
that I = ⟨m1, . . . , ms⟩. Then m ∈ I if and only if there exists i such that
mi|m.
2. Let f be a polynomial. Then f ∈ I if and only if all monomials that
appear in f are in I.

Next we review the theory of Groebner basis. For the details of Groebner
basis, see [6]. For that purpose we first consider a monomial ordering.

Definition 2.7 Let < be an order of M. < is called a monomial ordering
if it satisfies:
1. for each m, u, v ∈M, u < v ⇒ mu < mv, and
2. for all m ∈M, 1 < m.
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Example 2.8 Let u and v are monomials and suppose that u = xu1
1 . . . xun

n

and v = xv1
1 . . . xvn

n . The lexicographic order <lex onM is defined as follows:
u <lex v if, ui0 < vi0 where i0 = min{i | ui ̸= vi}. Then it is easy to verify
that <lex is a monomial ordering.

In the following, we consider a fixed monomial ordering <.

Definition 2.9 Let f be a polynomial. The leading term (or initial term)
of f is the maximum monomial appears in f with respect to <, denoted by
LT (f).

Definition 2.10 Let I ∈ I. The initial ideal of I is defined by ⟨{LT (f) |
f ∈ I}⟩, and it is denoted by LT (I).

We define a Groebner basis of I as follows.

Definition 2.11 Let I be an ideal. A finite generating set {g1, . . . , gs} of I
is called a Groebner basis of I if LT (I) = ⟨LT (g1), . . . , LT (gs)⟩.

Then it is known that:

Theorem 2.12 ([6]) For every I ∈ I, there exists a Groebner basis of I.

There is a special Groebner basis called reduced.

Definition 2.13 A Groebner basis {g1, . . . , gs} of I is called reduced if it
satisfies (a) the coefficients of all leading terms of gi’s are 1, and (b) for each
i ̸= j, every term of gi is not divisible by LT (gj).

Theorem 2.14 ([6]) For every ideal I ∈ I, there uniquely exists the reduced
Groebner basis. Moreover, there is an algorithm that computes the reduced
Groebner basis for given I.

2.2 Infinite Dimensional Vector Spaces

Let V be a vector space over the set of rational numbers Q. First we state
the definition of infinite dimensional vector space.

Definition 2.15 A subset S ⊆ V is called linearly dependent if there exists
a finite subset {v1, . . . , vn} ⊆ S and c1, . . . , cn ∈ Q that at least one of ci’s
is not zero, such that c1v1 + . . . + cnvn = 0. If S is not linearly dependent,
then S is called linearly independent.
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We denote the cardinality of S by ♯(S).

Definition 2.16 A vector space V is called finite dimensional if there exists
a positive integer n such that all subsets consist of more than n elements are
linearly dependent. V is called infinite dimensional if there exists linearly
independent subsets Sn ⊆ V such that ♯(Sn) = n for every n.

In case of infinite dimensional, a basis of V is defined as follows.

Definition 2.17 A subset B ⊆ V is called a basis of V if it satisfies:
1. each v ∈ V can be uniquely written by a linear combination of finite
number of elements of B, and
2. each g ∈ B can not be written by any linear combination of finite number
of elements of B \ {g}.
It is known that

Proposition 2.18 Every basis of V has the same cardinality. That is to
say, if B and B′ are bases, then ♯(B) = ♯(B′). The dimension of V is the
cardinality of bases of V .

The following statement can be shown by using Zorn’s lemma.

Proposition 2.19 Every vector space has a basis.

In the following we assume that V has countable basis. We fix one basis
B = {g1, g2, . . .} of V .

Remark 2.20 Note that V is enumerable. For instance, let i be positive
integer and its prime factorization be i =

∏
j p

cj

j , where pj denotes the j-th
prime number. Since Q is enumerable, one can index all rational numbers,
so Q can be expressed as {q1, q2, . . .}. We define vi =

∑
j qcj

gj. Then vi ∈ V
and V = {v1,v2, . . .}.
The followings are defined as the same as the case of finite dimensional.

Definition 2.21 A subspace of V is a subset of V that becomes a vector
space with respect to the same addition and scalar multiplication of V .

Definition 2.22 Let S be a subset of V . The subspace generated by S,
denoted by ⟨S⟩, is the minimum subspace of V that includes S with respect
to set inclusion. ⟨S⟩ can be written as follows:

⟨S⟩ =

{∑
finite

civi | ci ∈ Q,vi ∈ S

}
.
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Definition 2.23 Let V and W be vector spaces. A mapping T : V → W is
called a linear mapping if it satisfies:
1. for every v, v′ ∈ V , T (v + v′) = T (v) + T (v′), and
2. for every v ∈ V and c ∈ Q, T (cv) = cT (v).
If V = W then T is called a linear transformation.

Definition 2.24 Let T be a linear transformation on V and W be a subspace
of V . W is called T -invariant if T (W ) ⊆ W .

Here we give a few examples of infinite dimensional vector space with count-
able basis.

Example 2.25 Sequence space. Let V be the set of sequences {(xn)n=1,2,... |
xn ∈ Q}. Addition and scalar multiplication are defined as follows:

(xn) + (yn) = (xn + yn), c(xn) = (cxn) ((xn), (yn) ∈ V, c ∈ Q).

Then V becomes an infinite dimensional vector space. A countable basis of V
is given by {(e(k)

n ) | k = 1, 2, . . .}, where if k = n then e
(k)
n = 1, else e

(k)
n = 0.

Example 2.26 Polynomial ring over Q. Clearly Q[x1, . . . , xn] together with
usual addition and scalar multiplication is an infinite dimensional vector
space, and the set of all monomialsM can be regarded as a countable basis.
From this viewpoint, ideals of Q[x1, . . . , xn] become subspaces. In particular,
a monomial ideal of Q[x1, . . . , xn] is a subspace that generated by some subset
M of the set of monomialsM, by Proposition 2.5. On Q[x1, . . . , xn], one can
define various linear transformations. For instance, multiplication by some
f ∈ Q[x1, . . . , xn], substitution of a ∈ Q for some variable xi, or derivation
by some xi are linear transformations.

Example 2.27 The class of periodic function. Let R be the set of all real
numbers. A function f : R→ R is called periodic if there exists a p ∈ R such
that f(x + p) = f(x) for all x ∈ R. For simplicity we fix p = 2π here. Let V
is the set of all periodic function with f(x+2π) = f(x). Then V becomes an
infinite dimensional vector space over R. The theory of Fourier series implies
that the set {1, sin(nx), cos(nx) | n = 1, 2, . . .} is a basis of V . We will see
this example in Example 5.13 again.
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Chapter 3

Closed Set Systems and
Algebra

3.1 Closed Set Systems and Ideals of Polyno-

mial Ring

In this section we show that the class I of ideals of polynomial ring can be
regarded as a closed set system, and investigate what properties I has. We
also consider the class of monomial ideals MI. At first we show that the
operation ⟨·⟩ satisfies the condition of closure operator.

Lemma 3.1 The mapping F 7→ ⟨F ⟩ can be regarded as a closure operator
on Q[x1, . . . , xn].

Proof. (CO1) and (CO2) are obvious. (CO3) ⟨F ⟩ ⊆ ⟨⟨F ⟩⟩ since (CO1) and
(CO2). Let f ∈ ⟨⟨F ⟩⟩. Suppose that f is expressed by the form

f =
m∑

i=1

hifi, where fi ∈ ⟨F ⟩, hi ∈ Q[x1, . . . , xn].

Since each fi is an element of ⟨F ⟩, fi can be written in the form

fi =

mi∑
j=1

ki,jfi,j, where fi,j ∈ F, ki,j ∈ Q[x1, . . . , xn].

Thus f =
∑

i,j hiki,jfi,j (hiki,j ∈ Q[x1, . . . , xn], fi,j ∈ F ), so f ∈ ⟨F ⟩.
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Remark 3.2 One can easily show that the intersection of arbitrary number
of ideals is also an ideal. Thus one can define a closure operator according
to Proposition 1.7(2). Then this closure operator is identical with ⟨·⟩.

According to Lemma 3.1, we have:

Proposition 3.3 I and MI are closed set systems.

Proof. It is clear for I. For MI, it suffices to show that (1) MI is
intersection closed, and (2) for every S ∈ Q[x1, . . . , xn], there exists I ∈MI
such that S ⊆ I, since Remark 1.9. (2) is easy: in fact, every S is included
in ⟨1⟩ = Q[x1, . . . , xn]. We show (1). Let {Ia | a ∈ A} be monomial ideals.
Here we denote the set of all monomials in Ia, that is Ia ∩M, by Ma. Then
we claim that ∩

a∈A

Ia =
⟨ ∩

a∈A

Ma

⟩
.

To show that, suppose f ∈ ∩Ia. Let Mf be the set of all monomials occur
in f . Since Proposition 2.5(c), Mf ⊆ Ma for every a ∈ A, so Mf ⊆ ∩Ma.
Thus f ∈ ⟨∩Ma⟩, and then we have ∩Ia ⊆ ⟨∩Ma⟩. On the other hand,
if we suppose f ∈ ⟨∩Ma⟩, then we can express f by f =

∑
fimi, where

fi ∈ Q[x1, . . . , xn] and mi ∈ ∩Ma. This means that f ∈ Ia for each a ∈ A.
Hence f ∈ ∩Ia, and thus ∩Ia ⊇ ⟨∩Ma⟩. Therefore the claim holds, and then
we have thatMI is intersection closed.

The closure operator associated with MI is not clear from the proof of the
above proposition. The following lemma says how the closure operator can
be written.

Lemma 3.4 Let C be the closure operator associated with MI. Then,
1. For M ⊆M, C(M) = ⟨M⟩.
2. For S ⊆ Q[x1, . . . , xn], C(S) = ⟨MS⟩, where MS = {m ∈M | m occurs in
some f ∈ S}.

Proof. 1. According to Proposition 1.7(2), C(M) = ∩{I ∈ MI | M ⊆ I}.
Here we put AM = {I ∈ MI | M ⊆ I}. C(M) ⊆ ⟨M⟩ since ⟨M⟩ ∈ AM .
By the definition of closure operator, M ⊆ I implies ⟨M⟩ ⊆ I. Hence every
I ∈ AM includes ⟨M⟩. Thus C(M) = ∩AM ⊇ ⟨M⟩.
2. By Proposition 2.5, if a monomial ideal I includes S, then I must include
MS. Since S ⊆ C(S), MS ⊆ C(S), and thus ⟨MS⟩ ⊆ ⟨C(S)⟩. Now C(S)
is an ideal and ⟨·⟩ is a closure operator, ⟨C(S)⟩ = C(S) holds. Therefore
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C(S) ⊇ ⟨MS⟩. On the other hand, ⟨MS⟩ ∈ AS since S ⊆ ⟨MS⟩. Thus
C(S) = ∩AS ⊆ ⟨MS⟩.

By applying Proposition 2.3 to I andMI, we have:

Lemma 3.5 1. All elements of I and MI have characteristic sets.
2. I andMI have finite elasticity. In particular, I andMI are Noetherian
closed set systems.

Proof. 1. For I, it is obvious from Theorem 1.14(1). ForMI, it holds since
Proposition 2.5(d).
2. It immediately follows from Theorem 1.14 and Proposition 2.3(2).

Remark 3.6 Neither I norMI satisfies (C4). In fact, every ideal includes
0.

Therefore it holds that:

Corollary 3.7 Both I and MI are inferable from positive data.

For the classes of bounded unions, by Theorem 1.17, next holds:

Corollary 3.8 ∪≤kI and ∪≤kMI are inferable from positive data.

We consider a learning algorithm of ∪≤kI in §4.2.
Furthermore, in case of monomial ideals, one can show that MI⋆ is in-

ferable from positive data. We will show it and give a learning algorithm in
§5.3.

3.2 Closed Set Systems and Vector Spaces

At first we consider a finite dimensional vector space. Let Vn be a n-
dimensional vector space over Q. Then it holds:

Lemma 3.9 ([17, Lemma 1]) Let M ≤ n. There are vectors {vi ∈ Vn | i =
1, . . . , M} such that any n vectors of vi’s are linearly independent.

We give an instance of Lemma 3.9.
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Example 3.10 We consider a fixed basis {e1, . . . , en} of Vn. Let c1, . . . , cM

be mutually distinct rational numbers and let vi = e1 + cie2 + . . . + cn−1
i en.

Then any n of vi’s are linearly independent. In fact, for each combination of
n indexes i1 < i2 < . . . < in, one can write by using matrix as follows:

vi1

vi2
...

vin

 =


1 ci1 . . . cn−1

i1

1 ci2 . . . cn−1
i2

...
...

...
1 cin . . . cn−1

in




e1

e2
...

en

 .

Let Ci1,...,in be the matrix at the right of above equation. This matrix is
known as a Vandermonde’s matrix, and it holds that

det(Ci1,...,in) =
∏
j<k

(cij − cik).

Since we assume that ci’s are mutually distinct, we have det(Ci1,...,in) ̸= 0,
and thus {vi1 , . . . , vin} is linearly independent.

After this we consider infinite dimensional vector spaces. Let V be an infinite
dimensional vector space with countable basis over Q.

Lemma 3.11 A mapping ⟨·⟩ is a closure operator on V .

Proof. (CO1) and (CO2) are obvious. (CO3) Let S ⊆ V . Clearly ⟨S⟩ ⊆
⟨⟨S⟩⟩. Let v ∈ ⟨⟨S⟩⟩. By definition, there is some ci ∈ Q and vi ∈ ⟨S⟩ such

that v =
∑

finite civi. Similarly, there exists some c
(i)
j ∈ Q and v

(i)
i,j ∈ S such

that vi =
∑

finite c
(i)
j v

(i)
i,j . Thus v can be expressed as v =

∑
i

∑
j cic

(i)
j v

(i)
i,j .

Since the summation on the right of above formula is finite, we have v ∈ ⟨S⟩,
and therefore ⟨⟨S⟩⟩ ⊆ ⟨S⟩.

We denote the class of all finite dimensional subspaces of V by SV . Although
⟨·⟩ is a closure operator, ⟨·⟩ is not the closure operator associated with SV .
In fact, ⟨·⟩ makes infinite dimensional subspaces closed. In addition, SV does
not become a closed set system from the method of Proposition 1.7, because
if S ⊆ V satisfies that ⟨S⟩ is infinite dimensional, then there is no W ∈ SV
includes S. Then we consider SV ∪ {V }.

Lemma 3.12 SV ∪ {V } is intersection closed.
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Proof. In general the intersection of arbitrary number of subspaces is also a
subspace, and the intersection of finite dimensional subspaces must be finite
dimensional. Moreover, since W ∩ V = W for every W ∈ SV, the existence
of V does not affect intersections. Hence SV ∪ {V } is intersection closed.

Therefore we have:

Proposition 3.13 SV ∪ {V } is a closed set system.

Proof. As we saw in Lemma 3.11, ⟨·⟩ defines a closed set system. This closed
set system includes SV ∪ {V }. According to Proposition 1.7, it suffices to
show that for each S ⊆ V , there exists W ∈ SV ∪ {V } such that S ⊆ W .
Every S is included in V , therefore the statement holds.

The closure operator associated with SV ∪ {V } can be expressed as follows.

Lemma 3.14 Let S ⊆ V and let C is the closure operator associated with
SV ∪ {V }. Then:
1. If ⟨S⟩ is finite dimensional, then C(S) = ⟨S⟩.
2. If ⟨S⟩ is infinite dimensional, then C(S) = V .

Proof. 1. According to Proposition 1.7, C(S) = ∩{W ∈ SV ∪ {V } | S ⊆
W}. ⟨S⟩ is in the set of the right of this formula. Hence C(S) ⊆ ⟨S⟩. On the
other hand, S ⊆ C(S) implies ⟨S⟩ ⊆ ⟨C(S)⟩. Now C(S) is a vector space,
that is, a closed set with respect to ⟨·⟩. Thus ⟨C(S)⟩ = C(S), so we have
C(S) ⊇ ⟨S⟩.
2. Clearly no W ∈ SV includes S. Thus V is only element of SV ∪{V } that
includes S, so C(S) = ∩{W ∈ SV ∪ {V } | S ⊆ W} = V .

SV ∪ {V } can not be inferable from positive data. In fact, V ∈ SV ∪ {V }
has no finite tell-tale: for every finite set F of V , ⟨F ⟩ ∈ SV ∪ {V } and
F ⊆ ⟨F ⟩ ⊆ V . Then we modify the class further. We introduce a new
element g0 that is not included in V and let V ′ = ⟨V ∪{g0}⟩. Elements of SV
can be regarded as finite dimensional subspaces of V ′. Let SV ′ = SV ∪{V ′}.
Then,

Proposition 3.15 SV ′ is a closed set system.

Proof. We define a mapping C : 2V ′ → 2V ′
by:

C(S) =

{
⟨S⟩ if g0 /∈ ⟨S⟩ and ⟨S⟩ is finite dimensional, that is, ⟨S⟩ ∈ SV
V ′ else.
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Then it is easy to show that C becomes a closure operator and the closed set
system defined by C is SV ′.

Moreover, the following holds:

Proposition 3.16 Every element of SV ′ has a characteristic set.

Proof. Let W ∈ SV ′. If W ∈ SV , then there exists a finite basis G of W .
Clearly C(G) = W . Since Lemma 1.11, G is a characteristic set of W . If
W = V ′, then the set {g0} is a characteristic set of V ′.

Remark 3.17 SV ′ is not Noetherian. In fact, if we fix a countable basis
{g1, g2, . . .} of V , then there exists an infinite ascending chain

⟨g1⟩ ( ⟨g1, g2⟩ ( ⟨g1, g2, g3⟩ ( . . .

of SV ′.
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Chapter 4

Bounded Unions of Closed Set
Systems

4.1 Bounded Unions of Closed Set Systems

Let L be a Noetherian closed set systems over some set U and C denotes its
closure operator. As we have seen in Theorem 1.14, L has finite elasticity
and Theorem 1.17 implies that the class ∪≤kL also has finite elasticity, thus
∪≤kL is inferable from positive data. In this section, we consider a learning
procedure for ∪≤kL.

Let F be a finite subset of U . By Lemma 1.11, F is a characteristic set of
C(F ) in L. Since all elements of ∪≤kL have characteristic sets and C(F ) can
be regarded as a member of ∪≤kL, C(F ) has a characteristic set in ∪≤kL.
Throughout this section, we assume the following:

(∗) There exists an algorithm to compute a characteristic set of C(F )
in ∪≤kL from F . Moreover, If we denote the yielding characteristic set by
χ(C(F ),∪≤kL), then we assume that

χ(C(χ(C(F ),∪≤kL)),∪≤kL) = χ(C(F ),∪≤kL).

In §§4.2 and 4.3, we give examples of Noetherian closed set systems sat-
isfying (∗).

In the algorithm we present later we will use the idea of hypergraph. First
we review the definition of hypergraph briefly.

Definition 4.1 A hypergraph is a pair (V, HE) where V is a finite set and
HE be a subset of 2V that does not contain the empty set ∅. An element of
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V is called a vertex, and an element of HE is called a hyperedge. We denote
the set of vertices and hyperedges of a hypergraph G by V (G) and HE(G)
respectively.

Now we construct our learning algorithm. Let L1 ∪ . . . ∪ Lm ∈ ∪≤kL be a
target language of the algorithm and let σ : a1, a2, . . . , an, . . . be a positive
data of L1 ∪ . . . ∪ Lm. We inductively define a hypergraph denoted by Gn

having the set of vertices V (Gn) = {a1, . . . , an} as follows:

Inductive definition of Gn :
For n = 1, we put

V (G1) = {a1}, HE(G1) = {{a1}}.

Suppose that Gn is already given and an+1 is presented. We construct Gn+1

in the following way:

Procedure 1: Construction of Gn+1 from Gn;
Input: an+1 and Gn;
Output: a hypergraph Gn+1;
begin
1. Put V = V (Gn) ∪ {an+1} and HE = HE(Gn);
2. for each subset F ⊆ V such that an+1 ∈ F do begin
3. Let E = χ(C(F ),∪≤kL);
4. if E ⊆ V and there is no E ∈ HE such that E ⊆ E then begin
5. for each element E of HE do
6. if E ( E then remove E from HE;
7. Add E to HE;
8. end;
9. end;
10. return Gn+1 = (V, HE);
end.

We make use of the assumption (∗) at 3. As a result of the algorithm above,
the following lemma clearly holds:

Lemma 4.2 Let F be a finite set of U and N be a fixed positive integer.
Suppose that there is E ∈ HE(GN) such that F ⊆ E. Then for each n ≥ N ,
there exists En ∈ HE(Gn) such that F ⊆ En.
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In additional, the next holds:

Proposition 4.3 Let Gn be the yielding hypergraph of Procedure 1 and F ⊆
{a1, . . . , an}. Let E = χ(C(F ),∪≤kL). Then it holds:
1. If E ⊆ {a1, . . . , an}, then there exists E ∈ HE(Gn) such that E ⊆ E.
2. If else, there exists E ′ ∈ HE(GM) such that E ⊆ E ′, where M is the largest
index of elements of E.

Proof. (1) is obvious. (2) At the point of construction of GM , the al-
gorithm checks whether χ(C(E),∪≤kL) is included in {a1, . . . , aM}. Since
the assumption (∗), χ(C(E),∪≤kL) = E, and by the choice of M , E ⊆
{a1, . . . , aM}. Hence either E is added to HE(GM) or there is E ′ ∈ HE(GM)
such that E ⊆ E ′.

Remark 4.4 In general, {ai} is a characteristic set of C({ai}) in ∪≤kL.
Otherwise, there is L′

1∪. . .∪L′
s ∈ ∪≤kL such that ai ∈ L′

1∪. . .∪L′
s ( C({ai}).

Suppose that ai ∈ L′
j. This implies C({ai}) ⊆ L′

j and it contradicts L′
1 ∪

. . . ∪ L′
s ( C({ai}). Note that although χ(C({ai}),∪≤kL) is not necessarily

equal to {ai}, the proposition above holds.

We are now in a position to give our learning procedure:

Procedure 2: Learning ∪≤kL;
Input: a positive presentation σ : a1, a2, . . . , an, . . . for L1 ∪ . . . ∪ Lm;
Output: a sequence of at most k-tuples of characteristic sets

(χ
(1)
1 , . . . , χ

(1)
m1), (χ

(2)
1 , . . . , χ

(2)
m2), . . . ;

begin
1. S = ∅; /*Possible candidates for characteristic sets*/
2. Put n = 1;
3. repeat
4. Construct the hypergraph Gn for a1, a2, . . . , an;
5. Put S = HE(Gn);
6. Choose at most k maximal elements from S with respect to the

order as below;
7. Output (at most) k-tuple in 6;
8. Add 1 to n;
9. forever;
end.
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We define an ordering on S as follows:

χ1 < χ2 ⇔ C(χ1) ( C(χ2)
ELSE C(χ1) = C(χ2) and χ1 ≺ χ2 under a certain suitable
ordering ≺.

The ordering ≺ does not affect the validity of Procedure 2, so we can adopt
a convenient ordering (for example, the order of appearance in S).

Remark 4.5 Note that C(χ
(n)
i ) ̸⊆ C(χ

(n)
j ) for any i, j (i ̸= j). Otherwise, if

the case C(χ
(n)
i ) ( C(χ

(n)
j ) then χ

(n)
i could not be maximal, or if C(χ

(n)
i ) =

C(χ
(n)
j ) then either χ

(n)
i or χ

(n)
j could not be maximal.

Now our theorem is the following:

Theorem 4.6 Suppose that ∪≤kL is compact. ∪≤kL is identifiable in the
limit from positive data via Procedure 2.

We need some lemmas to prove Theorem 4.6.

Lemma 4.7 Let E be an arbitrary hyperedge of Gn. Then C(E) ⊂ L1 ∪ . . .∪
Lm. Moreover, if L is compact, then there exists Li such that C(E) ⊆ Li.

Proof. By our construction of Gn, there exists F ⊆ V (Gn) = {a1, . . . , an}
such that E = χ(C(F ),∪≤kL). By Lemma 1.18, E is also a characteristic set
of C(F ) in L. By combining this with Lemma 1.11, we obtain C(E) = C(F ).
Moreover, E ⊆ {a1, . . . , an} ⊆ L1 ∪ . . . ∪ Lm by construction of Gn. Since
E is a characteristic set of C(F ) in ∪≤kL, the definition of characteristic set
implies that C(F ) ⊆ L1 ∪ . . . ∪ Lm. Therefore C(E) ⊆ L1 ∪ . . . ∪ Lm. The
second statement is immediate from the definition of compactness.

Lemma 4.8 Suppose that ∪≤kL is compact.
1. Let L1, . . . , Lm be distinct members of L that satisfy Li ̸⊆ Lj for all
i, j (i ̸= j). Then Li ̸⊆ ∪j ̸=iLj.
2. Let M ∈ L and let L1, . . . , Lm be as above. If M ⊆ L1 ∪ . . . ∪ Lm and
Li ⊆M for some i, then Li = M .

Proof. (1) If Li ⊆ ∪j ̸=iLj, then Li ⊆ Lj0 for some j0 by compactness. This
contradicts to our assumption. (2) By compactness, there exists Lj0 such
that M ⊆ Lj0 . Hence Li ⊆M ⊆ Lj0 . By our assumption, Li = Lj0 .
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Proof of Theorem 4.6. Let L1∪ . . .∪Lm be an arbitrary element in ∪≤kL.
Suppose that Li = C(Fi), where Fi is a finite subset of Li. Since Fi is finite,
all elements of Fi’s are presented at a certain finite step N0. Therefore, at
a certain step N after the step N0, one can assume that all elements of all
χ(C(Fi),∪≤kL)’s are presented. Let E1,N , . . . , EmN ,N be maximal hyperedges
of GN . By the proof of Lemma 4.7, each Ej,N is a characteristic set of closed
set C(Ej,N) in ∪≤kL and C(Ej,N) is contained in L1 ∪ . . . ∪ Lm. Note that
C(Ei,N) ̸⊆ C(Ej,N) for any i, j (i ̸= j) by Remark 4.5. Now we claim that:

Claim. For each 1 ≤ i ≤ m, there exists a unique Eji,N of HE(GN) with
Li = C(Eji,N).

By our construction of GN , χ(C(Fi),∪≤kL) is either added as a hyperedge or
contained in a hyperedge added at a certain step. Hence there exists a hyper-
edge Ei of GN such that χ(C(Fi),∪≤kL) ⊆ Ei for each i (See Lemma 4.2 and
Proposition 4.3). By the definition of closure operator, C(χ(C(Fi),∪≤kL)) ⊆
C(Ei). The proof of Lemma 4.7 implies that C(Fi) = C(χ(C(Fi),∪≤kL)), so
Li = C(Fi) ⊆ C(Ei). Applying Lemma 4.8(2), we obtain Li = C(Ei). Now,
since each Ei is in HE(GN) and each Ej,N is maximal element of HE(GN),
there is a ji such that Ei < Eji,N , and this means Li = C(Ei) ⊆ C(Eji,N).
Applying Lemma 4.8(2) again, we find that Li = C(Eji,N). The uniqueness
part of the claim follows from Remark 4.5 immediately.

We finally show that mN = m. By Claim, mN ≥ m. If mN > m,
then there exists Ej0,N such that (i) C(Ej0,N) ̸= Li for i = 1, . . . , m and (ii)
C(Ej0,N) ⊂ L1 ∪ . . . ∪ Lm. These conditions imply that C(Ej0,N) ⊂ C(Eji,N)
for some ji. This contradicts to Remark 4.5.

Remark 4.9 Note that the hypotheses in our algorithm are not necessar-
ily consistent. However, one can modify them into consistent ones without
difficulty.

4.2 Learning Bounded Set Unions of Polyno-

mial Ideals

In this section we present the class of bounded unions of ideals of a polynomial
ring as an application of the procedure we gave in the previous section.
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As we have seen in §3.1, I is a Noetherian closed set system associated
with the closure operator F 7→ ⟨F ⟩. At first we check the condition (∗).

Lemma 4.10 There exists an algorithm that constructs a characteristic set
χ(I,∪≤kI) if a finite generating set F of I is given. Moreover, it holds that

χ(⟨χ(I,∪≤kI)⟩,∪≤kI) = χ(I,∪≤kI).

The key to proof Lemma 4.10 is the following proposition.

Proposition 4.11 ([17, Theorem 9]) For each element I1∪ . . .∪Im of ∪≤kI,
a characteristic set of I1∪ . . .∪Im can be constructed concretely if generating
sets of Ii’s are given.

Proof. For simplification we assume m = 1, since we need only the case. (For
general m, see [17]). Suppose that I1 = ⟨f1, . . . , fn⟩. Put M = k(n− 1) + 1.
As we have seen in Lemma 3.9 and Example 3.10, one can construct a
(n,M)-matrix C = (cij)

1≤i≤n
1≤j≤M over Q such that any n column vectors of

C are linearly independent. Now let hj =
∑n

i=1 cijfi (j = 1, . . . , M).
Then {h1, . . . , hM} becomes a characteristic set of I1 in ∪≤kI. To prove
this, suppose that {h1, . . . , hM} ⊆ J1 ∪ . . . ∪ Jm ∈ ∪≤kI. Since m < k,
the pigeon-hole principle implies that there exists an a such that Ja in-
cludes at least n of hi’s. Suppose that hi1 , . . . , hin ∈ Ja. Since the ma-
trix Ci1,...,in = (cij)

1≤i≤n
j=i1,...,in

is nonsingular, so f1, . . . , fn can be written by
linear combinations of hi1 , . . . , hin . This means f1, . . . , fn ∈ Ja, thus we
have I1 = ⟨f1, . . . , fn⟩ ⊆ Ja ⊆ J1 ∪ . . . ∪ Jm. Therefore it is proved that
{h1, . . . , hM} is a characteristic set of I1 in ∪≤kI.
Proof of Lemma 4.10. We fix some monomial order <. One can compute
the reduced Groebner basis G of I from F . Applying the procedure in the
proof of Proposition 4.11 to G, we obtain a characteristic set {h1, . . . , hM} of I
in ∪≤kI. We define χ(I,∪≤kI) = {h1, . . . , hM}. The reduced Groebner basis
of ⟨χ(I,∪≤kI)⟩ is equal to G since the uniqueness of the reduced Groebner
basis. This implies χ(⟨χ(I,∪≤kI)⟩,∪≤kI) = χ(I,∪≤kI).

Remark 4.12 For instance we can give an example of χ(I,∪≤kI) by using
Example 3.10. Let {g1, . . . , gr} be the reduced Groebner basis of I. Let

hi = g1 + cig2 + . . . + cr−1
i gr (i = 1, . . . , M)

where M = k(r− 1) + 1 and ci’s are distinct elements of Q. Note that no hi

will vanish since {g1, . . . , gr} is the reduced Groebner basis.
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Lemma 4.10 also implies that ∪≤kI is compact:

Lemma 4.13 ∪≤kI is compact.

Proof. Suppose that I = ⟨g1, . . . , gr⟩ is contained in I1 ∪ . . . ∪ Im. Let
M = m(r−1)+1 and take h1, . . . , hM as above. By the pigeon-hole principle,
there exists some j such that Ij includes at least r of hi’s. Suppose that
hi1 , . . . , hir ∈ Ij. Since the construction of hi’s, each gi can be represented
by linear combination of hi1 , . . . , hir . This means I ⊆ Ij.

According to above arguments, we have:

Theorem 4.14 ∪≤kI is identifiable in the limit from positive data via Pro-
cedure 2.

Example 4.15 Let us consider learning ⟨x2, y3⟩ ∪ ⟨x3, y2⟩ ∈ ∪≤2I. Let a
positive presentation σ be x2, y3, y2, x2 +y3, x3, x3 +y2, . . . . By the argument
of §3 of [17], we can take a characteristic set χ(⟨f, g⟩,∪≤2I) = {f, g, f + g}
for distinct polynomials f and g. The hyperedges of hypergraphs constructed
by Procedure 1 are as follows:

HE1 = {{x2}},
HE2 = {{x2}, {y3}},
HE3 = {{x2}, {y3}, {y2}},
HE4 = {{x2, y3, x2 + y3}, {y2}},
HE5 = {{x2, y3, x2 + y3}, {y2}, {x3}},
HE6 = {{x2, y3, x2 + y3}, {y2, x3, x3 + y2}}.

Hence Procedure 2 learns ⟨x2, y3⟩ ∪ ⟨x3, y2⟩ when n = 6.

We finish this section by giving an improved learning algorithm concretely.
The algorithm outputs reduced Groebner bases instead of characteristic sets,
and we make use of uniqueness of the reduced Groebner basis to simplify
the algorithm. Consequently it does not construct a hypergraph. Here we
employ the characteristic sets in Remark 4.12 and suppose that c1, c2, . . . are
fixed nonzero rational numbers such that i ̸= j ⇒ ci ̸= cj (for example,
ci = i).

Procedure 3: Learning ∪≤kI;
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Input: a positive presentation σ : f1, f2, . . . , fn, . . . for I1 ∪ . . . ∪ Im;
Output: a sequence of at most k-tuples of reduced Groebner bases

(G
(1)
1 , . . . , G

(1)
m1), (G

(2)
1 , . . . , G

(2)
m2), . . . ;

begin
1. Put V1 = {f1}, S1 = {{f1}};
2. Put n = 1;
3. Output ({f1});
4. repeat
5. Add 1 to n;
6. Let Vn = Vn−1 ∪ {fn} and S = Sn−1;
7. for each subset F ⊆ Vn such that an ∈ F do begin
8. if there is no E ∈ S such that ⟨F ⟩ ⊆ ⟨E⟩ then begin
9. Compute the reduced Groebner basis G = {g1, . . . , gr}

of ⟨F ⟩ from F ;
10. Put M = k(r − 1) + 1;
11. Put E = {g1 + cig2 + . . . + cr−1

i gr | i = 1, . . . , M};
12. if E ⊆ Vn then begin
13. for each element E of S do
14. if ⟨E⟩ ( ⟨F ⟩ then remove E from S;
15. Add G to S;
16. end;
17. end;
18. end;
19. Put Sn = S;
20. Choose at most k maximal elements from Sn with respect to the

order < that satisfies:
G1 < G2 ⇔ G1 ≺ G2 under a certain suitable ordering ≺;

21. Output (at most) k-tuple in 20;
22. forever;
end.

Theorem 4.16 ∪≤kI is identifiable in the limit from positive data via Pro-
cedure 3.

Proof of Theorem 4.16 is an analogy to the proof of Theorem 4.6. We need
the following lemmas.
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Lemma 4.17 Let Sn be the same as in Procedure 3 and G ∈ Sn. Then
⟨G⟩ ⊆ I1 ∪ . . . ∪ Im.

Proof. Let E and Vn be as in Procedure 3. E can be regarded as a
characteristic set of ⟨G⟩ in ∪≤kI. On the other hand, G ∈ Sn implies E ⊆
Vn ⊆ I1∪ . . .∪ Im. By the definition of characteristic set, ⟨G⟩ ⊆ I1∪ . . .∪ Im.

Lemma 4.18 Let Vn and Sn be the same as in Procedure 3 and let F ⊆
{a1, . . . , an}. Suppose that an ∈ F . Let G be the reduced Groebner basis of
⟨F ⟩ and E be the set constructed at 11 of Procedure 3 from G. Then it holds:
1. If E ⊆ Vn, then there exists E ∈ Sn such that ⟨G⟩ ⊆ ⟨E⟩.
2. If else, there exists E ′ ∈ SM such that ⟨G⟩ ⊆ ⟨E ′⟩, where M is the largest
index of elements of E.

Proof. (1) is obvious. (2) Since ⟨E⟩ = ⟨F ⟩, the uniqueness of the reduced
Groebner basis assures that G is the reduced Groebner basis of ⟨E⟩. Hence
at the step M , the same E appears again, and this time E ⊆ VM . Thus the
statement holds.

Lemma 4.19 Let G1, G2 be elements of Sn. Then ⟨G1⟩ ̸⊆ ⟨G2⟩.

Proof. Obvious by the construction of Sn.

Proof of Theorem 4.16. Let Gi = {g1,i, . . . , gri,i} be the reduced Groebner
basis of Ii. Let Mi = k(ri − 1) + 1. Suppose that Ei = {g1,i + cig2,i + . . . +
cri−1
i gri,i | i = 1, . . . , Mi}. At a certain step N , one can assume that all

elements of all Ei’s are presented. By applying Lemma 4.18(2), there exists
G′

i ∈ SN such that Ii = ⟨Gi⟩ ⊆ ⟨G′
i⟩. On the other hand, Lemma 4.17 says

that ⟨G′
i⟩ ⊆ I1 ∪ . . . ∪ Im. Thus Lemma 4.8 implies that ⟨G′

i⟩ = ⟨Gi⟩ = Ii.
From the uniqueness of the reduced Groebner basis, we have Gi = G′

i. If
there is G′ ∈ Sn \ {G1, . . . , Gm}, there exists j such that ⟨G′⟩ ⊆ Ij = ⟨Gj⟩
since Lemma 4.17 and compactness. This contradicts Lemma 4.19.

4.3 Learning Bounded Unions of Tree Pat-

tern Languages

4.3.1 Tree Pattern Languages

Let Σ be a finite set and V be a countable set disjoint from Σ. The elements
of Σ and V are called symbols and variables, respectively. We assume that
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there is a mapping rank that maps an element of Σ to a non-negative integer.
We define the rank of elements of V to be zero.

Definition 4.20 1. A tree pattern p over Σ is a tree satisfying following
properties:
• p has the root.
• p is directed.
• p is ordered.
• Each node of p is labeled by an element of Σ ∪ V .
• The number of children of each node is equal to the rank of the label of
the node.
2. A tree over Σ is a tree pattern over Σ that has no nodes labeled by an
element of V .

T PΣ and TΣ denote the set of all tree patterns and all trees over Σ, respec-
tively.

Definition 4.21 A substitution is a mapping θ from V to T PΣ. pθ denotes
the tree pattern obtained from applying a substitution θ to p. We define a
relation on T PΣ as follows: p ≼ q ⇔ there exists a substitution θ such that
p = qθ. We denote p ≡ q if p ≼ q and q ≼ p, and call that p and q are
equivalent.

Note that p ≡ q if and only if p = qθ for some renaming θ of variables.
On substitutions, the next lemma holds. The fact that ≡ is an equivalence
relation follows from (1). Throughout this section, we regard two equivalent
tree patterns as the same.

Lemma 4.22 1. If p ≼ q and q ≼ r, then p ≼ r.
2. Let |p| be the number of nodes of p. If p ≼ q, then |p| ≥ |q|.
3. For any p ∈ T PΣ, there are finitely many q ∈ T PΣ such that p ≼ q (up
to renaming of variables).

Proof. 1. Suppose that p = qθ1 and q = rθ2. Clearly p = r(θ2 ◦ θ1).
2. By definition, every substitution replaces a node by a tree pattern that
has at least one node. Therefore the statement holds.
3. According to (2), p ≼ q ⇒ |p| ≥ |q|. Since Σ is finite, there are finitely
many tree patterns that has at most |p| nodes up to renaming of variables.

Definition 4.23 Let S be a nonempty subset of T PΣ. A tree pattern p is
called the least common anti-instance of S if
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(i) q ≼ p for any q ∈ S, and
(ii) if q ≼ r for any q ∈ S, then p ≼ r.

Lemma 4.24 ([13]) For any subset S ̸= ∅ of T PΣ, there uniquely exists the
least common anti-instance of S up to equivalence.

We denote the least common anti-instance of S by lca(S). As a duality one
can define the greatest common instance.

Definition 4.25 ([13]) Let S be a nonempty subset of T PΣ. There uniquely
exists a tree pattern called the greatest common instance of S, denoted by
gsi(S), that satisfies:
(i) gsi(S) ≼ p for any p ∈ S, and
(ii) if q ≼ p for any p ∈ S, then q ≼ gsi(S).

If S is finite, then lca(S) and gsi(S) can be computed in polynomial time
[13]. Now we define a tree pattern language.

Definition 4.26 Let p be a tree pattern. A tree pattern language defined by
p is the set of trees (not tree patterns) L(p) = {t ∈ TΣ | t ≼ p}. We denote
the set of all tree pattern languages {L(p) | p ∈ T PΣ} by T PL(Σ, V ). We
may omit (Σ, V ) if it is clear from the context.

Lemma 4.27 ([13]) p ≼ q ⇒ L(p) ⊆ L(q) for any p, q ∈ T PΣ. If ♯(Σ) ≥ 2,
then p ≼ q ⇔ L(p) ⊆ L(q).

4.3.2 Learning Bounded Unions of Tree Pattern Lan-
guages

In [4], Arimura et al. studied learnability of bounded union of tree pattern
languages. However, they did not seem to use characteristic sets explicitly.
We here give a procedure learning bounded unions of tree pattern languages
by using our result in §4.1.

Lemma 4.28 ([4]) T PL is a Noetherian closed set system.

Proof. First we show that T PL is intersection closed. Let {L(pi)} ⊆ T PL.
Then clearly ∩L(pi) = L(gsi({pi})) by definition. Hence T PL is intersection
closed, thus T PL is a closed set system since Proposition 1.7. Then it is
enough to show that T PL has finite thickness. For any fixed k ∈ N, the set
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{p ∈ T PΣ | |p| ≤ k} is finite up to equivalence. This fact and Lemma 4.22(2)
imply that, for any t ∈ TΣ, there are finitely many q ∈ T PΣ such that t ≼ q,
that is, t ∈ L(q). This means that T PL has finite thickness. Therefore,
T PL has finite elasticity by Theorem 1.4.

Lemma 4.29 ([3]) If ♯(Σ) > k, ∪≤kT PL is compact.

Now we introduce a closed set system C. For S ⊆ T PΣ, we define C(S) =
{p ∈ T PΣ | p ≼ lca(S)}. Note that C(S) = C(lca(S)).

Lemma 4.30 C is a closure operator on T PΣ.

Proof. (CO1) is obvious by the definition of lca. (CO2) Suppose S1 ⊆
S2 ⊆ T PΣ. Clearly, lca(S1) ≼ lca(S2). Lemma 4.22(1) implies C(S1) =
C(lca(S1)) ⊆ C(lca(S2)) = C(S2). (CO3) In general, lca(C(S)) = lca(S)
holds. Thus C(C(S)) = C(lca(C(S))) = C(lca(S)) = C(S).

Remark 4.31 Let S be a subset of TΣ. As an analogy of C, one can define
L(S) = {t ∈ TΣ | t ≼ lca(S)}. Then L : 2TΣ → 2TΣ becomes a closure
operator.

C denotes the closed set system defined by C. The following lemma clearly
holds by definition.

Lemma 4.32 For every p ∈ T PΣ, L(p) = C(p) ∩ TΣ.

Lemma 4.33 1. C has finite elasticity. 2. ∪≤kC is compact.

Proof. 1. Similar to the proof of Lemma 4.28. 2. Suppose that C(p) ⊆
C(p1) ∪ . . . ∪ C(pm) (m ≤ k). Since p ∈ C(p), there exists i0 such that
p ∈ C(pi0). Hence C(p) ⊂ C(pi0).

Now we consider characteristic sets. Let Σ0 = {a ∈ Σ | rank(a) = 0} and
Σ+ = {f ∈ Σ | rank(f) > 0}. In the following, we assume that neither Σ0

nor Σ+ is empty.

Lemma 4.34 1. For every p ∈ T PΣ, there exists a characteristic set of
L(p) in T PL consisting of at most two elements.
2. For every S ⊆ T PΣ, there exists a characteristic set of C(S) in C con-
sisting of one element.
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Proof. 1. Let a ∈ Σ0 and f ∈ Σ+. For simplicity, we assume rank(f) = 1.
Suppose that all variables that appear in p are {x1, . . . , xn}. Let a tree f (i)

be f(f(. . . (f(a)) . . .)), where f occurs i times. Now we define substitutions
θ and θ′ by

θ : xi 7→ a, θ′ : xi 7→ f (i),

then {pθ, pθ′} becomes a characteristic set of L(p) in T PL. In fact, one can
show that lca({pθ, pθ′}) = p. If {pθ, pθ′} ⊆ L(q), then p ≼ q by the definition
of lca. By Lemma 4.27, we have L(p) ⊆ L(q).
2. Since C is a closure operator and C(S) = C(lca(S)), clearly {lca(S)} is a
characteristic set of C(S) in C.

Corollary 4.35 lca(L(p)) ≡ p.

Proof. By the argument of the proof of Lemma 4.34(1), there are t1, t2 ∈
L(p) such that lca({t1, t2}) = p. In general S1 ⊆ S2 ⇒ lca(S1) ≼ lca(S2)
holds, hence p = lca({t1, t2}) ≼ lca(L(p)). On the other hand, since t ≼ p
for all t ∈ L(p), the definition of lca implies that L(p) ≼ p. Therefore
lca(L(p)) ≡ p.

Lemma 4.34 indicates that characteristic sets of T PL and C are bounded
uniformly. From this property, one can show that characteristic sets of the
unions are also bounded uniformly.

Lemma 4.36 1. ([18]) Suppose ♯(Σ+) ≥ k. For every p ∈ T PΣ, there exists
a characteristic set of L(p) in ∪≤kT PL consisting of at most k +1 elements.
2. For every S ⊆ T PΣ, there exists a characteristic set of C(S) in ∪≤kC
consisting of one element.

Proof. 1. The proof is a general case of the proof of Lemma 4.34(1). Let
a ∈ Σ0 and f1, . . . , fk ∈ Σ+. For simplicity, we assume that rank(fi) = 1 for
each i. Suppose that all variables that appear in p are {x1, . . . , xn}. Let a

tree f
(i)
j be fj(fj(. . . (fj(a)) . . .)), where fj occurs i times. Let

θ0 : xi 7→ a, θ1 : xi 7→ f
(i)
1 , . . . , θk : xi 7→ f

(i)
k .

We show that {pθ0, pθ1, . . . , pθk} is a characteristic set of L(p) in ∪≤kT PL.
Suppose that {pθ0, pθ1, . . . , pθk} ⊆ L(p1) ∪ . . . ∪ L(pm). Then there exists a
L(pr) such that at least two pθi’s are in L(pr). Now it holds that, for each
i ̸= j, lca({pθi, pθj}) = p. Thus, p ≼ pr by the definition of lca. This means
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L(p) ⊆ L(pr), so we have L(p) ⊆ L(p1) ∪ . . . ∪ L(pr).
2. We show {lca(S)} is a characteristic set of C(S) in C. If {lca(S)} ⊆
C(p1) ∪ . . . ∪ C(pm), then there exists r such that lca(S) ∈ C(pr). This
implies that C(S) ⊆ C(pr), so C(S) ⊆ C(p1) ∪ . . . ∪ C(pm).

In the proof of above lemma, a characteristic set of a closed set in T PL or
C is constructed concretely. Therefore,

Lemma 4.37 For both T PL and C, there is an algorithm satisfies (∗).

Proof. In case of C, it immediately follows if we define χ(C(S),∪≤kC) =
{lca(S)}. In case of T PL, we consider the following algorithm. Suppose that
a finite subset S ⊆ TΣ is given. (1) Compute lca(S). (2) Apply the method
in the proof of Lemma 4.36(1) to lca(S) and define χ(L(S),∪≤kT PL) by the
obtained characteristic set. By Corollary 4.35, lca(L(S)) = lca(S). Thus we
have χ(L(χ(L(S),∪≤kT PL)),∪≤kT PL) = χ(L(S),∪≤kT PL).

According to above arguments, it holds:

Theorem 4.38 ∪≤kT PL and ∪≤kC are identifiable in the limit from positive
data via Procedure 2.

Finally we consider concrete learning algorithm. Lemma 4.36(2) makes the
algorithm learning ∪≤kC much simpler, because the condition E ⊆ V at the
step 4 of Procedure 1 is always true. (In fact, C∗ can be identified by almost
the same procedure. Note that C satisfies the condition in Theorem 1.22).

Procedure 4: Learning ∪≤kC;
Input: a positive presentation σ : q1, q2, . . . , qn, . . . of tree patterns for

C(p1) ∪ . . . ∪ C(pm);
Output: a sequence of at most k-tuples of tree patterns

(r
(1)
1 , . . . , r

(1)
m1), (r

(2)
1 , . . . , r

(2)
m2), . . . ;

begin
1. S = ∅; /*The set to memorize a given sequence of q1, . . . , qn*/
2. Put n = 1;
3. repeat
4. Add qn to S;
5. Choose at most k maximal elements from S with respect to ≼

up to equivalence;
6. Output (at most) k-tuple in 5;
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7. Add 1 to n;
8. forever
end.

We assume ♯(Σ+) ≥ k in order to make Lemma 4.36(1) holds. For
∪≤kT PL, if we apply Procedure 1 and 2 directly, then we obtain:

Procedure 5: Learning ∪≤kT PL;
Input: a positive presentation σ : t1, t2, . . . , tn, . . . of trees for

L(p1) ∪ . . . ∪ L(pm);
Output: a sequence of at most k-tuples of tree patterns

(q
(1)
1 , . . . , q

(1)
m1), (q

(2)
1 , . . . , q

(2)
m2), . . . ;

begin
1. Put n = 1;
2. Put G1 = ({t1}, {{t1}});
3. Output {t1};
4. repeat
5. Add 1 to n;
6. Put Vn = Gn−1 ∪ {tn} and HEn = HE(Gn−1);
7. for each subset F ⊆ Vn such that F ∋ tn do begin
8. Let E = χ(L(F ),∪≤kT PL);
9. if E ⊆ Vn and there is no E ∈ HEn such that E ⊆ E

then begin
10. for each element E of HEn do
11. if E ( E then remove E from HEn;
12. Add E to HEn;
13. end;
14. end;
15. Put Gn = (Vn, HEn);
16. Choose at most k maximal elements from HEn with respect to ≼

up to equivalence;
17. Output at most k-tuple in 16;
18. forever
end.

If we make use of Procedure 4, ∪≤kT PL is inferred alternatively as fol-
lows:
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Procedure 6: Learning ∪≤kT PL;
Input: a positive presentation σ : t1, t2, . . . , tn, . . . of trees for

L(p1) ∪ . . . ∪ L(pm);
Output: a sequence of at most k-tuples of tree patterns

(q
(1)
1 , . . . , q

(1)
m1), (q

(2)
1 , . . . , q

(2)
m2), . . . ;

begin
1. Generate “positive data” of C(p1) ∪ . . . ∪ C(pm) from σ;
2. Run Procedure 4 by “positive data” generated in 1;
3. Output the output of 2;
end.
Generation of “positive data” (GPD);
4. S = ∅;
5. Put n = 1;
6. repeat
7. Add tn to S;
8. output tn;
9. for each subset F of S with tn ∈ F and ♯(F ) = k + 1 do
10. if lca(ti, tj) = lca(F ) for all ti, tj ∈ F (i ̸= j) then
11. output lca(F );
12. Add 1 to n;
13. forever;
end.

Theorem 4.39 ∪≤kT PL is identifiable in the limit from positive data via
Procedure 6.

Proof. It suffices to show that GPD generates a positive data for A =
C(p1) ∪ . . . ∪ C(pm). Let p be an arbitrary element of A. If p ∈ TΣ, then
p ∈ A∩TΣ = L(p1)∪ . . .∪L(pm), so there exists a number j such that tj = p.
Thus, p is enumerated by step 8 of Procedure 6. If not, then there exists a
set F that satisfies the condition of step 10 by Lemma 4.36(1). Let n0 be the
least n satisfying {t1, . . . , tn} ⊇ F . It is clear that p is enumerated at step
11 when n = n0.

We end this section by giving an example.
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Example 4.40 Suppose Σ = {a, b, f, g}, rank(a) = rank(b) = 0, rank(f) =
2, rank(g) = 1, and x, y ∈ V . Let us consider learning L(f(a, x))∪L(f(x, b)) ∈
∪≤2T PL. Let a positive presentation σ be as follows:

t1 = f(a, a), t2 = f(a, f(a, b)), t3 = f(b, b),

t4 = f(a, g(a)), t5 = f(a, b), t6 = f(g(a), b), . . .

This time Procedure 6 learns L(f(a, x)) ∪ L(f(x, b)) as follows:
•n = 1 : GPD outputs t1 and Procedure 6 outputs (t1).
•n = 2 : GPD outputs t2 and Procedure 6 outputs (t1, t2).
•n = 3 : lca(t1, t2) = f(a, x), lca(t1, t3) = f(x, x), lca(t2, t3) = f(x, y).
Hence GPD outputs only t3. Procedure 6 chooses two larger elements from
{t1, t2, t3} and output them.
•n = 4 : Since lca(t1, t2) = lca(t1, t4) = lca(t2, t4) = f(a, x), GPD outputs t4
and f(a, x). Procedure 6 outputs two maximal elements of {t1, . . . , t4, f(a, x)},
that is, f(a, x) and t3.
•n = 5 : Since lca(t1, t5) = lca(t2, t5) = lca(t4, t5) = f(a, x), GPD outputs t5
and f(a, x). Procedure 6 outputs f(a, x) and the larger element of {t3, t5}.
•n = 6 : Since lca(t3, t5) = lca(t3, t6) = lca(t5, t6) = f(x, b), GPD outputs t6
and f(x, b). Procedure 6 outputs (f(a, x), f(x, b)).
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Chapter 5

Unbounded Unions of Closed
Set Systems

5.1 Learning Unbounded Unions of Closed

Set Systems

In this chapter we consider unbounded unions of languages. To study the
inferability of L∗, let us start with the following proposition.

Proposition 5.1 Let L be a closed set system such that every L ∈ L has a
characteristic set and let U be the family of all finite nonempty subset of U .
If there exists a mapping δ : U → U satisfying the condition

(⋆) δ(S) ∈ L⇔ S ⊆ L

for all S ∈ U and L ∈ L, then every nonempty L ∈ L has a characteristic
set consisting of one element.

Proof. Let S be a characteristic set of an arbitrary L ∈ L. We show that
{δ(S)} is a characteristic set of L. From the condition (⋆), {δ(S)} ⊆ L.
Assume that there exists a L′ ∈ L such that δ(S) ∈ L′. By applying (⋆) for
L′, we have S ⊆ L′. Since S is a characteristic set of L, L must be a subset
of L′.

By combining Proposition 5.1 and Theorem 1.22, we have:

Corollary 5.2 Let L be the same as in the previous proposition. If there
is a mapping δ satisfies the condition (⋆), then L∗ is inferable from positive
data.
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Remark 5.3 In general, the converse of Corollary 5.2 is not always true. To
show that we present an instance of it. Let U = Z≥0 and L = {A ⊂ Z≥0 |
0 /∈ A, ♯(A) ≤ 2} ∪ {Z≥0}. We define a closure operator C by

C(S) =

{
S if 0 /∈ S and ♯(S) ≤ 2,

Z≥0 else.

This closure operator makes L a closed set system. Then every element of
L is equal to a union of at most two closed sets generated from a single
element. In fact, {a} = C(a), {a, b} = C(a) ∪ C(b) and Z≥0 = C(0). Thus,
by Theorem 1.22, L∗ is inferable from positive data. Now, assume that there
is a mapping δ that satisfies (⋆). According to the proof of Proposition 5.1,
δ({a, b}) must be a characteristic set of {a, b} in L, nevertheless {a, b} has
no characteristic set consisted by one element. This is contradiction.

Example 5.4 As we have mentioned in §4.3, the class C∗ is inferable from
positive data. This time the mapping lca satisfies the condition (⋆). In fact,
if lca(S) ∈ C(p) then, for every q ∈ S, q ≼ lca(S) ≼ p holds, and hence
q ∈ C(p). On the other hand, if S ⊆ C(p), then lca(S) ≼ p by the definition
of lca. Thus lca(S) ∈ C(p).

Example 5.5 Another simple example is the class of ideals of polynomial
ring in one variable. It is known that every ideal of polynomial ring Q[x]
in one variable over Q is generated by one polynomial. As we have seen
in Lemma 3.1, the operation generating ideals is a closure operator. By
Lemma 1.11, a generating set is a characteristic set. Therefore all ideals of
Q[x] has a characteristic set consists of one element, thus the condition of
Theorem 1.22 is satisfied.

Let I be an ideal of Q[x]. Suppose that I = ⟨f⟩. Clearly g ∈ I ⇔ g
is divisible by f . Now we consider the mapping gcd that maps a finite set
of polynomials F to the greatest common divisor gcd(F ) of F . Let G =
{g1, . . . , gs} ⊂ Q[x]. If G ⊆ I, then for each i there exists ai ∈ Q[x] such
that gi = aif . Hence gcd(G) is divisible by f , so gcd(G) ∈ I. On the other
hand if gcd(G) ∈ I, then f divides gcd(G) and gcd(G) divides every gi, and
thus G ⊆ I. Therefore the mapping gcd satisfies (⋆).

In the following sections, we present two examples of L and δ.

39



5.2 Learning Invariant Subspaces of a Linear

Transformation of a Vector Space

Let V be an infinite dimensional vector space with countable basis over Q.
We fix a countable basis {g1, g2, . . .} of V . The class of all finite dimensional
subspaces of V itself is not a closed set system as we have seen in §3.2.
So we introduce a new element g0 that is not included in V and let V ′ =
⟨{g0, g1, g2, . . .}⟩. We define

V = {W ⊆ V | W is a finite dimensional subspace of V } ∪ {V ′}.

Then we showed that V is a closed set system in Proposition 3.15, and that
every W ∈ V has a characteristic set in Proposition 3.16.

We saw that V is not Noetherian in Remark 3.17. Nevertheless one can
show that the bounded union ∪≤kV is also inferable. Note that we can not
apply Theorem 1.17 to show the inferability of ∪≤kV . Instead, we make use
of the argument in Proposition 4.11. Choose W = ⟨w1, . . . , wr⟩ ∈ V and let
M be a (r × (rk − 1))-matrix in Q-entries such that any k column vectors
are linearly independent. Put

(w1′ , . . . , wrk−1′) = (w1, . . . , wr) M.

Then by the same argument in the proof of [17, Theorem 9], we can show
that {w1′ , . . . ,wrk−1′} is a characteristic set of W in ∪≤kV .

On the other hand, V∗ is not inferable. For instance, put W = ⟨g1, g2⟩.
Choose any finite subset {v1, . . . , vr} of W . Then, the union ⟨v1⟩∪ . . .∪⟨vr⟩
of 1-dimensional vector spaces ⟨vi⟩ (i = 1, . . . , r) is proper subset of W . This
means that any finite subset of W can not be a finite tell-tale. Thus V∗ is
not inferable.

Now we consider invariant subspaces of a certain linear transformation.
Let T : V → V be a fixed linear transformation such that T (gi) = aigi (ai ∈
Q) for each i. Here we assume that ai’s are distinct. Then the property
T -invariant is characterized by the following:

Lemma 5.6 Let W ̸= {0} be a finite dimensional subspace of V . W is T -
invariant if and only if there exists gi1 , . . . , gin such that W = ⟨gi1 , . . . , gin⟩.

Proof. If there exists gi1 , . . . , gin such that W = ⟨gi1 , . . . , gin⟩, then clearly
W is T -invariant. Suppose that W is T -invariant. Let w be a nonzero vector
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of W . We can write w = c1gk1
+ . . . + cmgkm

, where every ci is not zero.
Since W is T -invariant, T (w) = c1ak1gk1

+ . . . + cmakmgkm
∈ W . Similarly,

T 2(w), . . . , Tm−1(w) ∈ W . Now, let A be the (m ×m)-matrix on the right
in the equation

(
w, T (w), . . . , Tm−1(w)

)
=
(
gk1

, . . . , gkm

)


c1 c1ak1 . . . c1a
m−1
k1

c2 c2ak2 . . . c2a
m−1
k2

...
...

...
cm cmakm . . . cmam−1

km

 .

A is a matrix obtained by multiplying each column of a Vandermonde’s
matrix by nonzero scalars. Since ai’s are distinct,

detA =

(
m∏

j=1

cj

)
·

(∏
p<q

(akp − akq)

)
̸= 0,

so there is the inverse matrix A−1. This means that gkj
’s can be written by

linear combinations of w, T (w), . . . , Tm−1(w). Thus, G = {gk1
. . . gkm

} ⊆
W . If ⟨G⟩ ̸= W , repeat the method above for w(1) ∈ W \ ⟨G⟩, and add the

yielding {g(1)
k1

, . . . , g
(1)
km1
} to G. This procedure ends in finite number of steps

since W is finite dimensional.

Let VT be the class as follows:

V ′
T = {W ⊆ V | W is a finite dimensional T -invariant subspaces of V }, and

VT = V ′
T ∪ {V ′}.

Then, we have

Lemma 5.7 VT is a closed set system.

Proof. By Proposition 1.7, it suffices to show that (1) VT is intersection
closed, and (2) for every S ∈ V ′, there is W ∈ VT such that S ⊆ W .
(1) Let {Wi} be elements of VT . If there is i0 such that Wi0 = ∅, then clearly
∩Wi = ∅ ∈ VT . Thus we suppose that all Wi’s are nonempty. By Lemma 5.6,
if Wi ̸= V ′ then it can be written by Wi = ⟨g(i)

k,1, . . . , g
(i)
k,mi
⟩. In addition, we

defined V ′ = ⟨g0, g1, . . .⟩. Thus it holds that either ∩Wi is generated some
finite subset of {g1, g2, . . .} or ∩Wi = V ′. In both cases ∩Wi is in VT .
(2) Obviously S ⊆ V ′ ∈ VT .
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Remark 5.8 V ′
T does not satisfies (2). Thus V ′

T is not a closed set system.
Nevertheless, we show that V ′⋆

T is inferable later.

Lemma 5.9 Every W ∈ VT has a characteristic set of the form {gi1 , . . . , gin}
in VT .

Proof. It is clearly that V ′ has a characteristic set {g0}. Let W ̸= V ′

be the element of VT . By Lemma 5.6, there exists {gk1
, . . . , gkm

} such that
W = ⟨gk1

, . . . , gkm
⟩. Then {gk1

, . . . , gkm
} is a characteristic set of W : if

{gk1
, . . . , gkm

} ⊆ W ′ ∈ VT , then W = ⟨gk1
, . . . , gkm

⟩ ⊆ W ′ since the property
of ⟨·⟩.
Now we show that V∗

T is inferable.

Theorem 5.10 V∗
T is inferable from positive data.

Proof. First we define the mapping δ as follows. Let S = {v1, . . . , vn} ⊆ V ′.
For each i, we can write vi =

∑
finite ci,jgj (ci,j ∈ Q). Let Ai = {gj | ci,j ̸=

0}. δ(S) is defined as follows:

A =
n∪

i=1

Ai, δ(S) =
∑
g∈A

g.

According to Corollary 5.2, it suffices to show that δ satisfies

(⋆) δ(S) ∈ W ⇔ S ⊆ W

for each finite subset ∅ ̸= S ⊆ V and for each W ∈ VT . Let W be an arbi-
trary element of VT . If W = ⟨0⟩ then S = {0} ⇔ δ(S) = 0, hence (⋆) holds.
If W = V ′ then (⋆) is obvious. So we assume that W ̸= ⟨0⟩, V ′. By Lemma
5.6, we can write W = ⟨gi1 , . . . , gin⟩, where ij > 0.
(⇒) By applying the argument in the proof of Lemma 5.6 to δ(S) =

∑
g∈A g ∈

W , we get that A is a subset of {gi1 , . . . , gin}, hence Ai is. Since vi is a linear
combination of the elements of Ai, each vi is in W .
(⇐) S ⊆ W implies that Ai ⊆ {gi1 , . . . , gin} for every i, so A is. Thus
δ(S) ∈ W .

A concrete inference algorithm of V∗
T is shown as follows:

Procedure 7: Learning V∗
T ;
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Input: a positive presentation v1,v2, . . . , vn, . . . for V1 ∪ . . . ∪ Vm ∈ V∗
T ;

Output: a sequence V
(1)
1 ∪ . . . ∪ V

(1)
m1 , V

(2)
1 ∪ . . . ∪ V

(2)
m2 , . . . of

elements of V∗
T ;

begin
1. S = ∅;
2. Put n = 1;
3. repeat
4. if there is no W ∈ S such that vn ∈ W then begin
5. Set An = {gj | gj occurs in vn with nonzero coefficient };
6. if g0 ∈ An then Set An = {g0, g1, g2, . . .};
7. Remove all W ′ ∈ S such that W ′ ( ⟨An⟩ from S;
8. Add ⟨An⟩ to S;
9. end;
10. Output ∪W∈SW ;
11. Add 1 to n;
12. forever;
end.

Theorem 5.11 V∗
T is identifiable in the limit from positive data via Proce-

dure 7.

Proof. If there is i such that Vi = V ′, then there is n that it holds g0 ∈ An

for the first time. At this step V ′ is added to S and afterwards the algorithm
keeps on outputting V ′. (Note that this time the target language is V ′ since
Remark 1.21).

Then suppose that there is no Vi such that Vi = V ′. By Lemma 5.6,
Vi can be expressed as Vi = ⟨g(i)

k,1, . . . , g
(i)
k,mi
⟩. For each i, there is ni such

that vi is an element of the form c1g
(i)
k,1 + . . . + cmi

g
(i)
k,mi

, where all cj’s are
nonzero, for the first time. At this step Vi is added to S. Thus after the step
n = max{ni}, the algorithm outputs V1 ∪ . . . ∪ Vm.

Moreover,

Corollary 5.12 V ′⋆
T is identifiable via Procedure 7.

Proof. This statement clearly follows from the fact:

the target language is not V ′ ⇔ g0 is never appeared in An.
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We end this section with presenting an example of V and T .

Example 5.13 Let V be the subspace of the vector space consisting of
Fourier series as follows:

V =

{
r∑

n=0

an cos nx
∣∣∣ an ∈ Q, r ∈ Z≥0

}
.

The set {1, cos x, cos 2x, . . .} forms a basis of V . Let T : V ∋ f 7→ d2f
dx2 ∈ V .

Then, T (1) = 0, T (cos x) = − cos x, T (cos 2x) = −4 cos 2x, . . ., so the class
of unbounded unions of finite dimensional T -invariant subspaces is inferable
from positive data since Corollary 5.12.

This situation can be generalized to that of Hilbert spaces. A vector
space H over the field of real or complex numbers is called Hilbert space if
an inner product is defined over H and H is complete with respect to the
metric induced by the inner product. It is known that H has an orthonormal
basis under a certain condition. This means that every element of H can
be approximated by a linear combination of finite number of elements of the
orthonormal basis within an arbitrary error. This example can be considered
to be the situation treating an approximation cut off after the r-th term. A
Hilbert space is one of the most typical and important examples of infinite
dimensional vector spaces which appear in mathematics, and it is closely
related to functional analysis and approximation theory. This might shed
new light on the connection between learning theory and analysis.

5.3 Learning Monomial Ideals of Polynomial

Ring

As we have seen in Lemma 3.5, the class of all monomial idealsMI can be
regarded as a Noetherian closed set system. According to Lemma 3.4, the
closure operator associated with MI is the same as the mapping ⟨·⟩ if it is
restricted on 2M. So we treat ⟨·⟩ as the closure operator of MI, provided
that it deal with only monomials.

First we showMI∗ is inferable by defining δ.

Theorem 5.14 MI∗ is inferable from positive data.
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Proof. Let S = {s1, . . . , sn} ⊆ Q[x1, . . . , xn]. For each i, we can write
si =

∑
m∈M ci,mm, where all but finite ci,m’s are equal to 0. Let Mi = {m |

ci,m ̸= 0}. δ(S) is defined as follows:

M =
n∪

i=1

Mi, δ(S) =
∑
m∈M

m.

According to Corollary 5.2, it suffices to show that δ satisfies

δ(S) ∈ I ⇔ S ⊆ I

for each finite subset S ⊆ Q[x1, . . . , xn] and for each I ∈MI.
(⇒) Suppose δ(S) =

∑
m∈M m ∈ I. Applying Proposition 2.5(c) to δ(S),

the set of all monomials occurring in δ(S), that is M , is a subset of I. Hence
Mi ⊆ I for each i. Since si is a linear combination of the elements of Mi,
each si is in I.
(⇐) S ⊆ I implies that Mi ⊆ I for every i, so M is. Thus δ(S) ∈ I.

A learning algorithm ofMI∗ resembles Procedure 7.

Procedure 8: LearningMI∗;
Input: a positive presentation f1, f2, . . . , fn, . . . for I1 ∪ . . . ∪ Im ∈MI∗;
Output: a sequence V

(1)
1 ∪ . . . ∪ V

(1)
m1 , V

(2)
1 ∪ . . . ∪ V

(2)
m2 , . . . of

elements ofMI∗;
begin
1. S = ∅;
2. Put n = 1;
3. repeat
4. if there is no I ∈ S such that fn ∈ I then begin
5. Set An = {mi | mi occurs in fn with nonzero coefficient};
6. Remove all J ∈ S such that J ( ⟨An⟩ from S;
7. Add ⟨An⟩ to S;
8. end;
9. Output ∪I∈SI;
10. Add 1 to n;
11. forever;
end.
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Example 5.15 Consider a monomial ideal I = ⟨x3, xy, y2⟩ of the polynomial
ring in two variables Q[x, y]. I equals to the set{∑

finite

cmm
∣∣∣ cm ∈ Q,m ∈M is divisible by x3, xy or y2

}
.

Then, the set
{δ({x3, xy, y2})} = {x3 + xy + y2}

forms a characteristic set of I inMI.

5.4 Closed Set Systems and Transaction Databases

In this section, we apply our arguments of closed set systems considered in
§§5.2 and 5.3 to the study of transaction databases.

5.4.1 Vector Spaces and Transaction Databases

Let I = {p1, p2, . . .} be the set of all items and let V be the set of all formal
linear combinations of elements of I:

V =

{∑
finite

ckpk

∣∣∣ ck ∈ Q, pk ∈ I

}
.

I forms a countable basis of V . We take a fixed linear transformation T :
V → V that is the form T (pi) = aipi, where ai’s are distinct rational numbers
(for example, a linear transformation T defined by T (pi) = ipi is suitable).
By Lemma 5.6, we have

V ′
T = {⟨S⟩ | S ⊂ I, S is finite}.

Similar to the argument of §5.2, we introduce p0 and let V ′ = ⟨p0, p1, p2, . . .⟩,
VT = V ′

T ∪ {V ′}. Lemma 5.7 says that VT is a closed set system. Then,

Lemma 5.16 A finite subset of I, that is an itemset, can be regarded as a
closed set of VT .
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Proof. Let S be the class of all itemsets. By Lemma 5.6, for each W ∈ VT ,
if W ̸= V ′ then there exists unique SW ∈ S such that W = ⟨SW ⟩. Then the
mapping

Φ : VT → S, W 7→ SW

is the inverse of
Ψ : S → VT , S 7→ ⟨S⟩.

Thus an itemset corresponds to an element of V ′
T , that is VT \ {V ′}.

Now we apply our result in §5.2 to consider the inference of V ′⋆
T . Let

W1 ∪ . . . ∪ Wm ∈ V ′⋆
T be a target and σ : v1, v2, . . . be a positive data of

W1∪ . . .∪Wm. As we have seen in Corollary 5.12, W1∪ . . .∪Wm is inferable
from v1, v2, . . ..

Here we define an itemset Xi ⊂ I by

Xi = {pi | pi appears in vi with nonzero coefficient}.

Since every Xi is finite, the sequence {X1, X2, . . .} forms a transaction database,
which we denote by D. Put Ci = {pi | pi ∈ Wi} (= Φ(Wi)). From the cor-
respondence in Lemma 5.16, Ci is the subset of I that corresponds to Wi.
Then it holds that:

Proposition 5.17 Ci is DB-closed. Moreover, Ci is a maximal DB-closed
set with respect to set inclusion.

Proof. Let Ci ( X ( I be an arbitrary finite set. Since W1 ∪ . . . ∪Wm is
not redundant, there is no Wk such that Ψ(X) = ⟨X⟩ ⊆ Wk. This means
that there is no j such that Xj ⊇ X. Hence t(X) = ∅. On the other hand,
t(Ci) ̸= ∅, since v1,v2, . . . is positive data and so there is a vk that is the
form

∑
p∈Ci

cpp (cp ∈ Q). Thus t(X) ( t(Ci), and then Ci is DB-closed. In
addition, t(X) = ∅ implies that X ) Ci can not be DB-closed. So Ci is
maximal.

Furthermore, we have:

Proposition 5.18 If X is a maximal DB-closed set of D, then there exists
unique i such that Ci = X.

Proof. If t(X) = ∅ then X is not DB-closed, so t(X) ̸= ∅. Let j ∈ t(X).
There is a Wk such that vj ∈ Wk. By definition, it holds that X ⊆ Xj ⊆ Ck.
The assumption and Proposition 5.17 imply X = Ck. If there is a k′ ̸= k
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such that X = Ck = Ck′ , then it means that W1 ∪ . . . ∪Wm is redundant,
and this is a contradiction.

Thus “learning V ′⋆
T ” corresponds to “mining maximal closed sets of D”.

Remark 5.19 This example would be uninteresting, since a maximal DB-
closed itemset is only a maximal itemset. But, if we choose the linear trans-
formation T appropriately or make coefficients of gi’s have a meaning, it
might be interesting.

Example 5.20 In practice, both the set of items I and the database D are
finite. Here we consider such a case as an example. Let I = {p1, p2, p3, p4}
and D as follows:

p1 p2 p3 p4

X1 ⃝ ⃝ ⃝
X2 ⃝ ⃝
X3 ⃝
X4 ⃝ ⃝
X5 ⃝ ⃝

.

Then DB-closed sets of D are

{p1}, {p4}, {p1, p4}, {p2, p3}, {p1, p2, p3}

and maximal DB-closed sets are {p1, p4} and {p1, p2, p3}. Now let vi ∈ V (i =
1, . . . , 5) be the element corresponding to Xi:

v1 = p1 + p2 + p3, v2 = p2 + p3,v3 = p4, v4 = p2 + p3,v5 = p1 + p4.

Then Procedure 7 outputs ⟨p1, p2, p3⟩ ∪ ⟨p1, p4⟩ when v1, . . . , v5 is taken as
input. Since

Φ(⟨p1, p2, p3⟩) = {p1, p2, p3}, Φ(⟨p1, p4⟩) = {p1, p4},

the maximal DB-closed sets of D can be given by Procedure 7.

5.4.2 Monomial Ideals and Transaction Databases

We have consider an application of Theorem 5.14 to the study of transaction
databases. Our advantage is that, by using Theorem 5.14, we can deal with
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transaction databases that contains data of quantities of items. Let I =
{x1, x2, . . . xn} be the set of items. An itemset considered in this section is
a set of pairs of an item and its quantity {(xa1 , p1), (xa2 , p2), . . . , (xak

, pk)},
pi ∈ N. For convenience, we always assume that a1 < a2 < . . . < ak. A
transaction database D is a sequence of itemsets {T1, T2, . . .}.

Definition 5.21 Let T = {(xa1 , p1), (xa2 , p2), . . . , (xak
, pk)} and T ′ =

{(xb1 , q1), (xb2 , q2), . . . , (xbl
, ql)} be itemsets. If there is an ji such that bji

= ai

and pi ≤ qji
for each i = 1, 2, . . . , k, then T is said to be included in T ′, and

denotes by T ≼ T ′.

Let T be the set of all itemsets. Formally we define T∞ = {(x1,∞), (x2,∞),
. . . , (xn,∞)} and T ≼ T∞ for all T ∈ T . We denote T ′ = T ∪ {T∞}. The
next lemma obviously follows from definition.

Lemma 5.22 ≼ is a partial order on T or T ′. That is, ≼ satisfies the
following two conditions: (1) T ≼ T ′ and T ′ ≼ T if and only if T = T ′, and
(2) if T ≼ T ′ and T ′ ≼ T ′′ then T ≼ T ′′.

There is a natural correspondence between T and the set of all monomials
M as follows.

Definition 5.23 1. Let T = {(xa1 , p1), (xa2 , p2), . . . , (xak
, pk)} be an trans-

action. We define a monomial µ(T ) = xp1
a1

xp2
a2

. . . xpk
ak

.
2. Let m = xp1

a1
xp2

a2
. . . xpk

ak
∈ M be an monomial. We define an itemset

τ(m) = {(xa1 , p1), (xa2 , p2), . . . , (xak
, pk)}.

These mappings define bijections between T andM. Moreover, if we define
m∞ = x∞

1 x∞
2 . . . x∞

n formally and define τ(m∞) = T∞ and µ(T∞) = m∞, then
τ and µ define a correspondence between T ′ and M∪ {m∞}. We denote
M′ =M∪ {m∞}.

Example 5.24 Here we give an example of the correspondence.

x1 x2 x3 x4

T1 2 1

T2 1 3 2

T3 1

T4 1 2 1

µ

−→
←−
τ

m1 x2
1x4

m2 x2x
3
3x

2
4

m3 x1

m4 x1x
2
2x3
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Then µ(Ti) = mi and τ(mi) = Ti in the tables above.

Clearly it holds that:

Lemma 5.25 Let T and T ′ be itemsets. Then T ≼ T ′ if and only if µ(T )|µ(T ′).

Next we define the mappings that correspond to ι and t in §1.4.

Definition 5.26 1. Let T be an itemset and D = {T1, T2, . . .} be a transac-
tion database. We define tD : T ′ → 2N by

tD(T ) := {a ∈ N | T ≼ Ta} = {a ∈ N | µ(T )|µ(Ta)}.

2. Let A ⊆ N. We define ιD : 2N → T ′ by

ιD(A) := max≼{T ∈ T | ∀a ∈ A, T ≼ Ta} = τ(gcd{µ(Ta) | a ∈ A}).

If A = ∅, we define ιD(∅) = T∞.

For simplicity, we will write ι and t instead of ιD and tD, respectively. Similar
to Lemma 1.24 and Lemma 1.27, it holds that:

Lemma 5.27 1. Let T, T ′ ∈ T ′ and suppose that T ≼ T ′. Then t(T ) ⊇
t(T ′).
2. Let A,B ⊆ N and suppose that A ⊆ B. Then ι(A) ≽ ι(B).

Proof. 1. If t(T ) = ∅ then the statement is obvious. Suppose that t(T ) ̸= ∅.
Let a ∈ t(T ′). By definition T ′ ≼ Ta. By applying Lemma 5.22, we have
T ≼ Ta. This means a ∈ t(T ).
2. Since A ⊆ B, gcd{µ(Ta) | a ∈ B} | gcd{µ(Ta) | a ∈ A}. Thus ι(B) ≼ ι(A).

Proposition 5.28 Let D = {T1, T2, . . .} be a fixed transaction database and
ι, t be the mappings above. The composition CD = ι ◦ t : T ′ → T ′ satisfies
the following conditions: for each T, T ′ ∈ T ′,
(CO1’) T ≼ CD(T ),
(CO2’) T ≼ T ′ ⇒ CD(T ) ≼ CD(T ′), and
(CO3’) CD(CD(T )) = CD(T ).

Proof. (CO1’) Let T ∈ T ′. Since CD(T∞) = T∞ (note that t(T∞) = ∅
because all Ti’s are itemsets, that is, elements of T ), we can assume that
T ̸= T∞. Clearly it holds that µ(T )|gcd{µ(Ta) | µ(T )|µ(Ta)}, hence we have
T ≼ τ(gcd{µ(Ta) | µ(T )|µ(Ta)}) = τ(gcd{µ(Ta) | a ∈ t(T )}) = ι(t(T )).
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(CO2’) µ(T )|µ(T ′) since T ≼ T ′, so we have {µ(Ta) | µ(T )|µ(Ta)} ⊇ {µ(Ta) |
µ(T ′)|µ(Ta)}, and thus gcd{µ(Ta) | µ(T ′)|µ(Ta)} is divisible by gcd{µ(Ta) |
µ(T )|µ(Ta)}. Therefore it holds that ι(t(T )) = τ(gcd{µ(Ta) | µ(T )|µ(Ta)})
≼ τ(gcd{µ(Ta) | µ(T ′)|µ(Ta)}) = ι(t(T ′)).
(CO3’)By definition, µ(CD(CD(T ))) = gcd{µ(Ta) | µ(CD(T ))|µ(Ta)} and
µ(CD(T )) = gcd{µ(Ta) | µ(T )|µ(Ta)}. Now it holds that µ(Tk) is divisi-
ble by µ(T ) if and only if µ(Tk) is divisible by gcd{µ(Ta) | µ(T )|µ(Ta)}.
Hence {µ(Ta) | µ(T )|µ(Ta)} = {µ(Ta) | µ(CD(T ))|µ(Ta)}, and therefore
CD(CD(T )) = CD(T ).

Therefore CD can be regarded as a variety of closure operator. Here we define
that T ∈ T is CD-closed if CD(T ) = T . Then one can show the following
proposition as an analogy to Proposition 1.30.

Proposition 5.29 Let T ∈ T . T is CD-closed if and only if T is DB-closed.

Now we fix a transaction database D. As D is regarded to a sequence
of monomials, the argument in §5.3 can be applied to D. The algorithm
becomes much simpler since the sequence presented as a positive data is a
sequence of only monomials, instead of a sequence of polynomials.

Procedure 9-1:
Input: a sequence of monomials m1,m2, . . .;
Output: a sequence of a set of monomials S1, S2, . . .;
begin
1. S = ∅;
2. Put n = 1;
3. repeat
4. if there is no m′ ∈ S such that m′|mn then begin
5. Remove all m′ ∈ S such that mn|m′ from S;
6. Add mn to S;
7. end;
8. Set Sn = S and output S;
9. Add 1 to n;
10. forever;
end.

It is clear that
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Proposition 5.30 Let Sn be the output of Procedure 9-1 at the n-th step.
Then Sn is equal to the set {mi | mj|/mi (i, j = 1, 2, . . . , n)}.

By translating Proposition 5.30 into the language of transaction databases,
it follows that:

Proposition 5.31 Let Sn be the same as Proposition 5.30. Sn is the set of
all maximal DB-closed itemset of {m1,m2, . . . , mn}.

Now we improve Procedure 9-1. We set a threshold k as follows.

Procedure 9-2:
Input: a sequence of monomials m1,m2, . . . and a threshold k;
Output: a sequence of a set of monomials S1, S2, . . .;
begin
1. S = ∅, M = ∅;
2. Put n = 1;
3. repeat
4. Set m = mn.
5. if there is an element of the form (cm,m) in M , then cm = cm + 1;
6. else set cm = 1 and add (cm,m) to M ;
7. if cm ≥ k and there is no m′ ∈ S such that m′|m then begin
8. Remove all m′ ∈ S such that m|m′ from S;
9. Add m to S;
10. end;
11. Set Sn = S and output S;
12. Add 1 to n;
13. forever;
end.

Note that we can take quantities as well as frequency into account in
Procedure 9-2. This is an advantage of Procedure 9-2.
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Chapter 6

Conclusion

In this thesis we have constructed learning algorithms for the classes of
bounded and unbounded unions of closed set systems concretely under cer-
tain conditions. As we have observed through several examples, closed set
systems are closely related to some algebraic objects, such as vector spaces.
As a result, we showed that the scheme of learning from positive data can
be applied to some objects in both algebra and analysis, such as polynomial
rings or Hilbert spaces. Moreover, we have seen that our algorithm can be
applied to the study of transaction databases in the last section. In this way,
the notion of characteristic set and its computability plays important role
to give a learning algorithm of bounded or unbounded unions of closed set
systems.
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