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Abstract

Gravitational waves are oscillations in the geometry of spacetime caused by the movement of mass or

energy. In loop quantum gravity, geometry is quantized so spatial quantities such as area and volume take

on discrete values. We worked on quantizing plane gravitational waves, which propagate in one direction and

have uniform wavefronts perpendicular to the direction of travel, using the method of canonical quantization

on general relativity.

For canonical quantization, a theory is expressed in terms of its canonical variables and constraints

on those variables, then the variables and constraints are taken to quantum operators and the states of

the quantum theory are those that satisfy the constraint operators. The canonical variables of general

relativity are Ashtekar variables, which represent gravitational fields in a way that reveals their similarity

to electromagnetic fields and other gauge fields. The symmetries of general relativity are formulated as

constraints. We used vectors to visually represent the constraints on a spacetime diagram in a manner that

is consistent with their actions and their algebra. We represented the constraints as either a Lorentz boost,

a directional shift, or a propagation along a light cone. We verified the algebra of these constraints for

gravitational waves. A correct quantum theory will have algebra that is consistent the classical constraint

algebra.

We found possible quantum operators for the unidirectional constraint, the constraint that ensures the

plane wave moves only in one direction. We found quantum states satisfying the different versions of the

operator and checked that these states were normalizable. We determined that two different versions of

the operator had nontrivial normalizable solutions. These solutions could be used in conjunction with a

consistent quantization of the other constraints as a quantum formulation of plane gravitational waves.
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Introduction

One of the most glaring gaps in our knowledge of physics is the problem of how to combine general

relativity and quantum mechanics into a single theory. The Standard Model provides a quantum mechanical

theory for all of physics except for general relativity, necessitating a theory of quantum gravity. This theory

would yield Einstein’s theory of general relativity in the classical limit but would also correctly account for

quantum effects on smaller scales. The hope is that a theory of quantum gravity would provide descriptions

of phenomena that general relativity cannot fully describe such as Hawking radiation, the singularity at the

center of a black hole, and the very early universe.

The biggest challenge to any theory of quantum gravity is the complete lack of experimental evidence of

quantum gravity effects. This lack of evidence is understandable given the size of Planck length, which is the

approximate scale at which quantum gravity effects dominate. The Planck length `p is found by combining

the speed of light c, the reduced Planck constant ~, and Newton’s gravitational constant G in the simplest

way that yields units of length. It is

`p =

√
~G
c3
≈ 1.6 · 10−35m. (1)

Despite the size of the Planck length, there is a possibility of observing quantum gravity effect that originate

on the Planck length but have a larger effect.

The Planck length is generally considered to be the smallest unit of length and the Planck volume `3p is

roughly the smallest unit of volume. One approach to quantum gravity posits that this smallest unit of volume

is a quantum of volume and that space is a discrete entity made up of quanta of volume. This approach

characterizes loop quantum gravity. In loop quantum gravity, states of spatial geometry are represented as

a three-dimensional labeled graph1 called a spin network. A spin network can also be thought of as a net

of intersecting loops with vertices where the loops touch, which gives the theory its name [19]. Quantum

operators acting on a spin network return observables in terms of the labels. The eigenvalues of the volume

operator are in terms of the labels associated with the vertices of a spin network and the eigenvalues of the

area operator are in terms of the label associated with the edges.

To get a better of what quantized space is, consider a particle in a one-dimensional quantum harmonic

oscillator. Recall that the eigenstates have energies En =
(
n+ 1

2

)
~ω where n = 0, 1, 2, . . .. Then the ground

state energy is E0 = 1
2~ω and the energy of every excited state can be expressed in terms of E0. For example,

E1 = 3E0 and E7 = 15E0. The quantity E0 is considered a quantum of energy. Just as the excited states of

a particle in a box possess quanta of energy, space is made up of quanta of volume, roughly the size of the

Planck volume. No measurement could ever yield a smaller volume in the same way that no measurement

of the energy of a particle could yield a value below the energy of the ground state. Similarly, other spatial

quantities such as angles and areas are made of quanta.

To create a quantum operator in loop quantum gravity, one starts with a classical quantity and uses

a method called canonical quantization to change the classical quantity into an operator. Loop quantum

gravity starts with classical general relativity expressed in Ashtekar variables. Ashtekar variables must satisfy

a set of constraints in order to account for the symmetries of general relativity, so these constraints must be

quantized. The constraints are the Gauss constraint, the diffeomorphism constraint, and the Hamiltonian

constraint, which ensure invariance under rotation, diffeomorphism, and spacetime translation, respectively.

The unidirectional constraint is an additional constraint that forms plane gravitational wave when satisfied

1In this sense, a graph is a set of vertices along with a set of edges.
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[13]. Our work focuses on creating a quantum operator from the classical unidirectional constraint and on

finding states that satisfy the operator.

One motivation for undertaking this project is the possibility of insight into modified dispersion relations

for gravitational waves. Modified dispersion relations take E2 = p2 +m2 to be an approximation where the

term p2 is the first term of a Taylor series expansion. The modified energy-momentum relation is

E2 = p2 +m2 + κ
p3

Mp
+ . . . (2)

where Mp is the modified Planck mass given by

Mp =

√
~c

8πG
≈ 2.4 · 1018GeV/c2 (3)

which, like the Planck length, is the simplest combination of constants yielding the correct units. The

factor of
√

1
8π is included simply for computational convenience. Given the size of the Planck mass, the

effects of the modification are small but detectable at high momentum because the modification breaks

local Lorentz invariance. Effects that could be detected experimentally include new decay channels, shifts

in current threshold energies, and new upper thresholds. The modification term on the order of p3 has been

experimentally ruled out, but the possibility of terms on the order of p4 or higher remains. Since modified

dispersion relations govern detectable effects originating on the Planck scale, they provide a unique link

between quantum gravity and experiment. If modified dispersion relations were to arise from this work, they

could guide the quantization process.

Part 1 deals exclusively with classical general relativity. We begin by introducing general relativity and

gravitational waves in their standard variables in Sections 1 and 2. We then introduce canonical variables

using the canonical variables of electromagnetism in Sections 3 and 4 as an example to give the reader some

background to understand Ashtekar variables. We give the constraints that Ashtekar variables must satisfy

and show a way to represent them on spacetime diagrams in Sections 5 to 7. The representation of the

constraints on spacetime diagrams is original work.

In Part 2, we transition from the classical regime to the quantum regime using canonical quantization of

general relativity expressed in Ashtekar variables to construct the spin networks of loop quantum gravity.

In Section 8, we again use an example from electromagnetism, the Aharonov-Bohm effect, to understand

how to deal with gauge dependent canonical variables, which motivates the loop structure of loop quantum

gravity. We explain the method of canonical quantization in Section 9 and then elaborate further on the

mathematics of loop quantum gravity in Section 10.

Finally, in Part 3, we present our original work. We use canonical quantization to create multiple quantum

operators from the unidirectional constraint. We outline the preliminaries of quantization in Section 13. Four

different unidirectional operators are given in Sections 14 to 17. In Sections 14 and 15, we find solutions that

satisfy the operators and determine the conditions for these solutions to be normalizable. We discover two

nontrivial normalizable solutions. These solutions are significant because they represent plane gravitational

waves within quantized space.

Note that throughout this thesis, we set c = 1, essentially making meters and seconds into the same unit.

This choice is often made in theoretical physics with the intention of making the calculations cleaner, and

the missing factors of c may be recovered using dimensional analysis.
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Part 1. Classical General Relativity

Einstein’s theory of general relativity transforms Newtonian gravity into a theory that is consistent with

special relativity by stating that spacetime itself is dynamic and its geometry is determined by the energy

density within it. The perceived force of gravity arises from the curvature of spacetime.

This part contains a brief review of special and general relativity topics in their usual variables, then we

introduce Ashtekar variables, the variables used in loop quantum gravity, using electromagnetism as a useful

analogy. Finally, we include our investigations into the behavior of the Ashtekar formulation of general

relativity.

1. Brief Introduction to the Mathematics of General Relativity

General relativity expands upon the formulation of special relativity in Minkowski spacetime.2 Recall

that this formulation uses four-vectors to represent quantities such as position. The position four-vector is

(t, x, y, z) and distances in Minkowski spacetime are given by the spacetime interval

(∆s)
2

= − (∆t)
2

+ (∆x)
2

+ (∆y)
2

+ (∆z)
2

(4)

or

ds2 = −dt2 + dx2 + dy2 + dz2. (5)

The differential form of the spacetime interval is the spacetime line element derived from the metric ten-

sor. The metric determines how distance is measured in a spacetime. In special relativity, spacetime is

approximated as flat. The flat spacetime metric ηµν is defined

ηµν :=


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (6)

An arbitrary metric is denoted gµν , and the relationship between the spacetime line element and the metric

is

ds2 = gµνdx
µdxν (7)

where dxµ = (dt, dx, dy, dz) is a four-vector. For the metric ηµν , the spacetime interval is given in equation

(5).

At this point, it is necessary to address why some quantities have raised indices and others have lowered

indices. The placement of the indices indicates whether a quantity is covariant or contravariant. Contravari-

ant quantities have raised indices, covariant quantities have lowered indices, and both are defined by how

they transform under a change of basis. We will not rigorously define the two here, but we will outline some

important properties. First, when summing over indices, one must be raised and one must be lowered. For

example, it is illegal to multiply two contravariant vectors such as xµxµ. Furthermore, indices are raised and

lowered using the metric. To change a contravariant to a covariant vector, the transformation is

xν = gνµx
µ. (8)

The inverse transformation

xν = gµνxµ (9)

2Minkowski spacetime is three-dimensional Euclidean space combined with a dimension of time.
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changes a covariant vector to a contravariant vector. Note that equation (9) uses the contravariant form of

the metric, called the inverse metric. It can quickly be shown from the above two equations that the metric

and inverse metric obey gµνg
να = δαµ where δαµ is the identity.

Tensors require an additional metric to raise or lower each index. For a rank-two contravariant tensor

tαβ , the covariant form is given by

tµν = gµαgβνt
αβ . (10)

The transformation from a covariant tensor to a contravariant tensor is similar. It is also possible to have

tensors with a mix of raised and lowered indices.

Lorentz transformations are often expressed as tensors denoted Λµν where

x̄µ = Λµνx
ν . (11)

A Lorentz boost in the x-direction is

Λµν =


γ −vγ 0 0

−vγ γ 0 0

0 0 1 0

0 0 0 1

 . (12)

where γ = 1√
1−v2 as usual. Lorentz boosts in the y- and z-directions follow the same format. The reader

may easily check that for xµ = (t, x, y, z), equation (11) recovers the usual equations for a Lorentz boost.

Equation (11) may also be used for spatial transformations using the usual rotation matrices. For example,

a rotation about the z-axis by angle θ is

Λµν =


1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

 . (13)

Other spatial rotations are similar. All transformations in special relativity can be expressed as a product

of these transformation tensors.

As the name implies, special relativity is just a special case of general relativity, but special relativity

provides a very good local approximation of general relativity because spacetime is locally Lorentzian. On

larger scales, however, space can no longer be approximated as Lorentzian because energy and momentum

density changes the shape of spacetime.

Mathematically describing the relationship between energy and momentum density and the geometry of

spacetime is the main idea of general relativity. Before relating these two quantities, we need to represent

them mathematically.

The energy and momentum density is described by the stress-energy tensor, which generalizes the stress

tensor. The stress tensor T ij has nine components and its indices range from 1 to 3. It is conventional

that Latin indices range from 1 to 3 and indicate spatial variables whereas Greek indices range from 0 to

3 and indicate spacetime variables. The ijth component of T ij gives the ith component of the force per

unit area exerted on a surface orientated perpendicular to the j-direction. The stress-energy tensor Tµν has

sixteen components and includes the stress tensor. For µ = 1, 2, 3 and ν = 1, 2, 3, Tµν = T ij . As for the

other components, T 00 is the energy density, T 0ν is the momentum density or energy flux for ν = 1, 2, 3.

The stress-energy tensor is symmetric, Tµν = T νµ, meaning Tµ0 also describes the momentum density. The

stress-energy tensor encompasses all forms of energy and momentum flux and density such as mass and

electromagnetic fields.
8



Since the geometry of spacetime is dependent upon the stress-energy tensor, it makes sense that geometry

is also described by a tensor. As we have seen, it is ultimately the metric that describes the geometry,

but many other theories, general relativity involves second derivatives. Hence, we need some sort of second

derivative for the metric.

Consider a vector V = V αêα which is expressed as a linear combination of basis vectors êα. Taking the

derivative of V with respect to a four-vector xβ , we use the product rule to find

∂V

∂xβ
=
∂V α

∂xβ
êα + V α

∂êα
∂xβ

. (14)

Defining Christoffel symbols Γµαβ as

Γµαβ êµ :=
∂êα
∂xβ

, (15)

allows us to simplify the derivative of V to

∂V

∂xβ
=

(
∂V α

∂xβ
+ V µΓαµβ

)
êα. (16)

We see that the Christoffel symbols account for the change in the direction of the basis vectors. A simple

example of a coordinate system with nonzero Christoffel symbols is polar coordinates because the direction

of r̂ and θ̂ change depending on their locations and hence r̂ and θ̂ have nonzero derivatives. We will not do

so here, but the Christoffel symbols can be calculated directly from the metric.

The Christoffel symbols are used to calculate the trajectory that an object follows in spacetime, called

a geodesic. A geodesic is the shortest path that an object can take in spacetime and a generalization of a

straight line in Euclidean space. More technically, a geodesic is defined using the notion of parallel-transport,

which can be thought of as moving a vector an infinitesimal distance such that the resulting vector is parallel

to the original vector. In non-Euclidean space, the result of the parallel-transport of a vector around a closed

loop is not necessarily parallel to the original vector. A geodesic is a curve such that the tangent vector of

the curve remains the tangent vector as it is parallel-transported along the curve.

Figure 1. Parallel transport of a vector around a closed loop on the surface of a sphere

Using geodesics, we define the Riemann curvature of a manifold.3 The Riemann curvature arises from

considering the parallel-transport of a vector around a closed loop and looking at the deviation of the parallel-

transported vector from the original vector. The Riemann curvature relates this deviation to the area of the

3A manifold is a topological space that is locally Euclidean. Any space we deal with in general relativity would be considered

a manifold.
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loop for each point in space. It is defined as

Rαβγδ =
∂Γαβδ
∂xγ

−
∂Γαβγ
∂xδ

+ ΓαγεΓ
ε
βδ − ΓαδεΓ

ε
βγ . (17)

For a flat manifold,

Rαβγδ = 0, (18)

because a flat manifold has no curvature. From the Riemann curvature, we can easily define the Ricci tensor

and Ricci curvature. The Ricci tensor is defined as

Rαβ := Rγαγβ (19)

and the Ricci curvature is defined as

R := gαβRαβ . (20)

It is the Ricci tensor and the Ricci curvature which are directly related to the stress-energy tensor. The

relationship is given in the famous Einstein field equations, which are

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (21)

The first two terms on left hand side are defined as the Einstein curvature Gµν := Rµν − 1
2gµνR. The third

term contains the cosmological constant Λ which gives the energy density of the vacuum where Tµν = 0.

Physically, the cosmological constant account for the accelerating expansion of the universe.

The solutions to the Einstein field equations are rather complicated, but we will examine one, plane

gravitational waves, in the next section. Other solutions require much tedious math and are not directly

relevant to this thesis. Much of the information in the section was presented purely to give the required

background for the Einstein field equations. However, the concepts of the metric and spacetime intervals

will be important in describing plane gravitational waves and Ashtekar variables.

2. Plane Gravitational Waves

A change in energy distribution changes the geometry of spacetime, but not instantaneously. The change

propagates through spacetime as a gravitational wave traveling at the speed of light. Gravitational waves

are transverse waves that result from changes in energy density. A useful analogy can be drawn between

gravitational waves and electromagnetic waves, which are created by accelerating charges and carry infor-

mation about the electromagnetic field. Similarly, gravitational waves carry information about the metric of

spacetime.

A binary black hole merger, the most well-known source of gravitational waves, was the source of the

celebrated first gravitational wave detection by LIGO (Laser Interferometer Gravitational Wave Observatory)

[1]. LIGO recently announced that they have also detected gravitational waves from a neutron star merger

[2]. Near these collisions, the gravitational waves are quite complicated, but far away in what is known as

the far field, the gravitational waves are approximately plane waves.

A plane wave is a wave which is the same in the transverse directions; its wavefronts are uniform, parallel

to each other and perpendicular to the direction of travel. Electromagnetic plane waves are a familiar

example of plane waves. Recall that the wave equation in vacuum is

∂2f

∂z2
− ∂2f

∂t2
= 0. (22)

Its most general solution is

f(z, t) = g(z − t) + h(z + t). (23)
10



Where g(z − t) represents a wave propagating in the positive z-direction and h(z + t) represents a wave

propagating in the negative z-direction. A gravitational plane wave uses a similar form.

In the simplest case, gravitational plane waves are derived from small perturbations in flat space. The

metric is

gµν = ηµν + hµν (24)

where hµν is the perturbation on flat spacetime. Since ηµν is constant, the gravitational wave equations are

given by (
− ∂2

∂t2
+∇2

)
hµν = 0. (25)

These equations are derived from the Einstein field equations in vacuum (Tµν = 0). Note that gravitational

waves travel at c.

For a wave propagating in the positive z-direction, the perturbation is provided by

hαβ(t, z) =


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 f(t− z). (26)

Therefore, the spacetime interval is

ds2 = −dt2 + (1 + f(t− z))dx2 + (1− f(t− z))dy2 + dz2. (27)

Recall that electromagnetic waves have two independent polarizations. The same is true for gravitational

waves. As we have defined it, hαβ(t, z) gives one polarization of gravitational waves, called plus-polarized.

The other polarization, cross-polarized, is given by

hαβ(t, z) =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 f(t− z). (28)

By combining these two polarizations, we find hαβ for a general wave propagating in the z-direction:

hαβ(t, z) =


0 0 0 0

0 f+(t− z) f×(t− z) 0

0 f×(t− z) −f+(t− z) 0

0 0 0 0

 . (29)

In our work, we deal with polarized plane gravitational waves. Additionally, the waves we deal with propagate

in only one direction because waves propagating in opposite directions could break the symmetry of the

system by attracting each other and collapsing into a black hole.

3. Canonical Variables

Before introducing Ashtekar variables, the canonical variables that we will use to express general relativity,

it is useful to formally define canonical variables and introduce some of their properties. From classical

mechanics, the Lagrange equation is expressed in terms of the generalized coordinates qi and q̇i where i runs

from 1 to n. The generalized coordinate pi canonically conjugate to qi is defined by

pi :=
∂L
∂q̇i

. (30)

11



In terms of the Hamiltonian, defined as H = piq̇
i − L, the canonically conjugate variables satisfy

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

.

(31)

Note that qi and pi are often the familiar position and momentum. Furthermore, the canonical variables

provide coordinates for phase space. For a system with canonical coordinates q1, q2, . . . , qn, p1, p2, . . . , pn the

phase space is the 2n-dimensional space labeled by these coordinates. There is a one-to-one correspondence

between each point in phase space and each state of the system.

Using the canonical variables, we can define the Poisson bracket between functions of these variables. Let

f and g be functions on phase space. The Poisson bracket of f and g is defined as

{f, g} :=
∂f

∂qi
∂g

∂pi
− ∂g

∂qi
∂f

∂pi
. (32)

As can be easily verified, the Poisson brackets between canonical variables turn out to be

{qi, qj} = 0

{pi, pj} = 0

{qi, pj} = δij .

(33)

These relationships are helpful in calculating the Poisson brackets of constraints, which are just functions of

the canonical variables. Poisson brackets are also used to calculate how a function changes a variable. For

example, the Hamiltonian evolves qi and pi in time:

q̇i = {qi, H}

ṗi = {pi, H}.
(34)

In Section 7, the Poisson brackets are used to calculate the action of the constraints on the canonical variables.

Then, in Section 9, we will see the role that Poisson brackets play an essential part in quantizing a classical

theory. First, however, we will use electromagnetism as an example in order to better understand canonical

variables.

4. Electromagnetism

In this section, we show that the electric field E is canonically conjugate to the four-potential Aµ, defined

as Aµ = (−φ,A). Note that we will assume that we can approximate space as flat, so our metric is ηµν given

by equation (6). For our purpose, it is easiest to consider the electromagnetic field tensor. Its contravariant

form Fµν is given by

Fµν =


0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

 . (35)

The covariant field tensor Fµν is result of using the metric to lower the indices of Fµν , as shown:

Fµν = ηµαηβνF
αβ . (36)

In lieu of explicitly calculating the Lagrangian, we will introduce it and then provide a conceptual justifica-

tion. Assuming that the current density and charge density are zero, which is true in vacuum, the Lagrangian
12



is

L =
1

4
FµνF

µν . (37)

The Lagrangian must be gauge invariant as well as invariant under spacetime transformations. The product

FµνF
µν is the simplest possible quantity that can be formed from the field tensor that meets these require-

ments. Additionally, Maxwell’s equations can be derived from the Lagrangian, giving further justification to

its correctness.

Also necessary to the calculation of the conjugate coordinate to the four-potential is the expression of the

Lagrangian in terms of the four-potential, which is done by expressing the electromagnetic field tensor as

the asymmetric derivative of the four-potential:

Fµν = ∂µAν − ∂νAµ (38)

where ∂µ is the four-gradient defined by ∂µ →
(
∂
∂t ,

~∇
)

in flat space. This relationship is easily verified by

direct computation.

To calculate the coordinate conjugate to Aµ, we would start with the definition

πα =
∂L
∂Ȧα

. (39)

Since Ȧµ is the derivative of Aµ with respect to t, we have Ȧµ = ∂0Aµ. Then,

πα =
∂L

∂ (∂0Aα)

=
∂

∂(∂0Aα)

(
1

4
FµνF

µν

)
=

1

4

∂

∂0Aα
((∂µAν − ∂νAµ) (∂µAν − ∂νAµ)) .

(40)

From here, brutal force calculations lead to the result

πα = ∂0Aα − ∂αA0

= F 0α.
(41)

From equation (35), we see that F 00 = 0 and F 0i = Ei for i = 1, 2, 3. Thus, πα = (0,E) so the electric field

and the four-potential are canonical variables for electromagnetism. Note that the electric field has three

components while the four-potential has four components, which indicates that there must be a constraint

on the variables. In fact, there are multiple constraints: Maxwell’s equations.

5. Ashtekar Variables

Like the electric field and four-potential of electromagnetism, Ashtekar variables are canonical variables

for general relativity. To define Ashtekar variables, one first chooses a foliation of spacetime, which takes

advantage of the M = R×M structure of spacetime where M is associated with spacetime, R is associated

with time, and M is associated with space. Choosing a foliation means choosing a particular time and space.

Then, at each point on the spatial manifold M , there is an spatial metric qab. The inverse triad eai is related

to this metric through

eai e
b
jqab = ηij . (42)

Through this equation, the inverse triad relates the spatial metric to the flat space metric ηij . The a or b

index correspond to each spatial direction on M . The i or j index of the inverse triad corresponds to the

expression of the inverse triad components in an orthonormal basis of the tangent space at a point on M .
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These components can take values from the Lie algebra su(2) because of the isomorphism between so(3) and

su(2).

The inverse densitized triad Eai is obtained by rescaling the inverse triad using the metric:

Eai =
√

det(q)eai . (43)

The inverse densitized triad is one of the Ashtekar variables. The conjugate variable to the inverse densitized

triad is the connection Aai . The connection is defined in terms of the curvature Ki
a of the spatial manifold

and the connection associated with the inverse triad given by

Γia := eiaΓabc. (44)

Then the connection is defined as

Aia := Γia +Ki
a. (45)

The connection is used in the parallel transport of vectors between points in space and so allows for the

comparison of vectors from different locations.

These variables are similar to the electric field E and the four-potential Aµ of electromagnetism. Clas-

sical general relativity can be completely described by Ashtekar variables provided that they satisfy three

constraints: the Gauss constraint, the diffeomorphism constraint, and the Hamiltonian constraint. The con-

straints ensure the the Ashtekar formulation has to necessary symmetries of general relativity. Here, we give

the form the constraints as they are given by Giesel [11].

The Gauss constraint is the akin to Gauss’s law in vacuum in electromagnetism. It accounts for rotational

invariance and has the form

DaEaj = 0, (46)

which is analogous to ∇ ·E = 0. It then turns out that Da is defined through

DaEaj := ∂aE
a
j + ε `

jk A
k
aE

a
` = Gj (47)

where ε `
jk is the Levi-Cevita symbol.

The diffeomorphism constraintDa ensures the system behaves the same regardless of the spatial coordinate

system. It generates a diffeomorphism on M given by

D[N ] =

∫
M

NaDadx
3 (48)

for a spatial shift Na. Assuming that the Gauss constraint is satisfied, the diffeomorphism constraint is

Da = F jabE
b
j (49)

where F jab is the curvature associated with the connection given by

F jab = ∂aA
j
b − ∂bA

j
a + εjk`A

k
aA

`
b. (50)

The curvature F jab is analogous to the electromagnetic field tensor Fµν . The major difference comes in the

last term of equation (50), which accounts for the group structure of the variables.

The Hamiltonian constraint H ensures the system behaves the same regardless of the spacetime coordinate

system. It is given by

H = 4πGγ2ε mnj EamE
b
n

(
F jab − (1 + γ2)εjk`Kk

aK
m
b

)
(51)

where G is Newton’s gravitational constant and γ is the Barbero-Immirzi parameter.4

4The Barbero-Immirzi parameter is currently undetermined but could potentially be calculated from physical situations.

One such calculation is the computation of black hole entropy. At this point, we can only say γ ∈ C and note that each choice

of γ gives a different set of canonical variables. However, the mathematics are only fully worked out for the case γ ∈ R.
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In addition to the aforementioned constraints, plane gravitational waves must also satisfy the unidirec-

tional constraint which ensures the waves propagate in only one direction. There are two unidirectional

constraints: one for right-moving waves and another for left-moving waves.

6. Constraints in One Dimension

Since this thesis deals exclusively with plane gravitational waves, it is useful to make a number of simpli-

fications to the constraints, and then present a simplified unidirectional constraint. We set our coordinate

system so that the waves travel in the z-direction. Then the x and y symmetry of the waves allows us

to significantly reduce the amount of variables involved. We do this simplification in the polarized Gowdy

model (see [7]) and the details are beyond the scope of this thesis. For our purposes, it is important to note

that after the simplification, the only remaining variables are the spatial components of the triad Ex, Ey,

and E , and the spatial components of the connection Kx, Ky, and A. The variables that have been renamed

differ from earlier versions by a constant. For the forms of the constraints given below, the Gauss constraint

has been solved and used to simplify the other constraints.

With these simplifications made, we give the simplified constraints in the same forms as are used by

Hinterleitner and Major [13]. The right-moving unidirectional constraint is

U+ = ExKx + EyKy + E ′ (52)

where the prime denotes the derivative with respect to z. We exclusively work with the right-moving

constraint in this thesis, but we will also give the left-moving constraint for the sake of completeness. It is

U− = ExKx + EyKy − E ′. (53)

The one-dimensional diffeomorphism constraint is

D = ExK ′x + EyK ′y + E ′A. (54)

The one-dimensional Hamiltonian constraint is

H =
1

E
ExKxE

yKy + (ExKx + EyKy)A− 1

4

E ′2

E
− E ′′ − 1

4
E

[(
ln

(
Ey

Ex

))′]2

+
1

2
E ′ (ln (ExEy))

′
. (55)

We used these forms of the constraints to verify the algebra of the classical theory, which is defined by

the actions of the constraints with test functions f(z) and g(z). The test functions control the extent of the

transformation generated by the constraint. For example, the change to Ex over time is {Ex, H[f ]} where f

controls how much time passes. Similarly, the change to Ex by a diffeomorphism is {Ex, D[f ]} where in this

case f controls the size of the diffeomorphism. The Poisson brackets between constraints give the difference

in the difference in the result when the order of the action by two constraints is switched. Setting aside the

Gauss constraint, we have the following Poisson brackets:

{H[f ], H[g]} = D[f ′g − fg′] (56)

{D[f ], H[g]} = H[f ′g − fg′] (57)

{U+[f ], H[g]} = U+[−fg′] (58)

{U+[f ], D[g]} = U+[f ′g]. (59)

From these Poisson brackets, we see that the order that the constraints act a point matters.
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7. Spacetime Diagrams

To better understand the actions of the constraints and the relationships between them, we will look at

their actions represented on a spacetime diagram, but first, we need to define active and passive transfor-

mations. The important distinction between the two is that active transformations move the location of a

point whereas passive transformations change the coordinate system of a point. A passive transformation

given by the inverse of an active transformation will give the same final point as that active transformation.

Similarly, an active transformation given by the inverse of a passive transformation will the give same result

as the passive transformation.

For example, consider a point (x0, y0) located in the xy-plane. Moving the point over by (a, b) will result

in the new point (x0 + a, y0 + b) as shown in Figure 2. The passive transformation given by the inverse

of this active transformation moves the coordinate system by (−a,−b) as shown in Figure 3. Expressed

in terms of the new coordinate system, original point becomes (x0 + a, y0 + b), just as it would under the

active transformation. We will use the relationship between active and passive transformations to express

the constraints as active transformations of points on a spacetime diagram.

y

x

(x0, y0)

(x0 + a, y0 + b)

Figure 2. Active transformation of the point (x0, y0) by (a, b)

y

x

(x0, y0)

y′

x′

(x0 + a, y0 + b)

a

b

Figure 3. Passive transformation of the point (x0, y0) by (−a,−b)

The diffeomorphism, Hamiltonian, and unidirectional constraints can all be represented as infinitisimal

transformations on a spacetime diagram. Because we are dealing with plane waves, Eai and Aia do not depend

on x and y, and therefore, we are only concerned with transformations of z and t.
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The diffeomorphism constraint represents a spatial transformation. To find its action on a graph, we need

to calculate how it changes the six canonical variables by calculating the Poisson bracket of each variable

with D[f ]. As an example, we will calculate {Ex, D[f ]}. The calculations for Kx, Ey, Ky, E , and A are

very similar.

Since Ex and f both depend on where in space they are evaluated, we need to specify at which point each

one is evaluated. Choosing to evaluate Ex at z̃ and f at z, the Poisson bracket is

{Ex(z̃), D[f(z)]} =

{
Ex(z̃),

∫
f(z)D(z) dz

}
=

{
Ex(z̃),

∫
f(z)

(
Ex(z)K ′x(z) + Ey(z)K ′y(z) + E ′(z)A(z)

)
dz

} (60)

The integral accounts for the fact that we are checking the whole space for the points where z̃ and z are the

same and runs from negative infinity to infinity. Next, since the Poisson bracket is bilinear, we find

{Ex(z̃), D[f(z)]} =

{
Ex(z̃),

∫
f(z)Ex(z)K ′x(z) dz

}
+

{
Ex(z̃),

∫
f(z)Ey(z)K ′y(z) dz

}
+

{
Ex(z̃),

∫
f(z)E ′(z)A(z) dz

}
(61)

Recall from equation (33) in Section 3 that the Poisson bracket between two canonical variables is zero unless

it is between the same components of conjugate variables. Therefore, the Poisson brackets of Ex with Ex,

Ey, Ky, E , and A vanish. Only {Ex,Kx} is nonzero. Since only the first term in equation (61) contains Kx

in the second slot, the other terms vanish, giving

{Ex(z̃), D[f(z)]} =

{
Ex(z̃),

∫
f(z)Ex(z)K ′x(z) dz

}
. (62)

The next step involves integration by parts. In order for the Poisson bracket to converge, f must go to zero

at infinity and negative infinity. Hence, we have∫ ∞
−∞

f(z)Ex(z)K ′x(z) dz = f(z)Ex(z)Kx(z)
∣∣∣∞
−∞
−
∫ ∞
−∞

(f(z)Ex(z))
′
Kx(z) dz

= −
∫ ∞
−∞

(f(z)Ex(z))
′
Kx(z) dz

(63)

By using the above equation and a version of the product rule, we find

{Ex(z̃), D[f(z)]} =

{
Ex(z̃),−

∫
(f(z)Ex(z))

′
Kx(z) dz

}
= −

∫
dz (f(z)Ex(z))

′ {Ex(z̃),Kx(z)} −
∫
dzKx(z)

{
Ex(z̃), (f(z)Ex(z))

′}
= −

∫
dz (f(z)Ex(z))

′ {Ex(z̃),Kx(z)} .

(64)

The generalization of equation (33) to a function space is {Ex(z̃),Kx(z)} = δ(z̃ − z) where δ(z̃ − z) is the

Dirac delta function. Therefore, the Poisson bracket evaluates to

{Ex(z̃), D[f(z)]} = −
∫
dz (f(z)Ex(z))

′
δ(z̃ − z)

= − (f(z̃)Ex(z̃))
′
.

(65)

17



This result shows that a given point z̃ with triad Ex(z̃) will have triad Ex(z̃) − (f(z̃)Ex(z̃))′ after the

diffeomorphism. For a constant shift, this triad can be written as

Ex(z̃)− (f(z̃)Ex(z̃))′ = Ex(z̃)− f(z̃)Ex′(z̃)

≈ Ex(z̃ − f(z̃))
(66)

by using a Taylor series approximation about z̃.

Suppose f is a shift by δ, so f(z) = δ for all z. Then for any point z, the triad before the diffeomorphism

is Ex(z) and the triad after the diffeomorphism is Ex(z − δ), so the diffeomorphism essentially takes the

triad Ex(z− δ) located at z− δ and moves it over by δ to put it at z. By additional brute force calculations,

one can verify that the diffeomorphism has the same action on the other five canonical variables. Expressed

another way, the diffeomorphism constraint is a spatial translation that takes the variables on a spacetime

diagram at (t, z) and moves them to (t, z + δ), which is given by

D[δ] : (t, z)→ (t, z + δ). (67)

The other constraints also generate changes on a spacetime diagram that can be verified using Poisson

brackets. The unidirectional constraint represents a shift in the direction of a light ray given by

U+[β] : (t, z)→ (t+ β, z + β). (68)

The Hamiltonian constraint for plane waves represents a spacetime transformation, which is a Lorentz

boost. A Lorentz boost can be written in terms of the rapidity α where tanhα = v. Usually a Lorentz boost

is given as passive transformation, which is a change of reference frame:

z′ = z coshα− t sinhα ≈ z − αt

t′ = t coshα− z sinhα ≈ t− αz,
(69)

where small angle approximations are used because we are dealing with infinitesimal boosts. We are repre-

senting the constraints as active transformations, which move a point within a single reference frame. Recall

that an active transformation is the inverse transformation of the equivalent passive transformation. Written

as an active transformation, an infinitesimal Lorentz boost is

z → z + αt

t→ t+ αz.
(70)

Therefore, the Hamiltonian constraint is

H[αz] : (t, z)→ (t+ αz, z + αt). (71)

The test function for the Hamiltonian constraint is αz because it needs to be a function of z rather than t.

Also, the initial points are placed on the z-axis where t = 0.

With these test functions defined, the constraint algebra from equations (57) and (58) becomes

{D[δ], H[αz]} = H[−αδ] (72)

{U+[β], H[αz]} = U+[−αβ], (73)

showing that the order that constraints act on a point does matter. The first relation states that performing

a diffeomorphism then a Lorentz boost on an initial point will not result in the same final point as performing

a Lorentz boost then a diffeomorphism on that same initial point. The two final points are separated by a

Lorentz boost H[−αδ], as shown in Figure 4. Similarly, the second relation is shown in Figure 5.
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The algebra of Poisson brackets is significant because it carries over into quantum mechanics as the algebra

of the commutators. A strong understanding of the classical algebra will provide insight into the quantization

process.

t

z(0, z0)

D[δ]

(0, z0 + δ)

H[αz]

(αz0 + αδ, z0 + δ)

H[αz]

(αz0, z0)
D[δ]

(αz0, z0 + δ)

Figure 4. This spacetime diagram shows the algebra of a spatial translation and a Lorentz

boost. The blue vectors show a diffeomorphism followed by a Lorentz boost. The red vector

show a Lorentz boost followed by a diffeomorphism from the same initial point.

t

z(0, z0)

U [β]

(β, z0 + β)

H[αz]

(β + αz0 + αβ, z0 + β + αβ)

H[αz]

(αz0, z0)

U [β]

(αz0 + β, z0 + β)

Figure 5. This spacetime diagram shows the algebra of a Lorentz boost and propagation

along a light cone. The blue vectors show propagation along a light cone followed by a

Lorentz boost. The red vectors show a Lorentz boost followed by propagation along a light

cone.

19



Part 2. Loop Quantum Gravity

Quantum gravity aims to answer one of the biggest questions of theoretical physics: how does one build a

theory encompassing both general relativity and quantum mechanics? Loop quantum gravity is a theory of

quantum gravity which uses canonical quantization to quantize space as described classical general relativity.

The resulting theory is expressed using a graph called a spin network. This part first introduces holonomies

and explains their significance to quantum mechanics. Then, we explain the process of canonical quantization

and apply it in loop quantum gravity, including a description of spin networks.

8. Holonomies

The motivation for using a spin network comes partly from the need for holonomies, which are used to

express quantities that depend on gauge in a gauge invariant form. Once again, we will use electromagnetism

to illustrate to necessity of holonomies. Classically, we are used to working with the electric field and the

magnetic field, gauge invariant quantities. However, we just showed that the electric field and the four-

potential are canonical variables for electromagnetism, so it should be possible to express the evolution of

the system in terms of these variables. As it happens, it is sometimes necessary to consider E and Aµ as the

variables of electromagnetism. This need arises in the description of the quantum phenomenon called the

Aharonov-Bohm effect.

The Aharonov-Bohn effect, which has been observed experimentally [21], predicts that a beam of charged

particles split by a solenoid will exhibit an interference pattern that is dependent upon the vector potential

despite the fact that the beam travels through a region where the magnetic field is zero, as shown in Figure

6.

Source InterferenceB 6= 0

γ1

γ2

Figure 6. The Aharonov-Bohm effect

A full explanation requires the path integral formulation of quantum mechanics. Most importantly, the

time evolution of a particle is given by

|ψ(t′)〉 = eiS/~ |ψ(t0)〉 (74)

where S is the familiar action from classical mechanics,

S =

∫ t′

t0

L dt. (75)

For a charged particle moving in a vector potential, the total phase S~ can be broken into two parts: a phase

φ arising from the vector potential and a phase φ0 arising from the remaining part of the Lagrangian. We

can ignore φ0 because it is the same for both beams of particles. To calculate φ, we need to know that the
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Lagrangian term arising from the vector potential is qA ·v for a particle with charge q moving with velocity

v.5 Therefore, the phase acquired from the vector potential is

φ =
1

~

∫ t′

t0

qA · vdt =
q

~

∫
C

A · ds (76)

showing that the phase depends only on the line integral of the vector potential along the trajectory C of

the particle.

To calculate the phase of the particles in the experiment shown in Figure 6, let γ1 and γ2 be the two paths

that the charged particles take. Note that the solenoid is between the two paths and that the magnetic field

is nonzero only within the solenoid. However, the vector potential in nonzero along the paths γ1 and γ2.

The phase change due to the vector potential of a particle traveling along γ1 is given by

φ1 =
q

~

∫
γ1

A · ds. (77)

Similarly, the phase change of a particle traveling along γ2 is given by

φ2 =
q

~

∫
γ2

A · ds. (78)

From equations (77) and (78), we find the phase difference between the beams of particles when the beams

interfere. The phase difference is

∆φ = φ1 − φ2

=
q

~

∫
γ1

A · ds− q

~

∫
γ2

A · ds

=
q

~

∮
γ

A · ds.

(79)

Using Stokes’ theorem, we find

∆φ =
q

~

∫
S

~∇×A · da

=
q

~

∫
S

B · da

=
qΦ

~

(80)

where S is the surface bounded by γ and Φ is the magnetic flux through S.

At first, this result seems incredibly problematic because it appears that the vector potential itself has

direct observable consequences. The role of the vector potential extends beyond a mathematical tool to

calculate the magnetic field, forcing us to accept its physical importance. However, the vector potential is

not gauge invariant, but anything we observe cannot depend on a choice of gauge. Fortunately, we can define

a holonomy to solve the problem. A holonomy along γ is

hγ := ei
q
~
∫
γ
A·ds. (81)

The above holonomy is always gauge invariant along a closed path.

Holonomies are important in loop quantum gravity because they are used to create a quantity with

physical significance from a gauge invariant quantity. Since the connection Aia is not gauge invariant, we

5The proof of this fact requires calculating the equations of motion from the Lagrangian

L =
1

2
mv2 − qϕ+ qA · v

and noting that it yields the Lorentz force.
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take the holonomy of Aia to have physical significance. As we will see in Section 10, the holonomy used in

loop quantum gravity is slightly more complicated. It is a matrix whose trace is gauge invariant provided

the holonomy is along a closed loop. The necessity of closed loops for holonomies gives spin networks their

characteristic loop structure. To reach holonomies on spin networks however, we first must introduce and

use canonical quantization.

9. Canonical Quantization

Canonical quantization is the process used in loop quantum gravity. It begins with a classical theory

expressed in terms of canonically conjugate variables. The variables and constraints become quantum oper-

ators, and the Poisson brackets between quantities become commutators between operators. Symbolically,

for two classical quantities A and B, we have the relations

A→ Â

B → B̂

{A,B} → [Â, B̂] = i~{̂A,B}.

(82)

It follows that for canonically conjugate variables xi and pi, the commutator is [x̂i, p̂j ] = i~δij . Furthermore,

we can express x̂i and p̂i in the |xi〉 basis as

x̂i |xi〉 = xi |xi〉 (83)

p̂i |xi〉 = −i~ ∂

∂xi
|xi〉 (84)

We will justify these choices by examining the Hamiltonian operator of single particle mechanics and showing

that it yields the familiar time independent Schrödinger equation if we make the choices given in equations

(83) and (84). Classically, the Hamiltonian is equal to the sum of the kinetic and potential energies. The

same holds true in quantum mechanics but the Hamiltonian becomes a quantum operator. We find

〈xi| Ĥ |ψ〉 = 〈xi|
(
T̂ + Û

)
|ψ〉

= 〈xi|
(
p̂2
i

2m
+ U(x̂i)

)
|ψ〉 .

(85)

Expressing x̂i and p̂i in the |xi〉 basis as in equations (83) and (84) gives

〈xi| Ĥ |ψ〉 = 〈xi|

(
(−i~)2

2m

(
∂

∂xi

)2

+ U(xi)

)
|ψ〉

= 〈xi|
(
−~2

2m
∇2 + U(xi)

)
|ψ〉 .

(86)

Since the Hamiltonian is the total energy, we expect the eigenvalues of the Hamiltonian to be the energy

eigenvalues, meaning Ĥ |ψ〉 = E |ψ〉. Thus, we have just found the time independent Schrödinger equation

for an energy eigenstate:

〈xi|
(
−~2

2m
∇2 + U(xi)

)
|ψ〉 = 〈xi|E |ψ〉 . (87)

Although this “derivation” was only done for a certain case, equations (83) and (84) hold more generally for

canonical variables and we will use a very similar form in our quantization.
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Also recall that the energy eigenstates form a basis for all possible states of a wavefunction meaning any

arbitrary state can be written as a linear combination of energy eigenstates:

|ψ〉 =

∞∑
n=1

cn |ψn〉 (88)

where |ψn〉 are energy eigenstates and cn are complex coefficients satisfying
∑∞
n=1 |cn|2 = 1. The need to

find a basis for all possible states carries over into loop quantum gravity, as is discussed in the next section.

10. Spin Networks and Quantum States

A spin network forms a basis for the states of spatial geometry [6]. As described by Major [17], a spin

network is a three-dimensional labeled graph6 where all edges and some vertices7 have a label associated with

them. The labels denote the spin states. The name spin network comes from the fact that when edges meet

at a vertex, their labels obey the same rules that quantum spin numbers obey. Figure 7 shows an example

spin network.

j1

j2

j3

j4

j13

i3

j5j6

i2

j7

i1

j8

j9

j10

j11

j12

Figure 7. A spin network where edges are labeled by spins jn and vertices are labeled by

intertwiners im

To find information about geometry such as areas [4], [20], angles [18], and volumes [5], [14], [15], [16], [20]

from a spin network, one uses quantum operators whose eigenvalues are in expressed in terms of the labels.

The volume operator gives the volume of a region of space containing a particular vertex, depending on

where the volume operator acts. The resulting volume depends on the intertwiner of the vertex. Similarly,

the area operator gives the area of a surface pierced by a particular edge and the result depends on the label

of the edge. The angle operator acts on two edges meeting at a vertex. In this way, a spin network provides

a discrete description of geometry.

The motivation for spin networks comes from the need for a discrete analog to continuous space formulated

on a manifold. Continuous space leads to many difficulties in the form of divergent quantities in both general

relativity and quantum mechanics. For example, at the center of a black hole, the curvature of spacetime

diverges to infinity. Similarly, many quantities calculated in quantum field theory must be renormalized to

eliminate divergences. Since continuity enables divergences, discretizing space will eliminate this problem.

Spin networks are also a natural representation of holonomies. As discussed in Section 8, the connection

Aia is not gauge invariant, but the trace of its holonomy around a closed loop of a spin network is gauge

6A graph is defined as a set of vertices and a set of edges, expressed as G = {v, e}.
7Vertices are only labeled if they are the intersection of more than three edges. The label, called an intertwiner, describes

how to express the vertex in terms of trivalent vertices (intersections of three edges).
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invariant. Taking the trace of the holonomy is necessary because Aia is a matrix so the holonomy is also a

matrix. The holonomy of A along a path γ is defined as

hγ(A) = P exp

[∫
γ

Aiaτiγ̇
adt

]
= P exp

[∫
γ

Aiaτidx
a

]
(89)

where τi are defined in terms of the Pauli matrices8 and the exponential is a path-ordered exponential, which

comes from taking the ordered product along segments of a line as the length of each segment approaches

zero. Mathematically, it is defined as

P exp

[∫
γ

Aiaτidx
a

]
= lim
n→∞

n∏
k=1

(
1 +Aia(xk)τidx

a
k

)
. (90)

Despite the more complicated formulation, these holonomies are still similar to holonomies in electromag-

netism. Just as there is a holonomy of the vector potential along every path in space, there is a holonomy

of the connection associated with every edge of a spin network.

For the case of plane gravitational waves, we can simplify the situation considerably by looking at

holonomies on a one-dimensional graph rather than on a three-dimensional graph. The symmetry of a

plane gravitational wave allows us to represent its spin network as a line with nodes placed along it, as

shown in Figure 8. The wave propagates in the direction of the edges ei, and information about variables in

that direction are given by integer labels kei along the edges. Labels µvi and νvi at the vertices vi contain

information about variables in the two directions perpendicular to the direction of propagation.

µv1 , νv1

v1

ke1

e1

µv2 , νv2

v2

ke2

e2

µv3 , νv3

v3

Figure 8. Spin network representing plane gravitational wave where each edge ei has an

integer label kei and each vertex vi has integer labels µvi and νvi

The quantum states are represented by products of holonomies along edges and at vertices. The equations

in the rest of this section are taken from Banerjee and Date [8]. A holonomy of the connection along an edge

is

he[A] := ei
ke
2

∫
e
A dz (91)

where ke is the integer label assign to edge e. At a vertex, the holonomies are point holonomies due to the

reduction from three to one dimensions. The point holonomies are

hv[Kx] := ei
µv
2 Kx (92)

hv[Ky] := ei
νv
2 Ky (93)

where µv and νv are the integer labels assigned to vertex v. Note that these holonomies are no longer

matrices because the matrices τi can be replaced by the imaginary unit i with no effects on the theory. The

lack of effect of Pauli matrices on our results is covered in the Appendix.

Using the holonomies, we then represent a basis state of the graph by

〈Kx,Ky,A|~µ, ~ν,~k〉 =
∏
e∈G

ei
ke
2

∫
e
A dz

∏
v∈G

ei
µv
2 Kxei

νv
2 Ky . (94)

8More specifically, τi = − i
2
σi where σi are the Pauli matrices.
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Because the triad and connection are canonically conjugate variables, we can express them as quantum

operators. In the basis of the connection variables, we have

Êx = −iγ`2p
δ

δKx
(95)

Êy = −iγ`2p
δ

δKy
(96)

Ê = −iγ`2p
δ

δA
. (97)

To find Êx and Êy, we integrate along an edge I, summing over the vertices along that edge. For the

eigenvalues, we find ∫
I

Êx |~µ, ~ν,~k〉 =
γ`2p
2

∑
v∈I

µv |~µ, ~ν,~k〉 (98)

∫
I

Êy |~µ, ~ν,~k〉 =
γ`2p
2

∑
v∈I

νv |~µ, ~ν,~k〉 . (99)

For Ê , the eigenvalues only depend of k at each end of the interval, denoted ke+ and ke− . So we find

Ê |~µ, ~ν,~k〉 =
γ`2p
2

ke+ + ke−

2
|~µ, ~ν,~k〉 . (100)

11. Volume Operator

As an example of a quantum operator, we will briefly discuss the volume operator. Classically, the volume

is given by

V =

∫
√
g d3x (101)

where g is the metric, so
√
g =

√
|E|ExEy. Banarjee and Date provide a way to quantize the volume [8].

First, the integral is broken up into the sum of n integrals, each over a length ε. We find

V ≈
n∑
i=1

√
|E|

√∣∣∣∣∫ zi+ε

zi

Ex
∣∣∣∣
√∣∣∣∣∫ zi+ε

zi

Ey
∣∣∣∣. (102)

By changing the variables to operators, we find the volume operator:

V̂ :=

n∑
i=1

√
|Ê |

√∣∣∣∣∫ zi+ε

zi

Êx
∣∣∣∣
√∣∣∣∣∫ zi+ε

zi

Êy
∣∣∣∣. (103)

Using equations (95) to (97), the eigenvalues of the volume operator are

V̂ |µv, νv, ke〉 =
1√
2

(
γ`2p
2

)3/2∑
v∈I

√
|µv||νv||ke+ + ke− | |µv, νv, ke〉 . (104)

Note that if µv = 0, νv = 0, or ke+ + ke− = 0, then the vertex has no volume. We refer to a vertex with no

volume as degenerate space.
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Part 3. Quantization of the Unidirectional Constraint

In this section, we complete part of the canonical quantization process by creating a unidirectional operator

from the unidirectional constraint. We act on a node of an arbitrary one-dimensional spin network with the

unidirectional operator and find quantum states that satisfy the operator. We then check that the quantum

states are normalizable.

We create multiple quantizations of the unidirectional constraint to account for the various choices we

have to make in the quantization process. The main choices are which of two possible ways to approximate

K̂x and K̂y using Taylor expansions and how to order the terms in U+. We will address these items in more

depth individually.

12. Quantization Process

The quantization process follows the steps laid out in Section 9. The canonically conjugate variables used

for quantization are the Ashtekar variables with classical general relativity expressed as the Gauss, diffeo-

morphism, and Hamiltonian constraints. Plane gravitational waves are expressed through the unidirectional

constraint. These constraints are written in terms of the Ashtekar variables. The first step in quantization is

to promote each of the Ashtekar variables to a quantum operator and then promote each of the constraints to

a quantum operator. This project focuses on promoting the unidirectional constraint to the unidirectional

operator, but in order to complete the quantization, all constraints must be promoted to operators. To

quantize the unidirectional constraint, each term is sent at an operator, as shown:

U+[f ] =

∫
I

dzf(ExKx + EyKy + E ′)→ Û+ =
∑
v∈I

f(ÊxKx + ÊyKy + Ê ′). (105)

Note that the terms ÊxKx could be ordered as either ÊxK̂x or K̂xÊ
x with similar orderings for ÊyKy. We

quantize constraint both ways because there is no clear reason for choosing one ordering over the other.

After creating the unidirectional operator, we find the states that satisfy it, which are the states such that

Û+ |ψ〉 = 0 (106)

is true at all nodes. In this work, we investigate states at a single node, which could be combined to give

states at all nodes. Recall that |µ ν〉 a basis state at a single node. By letting m = µ
µ0

and n = ν
ν0

for some

constants µ0 and ν0, we can represent |µ ν〉 as |m n〉. Then an arbitrary state at a node is a superposition of

basis states with amplitudes amn denoted as |ψ〉 =
∑
m,n amn |m n〉. Therefore, the unidirectional operator

is satisfied at a node when

Û+

∑
m,n

amn |m n〉 = 0. (107)

Since a state must be normalizable to have physical meaning, we next check that the states satisfy-

ing the unidirectional operator are normalizable. Recall from one-dimensional quantum mechanics that a

wavefunction is normalized when

〈ψ|ψ〉 =

∫ ∞
−∞
|ψ|2 dx = 1. (108)

A wavefunction is normalized so that |ψ|2 is a probability distribution and the probability of finding the

particle somewhere is 1. The requirement for an unnormalized wavefunction |φ〉 to be normalizable is that∫∞
−∞ |φ|

2 dx is finite. If |φ〉 is normalizable, then it can be multiplied be some constant to make equation

(108) true. In loop quantum gravity, the requirement for a state to be normalizable is similar. We require∑
m,n

|amn|2 <∞ (109)
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meaning that
∑
m,n |amn|2 converges. For each version of Û+ that we create, we find solutions to equation

(107) and check that these solutions are normalizable.

13. Setup for Quantization

In this section, we explain the process by which we create two quantum operators from the x-component

of the connection Kx. The quantum operators created from Ky are similar, so we simply state them. We

start by creating two operators K̂
(1)
x and K̂

(2)
x by using two different approximations for Kx. The superscript

number in parentheses simply indicates which version of K̂x it is. We then modify K̂
(1)
x to K̂(1)

x and K̂
(2)
x

to K̂(2)
x by eliminating extra factors and ensuring real coefficients. To begin, we use a Taylor expansion of

hv[Kx] = ei
µ0
2 Kx . We find

Kx ≈
hv[Kx]− h−1

v [Kx]

iµ0
=

2

µ0
sin

(
µ0Kx

2

)
(110)

and

Kx ≈
hv[Kx]− 1

iµ0

2

. (111)

We use these approximations to define K̂x. Using approximation (110), we define

K̂(1)
x :=

−i
µ0

(
ei
µ0
2 Kx − e−i

µ0
2 Kx

)
. (112)

Acting on a state |µ〉 = ei
µ
2Kx , we find

K̂(1)
x |µ〉 =

−i
µ0

(
ei
µ0
2 Kx − e−i

µ0
2 Kx

)
ei
µ
2Kx

=
−i
µ0

(
ei
µ+µ0

2 Kx − ei
µ−µ0

2 Kx
)

=
−i
µ0

(|µ+ µ0〉 − |µ− µ0〉) .

(113)

Classically, Kx is real, so one would expect the eigenvalues of K̂x to also be real. We renormalize K̂x so its

eigenvalues will be real as well as to remove any stray factors. Thus,

K̂(1)
x |µ〉 =

−µ0

i
K̂(1)
x |µ〉 = |µ+ µ0〉 − |µ− µ0〉 . (114)

Doing the same process with approximation (111), we define

K̂(2)
x :=

−2i

µ0

(
ei
µ0
2 Kx − 1

)
(115)

to find

K̂(2)
x |µ〉 =

−2i

µ0

(
ei
µ0
2 Kx − 1

)
ei
µ
2Kx

=
−2i

µ0

(
ei
µ+µ0

2 Kx − ei
µ
2Kx

)
=
−2i

µ0
(|µ+ µ0〉 − |µ〉) .

(116)

Renormalization gives

K̂(2)
x |µ〉 =

−µ0

2i
K̂(2)
x |µ〉 = |µ+ µ0〉 − |µ〉 . (117)
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We will refer to equation (114) as version 1 of K̂x and to equation (117) as version 2 of K̂x. Versions 1 and

2 of K̂y are similar:

K̂(1)
y |ν〉 = |ν + ν0〉 − |ν − ν0〉 (118)

K̂(2)
y |ν〉 = |ν + ν0〉 − |ν〉 . (119)

We now have two versions of K̂x and K̂y to use to quantize the unidirectional constraint. We will quantize

each term of the constraint separately. For the first term, we have two choices. The first choice is∫
I

dzfKxE
x −→

̂∫
I

dzfKxEx

=
∑
v∈I

f(v)K̂xÊx.
(120)

The second choice, which is less conventional, is∫
I

dzfExKx −→
̂∫

I

dzfExKx

=
∑
v∈I

f(v)ÊxK̂x.
(121)

We will refer to equation (120) as “E to the right” and to equation (121) as “E to the left.” The second

term has two similar versions using K̂y in place of K̂x. The quantization of the third term is simple by

comparison. For Ê ′, we have action on nodes:∫
I

dzfE ′ −→
̂∫
I

dzfE ′

= f Ê(I−)− f Ê(I+)

= f
γ`2p
4

(k− − k+).

(122)

Equation (122) is used for the quantization of the third term in all cases. Now, we will go through the

different cases we investigated without Pauli Matrices.

14. E to the Left, Version 2 of K̂x

To find the first term of Û+, we will act on a state |µ〉 = ei
µ
2Kx with the operator from equation (121)

using equation (117) for K̂x. Recall that the eigenvalues of Êx are given in equation (98). Then, acting with

K̂x before Êx gives ∑
v∈I

f(v)ÊxK̂(2)
x |µ〉 =

∑
v∈I

f(v)Êx (|µ+ µ0〉 − |µ〉)

=
γ`2p
2

∑
v∈I

f(v) ((µ+ µ0) |µ+ µ0〉 − µ |µ〉) .
(123)

Another way to express this operator is by its action on a state |m〉 = ei
m
2 Kx where m = µ

µ0
and hv[Kx] =

ei
1
2Kx . Then, ∑

v∈I
f(v)ÊxK̂(2)

x |m〉 =
γ`2p
2

∑
v∈I

f(v) ((m+ 1) |m+ 1〉 −m |m〉) . (124)
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The quantization for the second terms proceeds similarly. We find∑
v∈I

f(v)ÊyK̂(2)
y |n〉 =

γ`2p
2

∑
v∈I

f(v) ((n+ 1) |n+ 1〉 − n |n〉) . (125)

From now on, we denote states at a vertex by |m n〉 with the understanding that we mean |m n k+ k−〉.
Thus, our quantized version of

∫
I
dz U+[f ] an operator where the result of its action is

γ`2p
2

∑
v∈I

f(v) ((m+ 1) |m+ 1 n〉 −m |m n〉+ (n+ 1) |m n+ 1〉 − n |m n〉)− f
γ`2p
4

(k− − k+) |m n〉 . (126)

We will now present states which satisfy this operator.

14.1. Trivial Solution. Consider the case where

k− = k+ (127)

so that k is constant. Furthermore, to satisfy equation (107) at each node,

γ`2p
2

∑
m,n

amn ((m+ 1) |m+ 1 n〉 −m |m n〉+ (n+ 1) |m n+ 1〉 − n |m n〉) = 0 (128)

∑
m,n

(
a(m−1)nm |m n〉 − amnm |m n〉+ am(n−1)n |m n〉 − amnn |m n〉

)
= 0 (129)

ma(m−1)n −mamn + nam(n−1) − namn = 0. (130)

For amplitudes corresponding to m = 0, equation (130) reduces to a0n = a0(n−1) which implies that these

amplitudes are constant. Similarly, the amplitudes are constant for n = 0. Therefore, every m = 0 amplitude

and every n = 0 amplitude must be zero in order for
∑
m,n

|amn|2 to converge.

For a01 = a10 = 0, it follows from equation (130) that a11 = 0. It then follows that a21 = a12 = 0. In fact,

amn = 0 for all m,n. Thus, for k− = k+, the only solution is the trivial solution. This solution corresponds

to degenerate space.

14.2. Nontrivial Solution. If instead, k− 6= k+, then∑
m,n

amn

(
(m+ 1) |m+ 1 n〉 −m |m n〉+ (n+ 1) |m n+ 1〉 − n |m n〉 − 1

2
(k− − k+) |m n〉

)
= 0 (131)

∑
m,n

(
a(m−1)nm |m n〉 − amnm |m n〉+ am(n−1)n |m n〉 − amnn |m n〉 − amn

2
(k− − k+) |m n〉

)
= 0 (132)

ma(m−1)n −mamn + nam(n−1) − namn −
amn

2
(k− − k+) = 0. (133)

Assume k− − k+ is constant and let ∆k = k− − k+. For amplitudes with m = 0 and n ∈ N, equation (133)

becomes

a0n =
n

n+ ∆k/2
a0(n−1). (134)

Written as an explicit formula, equation (134) is

a0n =
n!∏n

i=1(i+ ∆k/2)
a00 =

Γ(1 + ∆k/2)Γ(n+ 1)

Γ(n+ 1 + ∆k/2)
a00. (135)

Assuming ∆k is an even natural number (∆k ∈ 2N),

a0n =
(∆k/2)! n!

(n+ ∆k/2)!
a00. (136)
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Observe that

∞∑
n=0

|a0n|2 =

∞∑
n=0

∣∣∣∣ (∆k/2)! n!

(n+ ∆k/2)!
a00

∣∣∣∣2 = (∆k/2! a00)2
∞∑
n=0

(
n!

(n+ ∆k/2)!

)2

. (137)

Note that n!
(n+∆k/2)! <

1
n so

(
n!

(n+∆k/2)!

)2

< 1
n2 . By the comparison test, equation (137) converges for all

∆k ∈ 2N.

After a bit more work, we find an explicit formula for amn that satisfies equation (133) for m,n ∈ N0.

The amplitudes are given by

amn =
(∆k/2)!(m+ n)!

(∆k/2 +m+ n)!
a00. (138)

We claim that
∑
n,m

|amn|2 converges. Observe:

∞∑
m=0

∞∑
n=0

|amn|2 =

∞∑
m=0

∞∑
n=0

∣∣∣∣ (∆k/2)!(m+ n)!

(∆k/2 +m+ n)!
a00

∣∣∣∣2
= ((∆k/2)! |a00|)2

∞∑
m=0

∞∑
n=0

(
(m+ n)!

(m+ n+ ∆k/2)!

) (139)

Notice that terms for the same value of m+n are the same. For a given value of m+n, there are m+n+ 1

terms. Let ` = m+ n, then

∞∑
m=0

∞∑
n=0

|amn|2 = ((∆k/2)! |a00|)2
∞∑
`=0

(`+ 1)

(
`!

(`+ ∆k/2)!

)2

= ((∆k/2)! |a00|)2
∞∑
`=0

1

(`+ 1)
∏∆k/2−2
j=0 (`+ ∆k/2− j)2

.

(140)

Note that the denominator, when written as a sum, contains `∆k+1. So,

1

(`+ 1)
∏∆k/2−2
j=0 (`+ ∆k/2− j)2

<
1

`∆k+1
. (141)

Because

∞∑
`=0

1

`∆k+1
converges for ∆k ≥ 1, it follows that

∞∑
m,n=0

|amn|2 converges for ∆k ≥ 1.

Unfortunately, the gamma function is undefined for the negative integers, meaning that ∆k cannot be a

negative even integer because Γ(∆k/2 + 1) must be defined. Therefore, at this point, we can conclude that

our solution is valid for m,n ≥ 0 for ∆k ∈ 2N.

So far we’ve only shown convergence for m,n ≥ 0, and because the gamma function is undefined for the

negative integers, solutions to equation (133) do not exist when m + n < 0. Next the step, which we have

not done, is to consider solutions where m+ n ≥ 0, but m < 0 or n < 0.

Therefore, we can only say with certainty that our solution is valid for m,n ≥ 0 with ∆k ∈ 2N. We could

possibly avoid this problem by using |m| and |n| in equation (138).
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15. E to the Right, Version 2 of K̂x

Proceeding similarly to Section 14, we find

∑
v∈I

f(v)K̂(2)
x Êx |µ〉 =

γ`2p
2

∑
v∈I

f(v)µK̂(2)
x |µ〉

=
γ`2p
2

∑
v∈I

f(v)µ (|µ+ µ0〉 − |µ〉) .
(142)

This result can also be expressed as

∑
v∈I

f(v)K̂(2)
x Êx |m〉 =

γ`2p
2

∑
v∈I

f(v)m (|m+ 1〉 − |m〉) . (143)

Therefore, the complete action of the constraint operator is given by

γ`2p
2

∑
v∈I

f(v) (m |m+ 1 n〉 −m |m n〉+ n |m n+ 1〉 − n |m n〉)− f
γ`2p
4

(k− − k+) |m n〉 . (144)

To satisfy equation (107) at a vertex, we must have

∑
m,n

amn

(
(m |m+ 1 n〉 −m |m n〉+ n |m n+ 1〉 − n |m n〉)− 1

2
(k− − k+) |m n〉

)
= 0. (145)

Upon reindexing the sum, we find

∑
m,n

(
(m− 1)a(m−1)n |m n〉 −mamn |m n〉+ (n− 1)am(n−1) |m n〉

− namn |m n〉 − 1

2
(k− − k+)amn |m n〉

)
= 0 (146)

so that each term must satisfy

(m− 1)a(m−1)n −mamn + (n− 1)am(n−1) − namn −
1

2
(k− − k+)amn = 0. (147)

From here, we find the recurrence relation

amn =
(m− 1)a(m−1)n + (n− 1)am(n−1)

m+ n+ ∆k/2
. (148)

where ∆k = k− − k+. There are a few things to note from this formula. First, a11 = 0, and therefore,

am1 = 0 for m ≥ 1. This can be shown using induction and the fact that
(m−1)a(m−1)1

1+∆k/2 . Similarly, a1n = 0

for n ≥ 1. It follows that amn = 0 when m ≥ 1 and n ≥ 1.

Also, notice that amn does not exist when m+ n+ ∆k/2 = 0. Since m and n take one all integer values,

we must have ∆k/2 /∈ Z, so ∆k must be odd.

15.1. Trivial Solution. The trivial solution is simply amn = 0 for all m,n ∈ Z. As noted above, ∆k must

be odd, but there are no other restriction on ∆k for the trivial solution to hold.
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15.2. Nontrivial Solution. One solution to equation (148) requires amn = 0 if m 6= −1 or n ≥ 0. For

m = −1 and n < 0, we have

a(−1)(−|n|) =
1

|n|!

|n|∏
i=3

(i−∆k/2) a(−1)(−1). (149)

For convenience, let b = −n, so

a(−1)(−b) =
1

b!

b∏
i=3

(i−∆k/2) a(−1)(−1) (150)

=
2

b!

Γ(b+ 1−∆k/2)

Γ(3−∆k/2)
a(−1)(−1). (151)

We then need to check that the amplitudes are normalizable. Observe:∑
m,n

|amn|2 = |a(−1)(−1)|2 +

∞∑
b=2

∣∣∣∣ 2

b!

Γ(b+ 1−∆k/2)

Γ(3−∆k/2)
a(−1)(−1)

∣∣∣∣2 (152)

= |a(−1)(−1)|2 +

∣∣∣∣ 2a(−1)(−1)

Γ(3−∆k/2)

∣∣∣∣2 ∞∑
b=2

∣∣∣∣Γ(b+ 1−∆k/2)

b!

∣∣∣∣2 . (153)

We only care about whether or not the sum in equation (153) converges. To start, let ∆k = 3. Then the

sum becomes

∞∑
b=2

∣∣∣∣Γ(b− 1
2 )

b!

∣∣∣∣2 =

∞∑
b=2

∣∣∣∣Γ(b+ 1
2 )

b!(b− 1
2 )

∣∣∣∣2 (154)

=

∞∑
b=2

∣∣∣∣ (2b)!
√
π

4b(b!)2(b− 1
2 )

∣∣∣∣2 . (155)

Making use of Stirling’s approximation, we find

(2b)!

(b!)2
≈

(2b)2be−2b
√

2π(2b)(
bbe−b

√
2πb
)2 =

4b√
πb
. (156)

Therefore, our sum is approximately

∞∑
b=2

∣∣∣∣∣ 1

(b− 1
2 )
√
b

∣∣∣∣∣
2

=

∞∑
b=2

1

b(b− 1
2 )2

. (157)

which clearly converges because 1
b(b− 1

2 )2
< 1

b3 , which converges.

For ∆k ≥ 5,

Γ(b+ 1−∆k/2) =
Γ(b+ 1

2 )∏(∆k−1)/2
i=1 (b− i+ 1

2 )
. (158)

Therefore, the sum from equation (153) is

∞∑
b=2

∣∣∣∣Γ(b+ 1−∆k/2)

b!

∣∣∣∣2 =

∞∑
b=2

∣∣∣∣∣ Γ
(
b+ 1

2

)
b!
∏(∆k−1)/2
i=1 (b− i+ 1

2 )

∣∣∣∣∣
2

(159)

≤
∞∑
b=2

∣∣∣∣Γ(b+ 1
2 )

b!(b− 1
2 )

∣∣∣∣2 . (160)

Thus, by the comparison test, the sum converges, which shows that
∑
m,n |amn|2 converges for ∆k ≥ 5.
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Now we will show that
∑
m,n |amn|2 diverges for ∆k ≤ 1. To start, let ∆k = 1. The relevent part of

equation (153) is once again the sum

∞∑
b=2

∣∣∣∣Γ(b+ 1−∆k/2)

b!

∣∣∣∣2 =

∞∑
b=2

∣∣∣∣∣Γ
(
b+ 1

2

)
b!

∣∣∣∣∣
2

(161)

=

∞∑
b=2

∣∣∣∣ (2b)!√π4b(b!)2

∣∣∣∣2 . (162)

Using Stirling’s approximation gives

∞∑
b=2

∣∣∣∣ 1√
b

∣∣∣∣2 =

∞∑
b=2

1

b
, (163)

which diverges. For ∆k ≤ −1, we have

Γ(b+ 1−∆k/2) = Γ

(
b+

1

2

)−(∆k+1)/2∏
i=0

Γ(b− i−∆k/2) (164)

≥ Γ

(
b+

1

2

)
. (165)

Therefore,

∞∑
b=2

∣∣∣∣Γ(b+ 1−∆k/2)

b!

∣∣∣∣2 ≥ ∞∑
b=2

∣∣∣∣∣Γ
(
b+ 1

2

)
b!

∣∣∣∣∣
2

(166)

so equation (153) diverges for ∆k ≤ −1.

In summary, we have shown that the amplitudes given by equation (149) satisfy this version of the

quantized unidirectional constraint when ∆k is odd. These amplitudes are normalizable only for ∆k ≥ 3.

16. E to the Left, Version 1 of K̂x

In this section and the next, we will use version 1 of K̂x to quantize the unidirectional constraint, but we

will not present full solutions. Observe:∑
v∈I

f(v)ÊxK̂(1)
x |µ〉 =

∑
v∈I

f(v)Êx (|µ+ µ0〉 − |µ− µ0〉)

=
γ`2p
2

∑
v∈I

f(v) ((µ+ µ0) |µ+ µ0〉 − (µ− µ0) |µ− µ0〉)
(167)

which can also be expressed as∑
v∈I

f(v)ÊxK̂(1)
x |m〉 =

γ`2p
2

∑
v∈I

f(v) ((m+ 1) |m+ 1〉 − (m− 1) |m− 1〉) . (168)

So the quantized unidirectional constraint is

γ`2p
2

∑
v∈I

f(v)((m+ 1) |m+ 1 n〉 − (m− 1) |m− 1 n〉+ (n+ 1) |m n+ 1〉

− (n− 1) |m n− 1〉)− f
γ`2p
4

(k− − k+) |m n〉 . (169)
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In order for the constraint to be satisfied at a node, we need

∑
m,n

amn

(
(m+ 1) |m+ 1 n〉 − (m− 1) |m− 1 n〉+ (n+ 1) |m n+ 1〉

− (n− 1) |m n− 1〉 − 1

2
(k− − k+) |m n〉

)
= 0. (170)

Upon simplication, we find∑
m,n

(
ma(m−1)n −ma(m+1)n + nam(n−1) − nam(n+1) −

1

2
(k− − k+) amn

)
= 0 (171)

ma(m−1)n −ma(m+1)n + nam(n−1) − nam(n+1) −
1

2
(k− − k+) amn = 0. (172)

17. E to the Right, Version 1 of K̂x

Observe: ∑
v∈I

f(v)K̂(1)
x Êx |µ〉 =

γ`2p
2

∑
v∈I

f(v)K̂(1)
x µ |µ〉

=
γ`2p
2

∑
v∈I

f(v)µ (|µ+ µ0〉 − |µ− µ0〉) .
(173)

Alternatively, we can express the action as∑
v∈I

f(v)K̂(1)
x Êx |m〉 =

γ`2p
2

∑
v∈I

f(v)m (|m+ 1〉 − |m− 1〉) . (174)

Therefore, the unidirectional constraint is

γ`2p
2

∑
v∈I

f(v)

(
m |m+ 1 n〉 −m |m− 1 n〉+ n |m n+ 1〉 − n |m n− 1〉

)
− f

γ`2p
4

(k− − k+) |m n〉 . (175)

In order to satisfy the constraint, the amplitudes at each node must satisfy∑
m,n

amn

(
m |m+ 1 n〉 −m |m− 1 n〉+ n |m n+ 1〉 − n |m n− 1〉 − 1

2
(k− − k+) |m n〉

)
= 0 (176)

(m− 1)a(m−1)n − (m+ 1)a(m+1)n + (n− 1)am(n−1) − (n+ 1)am(n+1) −
1

2
(k− − k+)amn = 0. (177)

18. Discussion

We found four possible versions of the unidirectional operator created from the unidirectional constraint

and found states satisfying two of them. Some of these states were trivial, meaning that they correspond

to degenerate space and are not significant. The other states that we found are normalizable provided that

certain conditions are met. Both nontrivial solutions require ∆k ≥ 2, but the solution to one version requires

∆k to be odd and the solution the other version requires ∆k to be even. The significance of this discrepancy

is unclear, however, we hope that further research will uncover additional solutions allowing ∆k to take

odd or even values for both versions of the constraint. Another difference to note is that our solution to

one version of the constraint only works when we limit m and n to positive values (the first quadrant of a

coordinate plane) and our solution to the other version only works when we consider all values of m and

n (all four quadrants of a coordinate plane). In the latter case, only the third quadrant contains nonzero

amplitudes. Since the value given by the volume operator depends only on the absolute values of m and n,
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neither case is immediately cause for concern, but allowing m and n to take on both positive and negative

values leaves open more possibilities in the theory. All of our solutions are for a single vertex. A full solution

would include a state for all vertices.

We also showed that using Pauli matrices in the quantization of Kx gives one of the same results that

we obtained without Pauli matrices. Since using Pauli matrices gives the same result as K̂
(1)
x , we conclude

that K̂(1)
x is more consistent with the Gowdy model in 3 + 1 dimensions than K̂(2)

x is. The solutions we

found satisfy both versions of the unidirectional operator that use K̂(2)
x , so future work will focus on finding

solutions to the two versions of the unidirectional operator that use K̂(1)
x .
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Part 4. Conclusion

In Part 1, we represented of the diffeomorphism, Hamiltonian, and unidirectional constraints on a space-

time diagram, showing their algebra visually. This representation mainly serves to help us better understand

the constraints.

In Part 3, we presented our main results, quantization of the unidirectional constraint four different ways.

We found normalizable solutions to the two quantizations given in sections 14 and 15. One key difference

between the solutions is that one only worked for m ≥ 0 and n ≥ 0 while the other was zero for all values of

m and n except for m = −1 and n < 0. The other key difference is that they required different values of ∆k.

We hope that further investigation will result in a more general solution for both quantizations, eliminating

some of these differences. We also hope to find solutions for the other two quantizations, given in sections

16 and 17.

Finding nontrivial normalizable solutions to a unidirectional operator is a huge step forward in the theory.

In addition to finding more solutions, the next step is to investigate the compatibility of the unidirectional

operator with a diffeomorphism operator.
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Part 5. Appendix

19. Quantization Using Pauli Matrices

Using Pauli matrices in the quantization of K̂x and K̂y allows us to compare our one-dimensional sim-

plification with the full three-dimensional theory. In this appendix, we use the matrices τi = − i
2σi where

the non-subscript i refers to the imaginary unit. We use the properties Tr [σi] = 0 and σ2
i = 1, which imply

Tr [τi] = 0 and τ2
i = − 1

41.

The main difference in the quantization is that we now use hv[Kx] = eτxµ0Kx . The Taylor expansion is

eτxµ0Kx ≈ 1 + τxµ0Kx. Using this Taylor expansion, we find two approximations for Kx:

Kx ≈ −
1

µ0
Tr
[
τx
(
eτxµ0Kx − e−τxµ0Kx

)]
(178)

and

Kx ≈ −
2

µ0
Tr
[
τx
(
eτxµ0Kx − 1

)]
. (179)

We can use both of these approximations to create an operator K̂x, which we define as

K̂(3)
x := − 1

µ0
Tr
[
τx
(
eτxµ0Kx − e−τxµ0Kx

)]
(180)

and

K̂(4)
x := − 2

µ0
Tr
[
τx
(
eτxµ0Kx − 1

)]
. (181)

As before, we will need to renormalize each version of K̂x for which we will need the identity

eτxµ0Kx = cos
(µ0

2
Kx

)
+ 2τx sin

(µ0

2
Kx

)
. (182)

From equation (180), we find

K̂(3)
x |µ〉 = − 1

µ0
Tr
[
τx
(
eτxµ0Kx − e−τxµ0Kx

)]
ei
µ
2Kx

= − 1

µ0
Tr
[
τx

(
cos
(µ0

2
Kx

)
+ 2τx sin

(µ0

2
Kx

)
− cos

(
−µ0

2
Kx

)
− 2τx sin

(
−µ0

2
Kx

))]
ei
µ
2Kx

= − 1

µ0
Tr
[
4τ2
x sin

(µ0

2
Kx

)]
ei
µ
2Kx

=
1

µ0
Tr
[
sin
(µ0

2
Kx

)]
ei
µ
2Kx

=
2

µ0
sin
(µ0

2
Kx

)
ei
µ
2Kx

=
2

µ0

ei
µ0
2 Kx − e−i

µ0
2 Kx

2i
ei
µ
2Kx

=
1

iµ0

(
ei
µ+µ0

2 Kx − ei
µ−µ0

2 Kx
)

=
1

iµ0
(|µ+ µ0〉 − |µ− µ0〉) .

(183)

The action of this operator turns out to be the same as the action of K̂
(1)
x , so we will not bother renormalizing.
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For K̂
(4)
x , we find

K̂x |µ〉 = − 2

µ0
Tr
[
τx
(
eτxµ0Kx − 1

)]
ei
µ
2Kx

= − 2

µ0
Tr
[
τxe

τxµ0Kx
]
ei
µ
2Kx

= − 2

µ0
Tr
[
τx cos

(µ0

2
Kx

)
+ 2τ2

x sin
(µ0

2
Kx

)]
ei
µ
2Kx

= − 2

µ0
Tr

[
−1

2
sin
(µ0

2
Kx

)]
ei
µ
2Kx

=
2

µ0
sin
(µ0

2
Kx

)
ei
µ
2Kx

=
2

µ0

ei
µ0
2 Kx − ei

µ0
2 Kx

2i
ei
µ
2Kx

=
1

iµ0

(
ei
µ+µ0

2 Kx − ei
µ−µ0

2 Kx
)

=
1

iµ0
(|µ+ µ0〉 − |µ− µ0〉) .

(184)

Thus, we see that with the use of Pauli matrices, both versions K̂
(3)
x and K̂

(4)
x yield the same result as K̂

(1)
x .

Therefore, it suffices to use equation K̂
(1)
x and forgo the use of Pauli matrices because they do not provide

any new information.
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