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Reaction thresholds in doubly special relativity

Daniel Heyman and Seth Major
Department of Physics, Hamilton College, Clinton, New York 13323, USA

Franz Hinteleitner
Department of Theoretical Physics and Astrophysics, Masaryk University,rkkéld, 611 37 Brno, Czech Republic
(Received 16 January 2004; published 21 May 2004

Two theories of special relativity with an additional invariant scale, “doubly special relativity,” are tested
with calculations of particle process kinematics. Using the Judes-Visser modified conservation laws, thresholds
are studied in both theories. In contrast with some linear approximations, which allow for particle processes
forbidden in special relativity, both the Amelino-Camelia and Magueijo-Smolin frameworks allow no addi-
tional processes. To first order, the Amelino-Camelia framework thresholds are lowered and the Magueijo-
Smolin framework thresholds may be raised or lowered.

DOI: 10.1103/PhysRevD.69.105016 PACS nunider11.30.Cp, 03.30tp, 04.60-—m

[. INTRODUCTION ated with these theoriesMow are composite particles de-
scribed? Using particle process kinematics to test relativity
Special relativity with an observer independent scale hag the ISR models, we focus on the first two questions and,
been proposed as a modification to local Lorentz invariancéo the extent possible, limit ourselves to the single particle
[1-7]. The existence of an additional scale at high energysector.
was motivated by a variety of studies includirgdeformed Studies of process kinematics, together with current astro-
Poincarealgebrag2,8—17, heuristic semi-classical states in physical observations, have been surprisingly successful in
guantum gravityf 13], and string theory14]. The new scale constraining specific proposals for modifications of special
may be an energy, momentum, or perhaps even a lengthelativity requiring a preferred franfd6—19. Thus far these
Despite our intuition from special relativity, the new relativ- studies have focused on modifications of dispersion relations
ity theories seem to demonstrate that inist necessary to with a term linear in the Planck scale. Further constraints
use a preferred reference frame when there is a distinguisheday be imposed by ensuring consistency at lower energies
scale [1]. Dubbed “doubly special relativity"(DSR) the via an effective field theory, as was done for dimension-5
theories maintain the relativity principle even with the inclu- operators by Myers and Pospel@®0]. Lehnert found con-
sion of an invariant energy or momentyr)]. For the pur-  straints on dispersion relations arising from the additional
poses of this paper, the distinguishing features of the newonsiderations of coordinate invariance and non-dynamical
theories are the relativity principle and an invariant scale. Tdensor backgrounds which break Lorentz symmegdj.
emphasize this we refer to them as “invariant scale relativ- Kinematics is particularly well suited to non-linear real-
ity” (ISR). In ISR theories the speed of light may not be anizations of the Lorentz group since both the spacetime pic-
observer invariant.We study two example theories: the ISR ture and the effective dynamical framework of ISRs is not
of Amelino-Camelia and collaboratof4—3,5 and the ISR complete. To perform the analysis we need conservation
of Magueijo and Smolif6,7]. Both proposals exploit a free- laws. Judes and Visser derive modified conservation laws in
dom to define non-linear transformations on momentunRef. [22] based on the observation that, since the physical
space, retaining the group properties of Lorentz transformaenergy-momenta in ISRs are non-linearly related to the for-
tions, and include an invariant scale. mal energy-momenta, the ISR conservation laws may be
Defined in momentum space the new ISR transformation&und by appropriately applying the non-linear transforma-
raise many questions. For instance, is the relativity principldions to the usual additive conservation laws.
maintained? Indeed, what is the relativity principle in this Given the success constraining modified dispersion re-
new context? What is the corresponding spacetime assodgtions in Refs.[16—19, we might expect that process
kinematics could again be used to constrain the new invari-
ant scale in ISRs. In fact, although this is the first general

*Electronic address: smajor@hamilton.edu study, several such processes, including photo-production of

"Electronic address: franz@physics.muni.cz pions occurring in high-energy-proton—cosmic-microwave-

IFor instance, the modified dispersion relatih=p?+p2E/E,  Packground-photon collisiorishe Greisen-Zatsepin-Kuzmin
yields a velocity off1] (GZK) cutoff [24]], have been explorefb,7]. These calcu-

dE 1 p
vy(P)~—a)~ +Ep

%At the present, despite some progrEss), it is unclear precisely
which depends on the reference frame fiet E,, . how this scale affects relativistic effects such as length contraction.
p

0556-2821/2004/6920)/1050168)/$22.50 69 105016-1 ©2004 The American Physical Society



HEYMAN, MAJOR, AND HINTELEITNER PHYSICAL REVIEW D 69, 105016 (2004

lations have been carried out in the leading order formalism. E2_ 2 2

: , . p m
Here, making use of the Judes-Visser conservation laws, we 5 =pl= > 4
present new, exact and first order calculations for the (1-\E) (1—xm)

Magueijo-Smolin and Amelino-Camelia ISRs. Particle pro- . . )
cess kinematics does not limit parameters in the same man € quantities ¢ ), called “pseudo-energy-momenta,
ner as Refg.16—19. Instead, process kinematics shows howtransform under the usual linear Lorentz transformations.
thresholds are modified and provides a perspective from |N€ presence of the pseudo-energy-momentum variables
which the notion of relativity may be sharpened. Indeed paril the background does not necessarily mean that the ISR

ticle kinematics brings matters of principle to the fore in trivially reduces to SR. An ISR physicist” would not
ISRs rather than numerical limits on parameters. measure—perhaps not even calculate—the pseudo-energy-

We present our results for Magueijo-Smolin ISR beforeMomentum variables. We assume that the non-linearly real-

turning to Amelino-Camelia ISR in Sec. IIl. We show that to 1Z€d variables are the physical ones. For notational conve-
first order Amelino-Camelia ISR lowers existing thresholds,Ni€nce we us&,=1/x but this in no way is meant to suggest
whereas Magueijo-Smolin ISR may either lower or raisethat there is an invariant length. Until the spacetime picture
them. They allow no additional processes. We explore thds complete we cannot be sure how the invariant scale relates
issue of the uniqueness of particle process thresholds in Se@ @ possible length. _ _
IV and close with a brief discussion of the relativity principle  FOr many particle processes the total physical energy is
in light of these resullts. given by the same expression althoug%w() become the

Throughout the article when we refer to the “Planck total pseudo-energy-momenta{;, ). Thus, Egs.(3)
scale” we simply mean the invariant scale of the theory ex-lS0 define modified energy-momentum conservation laws
pected to correspond t&E,=1.3x 10° GeV. The low- Which, unlike the pseudo-energy-momenta, are not additive
energy speed of light is set to unity. We generally calculate i22]-

1+1 for simplicity. However, in Sec. IV where the results  Before exploring process kinematics it is worth reviewing
depend on dimension, we work in+3L. a couple of results on the invariant scale. As shown in Ref.

(6], the theory has an invariant enerdg,, such that if a
particle has this energy in one frame, then it has the same
Il. MAGUEIIO AND SMOLIN'S RELATIVITY WITH energy in all framegdespite the change in momenturnihe
AN INVARIANT ENERGY Magueijo-Smolin theory also has invariant “Planck scale

Fock[25] derives spacetime transformations for a systenfUll vectors” (Ey,*Ey). InterpretingE, as the invariant
in which linear motion is covariant; if motion is rectilinear in €nergy, we always take>0. One might wonder whether the
one frame, then it is rectilinear in all inertial frames. He distinguished energy is included in the momentum space ac-

showed that the transformations from a fraxfeto x*" must cessible to physical particles. Kinematic calculations suggest
be of the form that it should not be included.

The root of the issue is the singularity in the pseudo-
energye=E/(1—\E) at E=E, where “anything can hap-

! :A“JFA’VLXV (1) pen:” By modified energy conservation, the total energiof
B+ B X" particles is
N
whereA#, A%, B, andB,, are coordinate independent func- D Ei
tions of velocity. Magueijo and Smolin found that these same i1 1-\E; 1 1
transformations applied in momentum space introduce anin- Ejg=—(y———=—| 1— N
variant scale at high energy. They showed that the fractional Ei A Ei
linear transformations may be obtained by exponentiation of 1+>‘2 1+>‘2
o o i=1 1_)\Ei i=1 1_)\Ei
boost generators modified by a dilatiép,d, [6]: (5)
K'=L'+\p'D (2)  Thisis always smaller thali,= 1/\, as long as all th&; are
. smaller than the Planck scale energy. If one offthés equal
in which L' is the unmodified Lorentz generator. to E,, then also the total energy E,, regardless of the
The resulting Magueijo-Smolin ISR may be defined bynumber of particles and the values of the other, sub-
the physical energy-momenta for a single part[@e22], Planckian energies.
Further curiosities appear for composite particles. Kine-
€ matically, a Planck-scale particle can decayNaarticles
E= 1+ ne’ (with N finite) as long as one of them has Planck-scale en-
ergy. One may similarly check that momentum is conserved.
a
s is clear from the definition, we study the Magueijo-Smolin
“classic” ISR of [6] rather than later variants which contain more
and the modified dispersion relation than one scal€7].
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Indeed the derivation holds for the Planck scale null vectoconserved. However, note in particular that this result does
as well. (See Refs[3,7,23 for further complications in de- not imply that the ISR results are identical to the results of
fining composite particlesThus, a Planck-scale particle is a SR kinematics. Further, the result is by no means generic to
source(or sink for an arbitrary number of particles with all ISRs but a simple consequence of the fractional modifi-
energies less than or equal to the Planck scale. In additioration. For instance, one might try a “time reversal” invari-
one may show that a finite number of sub-Planckian particleant theory with modifications of the form ((\¢e)?) 2.
cannot interact to produce a Planck scale particle. Because @he above argument obviously fails for such an ISR.

this closure property foE <E, particles under process kine- ~ To compare process thresholds of the Magueijo-Smolin
matics and the pathologies of including these invariants inSR with those of SR, we take the reaction of two incoming
the physical energy-momentum space, we take Magueijoparticles with massem; and m,, resulting inN outgoing

Smolin ISR to be defined on the space of 4-momenta satigarticles with massesy;, i=3,... N+2, in the center-of-
fying the modified conservation laws af E,. (This is  mass(c.m) system. LetM :=3N"2m; and M@ =3N"2m?.
analogous to what is done in SR for infinite energies. Recall that the usual SR threshold in the c.m. system is

Process kinematics is considerably simplified by the obgiven by
servation that conservation of the physical energy and mo-

mentum is equivalent to conservation of the pseudo-energy- m2—m2+ M?2
momenta. To see this, consider Bhto N particle process, [Sp oM (7)
with incoming pseudo-energy
M M To find the ISR threshold the physical energies and masses in
fo:El 6i=,21 Ei/(1-\E)) Eq. (7) are replaced by the corresponding pseudo-quantities,
i= =
and outgoing pseudo—energy=2}\':15j’ . Energy conserva- Ejsr . ,ui—,ung w? @®
tion Ey=E; then requires e = '
0= Et q 1-\Efq 2
€o €f
Trre, 1the 6)  with w:==N"2u;. From this we obtairEXg in terms of the

ISR invariantsu;=m;/(1—\m;) and, after expansion with
which immediately implies that the total pseudo-energy isrespect to\, the first-order correction of the SR threshold
conserved. This in turn implies that the pseudo-momentum ignergy:

(C)

* x| 1| E* AM(m3—m3)—2M@(mi—m3)+2M2M @ — M *
ISR~ Es SR M M)

In the case of equal ingoing masses,=m,, this sim-  however physical momenta are defined for the composite

plifies to proton and pion, the result is well approximated by the dis-
persion relation for an elementary particle. The SR threshold

2M@)—Mm? for this process leads to a cutoff in the cosmic particle spec-

T4 (10 trum, the GZK cutoff[24]. Recently, higher energy cosmic
particles have been reported. To check whether the

The sign of the correction is not generally definite; it de-Magueijo-Smolin ISR could account for a raising of this

pends on the values of the outgoing masses. In the case #freshold we specialize the above method. From(Egthe

two outgoing particles, nevertheless, the threshold is alwayspecial relativistic threshold is

raised, as Eq(10) reduces to

Elsr~ESrT\

2 2
. _(mp+ m,) +my

(11) Esr= 2(mp+ m,) (12)

A
Elsr=Esrt 2 (mg— m4)2.

In the Magueijo-Smolin ISR the corresponding relation is
This is not a generic result for the reaction of two different guey P g

incoming particles, as we will see below. (ot )2 a2
An interesting example is the interaction of an ultra-high & = Hp™ Ha) T Hp (13)
energetic proton from cosmic radiation with the cosmic mi- 2(ppt )

crowave backgroundpy— par, in which the proton loses
energy to produce a pion. We assume in the following thatfrom which follows

105016-3
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unconstrained. The theory may again be defined by the rela-
(14)  tion to the pseudo-energy-momenge]:

NA(E—m2) NYE—72)

1+\e 1+ + ,

4 2

2 2 2
mz(6mg—m?) 2, 2_ 2

L _)\”—p”, 15 - N(e“—7°)

ISR~ Esr 4(mp+m,,)2 (15 p=me xE\/1+—4 ) (17)

aloweringof the SR threshold energy in the c.m. system. Tope theory has a modified dispersion relatjag]
compare this with the GzZK threshold in the cosmological

frame, one performs a non-linear Lorentz transformation, 1, .

which boostsE,, to the energy of a far infrared background costAE)=cosham)+ S\ “p“e™. (18

photon. This is done in Appendix A. However, like in ordi-

nary Lorentz transformations, the boosted energy is a moncrhis dispersion relation, to leading orddl, is identical to

tonic function of the original one and so Magueijo-Smolin the modified dispersion relations studied 1]. However, in

ISR is not capable of raising the GZK threshold and explainthe ISR context the energy-momentum conservation laws are

ing the apparent abundance of cosmic particles above theodified as wel[1,22].

GZK cutoff [7]. As may be swiftly seen from the dispersion relations of
We exhibit two exact kinematic calculations for the Eq.(18), although there is an invariant momentum, no posi-

Magueijo-Smolin ISR in Appendix A. These are based ontive energy particle may obtain it. We consider only those

two processes of the basic QED vertex: vacuuere@kov  particles with momentum less than the upper limjt In the

radiation(VCR) a—avy for a charged particla and photon  following we analyze the theory defined by Ed47) and

stability y+e*e”. These processes, both forbidden in SR,(18), the Judes-Visser conservation |ai2g], and the restric-

are of particular interest, because considerations of lineafon p<1/\. For ease of reference we will refer to this

modifications of SR'16,17] indicate that they could be al- theory as Amelino-Camelia ISR.

lowed in modified theories. From the exact calculations it The calculation of leading order corrections to threshold

follows that they are forbidden in the ISR as well. energies in the c.m. frame begins with the observation that
It is no surprise that we obtain these results, for thethe invariantu of the theory differs only in second order

Magueijo-Smolin theory does not admit additional kinematicfrom the physical mass:

solutions. The crux of the matter is the equivalence of the

conservation of the physical energy-momenta and the 2 Am 2m3

pseudo-energy-momenta. Since the map between physical p=ySinh—-~m+\"7. (19)

energy-momentum  thresholds and  pseudo-energy-

momentum thresholds is one-to-one, the theory contains nerom this it follows that the threshold pseudo-energy for a

additional solutiongsee Sec. IV. If a process is forbidden in  general 2+ N particle process, given by the right equality of

SR, it will remain forbidden in the Magueijo-Smolin ISR.  Eq. (8), is

. (mptua)+ug
Eisr= > 2q°
2(ppt ) EN[(ppt+ p7)+ pp]

1
In first order in\ this is E= Xln

* _ % 2
Ill. AMELINO-CAMELIA RELATIVITY WITH AN € =Esgt O(AY), (20

INVARIANT MOMENTUM which greatly simplifies the calculation of the first order ex-

The next ISR we consider differs from the Magueijo- Pression of the threshold enerdgfsg in Amelino-Camelia
Smolin theory in a number of important ways. First, the!SR. With the aid of Eq(17),
Amelino-Camelia ISR does not simply contain a dilation in 5
momentum space but represents a more drastic modification. ﬂ
This can be easily seen by comparing E2). to the first 2

order form of the modified boost generators for Amelino- _ o )
Camelia ISR[3]: Here 7, is the pseudo-momentum of the ingoing particle,

whose pseudo-energy &, given by

Elsr~Esr— (21)

) . 1 ) S
K'=L'+)| 5 7*"p,p.X +p'pyx | (16) 7= (€*)2— pi=(E5p?—mi+O(\?). (22)

From this we immediately find
The dilation is only on the 3-momenta and the non-linear
action extends to the spacetime transformations. As a result % % x2 2
of these non-linearities, it is often necessary to work with the Eisr~Esr™ E[(ESR) —mi],
physical energy momenta to obtain exact results for process
kinematics. Second, the Amelino-Camelia ISR has a singlevhich indicates a general lowering of threshold energies for
invariant momentunp,=1/\ but the energy, as in SR, is 2—N particle reactions. The modified GZK threshold is sim-

(23
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A2 A2
1+Ne\/ 1+ Z(EZ—WZ)‘F?(EZ_’ZTZ) ,

ply the above result witlm; =m;. Hence Amelino-Camelia
ISR also lowers the threshold, so we cannot give an explag, (¢, )= —In

=

nation of a possible raising of the GZK cut¢®]. We note, A

however, that this result again depends on the assumption

that the composite particle relations do not differ signifi- A2

cantly from the SR relations. Gy(e,m)="\/ 1+ 2(62— ), (28)

We further illustrate the kinematics with the same pro-
cesses studied before: VCR and photon stability. Both exag
calculations are in Appendix B. As in SR, there is no VCR
and the photon is stable in Amelino-Camelia ISR.

h which e and 7 aresumsof the pseudo-energy-momentum
variables for each particle. The functions are not identical;
F,#f, andG, #g, .*

Despite the apparent difference, the meaningful question
IV. UNIQUENESS OF PROCESS THRESHOLDS is whether the mapping remains on-to-one. Supp&se;)
is the total physical energy-momentum for the incoming par-

pseudo-variables and the physical variables is one-to-one. ﬁcles obtained by summing the incoming particle pseudo-

this property holds, then there corresponds just one physicgnergy-momenta in Eqe24). These modified energy conser-

threshold for every threshold in special relativity. ISRs sat-vation laws are equations for surfaces in energy-momentum

isfy modified conservation laws in which the total energy-SpaC.e' By th? implicit function theorem, these. ;urfaces de-
momenta termine solutionggenerally, one-parameter families of solu-

tions) only if the Jacobian of the functions is non-vanishing
on their domain. More precisely, we require

The above results hold only if the map between th

Etor= Fr(€tots Tiot)s
W((?,TFA(?EG)\—r?,.,G)ﬂEF)\)—G)\(?eF)ﬁ&O (29)
Ptot= Ti0tGa(€tot» Tiot) (24
for e=0 and —w <7<, The derivatives are with respect
are conserved. to the pseudo-energy-momenta, e.g.,=d/dw. For

In this equation the total pseudo—energy—momentaMagueijo-Smonn ISR this reduces to
(€01, mior) are functions of the physical energy-momenta.

For a single particle, —1(1+xe)3#0. (30)
€= f;l(E'p), In the case of the Amelino-Camelia ISR, using E@8) for
the four dimensional case it is
_ -1
m=pg, (E,p) (25) o~ ME(e,m)
- 31
f, andg, may or may not be equivalent ®, andG, . For 1+\2%(e?—72)14 €1

example, in Magueijo-Smolin ISRF,=ew,(e)=f, and
G,=w,(e)=g, with w,(e)=1/(1+\€). So in Magueijo- Wwhich is negative-definite, as wéllHence, both ISRs con-
Smolin ISR the “lowercase functions” are equivalent to “up- sidered here have non-vanishing Jacobians and thus the map-
percase functions.” ping is bijective. The ISRs have no additional process thresh-
In the Amelino-Camelia ISR, however, the relevant equa-olds.
tions are, for a single particlg2],
V. DISCUSSION

1
E=F,\(e,m)= XIn[)\ecosr()\m/2)+cosm\m)], Using exact and first order calculations of process kine-
matics we have tested Amelino-Camelia ISR and Magueijo-
Smolin ISR in their “natural domain”: momentum space.

— _ —\E
p=7Gy(e,m)=m coshiam/2)e (26 Unlike previous kinematic calculations, these results made
and

4 . . . .
These two expressions are equivalent for a single particle. In the
e*E—cosham) P d gie p

e=f,(E,p)= ’ multiple particle case the problem arises because there is no longer
A cosiiAm/2) a mass which relates the two expressions. Nevertheless, it is easy to
see that the expressief— 72 is always positive-semidefinitgero
pe“E in the case of a collection of photong-or example, in the case of
m=mg\(E,p)= (27)  two particles from|e;|=|m,| and |e,|=|m,| it follows that the

coshiAm/2)’ )
R ) absolute value of the sure;+ €,| is also greater or equal than

|7, + 75| and soe?,,— 72,=0. For more than two particles this can
be generalized.
®In the 1+1 case we find the Jacobian to be

which are simple inverses.

In contrast to the single particle case for whieghandG,
may be written as functions only efandm, in the multiple
particle case the total energy and momentum are given by e MNA(E— )AL+ N2(2— 7P)14].
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use of the Judes-Visser conservation 1428|. The first or-  No. 143100006 S.M. acknowledges the Perimeter Institute
der calculations in the c.m. frame show that Amelino-for hospitality and the Research Corporation for support.
Camelia ISR lowers threshold energies, whereas the
Magueijo-Smolin ISR may raise or lower threshold energies, APPENDIX A
for all allowed processes in special relativity. The exact cal-
culations exhibited in the Appendixes show that there is no
vacuum @renkov radiation, forbidden in SR, and that pho- To find the boost from the c.m. frame to the Cosmological
tons are stable in these ISRs. Finally, by studying the map t§ame one can use the c.m. condition
pseudo-energy-momentum variables we demonstrated that

. P P
no processes beyond those in SR are allowed. P __ Y (A1)

These results show that, when using the Judes-Visser 1-\Ep 1-\E,

modified conservation laws, the GZK thresholdageredin
these ISRs. Although the “GZK paradox” created by the
apparent over abundance of events above the GZK thresho
is controversia[26,27], our analysis show that these ISRs do
not provide a viable explanation of an apparent raising of the E2+ €2— 2E2eN — 20NE._ €2+ 2)\262E2
threshold. We note, however, that these results depend on T e(yl—)\E )(;_)\6) ?
both the form of the ISR energy-momentum conservation Y Y

laws and the assumption on composite particles mentioned iyith the modified dispersion relation, E4.2), and the equa-
Sec. II. tion for E, it is possible to use the above to boost the

The kinematic results for the two example theories suginreshold back into the cosmological frame. The result, to
gest two questions for any ISR Is the map between par- leading order i\ (with m=m,), is
p 1

ticle kinematic thresholds in the physical variables and the
linear variables one-to-one? One source of trouble would be 4e?m?+m3(2m+m,)?
the existence of multiple threshold solutions which would Ejsg~

1. Boost for the GZK threshold

to find E,, the energy of the photon in the c.m. frame.
oosting this energy to give, the energy of the far infrared
oton in the cosmological frame gives

(A2)

—A[mi(m+m,)(2m+m,)*

require additional criteria to determine which solution is 4em,(2m+m,)

physical.(ii) Are there processes normally forbidden in spe- +16e°m?{e(m*—m?m_—3mnf.—m3)
cial relativity? And at what energy and momentum do they

occur? —m,(6m>+8m’m_+2mnt.—m3)}

In addition, in the ISR context we should expect covari-

3 2 3 2 3
ance under the modified transformations without requiring —4em7(2m+m_)%(—2m°—-2m°m_+m7)

the energy-momenta to take unphysical values. If agreement +4e2m2(2m+m.)2(2m3+4m2m +3mm§,+m3)]/
between observers requires an unphysical boundary point of m B E g
the physical state space, then the theory is not relativistic. 1662m727(m+ m,)(2m+m_)>2. (A3)

These observations lead us to suggest sharpening the cri-
teria of relativistic theories with an additional invariant scale.Expanding this in leading terms assuming,/m<1 and
As in previous formulations of ISR¢i) all modifications to  e/m,<1 one finds that
special relativity must reduce to special relativity when the
second invariant scale (Ep) vanishes(diverges. Physical £ %m_)\ (m
solutions of the modified theories must reduce to the pro- ISR 2¢ 2e
cesses of special relativity in this limit. Any theories which
have multiple threshold solutions which satisfy this criteriaso, not surprisingly, the boost modifications swamp the mass
are unphysical(ii) Processes normally forbidden in special modifications.
relativity may only occur at the boundafgs determined by
the additional scaje of the physical energy-momentum 2. VCR
space. Therefore, ISRs can only shift procegsesh as ki-
nematic thresholdsor events but will not allow additional
processes.

2
) =Eir—NE&R?Z  (Ad)

Vacuum renkov radiation may occur in theories with
modified dispersion relations, and indeed this process places
strong limits on the extent of the modificatiga6]. Since
ISRs apparently do not require a preferred frame, we can
make use of the usual process kinematics techniques of SR.
In the rest frame of the incoming charged particle let the
For discussions which illuminated key issues we thank&nergy-momentum be Ep,po) =(m,,0). We denote the

Giovanni Amelino-Camelia, Tomasz Konopka, JurekProduct energy momenta as{,p,) and €,,p,). The
Kowalski-Glikman, Ralf Lehnert, Don Marolf, and Lee Modified conservation of momentum immediately gives
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With the dispersion relatione— 7,) (€, + 74) = Mg one can with
re-express energy conservation as a simple polynomie] in

NE,_ NE,
which has but one solutionef,m,)=(x4,0). Therefore, € _&e costiAmg) e™r—1 (B2)
since the photon physical momentum vanishes, VCR does O N coshiam,/2) A
not occur.
The expression of EqB1) simply gives, after a bit of alge-
3. Photon stability bra,

In the case of photon stability we use a different method _ 2sin(Am,/2) B3

that does not require a choice of reference frame. We denote €tot™ A ~Ha- (B3)

the photon energy-momentum b {,p,) and the electron-

positron pair energy-momenta b¥{ ,p.). In Magueijo-  Since the pseudo-energy is equivalent to the pseudo-mass, it
Smolin ISR, the pseudo-momentum is conserved, so we havé not surprising that we find, from the definition gf,, that
€10t=€,= 7, With the last equality being true for massless E,=0 and E,,pa) =(m5,,0). As in SR, there is no VCR in

particles. The relation gives the simple result Amelino-Camelia ISR.
E: P+ _ E_ N p- (A6) 2. Photon stability
1-NE, 1-AE, 1-AE_ 1-AE_°

In the Amelino-Camelia ISR, conservation of eneigy

With the energy and momentum of the outgoing particles™ Etot 9iVes
separated we simply need to understand the behavior of one
€,= €qot \/1+

2, 2 2 2 2
N (€t Tiot) R A€o Tior)

. > . (B4)

function. Using the dispersion relations of E4) we simply
have

f(E+)=—T(E-) (A7) But photons have the property theﬁ= wi. So we can use
with momentum conservatiop,, = p, to simplify this. In fact,
2 2 2 \? 2 2
E— \/EZ_ m2 1-\E 67: 71-tot( 1+ Z(etot_ Wtot) ' (BS)
1-Am
f(E)= 1-\E : (A8) Equating the two expressions feﬁ we have the result
The condition of Eq.(A7) is only satisfied at a root of \?
: ; ; 0=(e2 —m2 )| 1+ —(e2,—m2)
f(E)=0. However, this only occurs wheb=E . Since this tot™ “tot o " Ctot "ot
point is excluded, the photon is stable.
)\2
APPENDIX B + N €tor \/1+ Z(Gfm— Wtzot)|
1. VCR
v .2 2\ alEgo
The vacuum @renkov calculation proceeds as in = (€tor™ Tio) €10k (B6)

Magueijo-Smolin ISR when one takes the rest frame of thel_ ) . ) .
. - . . . _The first solution to Eq(B6), when the first factor vanishes,
incoming charged particle. In Amelino-Camelia ISR, how givesE= —m. This is the result that one would obtain in SR

ever, the modified energy conservation becomes . . . .
4 by an analogous calculation. Sinée>0, the “solution” is

22 2 unphysical. For the same reason the second factor cannot
L \€ior A 2 vanish. Hence, there are no massive-particle solutions, so the
Ma=—In| 1+ N e \/ 1+ +—ée2,|  (BY | , . P '
N 2 photon is stable in the Amelino-Camelia framework as well.
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