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Gravity and BF theory defined in bounded regions 
Viqar Husain l, Seth Major 2 

Center for Gravitational Physics and Geometry, Department of Physics, The Pennsylvania State University, 
University Park, PA 16802, USA 

Received 18 March 1997; accepted 9 June 1997 

Abstract 

We study Einstein gravity in a finite spatial region. By requiring a well-defined variational 
principle, we identify all local boundary conditions, derive surface observables, and compute their 
algebra. The observables arise as induced surface terms, which contribute to a non-vanishing 
Hamiltonian. Unlike the asymptotically fiat case, we find that there are an infinite number of 
surface observables. We give a similar analysis for SU(2) BF theory. (~) 1997 Elsevier Science 
B.V. 

PACS: 04.20.Cv; 04.60.Ds 

I.  Introduction 

Gravity has been studied mainly in the context of  either closed or asymptotically fiat 

space-times. The former applies to cosmology, whereas the latter applies to situations 

where the gravitating system is viewed from a fiat environment at infinity. The asymp- 

totically flat setting allows the identification of  properties of  the system, such as its 

energy and angular momentum [ 1-3] .  In the case of  asymptotically fiat space-times, 

these conserved quantities, being integrals over a two-sphere, may be called "surface 

observables". 

There exist, however, interesting solutions of  the Einstein equations which do not fall 

into the closed or asymptotically flat category. These require a study of  more general 
boundary conditions, Recently such boundary conditions have been studied. Brown and 

York [4] study the covariant gravity action for a spatially bounded region, and derive 

l E-mail: seth@phys.psu.edu 
2 E-mail: husain @ phys.psu.edu 
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surface observables on a finite boundary (which are referred to as quasi-local quantities). 
Balachandran, Chandar and Momen [5] perform a similar analysis in the context of an 
inner boundary and an asymptotically flat outer boundary. Hawking and Horowitz [6] 
provide an analysis for asymptotic conditions other than the asymptotically fiat one. The 
main approach underlying all these works is functional differentiability of the gravity 
action in the presence of boundaries, as in the initial work of Regge and Teitelboim [ 1 ]. 

The study of more general boundary conditions falls into two main categories: A 
gravitating system may be viewed as being enclosed in a finite spatial region, or, as 
in the asymptotically fiat situation, in a two-sphere at infinity. In this paper we study 
the former case with an emphasis on presenting al l  possible boundary conditions, and 
finding observables of the theory. 

Observables for gravity, or any other generally covariant field theory, may be defined 
as phase space functionals that commute weakly with the first class constraints of 

the theory. For a four-dimensional theory in a finite spatial region, observables may 
be classified into "bulk" and "surface" observables. The former are integrals over the 
spatial region, while the latter are integrals over the surface bounding the spatial region. 

There are (at least) two reasons why it may be useful to find surface observables and 
their algebra for a gravitating system in a bounded spatial region. The first reason has 
to do with black hole entropy. Specifically the questions are: What are the microscopic 
degrees of freedom of a black hole? Where do these degrees of freedom reside? 

Recently there has been a proposal, originating in string theory, for the statistical 
mechanical interpretation of black hole entropy [7]. In the weak coupling limit of 
string theory, there are bound states of D-branes labeled by charges which  are  the  s a m e  

as the charges on the extremal black holes. The degeneracy of these bound states is taken 
to represent the microscopic degrees of freedom of the black holes - which arise only 
in the strong coupling limit. It is remarkable that this degeneracy leads to the correct 
entropy formula for black holes. However, essential to the identification of these states 
as black hole microstates is the extrapolation of the degeneracy calculation from weak 
to strong coupling (known as the "non-renormalization theorem"). This extrapolation 
obscures the space-time origin of the microscopic degrees of freedom in the strong 
coupling limit (where there is a black hole), as well as the location of the degrees of 
freedom. Furthermore, as this idea applies only to extremal and near extremal black 
holes, it does not work for the Schwarzschild black hole. Therefore this string theory 
approach so far provides only an indirect answer to the two questions. 

Another conjectured solution, investigated in detail by Carlip [8] for a black hole 
in (2 + 1) dimensions [9], provides the following answer to these questions: The 
microscopic degrees of freedom of a black hole are those of a theory induced on the 
horizon. This horizon forms the (null) boundary of the system. "Surface observables" 
for the whole system are observables of the induced boundary theory. The answer arises 
by first noticing that (2 + 1 )-gravity with a cosmological constant may be expressed 
as a Chern-Simons theory [10,11 ]. This theory, on a manifold with boundary, induces 
the two-dimensional WZNW theory on the boundary. Since (2 + 1 )-gravity has a finite 
number of degrees of freedom, and the WZNW theory has an infinite number, this effect 
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of inducing the WZNW theory on the boundary is referred to as the "bulk gauge degrees 

of freedom becoming dynamical on the boundary." The conserved currents of this theory 

form a Kac-Moody algebra, as do the surface observables. Quantization of the surface 
observable algebra gives a Hilbert space of states associated with the boundary, from 
which the entropy is determined. It is not clear whether this approach will work for 
(3 + 1 )-gravity. 

The second reason for a full investigation of surface observables is the "holographic 
hypothesis" [ 12,13]. This hypothesis rests on the assumption that the maximum allowed 
entropy in a region bounded by a spherical surface of area A is A / 4 ,  corresponding to 
a black hole that just fits in the surface. This finite entropy implies a phase space of 
finite volume, and hence a finite-dimensional Hilbert space for the system. 't Hooft [ 12] 
further argued that this leads to the striking conclusion that physical degrees of freedom 

must be associated with the boundary of the region: If the entropy of a bounded system 
not containing a black hole were proportional to its volume, then one could add matter 
until the system becomes a black hole and the entropy becomes proportional to the area. 
The entropy would decrease in such a process, and lead to an apparent violation of the 
second law of thermodynamics. One solution to this conundrum is to hypothesize that 
the entropy of a bounded system must always be proportional to the boundary area. This 
follows if the degrees of freedom are associated only with the boundary. 

It may be possible to verify this hypothesis using the present work, if one can quantize 
the algebra of boundary observables such that the resulting representation space has finite 
dimension. If the observable algebra is infinite-dimensional this may not be possible 
unless only a finite, and somehow "representative" subset is quantized. In the context 
of canonical gravity and specific boundary conditions, a quantization of a set of surface 
observables, including an area observable, has been studied recently [ 14]. 

To investigate these issues, we provide an analysis for boundary conditions at a finite 
spatial boundary for Einstein gravity, and also for the topological BF theory in four 
dimensions. In two specific cases, we exhibit the surface observables of the system, and 
compute their algebra. There is earlier work on the finite boundary case for gravity in 
Refs. [4,15], and for Abelian BF theory in Ref. [ 16]. 

We begin in the next subsection by reviewing the derivation of the ADM surface 
observables for asymptotically fiat general relativity. Following this is a brief discussion 
of the spatially closed case in the Ashtekar Hamiltonian formulation. This sets the stage 
for our discussion of Einstein gravity in a bounded spatial region. In Section 2 we 
give a general procedure for constructing surface observables, followed by a discussion 
of the possible local boundary conditions and corresponding surface observables for 
general relativity in a finite spatial region. Section 3 contains a similar analysis for the 
topological SU(2) BF theory. The generalization of the results to gauge groups other 
than SU(2) is immediate. The final section presents our conclusions and contains a 
comparison with other studies of gravity in a finite spatial region. 
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1.1. The asymptotically flat case: A brief review 

The fundamental difference between the variational principles for the Einstein equa- 
tions for spatially open versus closed space-times is that the former requires proper 
treatment of asymptotic boundary conditions; surface terms need to be added to the 

action 3 to make the variational principle well defined. One crafts these surface terms 

so that their variation cancels the surface terms arising from the variation of the "bulk" 

part of the action. 
The standard asymptotically flat space-time is defined so that for large proper radial 

coordinate r (spatial infinity), the space-time metric behaves like the Schwarzschild 

metric 

= - m xaxb ds2[r~e~ ( 1 -  2--Mr-Mr ) dt2 + (t~ab + - ' ~ - j  dxadx b, ( 1 )  

where ~,,o is the Euclidean three-metric and x a are the asymptotic Cartesian coordinates. 
The definition of the phase space for asymptotically flat space-times includes specific 
fall-off conditions for the spatial metric q~o(x, t) ,  its conjugate momentum 7tab(x, t),  

and for the lapse and shift functions N ( x ,  t) and N~(x,  t). These conditions completely 
determine the allowed gauge symmetries. In the asymptotically flat case, space-time dif- 

feomorphisms are restricted to Poincar6 transformations in the asymptotic (Minkowski) 
region. The lapse and shift functions have the asymptotic form 

N ~ ce + t~abflOx a + O ( l / r ) ,  

N a --* a a + eabc(bbx c + O ( l / r ) ,  (2) 

where a and a a are time and space translations, and fl" and ~b ~ are boost and spatial 
rotation parameters. The fall-off conditions on the metric and its conjugate momenta, 

guided by the Schwarzschild metric, are 

qab --~ t~ab + lab(O, q~) + O(l/r2), 
r 

q.rab pab( O, q~) 
r2 + O( 1/r3). (3) 

The fall-off conditions, by themselves, are not sufficient to make the Hamilton variational 
principle well defined; one must add boundary terms to the action [ 1]. With these 
choices, together with parity conditions on the angle dependent tensors fab and pab, 
the surface terms that need to be added to the (3+1)  action for the compact case are 
precisely the ADM four-momentum, angular momentum and boost charge [ 1 ]. 

Functional differentiability of the (3+1)  action, or equivalently, the constraints, re- 

quires surface terms to be added to the action. The full Hamiltonian becomes a linear 
combination of constraints plus surface terms. Evaluated on a classical solution, the 
initial value constraints vanish leaving a non-vanishing "surface Hamiltonian'. This 

3 Here, we take the view that the action is the action for the compact case. 
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Hamiltonian is the sum of  conserved charges corresponding to the lapse and shift func- 

tions in the asymptotic region. 

While the full Hamiltonian is functionally differentiable one still has to check that its 
Poisson algebra closes. The algebra does close and reduces to the Poincar6 algebra when 

evaluated on a solution. Thus, the algebra of  the full Hamiltonian with itself necessarily 

gives the surface observable algebra. 

We can then ask if there are surface observables other than those which are already 

included in the full Hamiltonian. Are there other phase space functionals associated 

to the boundary which commute with the full Hamiltonian? An immediate attempt 

might be to see if more freedom can be introduced into the lapse and shift functions 

which parameterize the ADM surface observables. As an example consider the candidate 

observable defined using the diffeomorphism generator 

/ d3 x crab £Mgab ~ --2 / d2 Sa Mb¢rat', 

2" ~2 

where the vector field M a is now arbitrary. The Poisson bracket of  this functional with 
the full Hamiltonian gives a non-vanishing surface term unless M a ---+ a ,hb c • beY" X ; that is, 
it is an observable only if it reduces to the familiar ADM angular momentum. One can 

check similarly that no new surface observables arise using the Hamiltonian constraint. 4 

Intuitively, one expects a connection between the freedom in the lapse and shift at the 

boundary, and the number of  surface observables: A reduction in the number of  gauge 

transformations at a boundary should correspond to an increase in the number of  surface 

observables. As we will see, this expectation only partially true. 

For gravity in a bounded region, to be discussed in Section 2, we follow a method 

similar to the one used above. While we do not work with an asymptotic region, with its 

corresponding forms for the lapse, shift and phase space variables, there are nonetheless 

significant restrictions on the boundary variables. These form the possible boundary 

conditions for gravity. Before proceeding to this, we first review the canonical theory 
on a compact manifold in the Ashtekar variables. 

1.2. The compact  case: Constraints and algebra 

For space-time manifolds A4 = 2 x R, where ~ is closed, the (3+1)  action for 

vacuum, Riemannian general relativity in the Ashtekar variables is 

/2 

oi i . i  o S [ E  , A a, A ,  N , N] dt  d3x ai "i = - [E A a - NT-[ - N a T ) a  - A i G i ] .  
K 

tl 2~ 

(4) 

4There is more freedom in the boundary observables than has been manifested so far [3]. The lapse and 
shift functions of Eq. (2) can have additional angle dependent functions. These are the so-called "super 
translations," which are transformations on the two-sphere at infinity; these are in addition to the translations, 
rotations and boosts already present in Eq. (2). 
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The conjugate phase space variables are an SU(2) connection A/a and a densitized, 
inverse triad E ~i, which satisfy 

{aia(x),E~(y) } = K ~ ( x ,  y),  (5) 

with x = 167rG. (We set K = 1 in the following.) The Lagrange multipliers N, N ~, and 
A i are, respectively, the lapse, shift, and SU(2) gauge rotation parameters. Varying the 
action with respect to these functions gives the first class constraints 

G i = - D a  Eai ,~ 0; (6) 

79 a =-- - E b i 3 a A i  b + Ob( EbiAia) ,~ 0; ( 7 )  

7-[ ~ -eiJk F~bE~i E b2 ,~ O, (8) 

Lrijk A j  zlk where DoAi= 3oA i + ei~ka~a k and F~b = a,~A~, - aba / + ~ "~"b. These constraints 
generate gauge transformations via the Poisson bracket. The smeared diffeomorphism 
constraint 5 D ( N) = - f d3x NaDa satisfies the expected relations 

{Ai, D(N)}  =£NA'a, {E~i,D(N)}=£NE~i. (9) 

As the manifold has no boundary, there is some freedom in writing the constraints. For 
instance, integrating the second term of the diffeomorphism constraint (Eq. (7)) by 
parts one finds 

D (N) = f d 3 x  Eai~ ,NAi  a. ( 1 0 )  
, 1  

The Hamiltonian constraint has density weight +2 so the lapse function has density 
weight -1 .  The resulting constraint 

N) = i d3 x NeiJk Eai EbJ Fkat' ( 11 ) H( 
, J  

2" 

generates time evolution via the Poisson bracket. 
Classically, the constraints satisfy the following algebra [ 17]: 

{G(N), G(M)} = - G (  IN, M] ), (12) 

{D(N),  G(M)} = -G(£.NM), (13) 

{D(N),  D(M)} = - D (  [N, M] ), (14) 

{G(N), H(M)} =0, (15) 

{D(N),  H(M)} = - H ( £ N M ) ,  (16) 

{H(N),  H(M)}  = D(K) + G(AaKa), (17) 

5The theory originally found by a Legendre transform [17] has the vector constraint V(N)  = 
,~.d3x NaEbiFi b. However, the Gauss constraint may be combined with this to give the diffeomorphism 

constraint D( M) = V ( M) - G( Aia Ma) = f d3x MaI Ebi&,Aib - Ob( EbiAia) ] used above. 
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where K a = EaiE bi ( NObM - MObN) .  

A more complete discussion of the spatially closed case can be found in Ref. [ 17]. 

The asymptotically flat case is presented in Refs. [17,18]. In the next section we 
consider the possible boundary conditions for gravity in a finite spatial region. 

2. Gravity in a bounded spatial region 

We consider spatial slices ~ with boundary 0,~. The boundaries are taken to be 

"orthogonal" in the sense that the normal n~ to the spatial boundary is orthogonal to 
the timelike direction of the foliation. (This condition does not rule out asymptotic 

boundaries or bifurcate horizons.) Though our discussion focuses on a single boundary, 

the analysis can be extended easily to a boundary with disjoint regions. In this case one 
can choose separate boundary conditions and surface terms for each disjoint region of 

the boundary. Our analysis proceeds in the following steps: 

(1) When a boundary is present the variations of the (3+1)  action (4) with respect 
to the phase space variables E ai and A / are not defined. To define the theory, one 

must add appropriate surface terms to the action and impose boundary conditions. 
There are a number of ways to do this, and we list all the possible choices. 

(2) We find the full Hamiltonian H r  (constraints plus surface terms), which is a 

function of all gauge parameters, and compute the algebra of HF with itself. This 
Poisson bracket should close in the same way that the constraint algebra closes; if 
necessary, we impose additional boundary conditions to ensure that it does. This 

completes the definition of the theory, and also identifies the surface terms in HF 

as (at least some) of the surface observables. 

(3) Finally we ask if there are any other surface observables that commute with the full 
Hamiltonian HF. Since the boundary conditions on the lapse and shift functions 
are not as stringent as in the asymptotically flat case, we check to see if additional 

surface observables may be found by introducing more freedom into the surface 
parts of HF by replacing the lapse and shift by more general functions. Once 

all the surface observables have been determined in this way, we compute their 
algebra. This sets the stage for quantization. 

At the end of this procedure we have a well-defined theory, its surface observables, 
and their algebra. The full Hamiltonian of the theory is functionally differentiable and 

satisfies a consistent algebra. On a solution, the full Hamiltonian may have non-vanishing 
terms which are integrals on the boundary OZ. These are the surface observables. 

Below we list the possible boundary conditions, and then follow the rest of the 
procedure for two choices of spatial boundary conditions. In the first case, all gauge 
parameters are set to zero on the spatial boundary, while in the second the triad (and 
therefore the metric) is fixed on the spatial boundary. 



388 v. Husain, S. Major~Nuclear Physics B 500 (1997) 381-401 

2.1. Boundary conditions 

We consider only local boundary conditions. Instead of requiring that integrals on 
the boundary vanish, we list the stronger conditions that the integrand vanishes. In this 

sense, our list is only a complete list of local boundary conditions for gravity. For 

certain cases, such as where the boundary is a sphere, it is possible to introduce global 

boundary conditions. Then, as in the asymptotically fiat case, one can impose parity 
conditions on the fields at the boundary to make undesirable surface integrals vanish. 

For completeness we first mention the conditions on the timelike three-boundary a M ,  
before listing the conditions on the spatial two-boundary aS. The variation with respect 
to A t of the first term in the (3 + 1) action (4) gives the surface term 

/d3xEai6z i l l  ~. 

£ 

This can be made to vanish by requiring A / to be fixed on a M ,  or by subtracting 

t2 

from the action and requiring E ai to be fixed on c~AA. 

For the remainder of the paper we focus on the spatial two-boundary a£.  The variation 
of the action (4) contains the variations of each constraint with respect to the phase space 

variables. These can contribute a surface term to the full, finite boundary Hamiltonian. 

Of course, in order to obtain the correct initial value constraints for vacuum gravity, 
or BF theory, the gauge parameters (Lagrange multipliers) have to be fixed on a.,~. 

Precisely how these parameters are fixed may depend, as we discuss below, on what 

choices are made for the phase space variables on a£,  and/or what gauge invariances 

on the boundary one would like. 
The following is the list of possibilities that gives functional differentiability of the 

initial value constraints. Every mutually consistent choice from this list defines a possible 

finite boundary theory. We can of course change our starting point, and begin with a 
(3 ÷ 1) action that already has an arbitrary surface term, rather than the action (4). 
This obviously increases arbitrarily the possibilities for defining theories in finite spatial 
regions. For example, one could add a Chern-Simons term for the timelike three- 
boundary R × c~£ as has been done by Smolin [ 14]. This leads to source terms for the 
Gauss law constraint, and new possibilities for boundary conditions. 

Gauss constraint 

The variation of the Gauss constraint is 6 

6 We have overall minus signs in all constraints because of the signs in the (3 + I ) action (4). 
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I dax [Aieijk(t~AJaEak + AJat~Eak) - (OaAi)t~Eai "l- t~AiOa Eai] 6G( A) 

2 

f d2x naAi~E ai, (18) 
J 

where na is the normal to the boundary two-surface 02. The variation of the gauge 
parameter simply yields the constraint. Functional differentiability with respect to the 

phase space variables requires vanishing integrand in the surface term, which leads to 
at least one of the following conditions: 

(i) Vanishing gauge transformations on the boundary 

Ailo,,v = 0 .  

(ii) Boundary conditions involving the triad: 
(a) Fixed boundary "area density" 

na 6Eailox = O. 

That this condition fixes the area density may be seen as follows. Let a i = 
naE ai. The surface area of the boundary is fo.vdZx x/q = fo~ d2x ~ .  
Fixing the area density means that aiSailoz = 0 which is implied by the above 
condition. 

(b) Fixed boundary triad ~Eailoz = 0, or 
(c) Ai6Eailo.,v = O. 

(iii) Addition of the surface term 7 

q- l d2x n~ (AiE~i) . 

02" 

These boundary conditions may be placed independently on different disjoint parts of 
the boundary. One could also take a combination of cases, such as (i) and (ii). 

Diffeomorphism constraint 

The variation of the diffeomorphism constraint gives 

t3D( U a) = - I d3x [SEai~uAa -- t~Aiaff-'NEai + 6NaDa] 

2 

+ I d2x no [Na6(AiaEbi) - NbE"i,~mi]. (19) 

05 

7 One is in fact free to add any multiple of  this surface tenn. Functional differentiability then induces further 
conditions on fields and gauge parameters on the boundary. Work is in progress on such special cases. 
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There are five choices which guarantee functional differentiability: 
(i) Vanishing diffeomorphisms on the boundary 

NUle-,=O. (20) 

This case is effectively the same as for manifolds without boundary. The spatial 
diffeomorphism constraint in this case may be rewritten as 

D ( N )  [ d 3 x  i ai = -- Aa£NE . (21) 
, /  

2' 

(ii) Addition of the boundary term 

-- f d2x nb( NaAia Ebi ) 
. I  

02' 

to D (N) ,  and restriction of the normal component of the shift on the boundary 

naNa]a~. = O. 

That is, the shift function on the boundary two-surface 02  must be tangential to 
the boundary. For this choice, imposing functional differentiability on D (N) does 
not require that diffeomorphisms vanish on the boundary. 

(iii) Addition of the same boundary term as in (ii) and fixed connection on the 
boundary 

t~A/laz = 0. 

(iv) Fixed triad (and hence metric) on the boundary, 

and addition of the boundary term 

/ d2xnb [NaaiE bi - NOEaiaia], 

a 2  

with the shift function free on the boundary. 
(v) Fixed fields on the boundary 

8Eai]o • = 8Ai laz = O. 

Hamiltonian constraint 

The variation of the Hamiltonian constraint ( 11 ) is 
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I .~klm M12ailTbjdm~ RAI 8H(N)  = - d3x 2Eijk [(NEbJFkb)6gai -]- t . . . . . .  b It'taa 

2 

1Eai EbJ Fkab~N na 2Eijk NEai EbJ SA~. -Oa(NEaiEbJ)SAkb+ 2 ]- f d2x 
o2 

391 

(22) 

~Eailo Z = O. 

This fixes the boundary two-metric. The surface term leads to the quasi-local 
energy [4] and becomes the usual ADM surface energy in the asymptotically fiat 
case. 

Adding a cosmological constant term to the Hamiltonian constraint does not contribute 
any new surface terms to the variation because it does not contain any derivatives, 
therefore the above choices of boundary conditions remain the same. 

The asymptotically fiat case in the Ashtekar variables has been worked out [ 18]. 
The fall-off conditions on the lapse and shift are the same as for the ADM variables 
(Section 1.1 ) while the fall-off conditions on the phase space variables are 

aia-  aia(O, dP) 
r 2 + O ( 1 / r 3 ) '  Ea i=eai+ fai(o'~b)r + O ( 1 / r 2 ) '  (23) 

and 

Functional differentiability requires at least one of the following: 
(i) Vanishing lapse on the boundary 

Nlaz = O. 

This eliminates the possibility of having a boundary Hamiltonian, and hence dy- 
namics and quasi-local energy. However, it may be appropriate for space-times 
containing a bifurcate Killing horizon. 

(ii) The triad satisfies 

naEailo2 • = 0 

which restricts the metric on the boundary to be tangential. This requires the spatial 
three-metric to be degenerate on the boundary. 

(iii) Boundary conditions involving the connection: 
(a) The variation of the tangential part of the connection vanishes on the boundary 

n[at~aib] ]o.V = O, 

(b) or, the connection's variation vanishes 6Ailox = O. 
(iv) Addition of the surface term 

+ I d2x 2NeijkAi'~E~J no E bk 

o2" 
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i and fai where a a are functions on the sphere at infinity, and e ai is a dreibein such that 
eai e bi = t~ ab. 

We now consider two specific cases of functionally differentiable actions from the 

above list, and continue with steps (2) and (3) for each case. Any other case may be 

similarly treated. 

2.2. The case Ai]o5 = Naldz = Nlaz = 0 

Perhaps the simplest choice of boundary conditions is the case for which all gauge 

parameters vanish on the boundary. This corresponds to case (i) for each of the con- 

straints. The action is exactly the same as for the closed case (4),  and therefore the 

constraint algebra is just as in Eqs. (12) - (17) .  The Hamiltonian remains a linear com- 
bination of constraints; all the surface integrals vanish identically. There are no surface 

observables which arise as surface terms in the action. 

Turning to step (3) above, we ask if there are any surface observables. One might 
expect that the reduction in gauge freedom should give many surface observables: As 
the phase space variables on the boundary are completely unconstrained, all the gauge 

degrees of  freedom in the interior become true degrees of freedom on the boundary. 
This does indeed occur, but the reduction of the gauge freedom does not correspond 

directly to new observables in each case. Rather, as we now see, there is an infinite 

number of observables, but not an infinite number for each gauge parameter. 
To find the explicit form of the observables, consider the functionals 

(.gG(A) = f d3x 

2 

Oo( M) =/d3x 
%, 

O H (L)  = f d3x 

2 

Eai Dali; (24) 

i a i .  Aa£ME , (25) 

r lTai12bj~klrn Al Am] £:ijk [-2a~Oa (LEaiE bj) + . . . . .  a,~b j ,  (26) 

where A i, M a, and L are (at this stage) arbitrary, and unconnected with the gauge 

parameters A i, N a, and N. These functionals are obtained by integrating the constraints 
by parts, discarding the surface terms, and replacing the gauge parameters with the func- 
tions ,,I M a and L. This approach was followed by Balachandran, Chandar, and Momen 
in Ref, [5]. Since E ai and A/a are free on the boundary, functional differentiability is 

guaranteed if we require Ll~z = 0 and naMala,~ = 0, leaving ,~i arbitrary. It is important 
to note that functional differentiability eliminates On as an observable. The remaining 
functionals are surface observables in that they are weakly equal to surface integrals 

(-QG ( "~ ) "~ -- / d2x na AlE ai, (27) 

02~ 
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f r,bi ~.raAi Oo(M) ~ d2Xnb r. ~,, ta a. (28) 

02£ 

It is easy to see that the non-zero 06 and Oo have weakly vanishing Poisson brackets 
with the constraints; any possible surface terms in their Poisson brackets with the 
constraints vanish because the gauge parameters h i, N a, and N vanish on the boundary. 

Given the definitions of the observables, the algebra 8 is the expected one 

{OG(A), OG(/z) } = O6(, t  × # ) ,  (29) 

{(.9D( M), (.go(P)} = (90 ( [ M, P] ) ,  (30) 

{O6( A ), OD( M) } = --OG ( ~-.MI~) . (31) 

Thus, we see that restricting the gauge freedom on the boundary generates surface 

observables. However, as the case of On above shows, there need not be any direct 
correspondence between reducing gauge degrees of freedom on the boundary and in- 
creasing the number of boundary observables. The connection is more subtle; the new 

degrees of freedom give more observables for the kinematic constraints, but not for the 
Hamiltonian constraint. 

2.3. Fixed boundary metric 

The case of fixed triad on the spatial boundary ¢~Eailo, ~ = 0, and hence fixed boundary 
metric, is a more interesting case. It has been studied before, although not entirely 
along the lines we follow. Brown and York studied this case starting from the standard 
metric action [4],  and gave definitions for quasi-local quantities associated with the 
finite boundary. Lau performed an analysis similar for the fixed metric case in the new 
variables [15]. These works begin with the covariant action rather than the (3+1)  
action for the spatially closed case, and do not exhibit an algebra of surface observables. 

Fixed boundary metric means case (ii) for the Gauss law and case (iv) for the 
Hamiltonian constraint, but more than one possibility for the diffeomorphism constraint. 

The possible diffeomorphism cases are (i),  (ii) and (iv). Among these, we consider (ii) 
because it gives the minimal restriction on the shift function, as well as a well-defined 
algebra. This gives the (3+1)  action 

S[Eai,Ai;Ai, Na, N ] = f d t f d 3 x [ E a i A i a - N ~ - N a 7 9 a - a i G i  ] 

+ f dt f d2x(2Nnbeijka~EaJE bk) 
a5 

- f dt / d2x(noNaa~E°i), (32) 

8 It is possible to show in general that the Poisson brackets of  two functionals is functionally differentiable 
[19l. 
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where N a must be tangential to the boundary at the boundary. Although we started with 
only the condition of fixed metric on the boundary, the additional condition naNal,~.~ = 0 
was induced (by choice (ii) for diffeomorphisms). In general additional conditions on 
the boundary may be induced by the Hamiltonian algebra and by requiring the boundary 
conditions to be preserved in time. 

Although this action represents a well-defined variational principle, we are still free 

to add to it a surface term which is a function of the fixed boundary data. This is 
an ambiguity in any variational principle. For gravity, this freedom has been utilized 
[4,6] to normalize the values of the various surface observables relative to a reference 
solution. This is done by subtracting the action of the reference solution from the action 
of the solution of interest. Such normalizations may be necessary in order to avoid 
divergences of the action, as in the asymptotically flat case, where integrations are over 
all space. Here we consider finite spatial regions so the action (32) is well defined and 
divergence-free as it stands. 

The full Hamiltonian HF is a linear combination of constraints plus surface terms, 
and is identified from Eq. (32), 

HF[ E ai, Zl,; A i, N a, N] = [ d3x [NT[ + NaDo + AiG '] 

2 

+ I d2x n~ [2NeijkAi~EaJE bk - N~AiaEbi ] . (33) 

Denoting the Hamiltonian constraint plus its corresponding surface term by H ~, and the 
diffeomorphism constraint plus its surface term by C, the algebra of the full Hamiltonian 
contains 

12) + I d2xncECi(A × 12)i, {G(A),G(O)}=G(A × (34) 
d 

02' 

{H ' (M) ,  H' ( N) } = - 4 C ( K )  + G( A~K a) - I d2x(n~Eaz) ( A°Kb)' (35) 

02" 

where K ~ := EaiEbi(McgbN - NabM). Similar surface terms also arise in the Poisson 
brackets {G(A),H'(N)} and {G(A),C(M)}.  All such surface terms ought to vanish 
in order to have an anomaly-free algebra. This may be accomplished by requiring the 
lapse functions to be constant on the boundary and the Gauss parameters to vanish on 
the boundary. No additional constraint on the shift function is required (other than the 
already imposed na Na [~z = 0). 

For consistency it is also necessary that our boundary conditions be preserved under 
evolution. This leads to further conditions. The piece of HF which generates non-trivial 
evolution of E ai is H ~ (the Hamiltonian constraint plus its surface term). This leads to 
the condition 

Eaila.~ = 2NeiJk Db(  EaJ Ebk) [,~2; = 0 .  (36) 
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The simplest solution of this is to require that the lapse N vanish on the boundary. 

This is rather limiting, however, because it means that the quasi-local energy observable 

vanishes. The only other possibility is that the fixed boundary dreibein satisfy Eq. (36). 
We choose the latter possibility - the boundary metric is required to be static. We note 
that no further conditions are necessary, in particular, the connection A / is free to vary 

on the boundary with no consequences for functional differentiability. In summary, the 
theory is defined with the following conditions: 

t~Eaila ? = O, Eaila2; = 0, (37) 

naNalo,v = O, Alas = O, OaN[az = 0. (38) 

The surface observables are just the surface terms in the action in Eq. (32), with the 

lapse N fixed to be constant. We note that while there is only one quasi-local energy 
observable 9 

f ~klmK,ail2bjAl a m ]  O H ( N )  = d3xe  ijk [20b (uEaiE °j) Aka -- ~ ,~ ~ ,~aZabj 

2f 

2N ; d2 x ( nbeijk AiaEaJ Ebk) , (39) 

02" 

there are an infinite number of "momentum" observables 

O o ( N a ) = f d 3 x E ~ i £ N a ~ a , , ~ f d 2 X ( n b N a a i a E b i )  (40) 

.~ a2," 

parameterized by vector fields N a subject to naNala.v = 0. These are the generalization 
of the ADM momentum and angular momentum for finite boundary. 

As in the last section, we can ask if there are any other surface observables defined 
like those of Eq. (24 ) - (26 ) .  One might think that there should be an infinite number 
of Gauss observables as in Eq. (24) because the gauge parameters A i vanish on the 

boundary here (just as in the last subsection). However, the algebra {HF, OG} contains 
the piece { C ( N ) ,  O6(,~)} which weakly equals a surface term unless Alias. = 0. Thus, 
there are no surface observables other than the two above. 

The algebra of surface observables is necessarily the same as the algebra of HF with 

itself. Indeed, the addition of boundary terms may be viewed as accomplishing nothing 
but the functional differentiability of the constraints, 

{ O D ( N ) ,  O o ( M )  } = - 0 o  (•NM) , 

{ON(N) ,  ON(M)}  = O D ( K ) ,  (41) 

{ O n ( N ) ,  O o (  M)  } = On  ( £ N M )  , (42) 

9 While this is another derivation, the surface term (39) is the same as the quasi-local energy in Ref. [4], 
where it arises by varying the action with respect to the boundary lapse function. Setting the (constant) lapse 
here to one ensures that the normalizations are the same. 
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where K is given after Eq. (17). 

A comparison of the results of this and the last subsection shows that all surface 
observables are contained in the full Hamiltonian, except for the case (Section 2.2) 

AIa± ~ = Nal,~Z = 3aNl~,r = O. 

3. BF theory in a bounded region 

We now turn to BF theory and apply the same procedure. The topological BF theory 

in four dimensions has action 

S =  Tr B A F +  2 AB , (43) 

M 

where F ( A )  is the curvature of a Yang-Mills gauge field and B is a Lie algebra valued 
two-form. We consider the case of gauge group SU(2),  and four-manifold M -- X x R, 

in which space X has a boundary. The (3+l)-decomposit ion of this action leads to the 
phase space variables A i, E ai = eabCBibc, and the first class constraints 

G i ~ DaE  ai = 0,  (44) 

fai  ~ 6abc F~ c q_ OlEai = 0. (45) 

On a three-manifold without boundary with a = 0, the theory has two sets of Dirac 

observables [21]. One set depends on loops, and the other on loops and closed two- 
surfaces in 27. The first is the trace of the holonomy of A / based on loops y, T°[A] (y)  = 

Tr U 3, [ A ], and the second set is 

[ A, E] (y,  S) = I d2° 'naTr[E~(° ' )Ur(~'  or) ], T 1 (46) 
t , *  

s 

where na is the unit normal to the surface S, and o- is the base point of the loops 

3'. These are obviously invariant under the Gauss constraint and a calculation shows 

that they are also invariant under the second constraint. On the constraint surface, these 

observables capture information about non-contractible loops and closed two-surfaces in 
27. For example, for 27 = S I × S 2, there is one observable of each type on the constraint 
surface. 

We would like to find what additional observables, other than the above bulk ones, 
arise when 27 has boundary. 10 

We therefore follow the procedure for gravity outlined in the previous section. Since 
the second term in the action does not contain spatial derivatives, the following applies 
to both zero and non-zero cosmological constant. 

10 Boundary observables and their quantization for Abelian BF theory have been extensively discussed in a 
series of  papers by Balachandran et al. [16[. 
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3.1. Boundary conditions 

397 

The functional differentiability conditions for the Gauss law are as already outlined 
above in Section 2.1. The constraint (45) with gauge parameter V / is 

F ( V )  = - / d3x Vic I abcr.i ~ Pab + aEa') • (47) 

Its variation is 

f abc c,~i 1 ,i 6F(V)  =2 d2xe naOttbV c 

f aVi6E ai] (48) _ d3x  [2eabc (OaVet3a i _ ~:~ijkwi'~jRAk" ~,czaa,..,~tbl + . 

Functional differentiability leads to the following choices: 
(i) eabcnbVi[o 2 = 0; 

(ii) V/la~ =0;  
(iii) Addition of the boundary term 

+2 1 d2x abc --i ,,i ~; nattb V c . 
, I  

a2 

(iv) Conditions involving the connection 
(a) tSAi[0z = 0, 

or 

(b)  n[b~Aial [a,V = O, 
Perhaps the most interesting case is to keep the gauge transformations unrestricted on 

the boundary. We therefore consider cases (iii) for both the Gauss constraint and the 
BF theory constraint (47). The (3+1) action for this case is 

a i i i f f  S[E , Aa; A ,  V i] = dt d3x[EaiAia - V~fi ai _ A i a  i] 

2f 

+ J ' d t f  d2xna[2eabcAibVi+Eaiai  ] . (49) 

From this we identify the Hamiltonian 

. . . .  f d f abc i i i i Hp[eO',A'~;A',V~] = d3x [v~f a i -  aiG i] + d2xna [26 AbV ~ + E  ~ A] 

I d3x abc i i [2E DbVaA c - otVia Eai + EaiDaAi]. (50) 
J % 

As before, for any specific choice of boundary conditions, we must calculate the algebra 
of the full Hamiltonian with itself. If the algebra does not close then we need further 
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conditions on the gauge parameters A i and V/. Denoting HF = f t (V)  + G'(A) where 

f '  and G p are the constraints plus their corresponding surface terms, we find that the 

algebra {HF(V,A), HF( W, IX) } contains 

{ d ( A ) ,  G'(IX) } = G'(A x ix), (51) 

{G' (A) ,  f ' ( V )  } = 2f ' (A x V) + 2 / d2x F.abCnaAiabvi, (52) 

32" 

{f'(V),f'(W)} = nae v%v~: (53) 

3v 

where A x Vc = eiJkAJVf. We do not want V / to vanish on the boundary because this 

would give a vanishing surface observable. An alternative choice is to require V / to be 

curl-free on the boundary so that the surface term in Eq. (52) vanishes. Finally, for 

a ~ 0, we require the surface term in Eq. (53) to vanish. The least restrictive way to 

ensure this is to require all the field V/, etc., to tend to a fixed value on the boundary. 

This completes the list of conditions. 
As for gravity, on the constraint surface, the bulk parts of the full Hamiltonian vanish 

leaving the surface terms as the surface observables 

OG( A ) ~-, - / d2x naAiE ai, (54) 
, /  

~, _2 / d~x ,,b~. --i,,i OF(V) E na~bvc. (55) 
J 

32" 

These observables are parameterized by A i and V,~, and therefore are infinite in number. 

Continuing to step (3),  we find that no more observables are obtained by generalizing 
the parameterizing functions ,~i and V / as in Section 2.2. 

The observable algebra is 

{Oo(A) ,Oo(n ) }  = O o ( A  x n ) ,  

{OF(V),  OF(W) } = 0, (56) 

{ O F ( V ) ,  OG(,,~ ) } = (-QF( A x V). (57) 

Finally, since the bulk observables for vanishing cosmological constant ( a  = 0) based 
on loops and surfaces commute with the full Hamiltonian, the bulk observables commute 

with the surface observables. 

3.2. Quantization 

In the connection representation, BF theory with non-zero cosmological constant, a, 
has a unique solution [20].  The quantum constraints are 
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Da~O[A] =0, (58) 

(e~bCF~c+Ot~-~a) ~b[a] =0. (59) 

A regularization is not necessary here because the equations are linear in the momenta. 
The unique solution, for 2 without boundary, is the Chern-Simons state 

[ I f  ( 2 A A A A A )  ] (60) ~p[A] =exp - Tr AAdA+3 

For spaces with boundary, the variation of the Chern-Simons state is well defined only 
if the connection is fixed on the boundary. With this additional condition, although there 
are an infinite number of boundary observables, the Hilbert space has only one state. 
Its eigenvalue depends on the surface terms in the Hamiltonian. This example shows 
that an infinite number of boundary observables does not preclude a finite-dimensional 
Hilbert space for the bounded system. In fact, if we take the case (iv) for the BF 
theory constraint we have only the Gauss observable and its algebra. Since this is just 
the angular momentum algebra, quantization can give a finite-dimensional state space. 
Thus this theory, though meager in content, is not inconsistent with the holographic 
hypothesis. 

4. Discussion 

Beginning with the Hamiltonian action, we studied Einstein gravity and BF theory 
in finite spatial regions. The action had to be augmented by surface terms in order to 
generate the correct equations of motion. After giving a complete list of local boundary 
conditions, we identified surface observables and computed their algebra. These observ- 
ables naturally arose from the surface terms added to the action. We noted that additional 
surface observables may be generated in some cases (as in Section 2.2) by replacing 
the gauge parameters with more general functions. 

The procedure given here is similar in spirit to that of Regge and Teitelboim [ 1 ]. 
Imposing functional differentiability on the (3+1)-action results, in most cases, in the 
addition of surface terms to the action. So when a boundary is present, there is non- 
vanishing full Hamiltonian which is a linear combination of constraints plus surface 
terms. Evaluated on a solution, this Hamiltonian gives the non-vanishing surface ob- 
servables. All conditions on the functions parameterizing the observables are derived by 
requiring that the algebra of the full Hamiltonian remain anomaly-free. In the interior, 
this Poisson bracket gives the algebra of constraints. When restricted to the boundary, 
it gives the algebra of surface observables. Also, except for the case studied in Sec- 
tion 2.2, there are no surface observables other than those which already make up the 
full Hamiltonian - as we saw any attempt to "generalize" the parameters in the surface 
terms leads to undesirable surface terms in the algebra. 
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Although our discussion was restricted to the case of a single finite boundary, other 

cases are easy to incorporate. For example, for a static black hole, one would have both 
an inner boundary at the horizon and an asymptotic boundary. One could choose the 

boundary conditions given in Section 2.2 on the horizon and the standard conditions in 

the asymptotic region [ 18]. For a black hole in a bounded region, one would need to 

augment the procedure to include an additional finite inner boundary. On this boundary 

one could use the conditions given in Section 2.3. 
More generally, this procedure could be used for relating an observed space-time to 

an observer space-time. This "relative state formalism" is an extension of the study of 

asymptotic space-times and closely related to methods of topological field theory [22]. 

The system may be expressed as a known classical solution matched with a gravitational 

system of interest. By cutting the (compact) space 2: in two pieces, say ~rl and o'2, we 

could express the space as 

~V=O" 1UO'2. 

The full Hamiltonian of the theory would split into full Hamiltonians on each subspace 

H2; = Hal + H~.2 

with, typically, the same bulk pieces and surface terms of opposite sign in the individual 

Hamiltonians H,~,. States in one region are then expressed relative to the states in the 

other region. Such a formalism might provide a tractable approach to quantization. 
Although our primary focus is classical, we comment briefly on quantization in the 

connection representation. For general relativity with a cosmological constant a,  it is 
known that the exponential of the Chern-Simons integral (60) is a formal solution to all 
the quantum constraints [ 23 ]. In the fixed metric case, the action of the full Hamiltonian 

on this state gives a non-zero answer determined by the action of the surface terms. 
This state is formally an eigenstate of the full Hamiltonian with eigenvalue 

1 J "  l /  tt,aai obi ~2 dex 2nbeijkAiBaJBbk a d2x nb~, .'aao , (61) 

where B ai = eabCFbd is the restriction of the magnetic field to the boundary. This state 

is the only solution of the constraints of the topological BF theory. Thus this solution, 
though an eigenstate of the Hamiltonian, corresponds to a topological sector of general 
relativity. 

It is interesting to see how our results can be made a part of the ongoing developments 
in non-perturbative quantum gravity, quite apart from extending the classical case to null 
inner boundaries. For example, given a system such as a black hole, one would select 
appropriate boundary conditions, and find the action and the surface observables. From 
a suitable Poisson algebra of observables and one state, the GNS construction provides 
a way of finding an inner product, Hilbert space, and representation of the observable 
algebra. A not unrelated direction is to fully explore the relative state formalism by 
introducing a dynamical boundary, in which the theory is essentially the bulk theory, 
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find observables ,  and again use the G N S  const ruct ion to buil t  a quan tum theory. In this 

manner,  these sugges t ions  p rov ide  a basis for explor ing  the role  o f  surface theories in 

the contex t  o f  gravi ta t ional  ent ropy and the holographic  hypothesis .  
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