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Polarized 3He produced by spin-exchange optical pumping �SEOP� has potential as a neutron spin filter for
polarization and polarization analysis in many neutron-scattering and neutron particle physics applications. The
advantage of the SEOP method is its suitability for providing continuous stable polarization over the course of
long experiments. However, we have discovered that exposure to high neutron flux leads to additional strong
relaxation mechanisms in the optically polarized alkali-metal vapor used to polarize the 3He. At a neutron flux
density of 4.7�109 cm−2 s−1, the alkali-metal relaxation rate increased from 100 to 1000 s−1 leading to
reduced alkali-metal polarization. Other effects such as time dependence and gas composition dependence
were explored to help understand the processes. In this paper we discuss our observations and present possible
solutions for practical use of SEOP as a neutron spin filter for high-flux density applications.

DOI: 10.1103/PhysRevA.80.033414 PACS number�s�: 32.80.Xx, 33.25.�k, 03.75.Be, 29.25.Pj

I. INTRODUCTION

Polarized 3He has applications as a neutron spin filter
�NSF� in many areas of neutron science �1–3�. These include
areas such as analyzers for small angle neutron scattering,
reflectometry, wide angle detectors, diffraction, incident
beam polarizers, and fundamental physics �4–10�. Funda-
mental physics experiments are a special subset of NSF ap-
plications that often require long measurement time and op-
eration under higher flux conditions. This paper is a full
report of experiments performed at the Institut Laue Lange-
vin �ILL� that were initially reported in �11� looking at the
effects on the spin-exchange optical pumping �SEOP�
�12,13� method to polarize 3He for the particularly demand-
ing application of continuous polarization of 3He in high-flux
neutron beams.

Two methods are widely used to produce spin-polarized
3He, SEOP and metastability exchange optical pumping
�MEOP� �14,15�. Currently, MEOP can produce polarized
3He with high polarization of up to �75% for use as NSFs at
rates of up to 1 bar·L h−1 to 2 bar·L h−1 �16,17�. This is
done via optical pumping of low pressure gas ��1 mbar�
followed by mechanical compression to obtain the pressures
used in NSFs �18�. Further fundamental work on increasing
MEOP production rates by going to higher pressures and
high magnetic field are being pursued �19,20�.

The SEOP technique has also had recent developments
including frequency narrowed diode array bars �21,22� and
hybrid SEOP �23�. These techniques have increased produc-

tion rates to several bar liters of polarized 3He per day and
have allowed an increase in the achievable polarization to
75% or greater for NSF similar to the MEOP technique
�24,25�. In a recent demonstration that employed these de-
velopments, a polarization of 75% with a production rate of
2.4 bar·L per day was achieved with a fairly simple appa-
ratus �26�. Because of the technical simplicity, these systems
could be scaled up to produce more polarized 3He per day
for a polarized 3He cell filling station or replicated to polar-
ize more 3He cells in a given time.

SEOP can be performed directly in permanently sealed
cells in the typical pressure range of 0.6–4 bar used for
NSFs, whereas gas polarized by MEOP at a typical pressure
of around 1 mbar must be mechanically compressed �16,18�.
The operation and design of SEOP systems to continuously
polarize 3He in sealed cells for neutron applications have
been reported �27–30�. Not only does this eliminate the need
for time-dependent corrections caused by the normal 3He
polarization relaxation rates but also eliminates the need to
change the cells or cycle polarized gas on a routine basis.
These features can be substantial advantages for long-term or
precision measurements. Further, continuous polarization of
the 3He can provide higher time averaged polarization and
provide protection from stray magnetic fields often present
on polarized neutron instruments that can cause additional
3He relaxation.

The majority of NSF applications to date have used either
MEOP or SEOP to polarize the 3He offline and thus in typi-
cal laboratory conditions. While efforts have been made to
polarize the 3He online using SEOP, most of this work has
been done on neutron beams of relatively moderate to low
flux or has been for analysis of weak scattered beams*e.babcock@fz-juelich.de
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�27–29�. The longest test of continuous SEOP on a beamline
was obtained in operation of the polarizer for the NPD-
Gamma experiment at the Los Alamos Neutron Science Cen-
ter �LANSCE� which was operated for over a year at mod-
erate flux �4,30�. The experience gained in that work, as well
as interest to use a continuously polarized 3He spin filter on
the PF1B fundamental physics beamline �31� at the ILL, led
to a collaborative effort to study SEOP in high-flux neutron
beams.

Fundamental neutron physics experiments, i.e., experi-
ments looking at fundamental neutron interactions or decays,
such as NPDGamma or those on PF1B are typically neutron
flux limited because of the small effects or asymmetries be-
ing measured. Hence, such experiments use slow neutrons
�5 Å mean wavelength� to increase observation time and
prefer operation on the highest flux neutron beams available.
Therefore, these conditions require operation in a virtually
unexplored regime for SEOP. In particular the effects of ion-
ization from neutron absorption in the NSF cell have not
been studied. In the NPDGamma experiment a reduction in
3He polarization on the order of 2%–6% �relative� was ob-
served when the in situ SEOP NSF system was exposed to a
neutron capture flux density of �1–3��108 cm−2 s−1 �see
Sec. II B for a discussion of capture flux density�. The ob-
servation of a decrease in 3He polarization on the time scale
of the spin-exchange time constant was later linked to a re-
duction in alkali-metal polarization �11,30�. In addition, a
decrease in the maximum achievable 3He polarization after
months of exposure to the LANSCE beam was linked to
increased opacity of the NSF cell walls to the laser light. The
alkali-metal polarization in SEOP cells depends in a compli-
cated way on alkali-metal relaxation rates and the spatially
dependent optical pumping rates provided by the laser
sources in a particular system �13�. Therefore, in order to
further quantify this effect we recently measured the alkali-
metal relaxation rates as a function of neutron flux.

This paper is a detailed report of experiments performed
on the PF1B beamline to study the effects of high neutron
flux on alkali-metal polarization in SEOP cells and is a fol-
low up to Ref. �11�. Following an overview of the apparatus
in Sec. II, we present our experimental observations in Sec.
III. The following key results are presented. The alkali-metal
spin-relaxation rates are greatly increased by the presence of
the high-flux neutron beam. Upon initial exposure of neutron
flux to the SEOP cell, there is a rapid initial increase in the

alkali-metal spin-relaxation rate followed by a more gradual
increase over a time period of several hundred seconds. At
full ILL flux, the spin-relaxation rate can be an order of
magnitude larger than the base relaxation rate in the absence
of the neutron beam. Section IV is a first attempt to interpret
these results and propose possible explanations.

II. APPARATUS

A. SEOP system and diagnostics

For this experiment we utilized an in situ SEOP polarizer
�32,33�. It is comprised of a magnetic holding field, an oven
to heat the cells to obtain the proper alkali-metal vapor pres-
sure, two frequency narrowed optical pumping lasers, and
many diagnostics. The diagnostics were similar to the ones
developed and tested in prior fundamental SEOP laboratory
studies �34�. However, they are not normally utilized in typi-
cal SEOP 3He polarizer devices especially in in situ devices
given the complexity, space, and radiation shielding require-
ments on neutron beamlines. Specifically, with these diag-
nostics we were able to measure 3He polarization over time,
pump-light absorption, alkali-metal polarization, and alkali-
metal relaxation rates. A schematic of the apparatus is shown
in Fig. 1.

The low-gradient ��B /B�4�10−4 cm−1� static mag-
netic holding field, called B0, needed for preservation of the
3He polarization was provided by a modified version of the
�-metal cavity described in �16�. This holding field basically
consists of two parallel �-metal pole plates connected mag-
netically by uniformly magnetized yokes also made of
�-metal on either side. Its main difference to that of the
cavity in �16� is that B0 is directed along the long direction of
the rectangular cross section of the �-metal cavity and that
the yokes are magnetized by a uniform coil that is flush with
the two pole plates instead of permanent magnets.

Two external-cavity frequency narrowed diode array bar
lasers with a typical bandwidth of 60–80 GHz optically
pumped the SEOP cells with over 50 W of light each. The
principle of frequency narrowing is the same as in �22� ex-
cept the output is taken off of a polarizing beam splitter cube
�PBS� �28�. The PBS is placed directly after the half-wave
plate that is located directly after the laser diode and used to
adjust the fraction of feedback. In this configuration �Fig. 2�
only about 30% of the light is incident on the diffraction

FIG. 1. �Color online� Diagram of the in situ
SEOP apparatus. In contrast to other in situ po-
larizers with �-metal shielding, this configuration
allows the laser access to be perpendicular to the
neutrons minimizing the equipment such as laser
mirrors in the neutron beam. This is of special
interest when working with beams of these flux
levels. B0 is the dc holding field �perpendicular to
the neutron beam�, B1 is the strong sweepable rf
field for adiabatic fast passage �AFP� of the 3He
spin �along the neutron beam�, and Brf is a weak
orthogonal rf field for alkali-metal electron para-
magnetic resonance �EPR� diagnostics.

BABCOCK et al. PHYSICAL REVIEW A 80, 033414 �2009�

033414-2



grating, thus decreasing heating of the grating that leads to
line broadening at high power intensities. The remaining
70% from the PBS is taken as the output and can be shaped
easily and independently of the cavity optics. In this particu-
lar configuration the output is the reflected beam of the PBS
which is typically only 95% polarized. While the absolute
polarization of the optical pumping light is not critical for
SEOP because light of the wrong polarization is rapidly at-
tenuated by the cell, utilizing the transmitted beam or an-
other type of beam splitter such as a Wollaston prism which
can provide polarization of over 99.99% could increase the
efficacy of the laser. We have successfully implemented such
modifications in subsequent versions of the laser cavity. The
only other modification in this laser cavity from that of �22�
is the use of a high efficiency ��90%� gold coated high
modulation grating which had a linear groove density of
2150 mm−1.

The gratings had a motorized screw in the diffraction grat-
ing mounts that allowed us to tune the diffraction angle and
thus wavelength of the spectral peak of the lasers remotely. A
real-time spectrometer with a 0.07 nm spectral resolution
was installed to optimize the laser narrowing and tune the
wavelength to the Rb resonance. This same spectrometer
could be used to observe the spectral transmission of the
pump light through the SEOP cell provided only one optical
pumping laser was in operation.

The collimating and expansion of the beam to the size of
the cell is done with only three focusing optics. A 10 mm
cylindrical lens was placed shortly after the PBS, making the
divergence of the fast axis of the laser, which is collimated
by a factory installed microlens at the face of the laser, simi-
lar to that of the slow axis �divergence �15°�. This allows
final collimation and expansion to be done with spherical
optics. After some distance for expansion, the beam is colli-
mated and magnified with a telescope made of two large
diameter spherical mirrors. Configurations utilizing lenses
instead of mirrors can also be used and since the beam is a
diverging rectangle after the cylindrical lens, final collima-
tion can also be done with a single spherical optic making
this laser configuration very robust. For this experiment two
different telescopes were used with the focal lengths of M1
=75 mm and M2=200 mm or 300 mm yielding magnifica-
tions of 3� or 4� for beam sizes of 6 cm�8 cm and

7 cm�10 cm, respectively. A diagram of the lasers and
coupling scheme is given in Fig. 2.

The optical pumping cells were contained in a forced air-
heated oven made of calcium silicate rigid insulation board
to reach the 170 °C to 210 °C temperatures needed to main-
tain the appropriate alkali-metal vapor densities. The oven
had double 0.7-mm-thick Si-crystal windows on the front
and back for neutron access and double 1-mm-thick boro-
float glass windows on the top and bottom for optical access
along the direction of B0. The heating was done by a 1.5 kW
air process heater connected to the oven via glass and copper
tubes and controlled with a nonmagnetic thermocouple probe
and a proportional-integral-derivative temperature controller.
This oven along with two mirrors placed at 45° to direct the
laser light along the B0 direction were mounted inside a
frame that also held a rectangular solenoid coil for AFP in-
version of the 3He polarization �36�. The AFP coil was in-
stalled for other neutron applications of the polarized 3He
and was not used for these tests.

The probe laser used for alkali-metal diagnostics entered
slightly off axis and utilized the same 45° mirrors as the
pump beams to direct it into and out of the cell. The probe
laser was detuned about 1 nm from the Rb D2 �5s1/2
→5p3/2� resonance. During measurements involving the
probe laser only one pump laser was used and the beams
propagated in the opposite directions to help separate them.
The polarization of the probe is sensitive to the electron spin
polarization of the alkali atoms through the Faraday effect,
thus it provides a rotation angle which is proportional to the
alkali-metal polarization and number density. Over small
angles, the signal from the subtracting photodiode detectors
in the polarization analyzer is linear with the alkali-metal
polarization. The probe beam, after exiting the magnetic cav-
ity, was picked up with a mirror which directed the light into
a light polarization analyzer constructed from a half-wave
retarder, a polarizing beam splitter cube, and a pair of sub-
tracting photodiodes. An electron paramagnetic resonance
�EPR� coil was tuned to the radio frequency EPR transitions
of the K atoms and allowed us to measure the alkali-metal
polarization �PA� with the method given in �34�. By sweep-
ing the rf about the EPR transition frequencies for our B0
field and observing the rotation of the probe laser polariza-
tion as the rf became resonant with the Zeeman transitions of
the K atoms one can determine the relative populations of
the individual mf magnetic sublevels from the peak areas.
Assuming a spin-temperature distribution one can then deter-
mine the absolute PA from the ratios of relative peak areas
�37�.

The measured alkali-metal spin-relaxation rate ��A� was
determined with the relaxation in the dark method �38�.
Again a single pump beam is used; here it is kept at low
intensity so that the alkali-metal polarization is intentionally
low. The starting value of the alkali-metal polarization is
known to be low by comparison of the amplitude of this
signal to that when the laser is at high intensity. The pump
light is then chopped with a mechanical shutter at a rate of
�1 Hz providing periodic exponentially decaying transients
in the alkali-metal polarization. This signal was collected and
averaged using a data acquisition card on a personal com-
puter and the spin-relaxation rate was inferred from the time
constant of the decay.

FIG. 2. �Color online� Schematic of lasers used for this experi-
ment. This is a modification of the laser design in �35�. Focal
lengths are F1=50 mm, F2=200 mm, cyl=10 mm �for the fast
axis�, M1=75 mm, and M2=200 mm or 300 mm. The grating is a
50 mm�50 mm high-modulation gold coated holographic grating
with efficiency �90% at 795 nm.
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Relative 3He polarization �PHe� over time was monitored
with a simple, home-made, single coil pulse and acquire
nuclear magnetic resonance �NMR� free induction decay
�FID� system. This system consists of a 300 turn, 2 cm di-
ameter coil tuned to resonate at the 3He Larmor precession
frequency, 32 kHz in our case, which was placed on the side
of the SEOP cell orthogonal to both the neutron beam and
the B1 field. A high speed 125 kHz computer based data
acquisition card with analog input and output is used to send
a low amplitude tip pulse to cause a small precession of the
3He atoms next to the coil, then after the ring-down of the
coil, the FID signal is recorded and filtered with software to
subtract noise and obtain the FID signal strength which is
proportional to PHe polarization.

This relative value of PHe was then calibrated absolutely
with neutron time-of-flight �TOF� measurements �30,39�.
TOF on a continuous neutron source is performed by placing
a mechanical neutron chopper in the beam and measuring the
neutron count rate vs time on a detector some distance after
the chopper. To provide the needed wavelength resolution the
open duty cycle of this chopper is about 1%. Since the neu-
tron wavelength is related to its velocity by the de Broglie
wavelength, by triggering the detector on the opening edge
of the chopper and knowing the chopper to detector distance
one can then convert the counts vs time to counts vs neutron
wavelength or energy. With the addition of relative PHe in-
formation obtained from NMR FID, one can determine the
absolute PHe by performing TOF transmission at any two
arbitrary values of relative 3He polarization. Each TOF trans-
mission measurement has a T0���cosh�PHe��� dependence
where T0��� is the empty cell transmission for the arbitrary
neutron spectrum, � is the product of 3He density, neutron
absorption cross section and target �cell� length, and � is the
neutron wavelength. Thus taking the ratio at two relative
values of PHe, known from uncalibrated FID, one obtains a
one parameter fit for PHe vs � without having to depolarize
the gas in the cell as is normally done for absolute 3He
polarimetry.

Several cells were used for this experiment. Their param-
eters are given in Table I and represent a partial range of gas
pressures and compositions typically used in SEOP NSFs.
Two of the cells were studied extensively, cell Lottie a pure

Rb cell �42� constructed at ISIS, and cell Orvieto a K-Rb
hybrid cell �25� constructed at NIST. The cells are identified
in this work, and in prior references, by the names listed in
Table I.

B. Beamline and flux measurement

We chose to use the fundamental physics beamline PF1B
at the ILL because it is a candidate for an in situ polarizer as
an instrument option. PF1B’s high neutron flux intensity and
large beam size as well as its open experimental area made it
ideal for this experiment �31�. A diagram for the installation
is given in Fig. 3. At the exit of the PF1B super mirror �SM�
neutron guide the beam intensity could be reduced with B4C
plastic “Swiss cheese” beam attenuators. These attenuators
are simply sheets of B4C rich plastic, which is 100% absorb-
ing for the neutrons at our wavelengths, with a series of
small holes distributed evenly over the area of the beam to
allow neutron transmission of approximately 1%, 10%, or
100% �no attenuator�. After this, an additional 4 m SM ex-
tension guide with a �7�11� cm2 cross section was in-
stalled. The 1° divergence of the neutron beam combined
with the length of the guide after the Swiss cheese attenua-
tors ensured a spatially uniform beam at the NSF cell. The
extension guide stopped approximately 100 cm before the
SEOP cell. Final beam size and collimation were determined
by B4C rich rubber masks placed at the exit of the neutron

TABLE I. List of cells and their parameters used in this experiment. All cells are blown from GE180 �40�
glass and are cylindrical except for cell Fanny, which is a spherical cell with a diameter of 6 cm. The value
of d�A /d�	n is the rate of change in the measured, or total, alkali-metal relaxation rate vs the square root of
the incident flux density 	n �relative standard uncertainty �5%�. Here s�A is the true spin-relaxation rate
accounting for coupling of the electronic spin to the nuclear spin where s is the slowing-down factor which
can be calculated �41�. �And� is the wavelength integrated neutron absorption of each cell calculated for the
PF1B neutron energy spectrum. The 3He and N2 partial pressures are given in bar at 25 °C.

Cell name

3He
�bar�

N2

�bar�
L�W
�cm2�

�And�
�%�

d�A /d�	n

�10−3 cm s−1/2�

Cell Orvieto �K-Rb� 1.10 0.07 7�9 91 1.55

Cell Lottie �Rb� 0.8 0.1 8�7 87 1.63

Cell Lucky Luke �Rb� 0.52 0.12 6�6 67 1.62

Cell Lykurgos �Rb� 2.54 0.12 6�6 98 1.52

Cell Fanny �Rb� 1.0 0.5 6=D 86 2.87

FIG. 3. �Color online� Diagram of the experimental setup on
PF1B.
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guide and directly before the SEOP oven. About 60 cm after
the SEOP oven, a small disk neutron chopper was installed
for TOF measurement of the neutron spectrum. To limit the
amount of neutron scattering from the air, thick boron-
containing glass �Pyrex� tubes with thin aluminum foil win-
dows for neutrons were filled with 4He. These 4He filled
tubes were placed between the SM extension guide and the
SEOP oven and between the SEOP oven and the neutron
chopper.

A “thin” neutron detector �i.e., a detector with a low rela-
tive neutron absorption=1−exp�−n
l� where n is the ab-
sorbing atom number density, 
�v� is the neutron absorption
cross section as a function of neutron velocity v, and l is the
length along the beam� is then installed 130 cm after the
chopper. To adapt to the different attenuators and avoid satu-
ration of the detector count rate, detectors with the efficien-
cies �2.4�10−6 and �1�10−4 were used. The two detec-
tors were calibrated against each other at the 1% flux level.
These relative values of capture flux were then scaled to
absolute values of capture flux by a gold foil calibration at
the front of the SEOP oven.

Gold foil activation is a well known method to measure
capture flux density of a neutron beam. Au has a single iso-
tope, 197Au, with a well known neutron absorption cross sec-
tion of 98.7 b at 1.8 Å, for which the neutron absorption
reaction produces 198Au. The 198Au decays to 198Hg which
has a half life of 2.69 days emitting a beta particle and a
0.411 MeV gamma photon �43�. The neutron capture flux
density is thus determined by exposing a Au foil of cali-
brated mass for a known amount of time, 10 min in our case,
and then measuring the beta or gamma emission rate of the
activated foil after a known waiting time �several days in our
case�. The accuracy of this measurement is typically 10%.
The reactor power was steady over the course of the mea-
surements and further corrections were not necessary.

Consequently the neutron capture by thin detectors such
as our low efficiency neutron detectors or Au foil is weighted
by the 1 /v�� absorption cross section of the 3He, 6Li, or Au
atoms, respectively, in our neutron detectors or Au foil �31�.
The neutron cross sections are normally expressed for the
reference wavelength of �=1.8 Å which has a neutron ve-
locity of v=2200 m s−1. This corresponds to the maximum
in intensity of a thermal neutron spectrum �i.e., a spectrum
with a Boltzmann distribution of temperature 25 °C� and
thus must be scaled by a given beam’s wavelength spectrum,
which is not necessarily a Boltzmann distribution, to com-
pare it to the actual neutron particle flux density. In general
the measurement of capture flux is relevant for fundamental
physics experiments, such as neutron decay experiments, be-
cause the probability of neutron decay is proportional to the
time spent in the apparatus and thus the wavelength. How-
ever, in our experiment most of the neutron beam is absorbed
�see Table I�, consequently, the actual neutron particle flux
density, which we will simply call flux density, is more
relevant to this study.

To convert a given capture flux density from a thin detec-
tor to flux density, one must know the neutron spectrum vs
wavelength. The neutron spectrum was thus measured by
TOF as described above in Sec. II A using the low efficiency
neutron detector giving the distribution of relative capture

flux vs wavelength which we then normalized to the capture
flux density of 1.4�1010 s−1 cm−2 measured with the Au
foil. The spectrum was then corrected for the 1 /v depen-
dence of the cross section by scaling the intensity vs � by
1.8 /� where � is in angstrom and 1.8 Å is the reference
wavelength of the Au absorption cross section. Finally the
resulting spectrum was integrated to obtain a flux density of
4.7�109 cm−2 s−1. The neutron absorption listed for the
cells �see Table I� thus refers to the absorbed fraction of this
flux density.

Some additional measurements were also done on a ther-
mal high-flux test beamline at the ILL �ILL tomography sta-
tion�. While this beam had a thermal spectrum with mean
wavelength of 1.8 Å compared to the 5 Å mean wavelength
on PF1B, it had a similar flux density of 2.4
�109 cm−2 s−1. This value was measured with a gold foil as
described above and by assuming a typical thermal intensity
distribution of the spectrum as was indicated in prior work
on this beamline �44�. This beamline is simply a large area
high-flux thermal beam obtained by a direct view of the ther-
mal moderator tank and thus contains a significant fraction of
fast unmoderated neutrons and gamma rays from the reactor.
We collimated this beam to the size of our SEOP cells with
stacks of boron containing rubber in a 50-cm-long
collimator.

III. MEASUREMENTS AND RESULTS

A. 3He polarization drop

The first measurements involved polarizing the hybrid
cell Orvieto and observing the changes under exposure to
neutron flux. As shown in Fig. 4, which was obtained with
our calibrated NMR FID system described in Sec. II A, the
3He in the cell was polarized to a relatively high level of
PHe=50% with an extrapolated maximum of 55%. This po-

0.6

0.5

0.4

0.3

0.2

0.1

0.0

P
H

e

403020100

Time (h)

FIG. 4. �Color online� The relative PHe via NMR FID �solid red
squares� for the cell Orvieto. The data show a spin-exchange time
constant of 13.6 h. At a time near 20 h, the cell was exposed to a
neutron flux density of 4.7�109 cm−2 s−1. The polarization drop
was then monitored with neutron TOF transmission �black open
circles� while continuing the NMR FID measurements. At a time
near 40 h the neutron beam was closed and PHe began to recover
with the spin-exchange time constant.
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larization was limited by the wall relaxation of this cell,
which depends on the orientation of the cell with respect to
the magnetic field and is larger than in cells one would nor-
mally use to obtain a high degree of 3He polarization �45�.
For the orientation of the cell during the experiment the
room temperature 3He relaxation time was only 50 h
whereas a maximum of 90 h had been observed in the labo-
ratory in a different orientation. Because of our main interest
in alkali-metal polarization for this experiment, the limit to
the 3He performance from wall relaxation for this cell was
not critical.

The cell was then exposed to the full intensity of the beam
on PF1B. PHe was again monitored using NMR FID and now
also with neutron TOF transmission measurements. The
given equilibrium or steady-state value of PHe is proportional
to PA and the rate balance between the 3He spin-exchange
rate �SE and the total 3He relaxation rate �He for the same
conditions,

PHe = PA
�SE

�He
. �1�

Here �SE=Rb�Rb�+K�K� for a hybrid cell or just �SE
=Rb�Rb� for a Rb only cell where Rb and K are the re-
spective Rb and K 3He spin-exchange rate coefficients and
�Rb� and �K� are the densities of each species �23�. �He
= �1+X��SE+�cell where X is an extra 3He relaxation mecha-
nism which appears to be proportional to the alkali-metal
density �46� and �cell is the sum of the 3He dipole-dipole
self-relaxation, cell wall-induced 3He relaxation, and 3He re-
laxation from magnetic-field gradients �47�. �He is thus the
observed rate of change of PHe for buildup or decay. At room
temperature, �He=�cell=1 /T1 because the alkali-metal den-
sity and thus spin-exchange rate are essentially zero, hence
T1 is the often cited time constant of the decay of PHe. From
Eq. �1� we can see how the equilibrium value of PHe changes
with PA and that if �cell is fixed, i.e., there are no additional
terms from direct 3He relaxation, that the rate of change of
PHe from one steady-state value to another must occur at
�He. Other experiments at the ILL using MEOP polarized
3He seem to suggest that direct 3He nuclear spin relaxation
would not be observable in SEOP NSFs on the time scales of
�He

−1 due to the presence of N2 buffer gas �48�. This is in
agreement with expectations from earlier work with charged
particle beams. They showed that ionization produced in the
polarized 3He target by the particle beams allowed the for-
mation of 3He2

+ molecules which caused rapid nuclear depo-
larization of the 3He. This process could be effectively
quenched by modest amounts of buffer gas such as N2, al-
ways present in sufficient quantities in a SEOP polarized
cell, which acts as a third body to break up the 3He2+
molecules �49�.

We experienced difficulties with the time stability of our
optical pumping lasers due to environmental heating particu-
lar to this installation. This caused the efficacy of the lasers
to decrease during this measurement. This also accounts for
the apparent changes in polarization rate at approximately 2
and 19 h �see Fig. 4�. Thus, no accurate data can be obtained
about the rate of change in PHe from this measurement alone

other than to conclude the alkali-metal density could not
have been substantially different for the neutron beam on or
off. However, the prior measurements at LANSCE measured
�SE several times with the beam on and off. They found �SE
to be the same with the neutron beam off and on, implying
that �Rb� was the same in both instances and that the mag-
nitude of the change in PHe was proportional to the change in
PA �11�. We cannot determine conclusively that the alkali-
metal density is not being modified by chemical reactions
due to ionization and charged particles in the cells in the
times scales longer than this experiment. However, the cell
Lykurgos, in prior testing, was exposed to the PF1B beam for
over 1 week in the absence of optical pumping and cells used
in the NPDGamma experiment retained expected alkali-
metal vapor pressure for a given temperature when measured
in the laboratory after the prolonged neutron exposure. Thus,
we postulate the change in PA is the dominant effect. Mea-
surements presented in Secs. III B–III D on the changes in
PA and its cause are thus the main experimental focus of this
work.

B. Pump light absorption

As described in Sec. II A, the relative cell transmission
�T� for the optical pumping light of one pump laser was
observed spectrally with a real-time spectrometer. As shown
in Fig. 5, the transmission decreased dramatically as the neu-
tron beam flux was increased. In order to understand this one
must consider the properties of light propagation in an opti-
cally pumped media.

Not including relaxation, the on-resonant light absorption
�A� of a dense polarized alkali-metal vapor with polarization
PA�r�� is given by

A = 1 − T = R�r���1 − PA�r��� . �2�

Here r� represents the location in the cell along the path of the
optical pumping light, R�r��=�d���r� ,��
A��� is the pump-
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FIG. 5. �Color online� The relative pump light transmission with
one laser. The dashed red lines show data for the laser tuned off
resonance �i.e., zero absorption� to determine the relative transmis-
sion. The spectrometer resolution was 0.07 nm. For 0%, 8.5%, and
100% of the PF1B flux, the respective transmissions were 54%
�solid red line�, 42% �dotted green line�, and 14% �dot-dash blue
line�.
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ing rate that depends on ��r� ,��, the laser intensity per unit
frequency, and the alkali-metal absorption cross section

A���. Writing ����, R and PA as a functions of r� here is
simply to remind us that these quantities are all functions of
cell position. To obtain explicit estimates of A or R along the
path of the light propagation, numerical modeling for a given
set of conditions that includes relaxation must be performed.
However, here we present the conceptual argument to inter-
pret the data.

For typical SEOP conditions the optical thickness
�Rb�
Al�100, where �Rb� is the Rb density and l is
the cell length and the relative absorption is simply
1−exp�−�Rb�
Al� for an unpolarized alkali-metal. Thus the
light is attenuated within a small fraction of the cell for an
unpolarized vapor. For a polarized vapor, the absorption
given by Eq. �2� is much less since for nearly fully polarized
atoms 1− PA�1. Consequently, the light intensity is only
gradually reduced as the beam propagates through the cell
provided PA�r�� is high everywhere in the cell. If PA�r�� be-
gins to be compromised at some position in the cell, the
on-resonance absorption for the whole cell quickly becomes
large. For broadband laser sources, the frequency spectrum
of the light also varies with position in the cell, because
on-resonant frequency components are depleted more rapidly
than those that are off-resonance. But for an optical pumping
source of width comparable to the atomic absorption width,
the spectral modifications of the laser are less dramatic.

The pressure broadened line width is about 20 GHz for
most cells in this experiment �50� compared to our pump
laser linewidth of 60–80 GHz. This fact, combined with the
resolution of the spectrometer, means that a so-called spec-
tral hole where all the on-resonant light is depleted is not
apparent in the data of Fig. 5, except perhaps at the highest
neutron flux. Nevertheless, the large increase in absorption at
high flux is a clear indication that PA has been compromised
causing the cell to attenuate nearly all the useable light due
to the effects of the neutron absorption.

C. Alkali-metal polarization drop

The drop in alkali polarization was explicitly observed by
measurement of the EPR spectrum of the alkali atoms.
Alkali-metal polarization is given by

PA�r�� =
R�r��

R�r�� + �A
, �3�

where �A is the full alkali-metal spin-relaxation rate. Thus,
we can see the straightforward relation between alkali-metal
polarization and relaxation. However, we point out obtaining
strict quantitative information relating the two is difficult be-
cause R�r�� depends on the optical pumping laser spectrum
and intensity as discussed above in Sec. III B whereas our
alkali-metal polarization measurement is taking a line aver-
age of PA over the whole path of the optical pumping light in
the cell.

For this measurement both lasers and the cell Orvieto
were used. The scope traces of the EPR spectra are shown in
Fig. 6. The deduced alkali-metal polarization vs flux is
shown in Fig. 7. As one can see, the alkali-metal polarization

changed by as much as 15% for the highest flux. This mea-
surement was done at PHe=0 to eliminate ambiguity arising
from the roughly 10%–20% change in captured neutron flux
from polarized to unpolarized 3He for the levels of polariza-
tion attainable in this experiment. These measurements could
only be done in the hybrid cell since for our �-metal cavity
the B0 field is limited to about 2 mT �20 G� because of
saturation in the � metal. At this field the EPR resonances
for Rb are not resolved. We chose a B1 field of 1 mT �10 G�
for these tests which is more than sufficient to resolve the
EPR resonances of the K in a hybrid SEOP cell. As can be
seen in Fig. 6, since the 87Rb lines are not resolved the rela-
tive area of this peak, on the far left, remains unchanged
whereas the areas of the 39K and 41K mf=−1→−2 peaks
become smaller and the area of the 39K mf=0→−1 peak
becomes larger. The 41K mf=0→−1 peak is not visible but
would be in the left shoulder of the 39K mf=−1→−2 peak.
Again, we conclude that the neutron beam is causing a sub-
stantial reduction in the alkali-metal polarization.
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FIG. 6. �Color online� EPR spectra for no incident neutron flux
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black line� for the cell Orvieto.
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FIG. 7. �Color online� The measured alkali-metal polarization vs
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D. Alkali-metal relaxation for different cells

The reduction in alkali-metal polarization observed in the
experiments above strongly suggests that the neutron beam
increases the spin-relaxation rate of the alkali atoms. The
increased spin-relaxation rate is then responsible for the in-
creased absorption of the pump laser light and corresponding
lowering of PA. Consequently, the most direct measure of the
neutron beam effects is to measure the alkali-metal spin-
relaxation rates which was done as described earlier in Sec.
II A using the relaxation in the dark method �38�.

In general, the alkali-metal spin relaxation in a SEOP cell,
�A, is the sum of the relaxation rates from collisions with the
various atomic or molecular species in the cell. For a pure
Rb cell these rates include �Rb-Rb, �Rb-N2

, and �Rb-He. For a
hybrid cell there are the additional equivalent terms for the K
atoms, plus a �Rb-K term. The measured spin-relaxation rate
for the Rb atoms depends on all of these cross sections which
are functions of the density of each species and the tempera-
ture. A complete discussion of these relaxation rates for pure
Rb and hybrid K-Rb cells is given in Ref. �26�. The relax-
ation rates at zero neutron flux varied from cell to cell in this
experiment because of their different parameters, thus the
effective relaxation caused by the absorbed neutron flux was
measured as a function of neutron flux. Assuming the other
cross sections are unmodified by the presence of the neutron
flux, these zero-flux relaxation rates are just an offset.

During the course of these measurements we observed
that upon first turning on the neutron beam the spin-
relaxation rate increased suddenly on a time scale much less
than the typical 30 s data acquisition rate for the signal av-
eraging needed for each trace. Subsequent measurements
were made on the thermal high-flux test beamline described
in Sec. II B. This beamline had a fast secondary neutron
shutter with a �1 s opening/closing time which could be
triggered by an external source. With the alkali-metal highly
polarized, PA�1, we simply observed the Faraday rotation
signal of the probe laser as the fast neutron shutter was
pulsed. Within measurement accuracy the alkali-metal polar-
ization dropped quickly coincident with the shutter opening
after which it began to decrease more with a slow time con-
stant. While the magnitude of the polarization drop was not
calibrated, it implies the fast increase in alkali-metal relax-
ation, accounting for a significant fraction of the measured
increase, occurs on the time scale of 1 s or faster.

After the initial fast increase, the relaxation rate continued
to increase slowly with a 200–350 s time constant before
reaching a steady-state value at roughly double the initial
rapid increase in relaxation rate. Similarly, when the beam is
shuttered off after a lengthy illumination period, the relax-
ation rate quickly drops by a factor of about 2 and then
slowly returns to the natural relaxation rate of the cell. For
the 0.07 and 0.1 bar �N2� cells Orvieto and Lottie, the frac-
tion of the fast increase was about equal to the additional
slow increase in alkali-metal relaxation rate, whereas the 0.5
bar �N2� cell Fanny perhaps had about a 25% fast increase
and 75% slow. The behavior is illustrated in Fig. 8. The
precise value of the time constant for the slow buildup in the
relaxation varied from cell to cell and there is not compre-
hensive data on all the cells. Due to the time and technical

constraints of this particular measurement, more information
on the properties of the fast and slow components was not
obtained. Given the limited amount of data available, it is
unclear how the time constant may vary given different cells
of different parameters or if it changes as a function of neu-
tron flux density.

More experiments should be done to explore the relative
fraction of the fast increase in alkali-metal relaxation vs the
additional slow buildup and both should be measured sepa-
rately as a function of incident neutron flux density and gas
composition. Subsequent analysis of data taken in this ex-
periment, discussed in Sec. IV B, has led us to hypothesize
the N2 may be involved in cluster formation, and conse-
quently perhaps relevant to the slow time constant. Thus, N2
dependence is of particular interest for future study.

A number of measurements of steady-state spin-relaxation
rates after the beam had been on for a long time �
�10 min� for different cells and different neutron flux den-
sities are shown in Fig. 9. As can be seen the alkali-metal
relaxation appears to closely follow a �	n dependence where
	n is the incident neutron flux density. This �	n dependence
will be discussed in Sec. IV. This information is also sum-
marized in Table I. Nearly all of the cells tested showed the
same dependence of the alkali-metal relaxation rate with flux
density, even despite the different base �zero flux� relaxation
rates caused by the varying gas compositions and alkali-
metal vapor compositions.

As a check on the consistency of these relaxation mea-
surements with the polarization and absorption results, we
note that the relaxation measurements imply a photon ab-
sorption rate estimated as

�Rb�sA� �APAV = 5 � 1019 s−1 �4�

from neutron-induced relaxation, i.e., one photon is absorbed
for each alkali-metal atom relaxed for ideal alkali-metal op-
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FIG. 8. �Color online� The measured alkali-metal relaxation
rates averaged over 30 s vs time after the opening �blue diamonds�
or closing �red squares� of the neutron beam. These particular data
were for cell Orvieto at 8.5% flux or 4�108 cm−2 s−1. The dotted
black lines show exponential fits to the data with the offsets held to
the steady-state value. The values of the time constants for these
data sets are 290 s and 400 s, respectively, for the slow time buildup
and decay of alkali-metal relaxation.
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tical pumping. Here �A=�A /sA� is the measured alkali-metal
spin-relaxation rate where �A is again the full alkali-metal
spin-relaxation rate, �Rb� the Rb density, and V the cell vol-
ume. The factor sA� is the slowing-down factor in the high
polarization limit, which is 5.44 for a pure Rb cell, where the
slowing-down factor is from the coupling of the electron spin
to the nuclear spin and represents the effect of the angular
momentum stored in the alkali-metal nucleus. The slowing-
down factor is a function of the alkali-metal polarization and
nuclear spin and can be calculated as a function of PA for a
given isotopic composition as in �41�. Since we measure the
electron spin-relaxation rate we must include this angular
momentum stored in the nucleus to arrive at the photon con-
sumption rates. This photon absorption rate is a remarkable
number when we consider that the maximum neutron ab-
sorption rate over the whole cell is only 1.5�1012 s−1. Each
absorbed neutron is apparently catalyzing through some pro-
cess the removal of more than 3�107� of angular momen-
tum from the alkali atoms where �=h /2� and h is Planck’s
constant. Given one resonant photon will be absorbed for
each alkali-metal atom relaxed the numerical factor in Eq.
�4� corresponds to about 8 W of laser power at 795 nm, thus
it is consistent with the before mentioned observations in
Sec. III B.

For the case of the pure Rb cells with 0.1 bar to 0.12 bar
N2 partial pressure at 170 °C we obtained similar measured
relaxation rates as a function of neutron flux density despite

a factor of 5 variation in 3He density �see Table I�. However,
we point out that the cells were relatively “thick” for our
neutron energy spectrum, i.e., the number of captured neu-
trons was only varying by about 31% from the lowest to
highest 3He pressure. The only cell with a significantly dif-
ferent neutron-induced alkali-metal relaxation rate was the
high N2 pressure cell Fanny. Cell Fanny had 0.5 bar N2 and
had nearly twice the extra alkali-metal relaxation at full flux.
The origins of this effect will be explored more in a future
experiment.

E. Cell whitening

Previously it has been noted that a white film forms in the
cell after several months of exposure to a cold neutron beam,
i.e., 5 Å mean wavelength, with a capture flux density of
�1–3��108 cm−2 s−1 �30�. Note, this value of capture flux
density must be divided by approximately a factor of 3 �5/
1.8, the ratio of the mean wavelengths of the two beams� to
compare it to the values we cite for neutron flux density on
PF1B �see Sec. II B�. In that work, the beam diameter was 9
cm, hence the total number of neutrons absorbed in the cell
was of the order of 1017 per year and it was exposed to
neutron flux for approximately 0.75 year of a 1.5 year data
run. This film caused reduced 3He polarization due to de-
creased transmission for the optical pumping light. During
the course of this experiment, we had two cells exposed for
significant times, cell Lottie and cell Orvieto. The hybrid cell
Orvieto was exposed for �20 h at full flux and hence a total
neutron absorption of �1016 for a 8 cm neutron beam diam-
eter while held at an operating temperature of 210 °C. The
pure Rb cell Lottie was not exposed for as long, less than 2
h total, and held at an operating temperature of 170 °C.

Despite the shorter exposure time the pure Rb cell began
to show signs of a white film forming, whereas the K-Rb cell
only had a small amount of white film in an area of the cell
where a blockage of hot air flow by the cell mount may have
caused a cold spot on the cell. Although the exact details of
the difference in the chemistry of the two cases have not
been explored, it could be a formation of RbH particles, or
perhaps alkali-azides �i.e., RbN3�. H �and T� ions are formed
by the neutron absorption, although at very small concentra-
tions, and a significant amount of ionized N2 would be cre-
ated but one would need a mechanism that leads to the for-
mation of a energetically favorable compound such as RbN3.
While the mechanism is a topic for further investigation, it is
clear that chemical reactions are taking place in the cell. Our
results suggest that this long-term cell whitening may be less
of a concern in K-Rb hybrid or pure K SEOP cells. A picture
of the two cells used during the in situ optical pumping tests
after exposure is shown in Fig. 10 showing the white film.
There could have been a different variable causing this dif-
ference in white film formation, hence further study of the
difference between Rb and K-Rb or K cells is needed.

An empty GE180 cell open to atmosphere and the cell
Lykurgos were also exposed to the full flux PF1B beam in
prior tests without heating or optical pumping. Both cells
were exposed for about 1 week and showed a formation of a
brown film. However, when cell Lykurgos was later heated
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FIG. 9. �Color online� The measured alkali-metal relaxation
rates vs flux density on a log-log scale. The zero-flux values of �A

were 29 s−1 for cell Fanny, 17.2 s−1 for cell Lottie, 9.7 s−1 for cell
Orvieto, 17.5 s−1 for cell Lucky Luke, and 21.8 s−1 for cell Lykur-
gos. The data for the cells Orvieto �K-Rb� and Lottie �Rb� are fit to
a power fit. The fits shown have power relations of 0.508�0.006
�lower line� and 0.47�0.02 �middle line� for cell Orvieto and cell
Lottie, respectively. The data for the cell Fanny have a line with a
power of 0.5 added to guide the eye �upper line�. The zero-flux
values of each of these lines were held to the measured values of
the respective cell. The error bars are errors of the fits of the indi-
vidual exponential decays. The scatter in the middle data points
may be due in part to the repeatability of the installation of the
neutron attenuator used for this �8.5%� flux.
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to optical pumping temperature �i.e., �170 °C� in the labo-
ratory, the brown film largely disappeared and a white film
eventually began to form after several cooling-heating cycles
and additional tests involving neutron exposure during opti-
cal pumping, suggesting the formation of a stable chemical
compound in the cell. As stated earlier, the alkali-metal vapor
pressure of cell Lykurgos seemed unmodified after this pro-
longed exposure and the alkali-metal relaxation rates for this
cell as a function of �Rb� were measured to be the same
within uncertainties before and after exposure. The cell T1 or
�cell measured in laboratory conditions for cells used in the
NPDGamma experiment seems to imply a change in �cell
after the formation of white film caused by the neutron ex-
posure cannot account for the observed long-term reductions
in PHe.

F. Double cells

As a possible solution to many of the observed problems,
two chambered cells with one chamber for optical pumping
connected by a diffusion tube to another chamber for the
target cell have been proposed. Such cells have been applied
successfully as a solution for particle beam experiments to
eliminate the alkali-metal depolarization effects �51,52�.
However, for the case of charged particle beams the 3He
additionally experiences direct polarization relaxation from
the particle bombardment that is not related to the alkali-
metal polarization and must be continually refreshed using a
high spin-exchange rate in the optical pumping cell to main-
tain a suitable 3He polarization level.

For our case, the basic principle is simply to separate the
degrading effects on the alkali-metal polarization and optical
pumping process caused by the neutron capture by separat-
ing the NSF chamber from the optically pumped volume. A
double chamber cell, called Gemini, was constructed and
prepared at ISIS. It has a spherical optical pumping chamber
made of GE180 glass which is connected by a 3 mm inner
diameter, 10-cm-long tube to a Si-windowed Pyrex bodied
spin filter chamber �53� which was designed to have the
same volume as the optical pumping chamber. A picture of
this cell is given in Fig. 11.

While this cell has not yet been tested conclusively in a
neutron beam, it should not suffer the alkali relaxation ef-
fects observed in this experiment. Furthermore, cell whiten-
ing issues should no longer be a concern since any chemical
deposits produced in the NSF portion will be confined to that
chamber by the thin transfer tube. The neutron portion of this
cell was exposed to the full beam for over four hours while
performing optical pumping on the other chamber. Despite a
longer total exposure time than cell Lottie it did not show
evidence of a white film in either chamber.

The cell T1 and polarization transfer time can be mea-
sured directly with our NMR FID system. We normally ob-
served the NMR FID amplitude on the cold NSF volume, but
both chambers can be monitored simultaneously. The cell is
polarized to an arbitrary level, then the polarization is de-
stroyed selectively in the NSF chamber by applying an rf
field generated by a three turn coil of wire driven with a
function generator at the 3He Larmor frequency. Then the
recovery of the 3He polarization is recorded over time with
the NMR FID system. A discussion on the calculation of 3He
transfer times between double chambered cells can be found
in Ref. �51�.

Using these methods cell Gemini has a measured 3He
polarization transfer time of 2 h from one chamber to the
other and a 200 h 3He T1 spin-relaxation time at room tem-
perature. The polarization transport between the two cells
should be good given the transport is fast compared to the
average T1 of the entire cell. Further, we experimentally ob-
served the 3He polarization recovers to �50% of the initial
value in the NSF chamber after the selective depolarization
test. Since the two chambers are of similar volume this im-
plies good polarization transport between the chambers de-
spite the long transfer tube. Polarization maintenance should
also be good given typical spin-exchange time constants of
about 10 h for a cell this size. More work is being done to
characterize this cell. A similar one made entirely of GE180
with a hybrid K-Rb mixture was constructed and is being
tested at NIST. Work is being done to determine the achiev-
able polarization of 3He in these cells.

Ever improved results with in situ polarized double cham-
bered cells for particle beams are being reported as the tech-
niques of hybrid SEOP �23� and narrowed-band lasers �22�
are being implemented. Values of PHe in their double cells

FIG. 10. �Color online� The cells Orvieto, a K-Rb hybrid cell
�left�, and cell Lottie, a pure Rb cell �right�. Despite being in the
beam for over ten times as long, cell Orvieto only shows traces of a
white film in an area of the cell where a blockage of hot air flow by
the cell mount may have caused a cold spot on the cell. Cell Lottie,
the pure Rb cell, shows a relatively uniform white film over its
surface.

FIG. 11. �Color online� The two chambered cell named
“Gemini” created for tests. The optical pumping portion is made of
blown GE180 glass and the NSF portion is a Pyrex body with Si
windows. The 3He spin-relaxation time was 200 h with a 2 h 3He
polarization transfer time between the chambers.
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are now reaching the 70% level in laboratory conditions
�52,54�, similar to the levels obtained in single NSF cells
also polarized in laboratory conditions using the same tech-
niques �26�. While the cells used as particle beam targets
experience depolarization due to direct 3He relaxation, they
have still been able to maintain PHe of 50%–60% during
bombardment �54�. As a further proof of principle for neu-
tron applications we polarized a small double cell called
Roadrunner in situ on the thermal high-flux neutron test
beam at the ILL. This beamline was described briefly in Sec.
II B.

Cell Roadrunner, shown in Fig. 12, was prepared several
years ago at NIST but never used for neutron tests. Cell
Roadrunner contains approximately 3 bar of 3He at room
temperature; consequently, it should have about 3.9 bar of
3He in the NSF chamber when the optical pumping chamber
is heated to 180 °C given the optical pumping chamber was
about 45 cm3 and the NSF chamber was about 21 cm3. The
optical pumping chamber is a 4.5 cm diameter sphere and the
NSF chamber is a 1.5 cm long by 5 cm diameter cylinder
connected by a 4 mm I.D. tube about 10 cm long. The room
temperature T1 of this cell is 220 h in laboratory conditions;
in the in situ system we measured it to be 135 h.

The pressure length product of the NSF cell was mea-
sured to be 4 bar cm with the optical pumping cell at 25 °C
and therefore about 5.2 bar cm with the optical pumping cell
at optical pumping temperature of 180 °C. Assuming a ther-
mal distribution of flux at 1.8 Å the neutron absorption of
this cell should be around 50% for unpolarized 3He and 46%
at PHe=70%. Thus, the neutron capture for this cell is
�1.1–1.2�109� cm−2 s−1 for the measured thermal flux den-
sity of 2.4�109 cm−2 s−1 depending on PHe. This would lie
between the full flux and 8.5% flux points on the log scale
used in Fig. 9.

This cell was polarized in situ for a time in the absence of
neutron flux while observing the 3He polarization rate with a
version of an NMR FID system developed at Sheffield Uni-

versity �55�. At time t=8.5 h the neutron beam was opened
while continuously optically pumping the cell and observing
the NMR FID. The exposure lasted for 9.5 h which was
longer than �He=7.2 h for our conditions, thus any signifi-
cant change in the steady-state value of PHe would have been
apparent. As can be seen in Fig. 13, the observed �He appears
unaffected by the exposure to neutron flux. Since the strong
component of gamma radiation and fast neutrons on the ther-
mal high-flux test beamline caused significant background in
the neutron detectors, TOF calibration of PHe was not pos-
sible on this beam. However, the PHe remaining in the cell
after this neutron exposure test was measured some time
later on a different neutron beam using methods similar to
those described earlier in Sec. II A, except with a monochro-
matic, i.e., single wavelength, beam.

The cell was removed from the in situ system and trans-
ported to the laboratory in a small permanent magnet magic-
box cell transporter �56�. The cell thus experienced several
transports and was in nonideal magnetic conditions plus an
elapsed time of about 6 h before neutron measurement. Dur-
ing this time we estimate that it lost 6% �relative� or more of
its initial polarization. Despite the elapsed time, and the 3He
relaxation caused by the nonideal magnetic-field environ-
ments and transports, the initial PHe at the beginning of this
neutron calibration was 50%. We do note this cell was de-
signed for a solenoid geometry. Looking at Fig. 12 there is a
stem on the optical pumping chamber used to prepare the
cell that is in line with the NSF chamber. For our geometry
the optical pumping light has to pass through and around this
stem, most likely creating dark spots and thus lowering the
average PA in the optical pumping volume and lowering PHe.
As can be seen from the NMR FID data PHe was in satura-
tion �i.e., �99% of the maximum� at the end of the measure-
ment when the optical pumping was stopped.

FIG. 12. �Color online� The two chambered cell named “Road-
runner” created several years ago at NIST. The 3He spin-relaxation
time was 220 h in the laboratory and 135 h in the in situ apparatus
installed on the thermal high-flux neutron test beam. This cell was
designed for an optical pumping axis parallel to the neutron beam
whereas our magnetic cavities are for perpendicular neutron and
optical pumping axes. Thus, the stem on the optical pumping vol-
ume �right� is not optimal for our conditions because the optical
pumping light must pass through this stem which blocks and dis-
torts the collimated optical pumping beam.
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FIG. 13. �Color online� The relative PHe�VNMR via NMR FID
�red squares� was fit to an exponential and shows an optical pump-
ing time constant of 7.2 h �dotted black line�. From time=8.5 h
until 18 h, the cell was exposed to a thermal neutron flux density of
2.4�109 cm−2 s−1. Unlike the single cell Orvieto shown in Fig. 4
the 3He polarization and the spin-exchange rate were robust against
the high neutron flux density and the cell obtained saturation PHe

�54% as determined in subsequent neutron absorption measure-
ments on a different beamline taken after this data with the remain-
ing polarization in the cell.
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Consequently, this cell obtained relatively high saturation
polarization, �54% which was unaffected by the absorbed
neutron flux. The cell does not show signs of whitening in
either chamber after exposure for 9.5 h. Given cell Roadru-
nner had a similar total neutron capture in this test to that of
the single cell Lottie, discussed above in Sec. III E, this is a
positive result. The next step would be to show that this
system, and cell, can be stable over weeks or months and
also to explore the maximum attainable PHe with optimiza-
tion of parameters. However, these results look promising for
the principle of a double chamber cell under such conditions.

IV. DISCUSSION

A. Comparison with prior alpha-particle results

The magnitude of alkali-metal relaxation was unexpected
from prior experience with SEOP polarized 3He targets �57�.
In that work the volume of fully polarized alkali-metal atoms
was estimated to be reduced to 0.6 times its normal value
when a sealed SEOP cell was exposed to a particle flux of
1.1�1012 s−1 of 18 MeV alpha particles. The beam was
stated to have a cross-sectional area of 0.07 cm2 which was
10% of the cell’s cross-sectional area thus the alpha-particle
flux density was 1.6�1013 cm−2 s−1. This implies a factor of
1.7 increase in the alkali-metal spin-relaxation rate by the
following argument valid for the narrow-band dye laser used
in that work. Since SEOP cells are optically very thick if the
atoms are unpolarized, the light can only penetrate portions
of the cell that are virtually fully polarized. The light attenu-
ation then depends only on the alkali-metal relaxation rate
�A and the volume of the atoms that can be polarized with a
given laser power P is simply

V =
P

h��Rb��A
, �5�

where h� is the energy of the optical pumping photons. This
shows the inverse relationship between the polarized volume
and the spin-relaxation rate �58�. While the alpha beam in
that work was �3 mm in diameter, i.e., 10% of the volume
of the 1 cm diameter cell, for our estimates we will consider
the alpha-beam-induced effects to be spread out over the
whole volume of the cell. We assume a volume averaged
effect here because, as we will discuss in Sec. IV B, it seems
that at least a significant fraction of the relaxation in the
neutron case is likely to be caused by long-lived molecular
species or clusters which can then diffuse to the cell walls.

The cell used in the alpha-particle beam had a 3He pres-
sure of 571 mbar �434 torr� and a N2 pressure of 201 mbar
�153 torr�. It was held at a operating temperature of 190 °C
corresponding to an assumed alkali-metal vapor density of
6�1014 atoms cm−3. Using this information we estimate
the alkali-metal relaxation rate without the alpha beam inci-
dent on the cell to be �A=356 s−1, using the information
summarized in Ref. �26�. With the alpha-particle beam on,
we therefore estimate

�� = 	 1

0.6
− 1
�A = 237 s−1 �6�

to be the alpha-particle-induced relaxation rate.

The total amount of energy the � beam deposits in the cell
is a property of the ion stopping power of the gas in
the target cell. The stopping power of 18 MeV alpha par-
ticles in 3He and N2 is 0.476 MeV cm2 mg−1 and
0.303 MeV cm2 mg−1, respectively, where the value for 3He
was scaled by 4/3 from the value for 4He �59�. Using this, for
their cell which was 3.5 cm long, we find a deposited energy
of 361 keV for each alpha particle slowed in the cell. Taking
32 eV as the energy per ion for 3He and 15 eV for N2 �60�,
we estimate an ionization production for each alpha particle
to be 3.7�103 3He+ and 1.6�104 N2

+. The total ionization
rate per unit volume of cell was therefore

R� = 2.0 � 1041.6 � 1013 cm−2 s−1

3.5 cm
= 9.1 � 1016 cm−3 s−1.

�7�

For neutrons, the energy released for each neutron absorbed
is 764 keV �61�. As stated before the cross section is nearly
completely spin dependent and has a 1 /v dependence, where
v is the neutron velocity. The transmission of the neutron
beam for an unpolarized 3He cell is given by exp�−n
�v�l�,
where n is the 3He number density, 
�v� is the absorption
cross section as a function of v the neutron velocity, and l is
the cell length. A typical optimized 3He cell for neutron ap-
plications has an opacity n
l�1; in practice the pressure
length product is optimized so the neutron absorption of a
polarized 3He cell is 70%–80%. In our case, since the 3He
was not polarized during our �A measurements, the neutron
absorption as seen in Table I was higher. Making the simpli-
fication that neutrons are fully absorbed, at the maximum
ILL flux density of 4.7�109 cm−2 s−1, the ionization rate
per unit volume of the cell for a NSF cell of the same com-
position and length as the alpha-particle cell would be

Rn =
R�

0.1

4.7 � 109

1.6 � 1013

764

361
= 0.0062R�, �8�

where 0.1 is the ratio of the alpha-beam area to the area of
the cell in that work. The absolute ionization is just a func-
tion of deposited energy and independent of the actual alpha-
particle beam size, but since our neutron beam covers the
entire cross section of the cell we use it to calculate ioniza-
tion per unit volume for the neutron case. At LANSCE or
other lower flux facilities the ionization rate is correspond-
ingly slower. Based on the ionization rates alone, one would
expect that even at the ILL neutron-induced alkali-metal re-
laxation would be negligible, especially with the much
higher power lasers now available that can handle much
higher spin-relaxation rates.

However, the dependence of the relaxation on ionization
rate or charged-particle flux is not necessarily linear. As seen
from Fig. 9, the total neutron-induced relaxation rate scales
roughly with the square root of the flux. Although we do not
have a model for the beam-induced alkali spin relaxation we
note that the square-root dependence is consistent with
recombination-limited ionization, assuming that the domi-
nant species causing spin relaxation of the alkali-metal atoms
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is proportional to the concentration of the dominant ionic
species in the gas. In this case, the ion density would obey
the rate equation

dni

dt
= R − �ni

2, �9�

where, as before, R is the ionization rate per unit volume and
� is the recombination rate coefficient. We have assumed
that the electron and ion densities are equal and that the
recombination mechanism is not a three-body recombination
with a charged particle as the third body. Thus, in steady
state the ion density is

ni = �R/� . �10�

This argument also assumes that there is a single dominant
ion species or that the recombination rates of different spe-
cies are approximately the same. In any case, since the ion-
ization rate is proportional to the ionizing beam flux, the
relaxation rate in this model would be proportional to the
square root of the beam flux. This square-root dependence
was not checked for the alpha-particle experiment. Further,
for the neutron-induced alkali-metal relaxation described in
Sec. III D, there appears to be a fast and a slow component
possibly implying two mechanisms in the neutron case
whereas we have no information on the time evolution of the
alkali-metal relaxation in the alpha-particle experiment.

Assuming the square-root scaling to hold for the compari-
son of alpha and neutron relaxation rates, one would now
estimate

�n =�Rn

R�

�� = 19 s−1 �11�

at full ILL flux. Again, such a small increase in the relaxation
rate would be easily handled by the pumping lasers. For
clarity we point out this estimate is for the electron relax-
ation rate which is the measured rate times the slowing-down
factor. The slowing-down factor varies from 10.8 at low
alkali-metal polarization to 5.44 at high-alkali-metal polar-
ization for a pure Rb cell; therefore, this number must be
divided by �6–10, depending on the alkali-metal polariza-
tion, to compare it to the numbers for �A shown in Fig. 9
which were taken at low alkali-metal polarization.

However, a highly localized effect would cause these es-
timates to increase such that the alpha-particle beam-induced
relaxation could equal the neutron-induced alkali-metal re-
laxation. However, the PA dropping to 0 coincident with the
alpha-particle beam, and thus the alkali-metal relaxation be-
coming arbitrarily large compared to the optical pumping
rate in this area, cannot be fully explained with the values
given in that work. If PA=0 in the alpha-particle beam, be-
cause in the geometry of that experiment where the optical
pumping light was transverse to the alpha-particle beam, it
would also create a shadow caused by the high alkali-metal
relaxation area blocking the pump laser light from part of the
cell. But by geometric arguments this would only lower the
observed cell-averaged alkali-metal polarization to 80%
whereas they observed 60% from measurements of PHe �57�.
Thus, some spreading of the alpha-particle beam or the ion-

ization is needed to make agreement with their measurement
and support the hypothesis of a beam-localized effect. But
even if the alpha-beam effect was beam localized, there
would still be differences with the neutron case. The obser-
vation of the long time constant for neutrons, discussed in
Sec. IV B below, seems to imply that a species that persists
in the absence of the beam is responsible for a notable frac-
tion of the relaxation in the neutron beam case. Therefore,
this portion of the effect must be volume averaged and inde-
pendent of beam size for the neutron case.

B. Neutron-induced alkali-metal relaxation

From Fig. 9, the relaxation rate in the neutron-induced
relaxation is many times greater than the above estimate
would predict. At full ILL flux the beam induced alkali-metal
relaxation was �n= �1180�30� s−1 for the Rb cells with ni-
trogen partial pressures between 0.1 and 0.12 bar, 45 times
greater than expected based on the alpha-beam results. Ad-
ditionally, the observed time constant of 300 s for buildup �or
decay� of the additional spin-relaxation rate is quite puzzling.
This time constant is incompatible with diffusion time con-
stants for small molecules, ions, and atoms at atmospheric
pressures. Thus, any normal atomic and molecular species
should reach a steady-state population within at most a few
seconds of the introduction of the neutron beam into the cell.

Looking again at Fig. 9 we point out the magnitude of the
fast component of the increase in alkali-metal relaxation.
While the true time constant of this increase is difficult to
determine, subsequent tests were performed on the thermal
high-flux test neutron beam which was described in Sec.
III D. This fast component seems to be nearly instantaneous
with the exposure to neutron flux, �1 s with accuracy lim-
ited by the opening time of the neutron shutter used. This fast
component accounts for perhaps half of the total �n in typical
SEOP NSF cells thus any eventual mechanism or combina-
tion of mechanisms must account for the two time scales.

The most natural explanation for a 300 s time constant
would be activation of an unstable nuclear species in the cell
or cell walls by the neutron beam. However, this seems un-
likely because the candidates for activation, such as alumi-
num, are not present in sufficient quantities to produce
enough beta emissions to materially increase the ionization
rate over that produced by the neutrons. For aluminum,
which is a beta emitter with a half life of 134 s, the absorp-
tion cross section is 0.231 b. Therefore, for a typical cell
made of GE180 glass which has a density of 2.76 g cm−3

and has an Al2O3 composition of 14.3% with a nominal 3
mm thickness, the neutron absorption rate would be 4.5
�106 cm−2 s−1 for the full flux of the PF1B beam. In steady
state the neutron absorption and nuclear decay, and thus beta
emission rates, will be equal. Thus, there is a factor of about
1000 less beta particles emitted as compared to the neutron
capture rate in the cell. In addition, the stopping power of the
gas in the cell is low for beta particles, on the order of 2
�10−3 MeV cm2 mg−1 in either 3He or N2 for beta particles
of 1.243 MeV, the average beta energy from an Al decay.
Thus the ionization created in the cell by such sources would
be over 105 smaller than from the neutron beam itself ac-
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counting for the 103 difference in particle density and 102

difference in deposited energy per particle. Of the other ma-
jor elements in the glass, Si, Ca, Ba, and O, the nuclear half
lives for Si, Ca, and Ba are much different than 300 s and the
absorption cross section of the most abundant isotope of O,
16O �99.8%� is small at 0.0001 b. Thus, it seems clear that
the � emissions from the glass are not sufficient to cause the
long time constant effect because the ionization caused by
activation is orders of magnitudes smaller than that of the
absorption by the 3He itself.

Another possibility for the relaxation source is the forma-
tion of clusters large enough to diffuse to the walls slowly. A
�=300 s diffusion time would require a diffusion coefficient
on the order of

D =
L2

�2�
= 0.008 cm2 s−1, �12�

where L is the cell length. This is a factor of about 60 smaller
than the diffusion coefficient of Rb in He �62�. The diffusion
coefficient is inversely proportional to the area of the cluster
and we estimate that a cluster diameter of about d=6 nm
would be required, with this number obtained by assuming a
Rb-He cross section of 50 Å2 and scaling by 60 to get the
cross-sectional area of the cluster. Assuming that the spin-
relaxation cross section is equal again to the geometric cross
section of the cluster, and that the atom’s full angular mo-
mentum is lost in each collision, one would require a cluster
density of

nC =
�n

v��d/2�2

=
1180 s−1

5 � 104 cm s−1 � 3000 Å2

= 7 � 1010 cm−3, �13�

where v=5�104 cm s−1 is the thermal velocity of Rb at
SEOP temperatures.

It does seem important to note that one fundamental dif-
ference between charged particle beams and neutrons is that
the neutron absorption process directly produces H and T
ions. Thus, there is a built-in source of free H and T atoms
and ions available in the neutron case. Clusters of RbH mol-
ecules were shown to be enhanced under very specific con-
ditions where H2 gas was intentionally added to an alkali-
metal vapor cell and excited by a resonant laser �63�. Were
the clusters causing our observed alkali-metal relaxation
made from RbH molecules, a 6 nm diameter cluster would
have about 2000 RbH molecules based on the 2.6 g cm−3

density of solid RbH, so that there would need to be about
1.4�1014 H per cm3. The number of H �and T� atoms per
unit volume produced by the ILL neutron beam at full flux
over a 300 s time period is only 2�4.7�109 s−1 cm−2

�300 s /5 cm=5.7�1011 cm−3 for a 5-cm-long cell. Thus,
there is simply not enough H produced by the neutron beam
to produce sufficient RbH clusters of the size needed. One
possible way to generate clusters of sufficient size to explain
the observations is to hypothesize that the H �or T� atoms or
ions act as nucleation sites for formation of Rb or Rb-Nx

clusters. In this context it is interesting to note the increased
relaxation observed in the high N2 density cell.

Future work will attempt to explore the regime where the
cell size is small or at least on the order of the range of the
charged particles. The ranges of the 573 keV proton in 1 bar
of 3He or N2 are 5.1 cm and 0.97 cm, respectively, and the
ranges of the 191 keV triton are 1.9 cm and 0.27 cm, respec-
tively �59�. While the cells in this experiment were in the
regime where most of the particles are stopped, by varying
the size of the cell or the gas pressure, we can explore the
regime in which the charged particles do not come to rest
within the gas. Tests on the pressure dependence of 3He and
N2, temperature dependence, and the effect in pure Rb vs
pure K should also be explored in future experiments.

C. Comparison of neutron-induced relaxation
for hybrid and pure Rb cells

1. Theoretical evaluation

In this section we will estimate the demands on the optical
pumping due to neutron-induced relaxation depending on the
interpretation of the form of the transient relaxation mecha-
nism, i.e., a total angular momentum, or an electron spin-
randomization process. We will do this by comparing the
expected transient decay rates and laser power demands for
hybrid and pure Rb cells. In a hybrid cell, the K and Rb spin
polarizations are strongly coupled by K-Rb spin-exchange
collisions, so their electron spin polarizations are the same.
The rate of change of the total angular momentum �per unit
volume� of the system is

�K�
d�Fz

K�
dt

+ �Rb�
d�Fz

Rb�
dt

= − �K�K��Fz
K� − �Rb�Rb��Fz

Rb�

+ �Rb�R	1

2
− �Sz�
 . �14�

Here �Fz
K� and �Fz

Rb� are the average z component of the total
angular momentum of the K and Rb atoms, �Sz� is the aver-
age z component of the electron spin, �K and �Rb are the
angular momentum relaxation rates per atom for the two
species �which are the same as the �A one would measure for
a pure K or pure Rb cell in the R=0 limit�, and R is again
the optical pumping rate of the Rb atoms. In spin-
temperature equilibrium, valid for the high densities of these
experiments, the total angular momenta of the individual at-
oms are related to �Sz� by the slowing-down factors sK and
sRb: �Fz

K�=sK�Sz� and �Fz
Rb�=sRb�Sz�. A discussion of the

derivation of slowing-down factors is given in �41�. For low
polarizations, sK=6 and sRb=10.8.

To aide the conceptual argument we present here where
we wish to focus on the neutron-induced relaxation, we will
assume that �K and �Rb in Eq. �14� and our following deri-
vations are dominated by the neutron-induced relaxation, a
reasonable estimate for the data at the 4.7�109 cm−2 s−1

flux density level where the neutron-induced relaxation was
10� the relaxation from other terms in �A for cell Orvieto
and 6.5� larger for cell Lottie. If the additional terms for the
alkali-metal spin relaxation in the absence of neutron flux
were added in, one would simply obtain a linear interpola-
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tion between the relative efficiencies between hybrid K-Rb
cells and pure Rb cells without incident neutron flux as in
�26� and our comparison here for the high neutron flux den-
sity limit. Also, as in the cluster relaxation estimate above,
we have assumed that the spin-relaxation mechanism causes
loss in proportion to the total atomic angular momentum not
just the electron portion.

Using the slowing-down factors in the right-hand side of
Eq. �14� in the R=0 limit, we get

�sK�KD + sRb�Rb��Sz� = sKRb�KRb�Sz� , �15�

where D= �K� / �Rb� and the hybrid slowing-down factor is
sKRb=sRb+DsK. For a pure Rb cell, the factor in parentheses
would be simply sRb�Rb=�Rb and �KRb is thus defined as the
total alkali-metal spin-relaxation rate for a hybrid cell. We
note these are equivalent to the measured quantity �A for the
cases of a pure Rb or hybrid KRb cell, respectively. For
clarity we note again that �A represents electron relaxation
rates, which is what is normally relevant to calculate photon
demands, whereas �A is total spin relaxation i.e., d�Fz

A� /dt,
where A is an unspecified alkali-metal or alkali-metal mix-
ture and can be replaced by the alkali-metal species, K, Rb,
or KRb in our notation. For cell Orvieto with D=2.2, sKRb
=24. The ratio of fractional angular momentum loss for the
K and Rb atoms can be determined from the experimental
results by

�K

�Rb
= 	�KRb

�Rb
−

sRb

sKRb

 sKRb

sKD
. �16�

If we assume that whatever the loss mechanism, each colli-
sion causes complete relaxation of the total atomic angular
momentum, then we would expect �K /�Rb=1.

Now we need to relate the relaxation measurements to the
laser power dissipation. Note that for the alkali-metal polar-
ization, PA=2�Sz� and the steady-state solution of Eq. �14� is

PA = 2�Sz� =
R

R + sKRb�KRb
. �17�

The photon scattering rate per unit volume for a hybrid cell
is then

�KRb = �Rb�KRbR�1 − PA� = sKRb� �KRb�Rb�KRbPA. �18�

The prime on the slowing-down factor that appears here ac-
counts for the fact that the slowing-down factor depends on
the polarization; at high polarization, i.e., PA=1, sKRb� =14.2
for cell Orvieto. The KRb subscript on the rubidium density,
�Rb�KRb, denotes the rubidium density in a hybrid cell which
is lower than in a pure Rb cell following Raoult’s law. For
Rb, sRb� =5.44 and Eq. �18� becomes the relation for a pure
Rb cell by replacing all of the subscript KRb terms by the Rb
only equivalent and sK� =4 for K. Assuming the polarizations
are the same in both cells, we will compare the performance
between a hybrid cell and a pure Rb cell under the practical
condition of the same 3He spin-exchange rates �26�. Equat-
ing the spin-exchange rates between the two cases,

Rb�Rb� = �Rb�KRb�Rb + DK� , �19�

where �Rb� is the rubidium density in a pure Rb cell and Rb
and K are the Rb-3He and K-3He spin-exchange rate
coefficients.

Thus, using the relations in Eqs. �15� and �19� and the
assumption that �Rb=�K and substituting into Eq. �18� we
find the ratio of the photon scattering in the pure Rb case,
�Rb, to the photon scattering rate in the hybrid case, �KRb, to
be

�Rb

�KRb
=

sRb� �Rb�Rb�
sKRb� �KRb�Rb�KRb

=
1 + DK/Rb

1 + DsK� /sRb�
. �20�

Using measured values for the Rb-3He and K-3He spin-
exchange rate coefficients from Refs. �34,64� the laser power
demand ratio from Eq. �20� varies between unity at D=0 and
a numerical maximum of 1.1 at D=�. Consequently, the
neutron-induced power dissipation is about the same for both
types of cells when the relaxation mechanism involves a total
loss of spin angular momentum, electronic and nuclear.

We now repeat the above arguments assuming that the
spin-relaxation process conserves the nuclear spin. Equation
�14� becomes

�K�
d�Fz

K�
dt

+ �Rb�
d�Fz

Rb�
dt

= − gK�K��Sz� − gRb�Rb��Sz�

+ �Rb�R	1

2
− �Sz�
 , �21�

where gK and gRb are the potassium and rubidium spin-
randomization rates. The measured transient decay rate at
low polarizations then becomes

�KRb =
gKD + gRb

sKRb
�22�

and the ratio of spin-randomization rates as deduced from the
low polarization transients is

gK

gRb
= 	�KRb

�Rb
−

sRb

sKRb

 sKRb

sRbD
. �23�

If we assume that whatever the loss mechanism, each colli-
sion causes relaxation of only the electronic polarization,
then we would expect gK /gRb=1.

The photon scattering rate per unit volume for the elec-
tron randomization mechanism is

�KRb = �Rb�KRbR�1 − PA� = �gRb + gKD��Rb�KRbPA.

�24�

Again equating the spin-exchange rates for hybrid SEOP and
pure Rb SEOP as in Eq. �19�, the ratio of the photon scatter-
ing rates for the pure Rb and hybrid cases becomes

�Rb

�KRb
=

1 + DK/Rb

1 + DgK/gRb
. �25�

Rewriting the photon scattering rate per unit volume in terms
of the observed transient decay rate �KRb gives
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�KRb = sKRb�KRb�Rb�KRbPA. �26�

Comparing this with Eq. �18�, we see that the deduced pho-
ton scattering rates under the assumption of an electron spin-
randomization process differs from the total angular momen-
tum loss assumption by the ratio of the low and high
polarization slowing-down factors, i.e., less than a factor of
2. The laser power demand ratio from Eq. �25� varies be-
tween unity at D=0 and a minimum of 0.81 at D=�.

In summary, the key result of this section, the greatly
increased demands on the optical pumping due to neutron-
induced relaxation, are very nearly independent of the inter-
pretation of the transient relaxation mechanisms. The photon
demand caused by the neutron flux-induced alkali-metal re-
laxation is also nearly the same for hybrid and pure cells.
However, for practical consideration, we note hybrid cells
still retain their advantage of increased efficiency when all of
the spin-relaxation terms are considered, especially when the
magnitude of neutron-induced alkali-metal relaxation is not
dominant �i.e., at lower flux density levels� and becomes
comparable to or lower than the other spin-relaxation terms.

2. Experimental results

Here we consider the interpretation of the results for the
Rb-K hybrid cell Orvieto, which, as seen in Fig. 9, has nearly
the same relaxation rate as the pure Rb cells. In principle,
this observation would provide a simple and direct test of
whether the neutron-induced processes destroy total spin or
only electronic spin. In practice our conclusions are limited
because the two cells had differing, and not well known ni-
trogen densities, coupled with our experimental observation
that the neutron-induced relaxation depends on nitrogen den-
sity. In addition, we only have data on a single hybrid cell.

For the case of total angular momentum destruction �Eqs.
�15� and �16��, we find that the observed equality of the
transient decay rates implies that �K /�Rb=1. If these cells
were known to have the same nitrogen density, we would
conclude that the data support a total angular momentum
destruction mechanism. Although this conclusion is reason-
able, the nitrogen densities in cell Orvieto and cell Lottie
were not the same and are not precisely known. Coupled
with our experimental observation that the neutron-induced
relaxation depends on nitrogen density, we cannot make a
definite conclusion.

For the case of electron spin randomization �Eqs. �22� and
�23��, we obtain gK /gRb=0.55, implying that the electron
randomization rates �assuming that this is indeed the mecha-
nism� would be smaller for K. However, if the beam effects
scale linearly with nitrogen density, scaling the measured
values for cell Orvieto and cell Lottie, this would make the
deduced gK and gRb at fixed nitrogen density nearly equal.
Again a definite conclusion cannot be made.

D. Impacts for practical neutron applications

The levels of flux explored in these tests are much higher
than experienced in the majority of applications which pro-
pose to use 3He as a neutron polarizer or analyzer. Since the
alkali-metal relaxation in our measurement at the 4

�108 cm−2 s−1 flux level showed a manageable increase in
alkali-metal relaxation and a modest 4% reduction in alkali-
metal polarization, it is apparent that in applications even
with a flux density of 1�106 cm−2 s−1 to 1�107 cm−2 s−1

should be largely unaffected. This class of neutron instru-
mentation includes nearly all situations where the 3He is
used as an analyzer, all monochromatic beams with the ex-
ception of some instruments using a velocity selector ��E
�10%� and most time-of-flight instrumentation on reactor
sources provided the 3He is installed after part of the chopper
system because there the time averaged flux is greatly re-
duced.

For the remaining situations such as certain instruments
on the modern generation of pulsed sources and fundamental
physics beamlines using the maximum intensity of neutrons
available which will have fluxes of 108 neutron cm−2 s−1 or
more, a system could readily be designed to withstand the
increased alkali-metal relaxation with better optimization or
more laser power if the cell degrading effects of the neutrons
were eliminated. Should this prove not to be possible, we
believe the two chamber cell holds the most promise for in
situ polarization of the 3He gas. Double chamber cells have
been used successfully for years in nuclear and particle phys-
ics experiments �51,52� where their performance is continu-
ally increasing such that currently results of PHe�70% in
cell of volumes comparable to NSF cells are being reported
when not exposed to the particle beam which causes direct
3He relaxation in their case �54�.

Large diameter-volume double cells have been con-
structed at ISIS and NIST which are optimized for neutron
applications. Each of these cells shows good 3He polariza-
tion and T1 relaxation times of over 200 h, with a 3He po-
larization transfer time of 1–2 h. Further work will show the
maximum obtainable polarizations for these cells which we
expect to approach or exceed 70% similar to current single
cells. The tests performed on cell Roadrunner in this work
where PHe�54% were obtained in situ during neutron expo-
sure are a promising indicator. Finally, for situations where
the beam intensity is increased with neutron focusing tech-
niques, we believe that either single cells with higher laser
power or double cells could be employed as the engineering
situation is simplified by the small focused beam, and thus
smaller cell size.

V. CONCLUSION

We have explored the effects caused by intense neutron
absorption on in situ polarized 3He using the SEOP method.
We have identified a strong alkali-metal relaxation process
that may be due to relaxation mechanisms peculiar to neu-
tron absorption in 3He. The measured relaxation, which ap-
pears to be the sum of a fast component ��1 s� and a slow
component, is observed to scale as the square root of the
neutron flux, consistent with the relaxation processes being
associated with steady-state ion densities in the cell.
Strangely, the slow component of the relaxation rate builds
up and decays with a time constant that is much longer than
typical atomic diffusion times. In addition, after substantial
neutron exposure a white residue forms in the cell and de-
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grades the optical properties of the cell. Further work is nec-
essary to determine the origins of these effects. For practical
applications, the information provided in this paper should
provide a useful guide for near-term planning for polarized
3He usage on neutron instruments.
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