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Polarized 3He gas compression system using metastability-exchange
optical pumping
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sReceived 19 October 2004; accepted 3 March 2005; published online 20 April 2005d

Dense sampless10–100 bar cmd of nuclear spin polarized3He are utilized in high energy physics,
neutron scattering, atomic physics, and magnetic resonance imaging. Metastability exchange optical
pumping can rapidly produce high3He polarizationss<80%d at low pressuressfew mbard. We
describe a polarized3He gas compressor system which accepts 0.26 bar l h−1 of 3He gas polarized
to 70% by a 4 W neodymium doped lanthanum magnesium hexaluminatesNd:LMA d laser and
compresses it into a 5 bar cm target with final polarization of 55%. The spin relaxation rates of the
system’s components have been measured using nuclear magnetic resonance and a model of the3He
polarization loss based on the measured relaxation rates and the gas flow is in agreement with a3He
polarization measurement using neutron transmission.
© 2005 American Institute of Physics.fDOI: 10.1063/1.1898163g

I. INTRODUCTION

Dense samples of polarized3He gass<5 bar cmd are
utilized in several different fields of research including high
energy physics, medical imaging, and neutron scattering.
Several groups around the world have reported successfully
using3He in low-field magnetic resonance imagingsMRId of
the human lung.1–4 One can take advantage of the spin de-
pendence of the3He neutron absorption cross section to po-
larize or spin-analyze thermal neutrons.5–8 Since the3He
nuclear polarization is dominated by the unpaired neutron, it
is used in nuclear and high energy physics to serve as a
polarized neutron target.9–11 Polarized3He gas can also be
used as a source for a polarized3He atomic beam, which can
be used as a surface scattering probe.12,13

To polarize3He two different types of optical pumping
are efficient, spin exchange optical pumpingsSEOPd sRef.
14d and metastability exchange optical pumpingsMEOPd.15

In SEOP, one polarizes the 5s electron of Rb atoms by opti-

cally pumping an optically thick vapor of Rb, which then
transfers its electronic polarization to the3He nucleus in
atomic collisions. A practical advantage of this method is
that one polarizes the3He at the high densities needed for
many applications. However the polarization transfer be-
tween the Rb and3He is slow, taking,1 day to saturate the
polarization of a 100–500 cm3 volume of 3He. In contrast,
MEOP polarizes3He very quickly, allowing a 100 cm3 target
cell to be filled with polarized gas in about one hour. One
reason for the faster production rate is that in MEOP one
polarizes the 23S1 metastable state, which quickly transfers
its polarization to the nucleus in the same atom via the hy-
perfine interaction. The metastable state is typically produced
by striking a rf discharge in the He, and so in practice the
pressure of the polarized gas must be limited to,1 mbar to
limit the polarization loss in the plasma environment caused
by the discharge. So, one must compress the polarized3He in
order to have a sufficiently dense sample for many applica-
tions. The polarization preservation, the ratio of the polariza-
tion of the compressed gas to the initial polarization, is then
a crucial quantity in determining the performance of the
compression apparatus.

This paper describes the design, operation, and charac-
terization of the performance of a polarized3He gas com-
pression system. The mechanical compression apparatus is
discussed in detail in Sec. II. The3He polarizer and the
methods of polarimetry are described in Sec. III. In Sec. IV,
we report on relaxation rate measurements of the system’s
components and the polarization preservation. The polariza-
tion preservation measurements using neutron transmission,
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which includes a description of our polarized gas transport
solenoid are described in Sec. V. In Sec. VI, we compare the
present performance of our system with the Mainz16 and In-
stitute Laue-LangevinsILL d17 polarized3He compressor sys-
tems, and discuss possible avenues for improving the perfor-
mance of our compressor system.

II. COMPRESSION APPARATUS

A. Depolarization mechanisms

The primary consideration in designing a polarized3He
compressor system is minimization of depolarization of the
polarized gas. There are three contributions to relaxation, the
dipole-dipole interaction between the nuclear spins, magnetic
field inhomogeneities and wall relaxation. During atomic
collisions, the dipole-dipole interaction results in a torque on
the polarized nucleus and places a fundamental upper limit
on the relaxation timesT1d of a sample of polarized3He gas
and is given by

1

T1dipole
=

p

807
fbar−1 h−1g s1d

at 300 K for pressurep measured in bar.18 As polarized3He
diffuses in magnetic field gradients, in its rest frame it may
feel time-dependent magnetic fields with frequency near the
Larmor frequency resulting in a spin flip. Schearer and
Walters19 showed that the diffusion in magnetic field inho-
mogeneities causes a spin relaxation time

1

T1field
=

2

3
S 1

B0

dBr

dr
D2tcvthermal

2

v2tc
2 + 1

, s2d

wheretc is the mean time between collisions andv is the
Larmor precession frequency. Assuming thattcv!1, one
expectsTfield~p, where p is the pressure of the gas. At a
pressure of 1 mbar,T1field=10.6 h due to field inhomogene-
ities sdBr /drds1/B0d=10−4 cm−1, which is much longer than
theT1 of the plasma discharge in the optical pumping region,
see Sec. III C 3. The relaxation due to interaction with the
container surface is typically observed to be proportional to
the surface to volume ratio20

1/T1wall = h
S

V
, s3d

where the constant of proportionalityh depends on the stick-
ing coefficient of He, the electronic and nuclear spin struc-
ture of the material, and other possible surface phenomena

that are not completely understood. A list of materials used in
the compressor construction which come in contact with po-
larized 3He and their respectiveh’s is given in Table I.

B. Description of the apparatus

The entire compressor systemsFigs. 1 and 2d is im-
mersed in a uniform magnetic field to suppress depolariza-
tion due to magnetic field gradients. The magnetic field is
produced by a four coil system, constructed by Walker
Scientific,21 based on the design of Franzenet al.22 The coils
are powered by a HP 6674A power supply and produce a
field of 0.1 mT A−1, with field gradientsø10−4 cm−1 over a
cylindrical volume 70 cm diameter by 70 cm long, rendering
spin relaxation due to magnetic transverse field gradients
negligible. The optical pumping cellssOPCsd and most of the
connecting tubing were constructed from standard laboratory
Pyrex glass. There are four OPCs, each 70 cm long with an
inner diameter of 5 cm. A MKS Baratron Type 121A abso-
lute pressure transducer measures the pressure in the OPCs.
This gauge contains some magnetic materials, and is thus
mounted<20 cm away from the OPCs. The OPCs are se-

TABLE I. Approximate relaxation times and respectiveh in the presence of
given materials for S/V<1 cm−1 sRef. 45d.

Material T1wall h ss−1 cmd

Titanium 72 min 2.3310−4

Aluminum 620 min 2.8310−5

Pyrex <60 min 2.8310−4

Corning 1720, 7056 <20 h 1.4310−5

Viton o-ring 14 min 1.2310−3

Krytox greasea <1 min 1.7310−2

aThe value for Krytox has not been measured directly, but rather inferred in
simulations of relaxation mechanisms discussed in Ref. 23.

FIG. 1. Schematic of the compressor system. Arrows indicate3He flow
while compression is in progress. The labeled system components are stor-
age cellsSCd, buffer cell sBCd, optical pumping cellssOPCsd, compressors
sC1, C2d, pressure transducersP1d, nonmagnetic strain gaugessP2, P3d,
needle valvesNVd, getter/purifiersG/Pd, capillary tubingsCap.d, and liquid
nitrogen trapssLNd.

FIG. 2. Photograph of the IUCF3He compressor system. Going clockwise
around the photo: the optical pumping cells in the top center, the Rb coated
storage cell Orion, the aluminum holding blocks for C2, the buffer cell, part
of the flange of C1, the two LN cold traps, and the Baratron pressure trans-
ducer is in the far left. The posts are aluminum Uni-Strut covered in black
tape to reduce reflection of the light from the discharge.
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cured from impurities escaping the getter/purifier or released
in outgassing by the remainder of the system by the presence
of LN2 cooled traps on either side of the OPCs.

A pair of piston compressors constructed entirely of
6061-T6 aluminum perform the compression. An aluminum
piston is connected by a threaded brass rod and a Unilat
coupler to an Econo-Ram IIsSchrader-Bellowsd pneumatic
drive cylinder.sThe Unilat coupler absorbs both translational
and rotational misalignments between the drive cylinder and
the piston and is therefore superior to a universal joint.d A
type 347 stainless steelsAmerican Iron and Steel Instituted
flexible bellows from Standard Bellows seals the drive shaft.
Two Viton quad rings act to center the piston within the
cylinder, and to prevent the flow of3He into the rear of the
compressors. Krytox, a low vapor pressure fluorinated
grease, coats the inside surfaces of the cylinders. Fractional
gas losses to the backside of the compressor through the
quad rings were found to be<10−5 per stroke. The end caps
of the compressors are aluminum Conflat flanges, with a ti-
tanium nitride coated knife edge, and are sealed with an alu-
minum gasket. The inlet and outlet pneumatic valve seats are
machined into the side of the Conflat flange and were de-
signed to minimize the dead volumesDVd of the
compressors.23 The valves are constructed of phosphor-
bronze bellows and valve heads. The first compressorsC1d
has a 15 cm diameter and a 2.6 liter volume, with a piston
stroke of <15 cm. The second stage compressorsC2d is
10 cm diameter, 0.75 liter volume, with a stroke of<9.5 cm.
The compression ratio, which is the ratio of the total com-
pressor volume to the dead volumek1s2d=VC1s2d /DV, was
determined by measuring the pressure changes in the con-
necting tubing with the piston in the forward and withdrawn
positions. These measurements yieldedkC1=176±12 and
kC2=80±8.

In between the compressors sits the buffer cellsBCd, a
1.2 liter Corning 1720 glass sphere. A completely nonmag-
netic ceramic pressure gauge by Bourdon-Sedeme measures
the pressure in the BC. Compressed polarized gas accumu-
lates in a storage cellsSCd, constructed of either a borosili-
cate or aluminosilicate glass. Another nonmagnetic ceramic
pressure gauge measures the pressure in the SC. The storage
cell detaches at a glass-to-glass o-ring seal, allowing it to be
valved off and transported to the experimental area. Both the
SC and BC are connected to the OPCssand each otherd via
6 mm Pyrex tubing enabling the measurement of the accu-
mulated polarization by the optical polarimeter or the cali-
brated OPC free induction decaysFIDd gauge, see Sec. III D.

A turbomolecular pump with a rotary vane forepump
evacuates the compressor system. A cold cathode gauge mea-
sures the pressure near the turbo and the typical base pres-
sure at this point is 1.8310−6 mbar. Due to the small con-
ductance of the connecting tubing, the base pressure of the
glassware is higher, as evidence by the weak discharge which
can be maintained in the OPCs when the system is at the
base pressure.

C. Construction and purification

The entire system was mounted on an aluminum optical
breadboard. The Viton o-rings and quad-rings used through-

out the device were baked at 80 °C in a vacuum chamber to
rid them of excess impurities before they were installed in
the system. The compressor cylinders were clamped in place
on the breadboard and all other components were assembled
relative to the fixed compressors. A thin layer of Krytox
grease was applied to the inside of the cylinders, and the
respective pistons were inserted. Slight adjustments in the
axial placement of the piston within the compressor could be
made by adjusting the depth of the threaded brass rod which
couples the piston to the drive cylinder. The flexible stainless
steel bellows was welded to a mating piece and sealed to the
rear Conflat flange with a Viton o-ring seal. The opposite end
of the bellows is welded to a compression o-ring fitting,
which seals the compressor back end on the outside of the
drive rod and rotates to accommodate any rotational mis-
alignment between the cylinder and the piston rod. Place-
ment of the pneumatic drivesand hence, placement of the
piston along the cylinder axisd was performed with the back
end under vacuum. In this way, the piston could be placed in
its compressed position near the front face of the compressor
with <1 mm accuracy.

After evacuating the system, the OPCs were then baked
at 110 °C for a total of 16 h to drive impurities from the
walls. The system was then filled and flushed several times
with 4He. First, the system was flushed for several hours
with a continuous flow of4He while the getter was slowly
activated to 375 °C. With the getter activated and at a con-
stant temperature, the system was filled several times with a
few mbar of 4He, then subsequently evacuated. To provide
additional cleaning of the OPCs, a high voltage rf discharge
was struck in the low pressure4He. The discharge was then
examined using a Spectroscope spectrometer; impurities in-
troduced a continuous background to the pure He discharge
line spectrum.

D. Compression cycle

To fill the storage cell with polarized3He, gas is intro-
duced into the OPC region. The flow of3He is controlled by
the bottle regulator pressure as well as a precision needle
valve in conjunction with a stainless steel capillarys0.10 cm
diameter by 7.62 cm longd. The He gas is purged of impuri-
ties by passage through an Ultra Pure Systems, Inc. two-
stage getter and purifier. The getter and purifiersG/Pd are
encased in a stainless steel housing which was found to give
a negligible magnetic field gradient in the nearby region. The
getter is specified to reduce H2O, O2, CO, CO2, N2, and H2

impurities to less than 10−8 and the filter removes particles
down to 0.003mm in size with a retention efficiency of
99.9999999%.

After passing through the G/P, the gas flows through a
LN2 trap on its way into the OPCs. The gas is polarized in
the last two cellsssee Sec. IIId, and flows through another
LN2 trap before entering the first compressor. The timing
sequence of C1 is shown in Fig. 3. C1 opens to the OPCs for
3.5 s, allowing time for pressure equilibration. The inlet
valve then closes, and the piston moves forward for 3.0 s.
The outlet valve to the buffer cell then opens for 1 s, again
allowing time for pressure equilibration. Finally, all valves
close and the piston withdraws. C1 operates continuously

053503-3 Polarized He-3 gas compression system Rev. Sci. Instrum. 76, 053503 ~2005!



seven during the buffer cell draind until the storage cell has
reached its set pressure. C2 is operated when the buffer cell
reaches a set pressure. C2 has a similar valve sequence to
C1, with the buffer cell replacing the OPCs and the storage
cell replacing the buffer cell. C2 continues to operate until
the pressure in the storage cell does not increase by more
than a few percent, which typically takes five compressions.
C2 is evacuated while the buffer cell is filled in order to
remove the depolarized residual gas. The compression cycle
ceases once the pressure in the storage cell reaches a set
value.

1. Simulation code
We constructed a computer simulation of the gas flow in

the compressor based on the ideal gas law and the assump-
tion that all volumes reach an equilibrium pressure before a
valve closes. The only adjustable parameter is the gas flow
rate which is determined by the fill time of the buffer cell.
This code also calculates the expected polarization preserva-
tion by relaxing the polarized gas in each volume, as dis-
cussed in Sec. IV. The measured and simulated pressure in
the OPCs, BC, and SC from a typical fill are shown in Fig. 4.

III. POLARIZER AND POLARIMETRY

A. Overview

Pure3He or a 2:14He:3He mixture is polarized by meta-
stability exchange optical pumpingsMEOPd. A weak rf dis-
charges,50 Wd, frequency,10 MHz, is struck in two of
the OPCs by applying high voltage rf to four ring electrodes
of opposite polarity, thus populating the metastable 23S1 state
of the He atom. Circularly polarized laser light at 1083 nm is
introduced into the3He along an axis parallel to the magnetic
field axis. While there is a rf discharge, the nuclear polariza-
tion of the 3He is determined by measuring the degree of
circular polarization of the 668 nms31D2→21P1d light emit-
ted from the discharge.24 Additionally, we can measure the
3He nuclear polarization in the OPCs, BC and SC using free
induction decaysFIDd nuclear magnetic resonance.

B. Metastability exchange optical pumping

In MEOP, circularly polarized light at 1083 nm excites
the 23S1 state to the 23P states. The 23S1 and 23P states are
split by the fine and hyperfine interactions, yielding a total of
nine different allowed transitions for3He, labeledC1–C9
and three transitions for4He, labeledD0–D2.25 The 3He
transitionsC8 and C9, and theD0 transition in 4He have
been shown to produce the largest3He polarizations.26,27 In
polarizing pure3He, circularly polarized light excites either
the C8 or C9 transition, which depletes the metastable 23S1
state of one spin state. The nucleus is then polarized via the
hyperfine interaction. The metastability is exchanged with
ground state atoms in fast atomic collisions which leave the
nuclear spin intact.15 When using mixtures of4He:3He, the
situation is a bit more complex. One pumps theD0 transition
of the 4He atom. The electronic polarization of the4He meta-
stable state is transferred to the3He via collisions. Higher
3He polarizations have been observed26 and expected based
on rate calculations25 when one polarizes a mixture of
4He:3He, due to a more efficient absorption of the laser light
by the D0 transition as well as an increased ratio of meta-
stable to ground state atoms.28

C. Polarizer

1. Nd:LMA crystal

The krypton arc-lamp pumped neodymium doped lan-
thanum magnesium hexaluminatesNd:LMA d sRef. 29d laser
used for optical pumping emits linearly polarized light, has
high powers,10 W free runningd, a linewidth well matched
to the 2 GHz Doppler absorption bandwidth of the He gas,
and possesses several longitudinal modes within this band-
width with good spectral overlap with the optical pumping
transitions.30 We use a Lee Laser Inc. series 700 continuous
wave yttrium aluminum garnetsYAGd laser, in which the
Nd:YAG crystal is replaced by a Nd:LMA crystal antireflec-
tion coated at 1083 nm. The Nd:LMA crystal
s4 mm diameter, 79 mm length, doped with 15%Ndd was
purchased from Union Carbide and cut, polished, and antire-
flection coated at 1083 nm by Virgo Optics. A particular
trouble with this crystal is the potential for thermal lensing.
Because of unavoidable thermal gradients in the crystal from

FIG. 3. Valve sequence of C1. Closed means that C1 is closed to all other
volumes. The 0.5 s delay between valve or piston operations is to ensure
that there is no overlap between successive operations. The timing sequence
for C2 is similar with OPC→BC and BC→SC, the main difference being
that during the filling of the BC, C2 is exposed to the turbo-pump to evacu-
ate the residual gas from the previous BC drain.

FIG. 4. Measured pressure in the BC and SC and the corrected pressure in
the OPC during a fill to 1.20 bar. The solid black lines are the simulated
pressures based on the gas flow rate. The spread in the pressure data for the
OPC is due to the pressure fluctuations when the inlet to C1 is opened and
closed. The pressure measured for the OPC is higher than that predicted by
the simulation since a pressure gradient must exist in order for there to be a
gas flow. The average pressure difference between the model and the mea-
sured pressure is<0.1 mbar and is in agreement with the flow rate of the
system and is used to correct the measured OPC pressure and optical polar-
imeter pressure calibration coefficients. With this correction, the simulation
correctly predicts the time dependence of the pressure in the OPCs, BC, and
SC.

053503-4 Hussey et al. Rev. Sci. Instrum. 76, 053503 ~2005!



external water cooling, the resulting radial change in the
rod’s index of refraction causes the rod to act as a converging
lens, with a focal length that decreases with increasing radial
thermal gradients. If the lamp current is sufficiently high, the
focus can reside within the crystal, causing a drop in output
power and an increased risk of damaging the crystal from
thermal stress.30 To minimize this effect the ends were made
concave with a 45 cm radius of curvature.

2. Laser optics
To tune the beam and reduce the linewidth, two uncoated

solid etalons are placed symmetrically in the laser cavity,
2.5 cm from each coupling mirror, in a manner similar to
Ref. 27. The laser is tuned by positioning the etalons at near-
normal incidence and changing their refractive indices by
controlling their temperatures inside copper enclosures that
surround the etalons. Located behind the laser cavity is a
Pyrex glass tuning cell containing either pure3He or pure
4He. When tuned to a transition wavelength, the leakage
light through the rear mirror is absorbed by metastable He
atoms in the cell and a photodiode detects the subsequent
spontaneous emission. When tuned to eitherC9 or D0 the
typical output power is,4 W.

Since the light emitted from the Nd:LMA crystal is lin-
early polarizeds.99%d, the light which leaves the output
coupler passes through a quarter wave plate to become cir-
cularly polarized. Over the approximately 4 m traveled by
the laser light to the OPCs, the beam diverges enough to
uniformly illuminate the cross-sectional areas20 cm2d of the
pumping cells. The light passes through the last OPC and
then through the third OPC after a series of three near-
normal incidence reflections to minimize the loss of circular
polarization. Polarizing in the two OPCs yields about a 5%
increase in the3He polarization as compared to polarizing in
only one OPC.

3. Optical pumping rates and maximum polarization
The ultimate achievable polarization in the OPCsPmax is

a compromise between the increased spin relaxation due to
the rf discharge and the increased optical pumping rate from
the increase in metastable population. The optical pumping
rate also depends critically on the laser output power and
tuning. To measure the pumping rate, the OPCs were filled
with pure 3He and isolated from the rest of the compressor
system. Circularly polarized laser light then passed through
one OPC, and the optical polarimeter continuously measured
the polarization over a period of 90 s. The polarization accu-
mulation versus time was then fit to an exponential

Pstd = Pmaxf1 − exps− t/tdg, s4d

to estimate the pumping time constantt. sIt is known that the
optical pumping is not an exponential process as the polar-
ization approaches saturation;25,27 t should therefore be
viewed as an approximate parameter characterizing mainly
the initial stage of the optical pumping process.d The pump-
ing rate is defined asN/t, whereN is the number of atoms in
the OPCs. We have measured typical pumping rates of
,1019 s−1 and have achievedPmax=0.71±0.05 for 1 mbar of
pure 3He gas in the OPCs. As mentioned in Sec. III B, the

maximum achievable polarization can be improved by using
a mixture of4He:3He. Shown in Fig. 5 is the pump rate as a
function of the rf discharge strengthscharacterized by the
relaxation rated for three pressures of pure3He in the OPCs.
These data are in good qualitative agreement with those ob-
tained in Ref. 27.

D. Polarimetry

1. Optical polarimeter

One can measure the polarization of3He in the rf dis-
charge by measuring the circular polarization of the light at
668 nm from the transitions31D2→21P1d. Our polarimeter
design is similar to that of Ref. 24. The 31D2 state is created
in a fast atomic collision which does not perturb the nuclear
polarization. The excited electron is polarized by the nucleus
by the hyperfine interaction. The degree of circular polariza-
tion is pressure dependent due to atomic collisions, and the
pressure calibration factors have been measured in pure3He
sRef. 24d with a relative standard uncertainty of 2%. In mix-
tures of4He:3He it is assumed that the measured degree of
circular polarization scales with the mole fraction of3He.

There are some systematic effects associated with the
optical polarimetry method. Gas impurities may either ab-
sorb 668 nm light from the3He and/or emit unpolarized light
near 668 nm, thereby increasing the background. The rf dis-
charge itself causes relaxation with aT1=10–100 s, depend-
ing on the discharge strength. We also found that the initia-
tion of the discharge can decrease the polarization by 15–
30%, resulting in an unknown systematic error in later
interrogation of the3He polarization. Hence, we did not use
the optical method to measure the polarization of the3He in
the BC or SC. However, we did use the optical method to
calibrate the free induction decay gauges discussed below as
well as measure the polarization in the OPCs during com-
pression.

FIG. 5. Optical pumping ratesnuclei s−1d of pure3He in one of the OPCs as
a function of RF discharge as characterized by the relaxation timesT1d. The
laser power was 4.0 W with both the 0.3 and 1.0 mm etalons in the laser
cavity. The3He polarization was measured by the optical polarimeter, dis-
cussed below. Thes3d are for a pressure of 1 mbar, thes}d are for
1.26 mbar, and thesLd are for a pressure of 1.43 mbar. The pumping rate
was determined by fitting the polarization accumulation using Eq.s4d. The
relaxation time was determined by shuttering the laser and measuring the
subsequent polarization decay over a period of 90 s. The limited discharge
strength range for the lower pressures is due to the difficulty of maintaining
a weak discharge. These data are in qualitative agreement with those re-
ported in Ref. 27.
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2. Free induction decay
In order to measure the3He polarization in the BC and

SC, we used a portable nuclear magnetic resonance, free in-
duction decaysFIDd31 device described in detail in Refs. 32
and 33 and sketched in Fig. 6. A short rf pulses,1 msd with
frequencysvpd near the Larmor frequencysvLd tips the3He
spin through an anglea. The subsequent precession of the
transverse component of the magnetization around the static
magnetic field produces an oscillating magnetic field at the
Larmor frequency, which is detected by the same coil after
the rf pulse. The induced voltage is sent to a lock-in ampli-
fier, whose reference frequency is that of the rf pulsevp. The
beat signal of frequencyvb= uvL−vpu decays nearly expo-
nentially with a timesT2,10 msd due to diffusion of the
nuclei out of the coil’s sensing volume and magnetic field
gradients.34 Since the drive/pick-up coil is smaller than the
sampling volume, the measurements do not benefit from mo-
tional narrowing at low pressures35 and diffusion causes a
nonlinear pressure dependence in the FID measurementssee
Fig. 8d. In order to reduce the effects of diffusion on the FID
measurement in the OPCs, we constructed a coil which was
nearly twice the rms displacement of the gas atoms during
the time of measurementskxrmsl<5.5 cm for 10 ms at
1.3 mbard. With this coil, we have been able to measure a
FID signal with a signal-to-noise ratio of 3:1 in the OPCs
with pure 3He at pressures as low as 1 mbar. FID measure-
ments in the BC and SC are easier as the density of polarized
nuclei is higher and the mean displacement is much shorter.
For typical pressures in the BCs65 mbard and SCs1 bard,
kxrmsl<1.5 and 0.4 cm, respectively for a 40 ms measure-
ment. As one can see in Fig. 7 theT2 for the higher pressures
is much longer, with a good signal-to-noise ratio.

3. FID calibration
The OPC-FID signal was calibrated using the optical

polarimeter, using the peak-to-peak voltage difference be-
tween the first two periods of the beat signal, denoted byDAB

and DBC ssee Table IId. To calibrate the OPC FID-NMR
gauge, pure 3He gas at pressures ranging from
1.0 to 2.6 mbar was polarized in the OPCs. For the 2:1

4He:3He mixtures, only two pressuress5.0 and 2.7 mbard
were used. Once saturation was reached, the rf discharge was
extinguished and the FID-NMR signal was taken. The3He
polarization was related to the peak-to-peak differences via

DAB,BC = kAB,BCpP3He, s5d

wherep is the pressure,P is the polarization, andk is the
calibration coefficient, with units mV mbar−1. Figure 8
shows the results of the OPC-FID gauge calibration. As one
can see from Fig. 8sad, the raw FID signal is linearly propor-
tional to the polarization as measured by the optical polarim-
eter and correctly extrapolates to zero. Also from the FID
signal versus pressure curve, Fig. 8sbd, one sees that at low
pressure the signal is not linearly proportional to the pres-
sure, as was discussed in Sec. III D 2. So, the linear depen-
dence of Eq.s5d is used only for small pressure deviations
from a pressure at which the gauge was calibrated.

To calibrate the BC-FID gauge, we filled the buffer cell
with pure, polarized3He to 65 mbar using a truncated ver-
sion of the compression scheme outlined above. After filling
the BC, the OPCs were evacuated and isolated from depolar-
izing portions of the systemssee Sec. IVd. Gas at 2 mbar
pressure was bled into the OPCs by filling the tubing con-
necting the OPCs and the BC. We chose 2 mbar for an im-
proved signal-to-noise ratio with a OPC-FID gauge. There
are systematic effects in the polarization measurement in
flowing the gas from the BC to OPC region from depolariza-
tion of the gas in the Pyrex tubing which connects the BC to
the rest of the system and preferrentially flows into the OPC.
Briefly opening the valve connectingC1 and the BC before
bleeding gas to the OPC, produces a 5 to 10%increase in the

FIG. 6. Schematic diagram of the NMR-FID gauge. The RF pulse creates a
rotating field, which tips the spins of the polarized nuclei an anglea with
respect to the polarization axis. The precession of the transverse component
of the magnetization induces a rf signal in the drive coil. This induced rf
signal is sent to a lock-in amplifier whose reference frequency is that of the
initial drive pulse. The output of the lockin is then the beating between the
Larmor frequency and the drive pulse and is acquired on a digital oscillo-
scope.

FIG. 7. Typical FID signal obtained in the BC at a pressure of 54 mbarsad
and in the SC for a pressure of 1.16 barsbd. The solid line is a fit to the data
assuming an exponentially damped sinusoid. The BC signal corresponds to
54 mbar of pure3He polarized to 32%. The SC signal corresponds to
1.16 bar of a 2:14He:3He mixture with a polarization of 32%.
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measured polarization and therefore produces a transient ef-
fect. Depolarization in the glass between the BC and OPC,
which is evacuated before filling the OPCs, is negligible
s,1%d. The SC-FID gauge was calibrated using the neutron
transmission data discussed in Sec. V C.

IV. RELAXATION TIME MEASUREMENTS

A. Optical pumping cells

To measure the relaxation time in the OPCs, we polar-
ized gas at 2.0 mbar for 15 min to allow the entire volume of
the OPCs to equilibrate, extinguished the RF discharge,

turned the laser off, and measured the polarization with the
OPC-FID gauge over a period of a few hours. The measured
relaxation time ofT1OPC=150 min for the OPCs without a
discharge in the isolated configuration is negligible com-
pared to the relaxation due to the discharge,100 s.

B. Compressors

The relaxation time ofC1 was measured by introducing
polarized gas from the BC intoC1, allowing the gas to re-
main in either the compressed or uncompressed state. The
gas was introduced into the OPCs and its polarization mea-
sured by the OPC NMR-FID gauge. The relaxation times
reported in Table III are corrected for the relaxation time of
the buffer cell. By this method we measured the relaxation
time in the withdrawn position to beT1C1,uc=60 min and in
the forward position to beT1C1,c=3 min. The change in the
relaxation rate is consistent with the change in the surface to
volume ratio for the two piston positions.

To measure the same quantities forC2, a different
scheme was necessary, asC2 is not directly connected to the
OPCs. Polarized3He gas from the BC was introduced into
C2 and remained in the compressed or uncompressed state.
The gas was then reintroduced to the BC and the polarization
measured by the BC NMR-FID gauge. In order to extract
T1C2,ucscd from these polarization measurements, we assumed
that the measured FID signal had the following time depen-
dence in the uncompressed state:

FIDstd =
FIDst = 0d
VBC + VC2

e−st−tucd/T1BC

3sVBCe−tuc/T1BC + VC2e
−tuc/T1C2,ucd, s6d

wheretucscd is the time the polarized3He spent in the uncom-
pressedscompressedd state. The FID signal has a similar
form for the compressed state by replacingtuc with tc. Since

TABLE II. Results of a calibration procedure as described in the text. The
calibration coefficients for the OPC and BC are for pure3He gas, while for
the SC they are for a mixture of 2:14He:3He.

Coil Pressuresmbard kAB smV/mbard kBC smV/mbard

OPC 2.0 260±20 210±11
BC 65 23.7±0.7 22.8±0.7
SC 925 1.32±0.038 1.18±0.03

FIG. 8. 3He FID polarimetry in the OPCs.sad FID signal vs polarization as
determined by the polarimeter. The curve is a linear best fit to the data.sbd
FID signal vs pressure for constant polarization. Polarized gas was com-
pressed into the buffer cell and then bled into the OPC in pressure intervals
as indicated. The line is a fit to the first two data points to demonstrate the
FID signal is nonlinear in the pressure as expected.

TABLE III. The compressor system’s major components’ physical parameters. Relaxation times for the com-
pressors are for the piston in the withdrawnsforwardd position. Preservation is the estimated contribution to the
loss of the3He polarization during the compression cycle. The preservation for the compressors is based on the
estimate discussed in Sec. V A while those for the BC and the exposed SCsSC,CTd are the measured quantities
discussed in Sec. V C. Orion’s isolated T1=210 h was measured at a pressure of 0.933 bar of pure3He.

Region Material Volumescm3d T1 Preservation

OPCs Pyrex 7050±50 s150±9d min 1.00
C1 6061-T6 Al 2615±50 s60±3d min/fs3.0±0.2d ming .99
Buffer Corning 1720 1107±30 s290±10d min .92±0.05
C2 6061-T6 A 725±50 s37±2d min/fs2.1±0.7d ming .99
SC, CT GE180, Pyrex 480±20 s8.6±1.1d h sat 170 mbard 0.81±0.09
Orion GE180 474±20 s210±10d h n/a
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T1BC ssee Sec. IV Cd andVC2, VBC ssee Sec. II Bd were mea-
sured independently, it is possible to inferT1C2,ucscd from the
data. The volume weighting assumes no gas loss during com-
pression and that the gas has sufficient time to mix. These are
reasonable assumptions given the measured gas loss per
stroke ofC2 sSec. II Bd and the root mean square displace-
ment of 7.7 cm after 1 s at 65 mbar. Shown in Fig. 9 is the
FID signal as a function oftucscd. From these fits, and includ-
ing the time the piston moves forward, it was found that
T1C2,uc=2250±90 s andT1C2,c=190±43 s. TheseT1’s scale
with the change in surface-to-volumesS/Vd ratio of the two
piston states. Additionally, when compared with theT1’s ob-
tained forC1, they correctly scale with the S/V of the two
compressors.

C. Buffer cell

The buffer cell’s relaxation time was measured using the
BC-FID gauge at 54, 65, and 171 mbar and with the valve to
the ceramic gauge opened and closed and foundT1
=s6±1d h, independent of pressure. This is consistent with
our estimate of 6 h based on the typical uncoated 1720T1
<20 h, the S/V of the Pyrex tubing, and their relative vol-
umes.

D. Storage cells

We have mainly used a Rb coated GE 180 glass cell
named “Orion,” which is cell 13 in Ref. 36. The Rb coating
is known to increase a cell’sT1,37 with SEOP cells with
1 bar of 3He obtaining T1ø600 h.36 At a pressure of
0.933 bar in isolation from the compressor system, Orion’s
T1=210±10 h, consistent with the results of Ref. 36.

E. Capillary connecting tubing

In an attempt to measure the systematic polarization loss
in bleeding gas from the SC to the OPC due to the connect-
ing tubing sCTd, we measured theT1 of Orion in different
configurations in order to understand the effects of pressure
and the exposure to the CT onT1. The CT has a high
surface-to-volume ratiosS/V<20 cm−1d and will thus have
a short, pressure independentT1. We measured the relaxation
at two different pressures, 170 and 650 mbar, with a mixture
of 2:1 4He:3He, with Orion isolated and exposed to the CT.
For both pressures, the isolatedT1<200 h. In the exposed
state, when the polarized gas can diffuse to Pyrex regions
with S/V<20 cm−1, T1eff scales linearly with pressure with
T1s170 mbard=s8.6±1.1d h and T1s650 mbard=s32±1d h.
The pressure dependence suggests that the gas is diffusing to
a region with a shortT1. We have not been able to clearly
identify the source of this depolarization, that is whether it is
due to diffusion to a region with a large magnetic gradient or
a large S/V. The fast relaxation in the first few cycles ofC2
dominates the SC contribution to the polarization preserva-
tion. By shortening this tubing, or by more quickly achieving
higher pressures in the SC, the relaxation in the SC would be
dominated by the wall relaxation.

V. POLARIZATION PRESERVATION

We identify the polarization preservation as one relevant
measure of performance of the compressor. We define the
polarization preservation as

fBC =
PBC

POPC
, fSC=

PSC

POPC
, s7d

wherePx is the polarization of the3He in the denoted vol-
ume. In order to estimate the expected polarization preserva-
tion, we measured theT1 of polarized3He in every major
component of the compressor system. Using the measured
relaxation rates, we have calculated the expected polarization
preservation by a rough estimate and by using the simulation
discussed in Sec. II D 1.

A. Preservation estimate

Polarized3He spends an average of 3.2 s in the uncom-
pressed state and 1 s in the compressed state ofC1. If we
assume that the relaxation rate changes linearly according to
the S/V as the piston moves from the withdrawn to forward
positions, then the polarization as a function of time during
the motion of the piston can be expressed as

Pstd = Ps0dS1 −
Dt

tC1,WDt
tDDt/Dt

, s8d

where Dt is the compression time andDt=tC1,W−tC1,F.
Combining the three relaxations, we findsP/P0dC1=0.99.
Performing the same calculation forC2 yields sP/P0dC2

=0.99. It takes approximately 15 min for the buffer cell to
reach a pressure of 65 mbar. Since the pressure increase is
approximately linear, the preservation for the first filling of
the buffer cell is

FIG. 9. Data for the time dependence of the3He polarization in the with-
drawnsad and forwardsbd piston positions of C2. T1u,sucd were obtained by
fits of Eq. s6d to the data.
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S P

P0
D

1
= expS−

DtBC1

2T1BC
D , s9d

where DtBC,1=15 min. Since the buffer cell is not emptied
during C2’s operation, the polarization in BC before thenth
C2 operation is given by

S P

P0
D

n
=

pn min

Pn max
S P

P0
D

n−1
expS−

DtBC,n

T1BC
D

+
pn max− pn min

pn max
expS−

DtBC,n

2T1BC
D , s10d

wherepn maxsmind is the pressure beforesafterd C2 operates.
Typically, pmax=65 mbar andpmin=20 mbar. So, for four
cycles, sP/P0dBC=0.95. If we assume that gas is linearly
accumulated in the SC over 1 h we expect

S P

P0
D

SC
= exps− DtSC/2T1SCd = 0.935. s11d

From these calculations, we estimate the polarization preser-
vation after filling the buffer cell to 65 mbar to befBC

=0.94 and for filling the storage cell to 1 bar,fSC=0.87.

B. Preservation simulation

Using the code mentioned in Sec. II D 1, the polarization
preservation after filling the SC is more accurately calculated
by using the measured relaxation rates, the residence time in
every volume in which polarized gas flows, as well as using
the actual pressures in each volume. Based on the results of
Sec. IV E a pressure dependentT1SC was incorporated in the
calculation. Since the simulation reliably models the time
dependence of the pressures in the various volumesssee Fig.
4d we are confident that the times used for the polarization
relaxation simulation are correct. Based on these simulations,
we expectfBC=0.92 andfSC=0.83 for pressures of 65 and
1000 mbar, respectively, for a typical operating flow rate of
0.22 mbar l s−1, which gives an average pressure in the OPCs
of kpOPCl=2 mbar.

C. Preservation measurement

1. Polarization of Optical Pumping Cells

To determinefBC and fSC, a definition ofPOPC is neces-
sary. Since the gas flows, a pressure gradient necessarily ex-
ists and the pressure gauge will record a higher pressure than
exists in the OPCs. The simulation code is used to correct the
measured pressure and polarization calibration coefficients.
The pressure correction is<10% while the polarization cor-
rection is <2%. The average OPC polarization,kPOPCl is
found by

kPOPCl =
kpOPCPOPCl

kpOPCl
, s12d

wherePOPC andpOPC are the corrected OPC polarization and
pressure, respectively. The pressure weighting accounts for
the number of polarized nuclei transferred from the OPC to
the BC per stroke.

2. Buffer cell
We measured the polarization preservation after filling

BC to 65 mbar for different average pressures in the OPCs
using pure3He and the results are shown in Fig. 10. The
average measured preservation of 0.92±0.05, is in excellent
agreement with our expectations given above in Sec. V B.

3. Storage cell
To eliminate uncertainties in the polarization measure-

ment introduced by flowing the gas from the SC to the
OPCs, the final polarization in SC was measured using neu-
tron transmission through Orion filled with polarized gas.
The total neutron transmission through the3He and the glass
cell is given by38

Tsld = Te exps− nls0dcoshfnlP3He s0sldg, s13d

whereTe is the neutron transmission through the empty glass
cell, n is the 3He number density,l is the length of the3He,
and s0sld is the wavelength dependent neutron absorption
cross-section. By measuring three sets of transmission data,
through the polarized cell, the depolarized cell, and the
empty cell, one can unambiguously determine the3He polar-
ization.

Polarized gas is transported to the neutron scattering fa-
cility in a battery powered transport solenoid. The solenoid is
wound on a 31.4 cm diameter aluminum cylinder and is
53 cm in length. There are two sets of ultra low carbon steel
m-metal shielding from Amuneal Manufacturing Corp., with
a maximum permeability ofm=3000 surrounding the sole-

FIG. 10. Relaxation and preservation data for the BC.sad Representative
plot of the polarization vs time for the BC. The data corresponds to 52 mbar
of pure3He in the BC, and the T1 from the fit is 6.5±0.2 h.sbd Polarization
preservation for filling the BC as a function of the average pressure in the
optical pumping cells during compression to 65 mbar. The average of allfBC

is 0.92±0.05, with the uncertainty coming from the rms. deviation of the
distribution.
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noid to reduce external magnetic fields in the solenoid. The
inner souterd shield is 32.4 cms40.6 cmd in diameter and is
56.5 cm s60.0 cmd in length and both are 1.27 mm thick.
The shields also have end caps with 10 cm diameter holes so
a neutron beam can pass unattenuated. An estimate for the
shielding factor for a double shield is given by:

A = 1 +Ai + Ao + AiAos1 − sROi/RIod2d s14d

where the subscriptisod stands for innersouterd shield,
RIsROd is the innersouterd radius of a shield, and the indi-
vidual shielding factor is given by Ax=sm /4ds1
−sRI/ROd2d.39 Ignoring the effects of the holes in the end-
caps, and assuming the maximum permeability this arrange-
ment ofm-metal shielding gives an estimated shielding fac-
tor of 60. The inner end caps reroute the solenoid’s field
through the inner shielding, thus reducing stray fields that
may leak into a sample area. We constructed a three-
dimensional magnetic field mapping system capable of map-
ping field gradients above 1310−4 cm−1. The field mapping
system measures the vectorial magnetic field with a Lake-
shore triple axis probe. The probe is translated in three or-
thogonal directions with worm gear translators and is con-
trolled through aLABVIEW interface. The maximum volume
that can be mapped with this system is<1 m3. With this
mapping system, the measured field gradients in the center
region of our shielded solenoid<3310−4 cm−1, yielding a
T1field<1200 h at a pressure of 1 bar.

Orion was filled to 1.22 bar with a 2:14He:3He gas
mixture from Spectra Gases with a 5% relative uncertainty in
mixture ratio. The average polarization in the OPCs during
the fill was kPOPCl=0.56±0.03. Orion, was then placed in
the transport solenoid and then driven in a car to POSY 1, the
polarized neutron reflectometer at the Intense Pulsed Neutron
Source at Argonne National Laboratory in Argonne, IL. Six
hours after filling, Orion was installed on the beamlinessee
Fig. 11d, and a power supply was connected to the transport
solenoid to ensure a constant field while acquiring the neu-
tron transmission through the polarized cell. We measured
the transmission of the unpolarized neutron beam through
the polarized cellsTNd in 14, 1 h long data sets. The3He was
then depolarized, and a 10 h transmission runsT0d was col-
lected. Orion was then evacuated, and the empty cell’s trans-
missionsTed was measured.

To determine the initial3He polarization, we first deter-
mine the thickness of the3He fromT0/Te, shown in Fig. 12.
From this fit, the optical thickness was determined to benl
=5.040±0.004 bar cm. By fitting coshfP3Henlssldg to the

averagedTN’s, normalized byT0, the average3He polariza-
tion during data collection period is obtained, see Fig. 13.
The kP3Hestdl data was then fit by the time-averaged polar-
ization

kPstdl =
T1

t
exps− t/T1df1 − exps− t/T1dg, s15d

wheret is the length of the averaging period andt is time at
the beginning of the data collection. This fit gaveT1

=100±10 h. OnceT1 was determined, the initial polarization
of Orion was determined to bePSCst=0d=0.464±0.046. This
PSC assumes that there were no losses in polarization during
the transfer of orion from the compressor’s holding field to
the transport solenoid, but does include the relaxation of
orion while on the compressor during the 39 min between
completion of the fill and transfer to the transport solenoid.

FIG. 11. Experimental setup with the polarized target of3He in the POSY I
beam line, not drawn to scale. The neutron depolarizer was a bulk sample of
iron that had randomly oriented magnetic domains. The depolarizer was
used so as to not include the polarization properties of the supermirror nor
the spin transport of the instrument in the analysis, as well as to not have to
remove the supermirror.

FIG. 12. Neutron transmission through the depolarized target, normalized
by the transmission through the empty cell. The exponential fit gives the3He
thickness,nl=5.040±0.004 bar cm.

FIG. 13. Neutron transmission through the polarized cell at three different
times, normalized by the transmission through the depolarized cell. The
transmissions for the different polarizations are offset by 0,0.5,1 from top to
bottom for clarity. The three transmissions were taken over four hours each,
and the times after Orion was transferred to the transport solenoid to which
they correspond arePs6.35 hd=0.419±0.003, Ps11.35 hd=0.399±0.003
and Ps15.35 hd=0.388±0.004. From the time dependence of the polariza-
tion, Orion’s T1 in the solenoid was determined to be 100±10 h. This re-
laxation time implies that immediately after compression, the3He polariza-
tion was 0.457±0.046, yielding a polarization preservation offSC

=0.81±0.09.
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Taking the ratio ofPSC andPOPC, we find for the polar-
ization preservation,fSC=0.81±0.09, which is in agreement
with the expected preservation of 0.83 based on simulation.
We conclude that the polarized gas compression system is
operating at the theoretical limit to the polarization preserva-
tion which is based solely on the system components’ relax-
ation rates.

VI. DISCUSSION

A. Comparison with current Mainz and ILL 3He
compressor systems

Both the current Mainz and ILL3He compressor systems
are of larger scale than our system, about an order of mag-
nitude larger in OPC volume and total flow rate. However,
the original system described in Ref. 40 is of similar scale to
our compression system. The current polarized3He system
constructed by the Mainz group consists of five 2.4 m long
optical pumping cells. Their system has one compressor, fab-
ricated entirely of titanium and compression is performed by
a hydraulic system. They incorporate an intermediate buffer
cell, and have found that this volume is the dominant source
of depolarization. They polarize the3He with two 15 W Yb
fiber lasers and can achieve a maximum steady state polar-
ization of 84±2%.41 With a flow rate of 1 bar l h−1, their
systems yields an OPC polarization of 75%, and a final po-
larization of 70.5%.16 A 3He compressor system at the ILL
was commissioned in 1996sRef. 42d and was based on the
Mainz system.40 Their current system consists of five optical
pumping cells, with a total volume of 39 l, maintained at
1 mbar. They employ a single compressor bodys5.2 l in vol-
umed, machined entirely of titanium and the separation of the
piston and flange is finely tuned to<100 mm. Compression
is performed by a hydraulic system in which the buffer cell is
filled several times before filling the storage cell.43 They are
using several 4 W, 2 GHz linewidth Yb fiber laser, with a
flow rate of 1.4 bar l h−1, resulting in a final3He polarization
of <60%.17

B. Summary of our polarized 3He compressor system

Using a total gas flow rate of 0.8 bar l h−1 sfor a 2:1
4He:3He mixtured, our measured polarization preservation of
0.81±0.09 agrees with the limit of 0.83 which is based on
the system components’ relaxation rates. We have identified
the relaxation in the BC and SC connecting tubing as the
main source of polarization loss. The grease in the aluminum
compressors contributes very little to the polarization loss
due to the short residence time in these compressors. Using
the Nd:LMA laser at 4 W, our maximum OPC polarization
during compression is<65% using a4He:3He mixture,
which with fSC=0.81, we expect a maximum final polariza-
tion of <52%. Specifically, for a 46% polarized target, with
a 5 bar cm thickness, the neutron polarization, flipping ratio,
and total transmission at 4 Å is 0.58, 3.8, and 0.29, respec-
tively. We have recently constructed and tested a shielded
transport solenoid which has transverse field gradients<3
310−4 cm−1. For a 1 bar sample of gas this givesT1field

,1200 h, and so theT1 of our MEOP cells in the solenoid
will be dominated by wall relaxation.

C. Potential improvements

Higher final polarizations,PSC<0.55 are achievable
with the compression system as it stands by replacing the
Nd:LMA laser with a higher power Yb-fiber laser which has
recently become commercially available.44 To improve even
further will require modification of the compression system,
either by reworking the connecting tubing, or by increasing
the volume and compression ratio ofC2. We attribute the
reducedT1 of the BC and the SC to the connecting tubing,
which, in both cases, is a Pyrex region of high S/V, and thus
increased relaxation. By reducing the length of these regions,
we should be able to increase theT1, and thus the preserva-
tion. Increasing the volume and compression ratio ofC2
would improve the preservation twofold. First, the BC will
be more efficiently drained and the SC will be more quickly
filled, resulting in shorter fill times. Second, since the SC has
a pressure dependentT1, by more rapidly increasing the SC
pressure, the SC will more rapidly attain a longerT1. If the
relaxation of the gas in the SC was dominated by the wall
relaxationsT1,200 hd, we estimate that the new preserva-
tion would be<93%.
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