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Random Matrix Products
in Wireless Multiantenna Sytems
G. Alfano G. Taricco

Introduction
Modeling a multiantenna wireless channel via a product of independent random matrices captures the
main geometrical and electromagnetic features of the communication link. Upon a proper tuning of
the various parameters (e.g. marginal distribution of each matrix entry, size of each matrix factor,
etc.) the product model, early introduced by Müller [1], is suitable to model different scenarios, across
several generations of wireless systems. Among the various applications of random matrix theory in
the performance analysis of wireless systems represented by product models, we focus hereinafter on
a finite-blocklength setting. Specifically, we evaluate the so-called channel dispersion, a metric useful
to determine the impact of channel dynamics and antenna selection rules on the communication rate,
for an isotropic (i.e. unitarily invariant in law) channel. Then, we provide the statistics of the mutual
information corresponding to non-isotropic product channels, paving the way to the characterization
of the dispersion in more realistic scenarios.

Finite blocklength analysis
On a noisy communication channel, the maximal cardinality of a codebook of blocklength n which
can be decoded with block error probability no greater than ε is denoted as M∗(n, ε); while its exact
computation is mostly out of reach, an effective approximation is provided by

M∗(n, ε) = nC −
√
nV Q−1(ε) + O(log n), (1)

with C the capacity of the noisy channel at hand and V its dispersion, while Q−1(·) denotes the
inverse of the Gaussian Q-function and O(·) is intended according to the usual Landau notation. For
a multiantenna block-fading channel with nt transmit and nr receive antennas, with coherence time
given by T , the input-output relation at block k (spanning time instants from (k− 1)T to kT ), is given
by

Yk = HkXk + Zk k = 1, . . . , n, (2)

with Y the nr × T -valued channel output, X the input matrix of size nt × T with iid zero-mean
complex Gaussian entries with variance γ = P/nt [2, Thm.6], Z an nr × T -matrix of additive white
Gaussian noise.

Assuming that a power constraint
∑n
k=1 ||Xk||2F ≤ nTP is enforced, and that the receiver is equipped

with full information about the channel state, the mutual information per channel use is a random
function of the input power level P , i.e. I(P ) = log det

(
Inr + P

nt
HH†

)
, and the channel capacity and

dispersion appearing in (1) can be written, respectively, as [3, 2]

C(P ) = E [I(P )] (3)
V

log2(e)nmin
=
Tnmin

log2(e)
var (I(P )) + E

[
1− 1

(1 + γλ)2

]
+ γ2E[α2]− γ2nmin

nt
E2[α], (4)

where α = λ
1+γλ, λ being a single, unordered eigenvalue of HH†, whose rank is denoted by nmin.

Notice that the expression of V in (3) holds whenever the joint eigenvalue distribution of HH† is a
symmetric function. Since most of the (even non-isotropic) fading laws commonly adopted in multi-
antenna settings exhibit such a symmetry feature, we stick to such a simplified version of [2, Eq.(12)].

Non-isotropic channels
In the presence of spatial correlation at either ends of the link, the marginal law of the matrix-valued
channel process is no longer isotropic, and the explicit dependence on the eigenvalues of the spatial
correlation matrices appear. In presence of spatial correlation at a single end of the link, the one
equipped with fewer antennas, [5] provided an expression for C; the corresponding expression for
fully-correlated channel appeared in [7]. As to the dispersion V , its characterization is by far more
challenging than that of C, since it involves some spectral statistics of the channel matrix process
which have not been explicitly characterized yet.

Information Density
According to [2], the operational expression of the channel dispersion is obtained by evaluating the
quantity

1

T
var [i(X; Y,H)|X] ,

where the single-letter information density is defined as

i(x; y, h) , log
dPY,H|X=x

dP ∗Y,H

(y, h) , (5)

where P ∗ denotes a capacity-achieving output distribution and can be alternatively cast as [2]

i(x; y, h) =
T

2
I(P ) +

nmin∑
`=1

f (ρ`), (6)

with f (·) an algebraic function of the non-zero singular values of the matrix h. The expression (6)
leads to the second line in (3), otherwise stated, it reduces the evaluation of V to an (although possibly
involved) expectation w.r.t. the law of a single and a randomly chosen pair of eigenvalues of HH†.
Unfortunately, for several fading types (e.g. correlated Ricean, product channel with double correla-
tion, just to mention two representative cases), explicit expressions for the eigenvalue densities are not
available, despite a remarkable progress in the study of finite-sized random matrices spectra during
the last decade [8, and refs therein].

Ongoing work: closed-form output densities
A characterization of the coherent dispersion, overcoming the limitation of dealing with an isotropic
fading process, can be obtained by working on its rigorous definition (5), once the conditional output
density PY,H|X=x of the block-fading channel (2) is available in closed-form. Such a task is doable
for many fading processes, beyond the isotropic case, as shown in [9, 10]. In particular, the output
density is expected to have expression

PY,H|X=x = κdet
(
gi(y

2
j)
)
i,j=1,...,nmin

with κ a density-normalizing constant and g(·) a function depending on the fading law and y2
j the j-th

squared non-zero singular value of Y. Notice that, as remarked in [2], P ∗Y,H = PHP
∗
Y|H, the last

factor being under our assumptions a complex Gaussian law with zero mean and covariance matrix
given by Inr + P

nt
HH†.

Channel Model
The process Hk is iid, with generic (matrix-valued) sample given by

Hk =
(
Σ

1/2
rx HMHM−1 · . . . ·H1Σ

1/2
tx

)
k
. (7)

In (7), H` ∈ CN`×N`−1, ` = 1, . . . ,M contain iid random entries distributed as CN (0, 1), and
the square matrices Σ

1/2
tx and Σ

1/2
rx of proper size, represent, the spatial correlation among transmit

(resp. receive) antennas. Their eigenvalues, assumed distinct for sake of simplicity, are denoted by
{σtx

1 , . . . , σ
tx
nt} and {σrx

1 , . . . , σ
rx
nr}, respectively. We also assume, wlog, nt = n0 = nmin, and define

the auxiliary coefficients ν` = N` − nmin ` = 1, . . . ,M .

In absence of spatial correlation at both ends of the link, Σ
1/2
rx = Inr and Σ

1/2
tx = Int, respectively. In

this case, a closed-form expression for C has been provided in [4]. As to the dispersion V , it can be
obtained upon replacement in (3) of the following quantities:

E[α] =
κ

γ

nmin∑
i,j=1

Di,j
γj

G
M+1,1
1,M+1

(
−j

−j, νM , . . . , ν2, ν1 + i− 1

∣∣∣∣1γ
)

E[α2] =
κ

γ2

nmin∑
i,j=1

Di,j
γj

G
M+1,1
1,M+1

(
−j − 1

−j, νM , . . . , ν2, ν1 + i− 1

∣∣∣∣1γ
)

E
[

1− 1

(1 + γλ)2

]
= 1− κ

nmin∑
i,j=1

Di,j
γj

G
M+1,1
1,M+1

(
1− j

2− j, νM , . . . , ν2, ν1 + i− 1

∣∣∣∣1γ
)
,

with κ the density-normalizing coefficient of the joint density of the eigenvalues of HH† (see [4,
Formula (21)]), andDi,j denoting the (i−j)-th cofactor of the square matrix of size nmin, with generic
entry Γ(ν1 + i+ j − 1)

∏M
`=2 Γ(ν` + j). Finally, var (I(P )) = Eλi,λj [log(1 + γλ1) log(1 + γλ2)]−C2.
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