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Summary

The evolution of the aviation industry has always been driven by the achieve-
ment of better performances and the reduction of weight. One successful approach
for saving weight is the design of aircraft structures able to work in postbuckling con-
ditions. In addition, the ongoing trend of replacing metals with high-performance
fibre composites has led to both lighter and more efficient airplanes.

However, the approaches employed for the design of isotropic material structures
are not suitable for composites because of the different mechanical behaviour of
these materials due to their physical and chemical properties. For this reason, new
methodologies have been created to properly model the behaviour of composite
structures and the phenomena caused by their heterogeneous nature. Moreover,
additional failure mechanisms have to be considered for composites, such as the
intra-laminar damages (the fibres or the matrix failure) and the delaminations.

The new analytical techniques developed for the analyses of composite beams
can be grouped in three main categories: the Higher-Order theories, the Layer-
Wise approaches and the Zigzag theories. The Higher-Order theories have been
proven to be not enough accurate for highly heterogeneous composite beams that
are moderately thick, whereas the Layer-Wise approaches are generally accurate
but inefficient for laminates made of many layers. The Zigzag theories are a sub-
class of the general Layer-Wise theories but they have been developed in the way
that the number of variables, thus the computational cost, is independent of the
number of layers.

The Finite Element (FE) commercial codes are usually the preferred choice for
the structural analysis because of their high accuracy and versatility to analyse even
complex geometries and material laminations. However, highly-detailed FE mod-
els of composite beams are usually computationally inefficient in the commercial
codes. Moreover, the computational effort further increases when nonlinear analy-
ses are performed, as for the postbuckling analysis of composite beams, becoming
unacceptable when elements like piezoelectric actuators are involved in nonlinear
analyses.

Nevertheless, the finite element formulations based on the Refined Zigzag The-
ory (RZT), which is one of the Zigzag theories, have proven to be as accurate as the
commercial codes and also more efficient. The RZT has already been assessed for
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the static and free-vibration analyses of beams with highly heterogeneous material
laminations, demonstrating its superior performances.

In this context, the present work has the primary objective of creating a suc-
cessful methodology for the buckling and postbuckling analyses of composite and
sandwich beams with piezoelectric actuators, able to reach the same accuracy as
highly-detailed FE commercial code models with lower computational cost.

A literature review was conducted about the methodologies employed for the
structural analyses of composite and sandwich beams. The research showed that
the analytical and numerical methods used for the buckling and postbuckling anal-
yses of composites were either based on theories not suitable for both composite
laminated and sandwich beams or not enough efficient. In addition, the RZT was
never employed for nonlinear postbuckling analyses, despite its superior capabili-
ties. Hence, a new method based on the Refined Zigzag Theory was created for more
efficient buckling and postbuckling analyses of both composite laminated and sand-
wich beams with piezoelectric actuators bonded to the structure. A finite element
formulation based on the new RZT model was developed to extend the method to
the analysis of beams of any laminations, boundary and loading conditions, with
either continuous piezoelectric layers or a discrete number of piezoelectric patches,
and able to predict the local buckling behaviour in sandwich beams.

As a first step, the RZT was extended introducing both the geometric nonlin-
earities and the geometric imperfections of the beam and also the inverse piezo-
electric behaviour in the theory formulation. The Principle of Virtual Work for
electro-mechanical fields was employed to obtain the nonlinear equilibrium equa-
tions based on the RZT for composite beams with piezoelectric actuator layers. The
equilibrium equations were solved under specific assumptions on the beam proper-
ties and loading conditions. A model based on the RZT-beam finite elements was
then created to find approximate solutions of the equilibrium equations in general
situations. The Newton-Raphson method was employed for solving the nonlinear
FE equilibrium equation.

The possibility of having a variation of thickness and lamination along the beam
length was also taken into account using a strategy based on the Lagrange Mul-
tipliers method. This modification allowed the modelling of discrete piezoelectric
patches bonded to the external surfaces of the beam and it was also the basis for
modelling the local buckling of pre-delaminated beams.

The new RZT finite element model was numerically assessed for the buckling
and postbuckling analyses of sandwich beams and composite laminated beams with
piezoelectric actuators through a comparison with highly-detailed FE commercial
code models. Firstly, the buckling and postbuckling analyses were performed for
various sandwich beams with different geometrical and material properties and the
RZT results were compared to those obtained by Abaqus, Nastran and a model
based on Timoshenko beam finite elements. Then, the RZT model was assessed for
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the analyses of composite beams with piezoelectric patches bonded to the external
surfaces. The buckling and postbuckling analyses and the static response to the
piezoelectric actuation were calculated using both the RZT and a highly-detailed
Abaqus model.

The new model was validated experimentally. Foam core sandwich beams with
carbon-fibre reinforced-polymer (CFRP) facesheets and monolithic beams with
piezoelectric actuators bonded to their external surfaces were manufactured and
tested at the RMIT University material testing laboratory. Specific support for
each kind of beam were prepared to realise simply-supported boundary conditions.
The sandwich beams were tested using the Instron compression-testing machine
and the Southwell method was employed for calculating the critical buckling loads.

Two kind of tests were performed for the monolithic beams. Firstly, the static
response increasing the voltage in the actuators was calculated measuring the
transversal displacement of the beam. Subsequently, the beams were tested in
compression for different values of voltage applied to the actuators to improve the
beam postbuckling response. The Southwell method was used also in this case to
calculate the effect of the piezoelectric actuation on the critical buckling load.

The tests demonstrated the excellent capabilities of the new RZT model for
predicting the buckling and postbuckling behaviour of composite and sandwich
beams, even including the effect of the piezoelectric actuation.

The new RZT-FE model was then employed for the numerical buckling analysis
of a sandwich beam with a debonding between the core and the top facesheet.
It was able to successfully predict the local buckling depending on the length of
the debonding. Subsequently, the possibility of controlling the local instability was
investigated considering piezoelectric actuators on the external surfaces of the beam
and the postbuckling response was optimised through the application of a suitable
voltage to the piezoelectric layers. The RZT model could identify the best voltage
values and distribution along the beam length to avoid the local buckling of the
sandwich beam.

The present work provides a new FE model which can be employed for the buck-
ling and postbuckling analyses of composite laminated and sandwich beams (even
highly heterogeneous laminations) with geometric imperfections and piezoelectric
actuators. The major outcome of this effort is the possibility to perform complex
nonlinear static analyses reaching the same accuracy of highly-detailed FE com-
mercial code models but with a significantly lower computational cost. In addition,
using the proposed method, the piezoelectric effect can be efficiently introduced in
nonlinear postbuckling analyses, also for beams with delaminations.
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Chapter 1

Introduction

A fundamental requirement for the design of aerospace structures is the light
weight. One of the approaches adopted to reduce the aircraft weight is the postbuck-
ling design, which allows the structures to work even after they buckle. Moreover,
the demand of higher performances in the aerospace industry has led to a progres-
sive replacement of conventional metals with high-performance fibre composites,
also for primary structural components. Composite materials have superior phys-
ical properties and excellent specific strength and stiffness, thus they are widely
employed for modern aircraft applications to further reduce the weight.

Among the high-performance composites, sandwiches represent a very smart
solution for many applications of lightweight constructions. A typical sandwich
structure is made of two facesheets, either thin metallic or composite, which are
bonded to a honeycomb or foam core. The low density core increases the stiffness
without significantly affecting the overall weight. As a result, the sandwich is stiff,
light and has a high energy absorption capability, e.g. under impact loading. More-
over, the foam core sandwich structures have proven to be considerably better than
honeycombs in terms of manufacturing costs, time (simpler production process)
and structural weight. Helicopter rotor blades, plane flight control surfaces and
landing gear doors are just some examples where foam core sandwiches have been
successfully employed.

In the framework of improving the structural response without increasing the
weight, an approach which has got great attention is the use piezoelectric sensors
and actuators to modify the postbuckling response.

The design methodologies used for isotropic structures are not suitable for com-
posites, especially if these are made of highly heterogeneous materials like sand-
wiches. In addition, the design of active systems made of structures with piezo-
electric actuators and sensors, requires models which take into account the electro-
mechanical coupling between the structure and the piezoelectric elements.

In the last 50 years, many theories and numerical methods have been developed
to better predict the behaviour of composites. Most of these approaches are usually
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efficient but have limitations on their applicability, e.g. they work well only for
composite laminates and not for highly heterogeneous material structures. On
the other hand, the finite element (FE) commercial codes are very versatile and
they can be successfully employed for the analyses of even complex geometries
and material laminations. This is why they are usually the preferred choice for
structural analyses. However, a major drawback associated to the usage of FE
commercial codes is the computational effort, which can be considerably high when
the modelled structure is made of composite material.

The computational cost of the FE commercial codes for composites and sand-
wiches significantly increases when buckling and postbuckling analyses are per-
formed, even in case of simple geometries like beams, especially if they have piezo-
electric elements. The demand of accurate predictions of the phenomena that can
lead to in-service failures, such as the buckling of primary structural components,
and also the possibility to investigate the effect of piezoelectric actuators on the
postbuckling response of composite structures leads to the need of new tools and
methodologies as accurate as FE commercial codes but more efficient.

1.1 Thesis outline
A literature review about the analytical and numerical approaches employed

for the structural analyses of composite beams is presented in Chapter 2. The
evolution of the methodologies which led to the latest theories and techniques for
the prediction of the composite beams behaviours in static applications is shown,
focusing on the compromise between accuracy and computational cost that can be
achieved by each method. The review identifies the approaches suitable for both
composite laminated and sandwich beams, showing that the Refined Zigzag Theory
(RZT) is significantly attractive for its demonstrated accuracy and low computa-
tional cost. A research is conducted on the buckling and postbuckling phenomena
and on the use of piezoelectric actuators for controlling both the global and lo-
cal buckling, which are computationally demanding analyses when FE commercial
codes are used. Then, the extension of the RZT to these applications appears
very attractive because of the proven efficiency and accuracy of the theory, also for
highly heterogeneous sandwich structures.

In Chapter 3, the RZT is extended introducing both the geometric nonlinear-
ities, the geometric imperfections and the inverse piezoelectric behaviour in the
beam theory formulation. The Principle of Virtual Work for electro-mechanical
fields is employed to obtain the nonlinear equilibrium equations based on the RZT
for composite beams with piezoelectric actuator layers. The solution of the equilib-
rium equations is found for a symmetrically laminated beam with two piezoelectric
layers on the top and bottom surfaces, in simply-supported boundary conditions
and subjected to both an axial-compressive load and a transversal sinusoidal load,
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distributed along the beam length. The actuation of constant electric voltage is
also considered in the piezoelectric layers. A finite model based on the RZT-beam
finite elements is created to generate a tool able to solve the equilibrium problem
of imperfect piezo-composite beams for any lamination, boundary and loading con-
ditions. The Newton-Raphson solution of the nonlinear FE equilibrium equation
is also calculated. Subsequently, the method is further generalised to the case of
beams with geometric discontinuities to model both the presence of discrete piezo-
electric patches on the external surfaces of the beam and also the separation of
consecutive layers along the beam thickness (a pre-delaminated beam). A strategy
based on the Lagrange multipliers method is used for these applications.

In Chapter 4, the new RZT-FE method is numerically assessed comparing its re-
sults for the buckling and postbuckling analyses of sandwich beams and composite
laminated beams with piezoelectric actuators to those obtained by highly-detailed
two-dimensional FE models realised in Nastran and Abaqus. In addition, a finite
element model based on Timoshenko beam finite element is also employed for the
analyses of the sandwich beams. The results show that RZT is generally very ac-
curate for predicting the buckling and postbuckling behaviour of sandwich beams,
even relatively thick or highly heterogeneous, whereas TBT is sufficiently accurate
only for higher slenderness ratio. Very accurate results are obtained also for the
buckling and postbuckling analyses of composite laminated beams with piezoelec-
tric actuators and also for the evaluation of the static response to a piezoelectric
actuation, where RZT is compared to highly-detailed three-dimensional Abaqus
FE models. In all cases, the RZT model reaches the same level of accuracy of the
commercial codes but with lower computational cost.

In Chapter 5, the tests performed for the experimental validation of the new
RZT model are presented. It is shown in detail the manufacturing process of the
sandwich beams and the monolithic beams, and the bonding process of piezoelectric
actuators to the monolithic beams. It is reported the compression test procedure for
both the sandwich and the piezo-composite beams, describing the supports realised
for the simply-supported boundary conditions.

The response of the monolithic beams to an increasing voltage is calculated
measuring the beam transversal displacement. Subsequently, they are tested in
compression to evaluate the postbuckling behaviour for different values of voltage
applied to the actuators.

The Southwell method is employed for calculating the critical buckling loads of
all the beams.

In Chapter 6, the RZT method is employed for modelling the local buckling of
sandwich beams with a debonding between the core and the facesheet. The method
is assessed through a comparison to highly-detailed Nastran models in predicting
the variation of the buckling loads and mode shapes, depending on the length of
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the debonding, and the onset local buckling for extended debondings. Moreover,
the method is further extended considering piezoelectric actuators on the beam for
studying the best combination of voltage value and distribution along the beam
length to control the local buckling.

The conclusion of this work is presented in Chapter 7, where the main outcomes
of this project were reported with ideas for future works.

1.2 Outcomes
The primary goal of the present project has been the creation of a general

formulation based on the RZT to reduce the computational cost and to increase
the accuracy for the buckling and postbuckling analyses of composite laminated
and sandwich beams with piezoelectric actuators.

The RZT for beams was extended introducing the geometric nonlinearites and
imperfections. The inverse piezoelectric effect was also included in the formulation
to take into account the possible presence of piezoelectric actuator layers.

The general form of the nonlinear equilibrium equations based on the RZT for
piezo-composite beams was obtained employing the Priciple of Virtual Work for
electro-mechanical fields, and a FE formulation was developed to solve the problem
in general conditions. It was also indicated how to employ the Newton-Raphson
method to iteratively solve the nonlinear FE equilibrium equation.

The finite element formulations allowed to solve the nonlinear equilibrium prob-
lem of composite beams with geometric imperfections and piezoelectric actuators,
for any kind of boundary and loading condition and lamination, employing a theory
suitable also for highly heterogeneous sandwich structures.

The use of a strategy based on the Lagrange multipliers method for the analysis
of beams with piezoelectric actuators further generalised the model to the analysis
of beams with generic geometric discontinuities, such as variations of the thickness
and material lamination, or beams with offsets between consecutive finite elements,
or also with a debonding/delamination between consecutive layers.

The comparison between the numerical results of the new RZT method and
those of TBT or the FE commercial codes, for the buckling and postbuckling anal-
yses of both sandwich and monolithic beams with piezoelectric actuator patches,
demonstrated the superior capabilities of the RZT for its high accuracy and low
computational cost.

The results of the experiments proved that the numerical methodologies consid-
ered effectively reproduced the buckling and postbuckling of composite laminated
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and sandwich beams, thus they completely validated the new RZT model for the
buckling and postbuckling analyses and for the static response to a piezoelectric
actuation.

The comparison with a Nastran model, demonstrated the accuracy of the new
RZT-FE model for the calculation of the buckling load of a sandwich beam with
a debonding between the core and the facesheet, obtaining the same result as a
highly-detailed two-dimensional model but with lower computational cost and a
simpler model (one-dimensional finite elements).

In the new RZT-FE model, the piezoelectric actuators could be used while
performing nonlinear postbuckling analyses (piezoelectric finite elements could not
be used in Nastran and the Riks analysis could not be performed for the Abaqus
models with piezoelectric elements). For this reason, the method was successfully
employed for studying the control of the beam response in postbuckling conditions,
for both the global buckling and the local buckling of a pre-debonded beam.

Some of the research and results presented in this thesis were published in:
A. Ascione, and M. Gherlone. πNonlinear static response analysis of sandwich
beams using the Refined Zigzag Theory∫. In: Journal of Sandwich Structures and
Materials (2018), DOI: https://doi.org/10.1177/1099636218795381.
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Chapter 2

Literature review

The literature review presented in this chapter was conducted to identify some
of the gaps in the field of aerospace structures. It mainly focuses on the methods
currently employed for modelling the behaviour of composite structures, in par-
ticular the trade-off between accuracy and computational cost and the buckling
phenomenon.

2.1 Beam and plate theories for composite and
sandwich structures

The use of classical theories for predicting the response of composite struc-
tures can lead to significantly erroneous results in terms of displacements, strains
and stresses, buckling loads and natural frequencies. The kinematic assumptions
of the classical Bernoulli-Euler beam Theory (BET) derive from the hypothesis
that the beam cross-section remains planar and orthogonal to the beam deformed
axis during the deformation, as shown in Fig.[2.1a]. The consequence of this hy-
pothesis is that BET does not take into account the transverse-shear strain. The
transverse-shear stresses are null for the Hooke’s law and, consequently, the corre-
sponding transversal shear forces vanish. In most cases, the assumption of zero-
valued transverse-shear stresses is inconsistent, as for a beam subjected to a bending
load. In general, the equilibrium between the internal and external forces cannot
be satisfied if the transverse-shear strains are not considered, thus to solve this
inconsistency the Cauchy’s equilibrium equations are used to evaluate the shear
stresses as the integral of the in-plane stresses (a posteriori calculation). Despite
these limitations, the BET was demonstrated to be sufficiently accurate for pre-
dicting the bending response, the natural frequencies and the buckling behaviour
of beams, even composite, with a high slenderness ratio, thus it was extensively
used for its simplicity.
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(a) BET. (b) TBT.

Figure 2.1: Kinematic assumptions of BET and TBT: the axial (u) and the transver-
sal (w) displacements, the bending rotation of the beam transversal section (w,x

for BET and ◊ for TBT).

The Timoshenko Beam Theory (TBT) [1], or more generally the First Order
Shear Deformation Theory (FSDT), takes into account the transversal shear strain
assuming that the bending rotation of the beam transversal section, ◊, is a primary
variable and does not correspond to the first derivative of the transversal displace-
ment with respect to the beam longitudinal axis direction, w,x (see Fig.[2.1b]). A
constant value of the transversal shear stress can be calculated with the Hooke’s
law but a shear correction factor is needed to give the exact average value of a C

1-
continuous distribution of the stress along the beam thickness [1, 2]. This theory
had a big success for its simplicity and because of the higher accuracy than BET
in case of non-slender beams.

The classical theory and the TBT are the preferred choice for finding exact so-
lutions to structural problems of homogeneous beams, but sometimes approximate
methods are required, as in case of more complex geometries.

The Finite Element Method (FEM) [3] is the most used technique for the struc-
tural analysis in general conditions. It allows to find an approximate solution of
the equilibrium equations for any kind of boundary and loading conditions. To
employ the FEM, the kinematic variables of a theory have to be approximated
using certain functions, called shape functions. The choice of the particular shape
functions depends on the problem considered but the order of their differentiability
class has to be sufficiently high to guarantee the correct definition of the strain
energy function.

For this reason, one important advantage of TBT is that all the kinematic
variables in the displacement field can be approximated using C

0-continuous shape
functions. In BET, instead, the presence of the derivative w,x, accounting for
the bending rotation of the beam cross-section, results in C

1-continuous functions
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required for the approximation of the kinematic variables.
The use of C

0 shape functions increases a lot the efficiency of the numerical
calculations, thus TBT-based finite elements are widely used for many applications.
However, the classical C

0-continuous shape functions used for formulating TBT
finite elements can produce an overly-stiff solution in the analysis of slender beams,
underestimating the beam response. This phenomenon is commonly known as shear
locking [4].

Among the methods proposed in the literature to avoid the shear locking, the
anisoparametric interpolation was proven to be one of the most effective [5–17].
This technique consists of approximating the deflection variable, w, with a complete
polynomial one degree higher than the polynomial used for the approximation of
the bending rotation variable, ◊. Moreover, enforcing a constraint condition, the
topology of the finite element (number of nodes and degrees of freedom per node)
can be kept the same as the conventional 2-node beam finite elements.

The TBT finite elements are the one-dimensional finite elements in the com-
mercial codes (like Simulia™ Abaqus [18] and MSC Nastran [19]) which allow the
transverse-shear strain. In Abaqus, the TBT-based finite elements are optimised to
be accurate for both thick and slender beams, thus they are classified as the most
effective beam finite elements in Abaqus [20]. In addition, also the two-dimensional
shell finite elements of the commercial codes are based on the FSDT and they are
widely used for modelling thin-walled structures, even made of multilayer composite
materials.

Nevertheless, neither the classical theories (BET for beams and the Classical
Laminated Plate Theory for plates) or the FSDTs have enough kinematic variables
to accurately describe the complex distribution of axial displacements along the
thickness of beams or plates made of composite materials. As a consequence, the
predictions of strains and stresses are incorrect. Moreover, the non-homogeneous
nature of the composite materials introduces new failure mechanisms that are usu-
ally not considered in conventional homogeneous structures. The correct intra-
and inter-layer modelling of strains and stresses is fundamental for the design of
composite structures, thus new modelling techniques, more suitable than classical
theories and FSDTs, had to be developed.

In [21], Pagano pointed out some limitations the classical theories had when
used for composite laminates. He found the exact elasticity solutions for orthotropic
composite laminates in cylindrical bending demonstrating that the Classical Lam-
inated Plate Theory (CLPT) was accurate only for high span-to-depth ratios. The
CLPT not only underestimated the plate transversal deflection, but also it was not
able to correctly predict both the axial and the transversal shear stress distribution
across the plate thickness for low span-to-depth ratios; his solutions for the axial
displacement and axial strain distributions across the thickness of a beam with a
span-to-depth ratio equal to 4 are shown in Fig.[2.2].

8



2 – Literature review

(a) Through-the-thickness axial
displacement.

(b) Through-the-thickness axial stress.

Figure 2.2: Comparison between the Pagano’s exact solution and the CLPT for a
three-layer, symmetric, [0°/90°/0°], laminate subjected to a sinusoidal-distributed
transversal load [21].

Pagano’s exact solutions indicated that the trend of the in-plane displacements
across the thickness was approximately linear in each layer, with the slope changing
at each interface depending on the layer material and fibre orientation.

As the CLPT for the plates, both the BET and the TBT can only reproduce a
linear distribution of the in-plane displacement across the thickness of a composite
beam and cannot account for any slope variation at the layer interfaces.

Even the adoption of a suitable shear correction factor in TBT, which can lead
to better predictions of the transverse-shear strain, does not solve the problem
of correct modelling the displacement trend across the thickness of a composite
multilayer laminates.

An example of the calculation of a shear correction factor for composite beams
was proposed by Madabhusi-Raman and Davalos in [22]. They considered as a
shear correction factor the ratio between the transverse-shear strain energy calcu-
lated in two different ways: one obtained considering the constant transverse-shear
strain across the thickness calculated by TBT, and the other one obtained consid-
ering the transverse-shear strain derived from the Cauchy’s equilibrium equations.
Consequently, the shear correction factor was different for each beam lamination
because the energy expressions contained the beam stiffness coefficients of the entire
laminate and the reduced stiffness coefficients of the plies.

One of the approaches followed by the researchers to find suitable analytical
methods for correctly modelling the composites behaviour is to increase the or-
der of the truncated power series expansion used to express the displacement field
components as function of the thickness variable (in the classical theories and in
the FSDTs only the first power is considered). The theories derived in this way
are called High-order Shear Deformation Theories (HSDTs) or Equivalent Single

9



2 – Literature review

Layer (ESL) theories, since one displacement field is assumed for the entire lam-
inate thickness. Various effects can be taken into account by considering higher
order terms. As an example, in [23], the assumption of a quadratic dependence
of the transversal displacement component on the thickness coordinate allowed the
modelling of the transversal normal strain for the analyses of laminated cylindri-
cal shells. In [24], Nelson and Lorch considered a quadratic dependence of all the
displacement components on the thickness variable to increase the accuracy of the
in-plane displacements distribution along the thickness in orthotropic plates.

A quadratic distribution of the transversal displacement was considered also by
Lo et al. in [25]; in addition, they extended the in-plane displacement expansion to
the third order for studying the bending of isotropic and laminated plates subjected
to a sinusoidal surface load. Compared to lower-order theories, they could get
better results. Significant advantages were obtained for laminated plates [26], since
the high-order theory was able to describe more accurately the nonlinear pattern
of the in-plane displacement across the thickness, but significant differences from
the CLPT results were found only for low ratios between the wave length of the
sinusoidal load and the plate thickness. Other examples of HSDTs can be found in
the review article [27], where different approaches for developing multilayer plate
theories are collected.

However, Liu and Li pointed out important limitations of the HSDTs in [28],
where they summarised the techniques most commonly used for the analysis of
composite laminates. Indeed, the HSDTs assume the continuity across the thickness
of both the in-plane displacement functions and their derivatives, but if the first
assumption is reasonably true for perfectly bonded layers, the latter is not if the
material properties change at the layer interfaces. For this reason, the HSDTs can be
inaccurate for highly heterogeneous laminates. A limiting condition is represented
by sandwich structures, usually made of a central layer called core that is thick,
very light and weaker than the materials used in the external layers, the facesheets.
The big difference between the core and the facesheets materials leads to a strong
variation of the axial displacements slope at the layer interfaces, which cannot be
predicted by the HSDTs.

The Layer-Wise (LW) approach is a technique which overcomes the issues asso-
ciated to the HSDTs. In the LW theories, the behaviour of each layer is described
independently, using an appropriate kinematics for the layer. Reddy [29] proposed
a general formulation of a displacement-based, two-dimensional laminate theory;
many shear deformation theories can be derived from it by making specific as-
sumptions. In [30], Reddy’s theory was successfully employed for the study of
3-layered thick laminates.

In [31–34], Carrera and co-workers explored the Layer-Wise approach for the
analyses of composite beams in the framework of the Carrera Unified Formulation
(CUF) [35], a method to formulate the finite elements of a theory more efficiently.

Lee and Liu in [36] obtained the exact displacements and stresses distribution
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across the thickness of laminated beams. One year later, Robbins and Reddy
developed a Layerwise Laminate Plate Theory (LWPT) [37]. All these techniques
overcome to the major drawbacks of the HSDTs, and they are accurate also for
highly heterogeneous laminations, but they have a number of unknowns dependent
on the number of layers. The computational efficiency is then penalised the higher
the number of layers of the laminate considered.

A subclass of the general LW theories, the Zigzag (ZZ) theories, are able to
describe the piecewise-linear distribution of the in-plane displacements in composite
laminates, called zigzag effect. The improvement in the ZZ theories is that the
number of kinematic variables is independent of the number of layers.

A first attempt to formulate a theory able to model discontinuities of the in-
plane displacement derivatives at the layer interfaces was made by Di Sciuva in
[38]. Starting from a particular form of the FSDT, he included an additional func-
tion, called zigzag function, in the in-plane displacement expression to model the
slope variation at the layer interfaces depending on the material properties. Ad-
ditional conditions were necessary for the complete determination of the in-plane
displacement distribution across the thickness, thus Di Sciuva enforced the con-
stant value of the transverse-shear stress along the entire laminate thickness and
assumed that the in-plane displacement (i.e. the zigzag function) vanished across
the entire bottom layer, called fixed layer (see Fig.[2.3]).

Figure 2.3: Distribution of the Di Sciuva’s zigzag function [38] across the thickness
of a three layer beam [39].

The result was a theory able to represent both the zigzag pattern of the in-plane
displacement guaranteeing the continuity of the transverse-shear stresses at the
layer interfaces. In addition, the computational cost was the same as TBT because
the kinematic variables were three and independent of the number of layers.
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One limitation of the Di Sciuva’s theory is that the axial components in the
displacement field depends on the first derivative of the transversal displacement, w,
with respect to the beam longitudinal axis. The consequence of this assumption is
that C

1-continuous shape functions are required for a finite element approximation
of the variable w. For this reason, Averill [40] formulated his zigzag theory for beams
starting from the TBT, so that the bending rotation was a primary variable (see
Fig.[2.4] for the zigzag function distribution across the beam thickness). Averill
enforced the continuity of just a component of the total transverse-shear stress
across the thickness and introduced a penalty term to guarantee the continuity of
the total transverse-shear stress component across the thickness in a limiting sense
(the limit as a penalty parameter approaches to infinity).

Figure 2.4: Distribution of the Averill’s zigzag function [40] across the thickness of
a three layer beam [39].

However, both Di Sciuva’s and Averill’s models have some issues related to
the theories formulation. First of all, in Di Sciuva’s ZZ theory, the definition of
the zigzag function depends on the layer chosen as fixed layer (where the zigzag
function is enforced to zero), thus the transverse-shear stiffness depends on the
chosen fixed layer. The penalty term in Averill’s theory avoids this problem, but
in both formulations the cross-sectional integral of the transverse-shear stresses do
not correspond to the transverse-shear forces derived from the physical equilibrium
equations. Moreover, a major issue appears in case of clamped boundary conditions,
where all the kinematic variables have to vanish and consequently the transverse-
shear strains and stresses are also null for the way the theories are formulated; this
is clearly in contrast to the equilibrium equations.

Few years later, Murakami [41] formulated a new ZZ theory based on the varia-
tional principle proposed by Reissner [42]. He introduced in the Reissner variational
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model both a transverse stress field and a zigzag C
0 function for the in-plane dis-

placement approximation.The proposed theory predicted very accurately the exact
solutions of Pagano [21] for the plate cylindrical bending (see Fig.[2.5]), being also
more efficient than smooth nonlinear functions (higher order theories).

(a) Laminate slenderness ratio=4. (b) Laminate slenderness ratio=6.

Figure 2.5: Comparison between MZZ, FSDT and Pagano’s exact solution (indi-
cated as "Present Theory", "FSD" and "Exact", respectively) for the through-the-
thickness variation of the in-plane displacement [41].

The Murakami Zigzag theory (MZZ) has been extensively used by many au-
thors, like Carrera and co-workers who used this zigzg function with the CUF. In
[43], Carrera demonstrated the effectiveness of introducing the Murakami’s zigzag
function in the classical and first-order plate theories to model the zigzag effect
instead of using higher order polynomials. De Masi [44], found finite element so-
lutions of the first-, second- and third-order shear deformation theories for plates
refined by the inclusion of the Murakami’s zigzag function. Both the analytical and
the finite element solutions showed that the use of the MZZ led to better predic-
tions of the transversal displacement even for relatively thick composite multilayer
plate. Moreover, Brischetto, Carrera and De Masi [45] obtained accurate results
also for non-symmetrical sandwich plate analyses.

However, many authors have pointed out that MZZ can be inaccurate in some
cases, especially if compared to Di Sciuva’s zigzag theory. The main difference
between Di Sciuva’s and Murakami’s approaches is that the definition of Di Sciuva’s
zigzag function is derived from the physical consideration that the transverse-shear
stress has to be continuous across the thickness (physically-based zigzag function),
by contrast, Murakami assumes a periodic change of the in-plane displacements
slope at the interface independently of the actual physical characteristics of the
laminates (kinematic-based zigzag function). In [46, 47], it was demonstrated that
the two approaches had the same level of accuracy if the considered laminate had
a periodic stacking sequence, while Di Sciuva’s zigzag function was more accurate
in any other case.

Tessler, Di Sciuva and Gherlone developed the Refined Zigzag Theory (RZT)
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([48]-[49]) to solve the drawbacks associated to both Di Sciuva’s and Averill’s the-
ories. As in Averill [40], they started from a first-order shear deformation theory
(Timoshenko’s theory for beams and Mindlin’s theory for plates) and added a piece-
wise linear zigzag function of the thickness coordinate.

In the RZT, the zigzag function vanishes on both the top and bottom exter-
nal surfaces, thus its distribution is not null in all layers (see Fig.[2.6]) and this
overcomes the problem of the bias towards the transverse-shear stiffness of the
fixed layer of Di Sciuva’s formulation. The continuity of only a component of the
transverse-shear stress is enforced, as in Averill’s formulation, but the final shear
stress is left discontinuous not considering any penalty term.

Figure 2.6: Distribution of the RZT zigzag function across the thickness of a three
layer beam [39].

Significant consequences of the RZT assumptions are that the shear angle cal-
culated with TBT corresponds to an RZT average shear strain of the cross-section
and the magnitude of the zigzag function is a weighted-average shear strain quan-
tity. These two considerations highlight the strong link between the RZT model
and the problem physics.

The RZT has four kinematic variables (the axial and transversal displacements,
the bending rotation and the zigzag rotation), one more than TBT, but this number
is independent of the number of layers. Moreover, it was demonstrated that RZT is
extremely accurate and much better than the HSDTs for the analyses of relatively
thick beams and plates and also for highly heterogeneous material lay-ups and being
also very efficient [48–53].

In addition, in [54] Gherlone compared the RZT to the Murakami’s zigzag the-
ory for the analysis of beams with different laminations. First, he recognised that
in all previous works the Murakami’s assessment was done considering only spe-
cific laminations, like cross-ply with alternate orientations, angle-ply with periodic
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sequences or three-layer symmetric laminates, whereas the results obtained em-
ploying the MZZ for other laminations were not verified. For this reason, Gherlone
considered more challenging laminations and assessed both Murakami’s and the
Refined zigzag functions through a comparison with Pagano’s exact elasticity solu-
tion. Despite the equivalent results between the two zigzag approaches in case of
two-layer, three-layer symmetric, or N-layer periodical stacking sequences, the RZT
was more accurate in any other case. In addition, he showed that both theories
were inaccurate for laminations that had a weak layer placed on the top and/or
bottom of the stacking sequence and proposed a very simple way to correct the
zigzag formulation. This technique could be applied only to the RZT, demonstrat-
ing that RZT could be very accurate also for lay-ups with external weak layers,
whereas MZZ remained highly incorrect.

In [55], Groh and Weaver employed the Hellinger–Reissner mixed variational
principle to derive two mixed third-order shear deformation zigzag theories, intro-
ducing either the Refined Zigzag or the Murakami Zigzag function in a TSDT. The
comparison with Pagano’s exact elasticity solution highlighted the superior capa-
bilities of the RZT-based formulation for the bending analysis of thick composite
beams. Indeed, the RZT solution was highly accurate for predicting the in-plane
and transverse-shear stress distribution across the thickness, even for the most
challenging lamination (high heterogeneity and pronounced zigzag effect), whereas
Murakami’s error reached 10%. The Hellinger–Reissner mixed variational principle
was used to get the continuous distribution of the transverse-shear stress directly
from the shear strain and with no need of a postprocessing integration. For this
same reason, Tessler [56] created a new RZT using the Reissner’s mixed variational
theorem, called RZT

(m), and few years later, he and Groh [57] formulated an ef-
ficient shear-locking free beam finite element based on the RZT

(m) to study the
delamination propagation in composite and sandwich beams.

More recently, Hasim and co-authors [58, 59] developed an isogeomentric finite
element based on the RZT for the static analysis of composite and sandwich beams
to get more efficient calculation of the transverse-shear stresses through the a-
posteriori integration technique (Cauchy’s equilibrium equation). Then, they used
the isogeometric formulation and the RZT

(m) for the study of sandwich beams with
embedded delaminations.

In one of the latest works of Weaver and co-authors [60], the RZT was demon-
strated to be superior to MZZ also in capturing the 3D stresses of variable-stiffness
and sandwich beams, also for highly heterogeneous laminations, being much more
computationally efficient than layer-wise models and 3D finite element models.

Compared to other theories, the RZT best performances have been demon-
strated for the analyses of relatively thick and highly heterogeneous composite
structures, such as sandwich beams. It has been already employed for the static
[61, 62] and free-vibration [63] analyses of sandwich beams and assessed for the
static, dynamic and buckling analysis of sandwich plates [52]. In addition, the
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theory has attracted many authors especially for the possibility of developing very
efficient finite elements, highly accurate also for sandwich structures. C

0-continuous
beam finite elements based on the classical formulation of the RZT can be found
in [51, 64–66], whereas a mixed formulation has been used in [67] to develop beam
finite elements based on a third-order Refined Zigzag theory. Other implementa-
tions include finite element for beams viscoleastic layers for vibration reduction [68]
and RZT-based finite elements for the delamination modelling[69, 70].

It is clear that the choice of a particular kind of RZT-beam finite element de-
pends on the application considered. A field that has not been explored yet is the
buckling and postbuckling analyses of composite and sandwich beams using the
Refined Zigzag Theory. For the reasons explained above, the use of the RZT for
more complex analyses which involve nonlinearities and geometric imperfections,
highly heterogeneous laminations and also electro-mechanical effects for the struc-
tural control, appears very attractive because of its the remarkable accuracy and
efficiency.

2.2 Buckling phenomenon for beams
The buckling phenomenon is related to the instability modes of thin-walled

slender structures when subjected to compressive loads which can lead to the failure.
In real imperfect structures, the buckling is a nonlinear phenomenon associated to
a sudden big increment of the transversal displacements for a small increase of
compressive load [71, 72]. The nonlinear mechanics is then required for modelling
this kind of nonlinear structural behaviour. From a mathematical point of view, the
geometric nonlinearities can be included in the analysis of thin-walled structures
by using the kinematic equations of flat plates derived by von Kármán. These
equations were extended by Sanders [73] to the case of thin shells of arbitrary
shapes, and by these the kinematic equations for beams can be derived through an
appropriate specialization.

2.2.1 Buckling of perfect beams
The expression of a critical load for a beam subjected to an axial-compressive

force was found for the first time by Euler [74], who studied the equilibrium of a
slender column in simply-supported boundary conditions. Euler derived the equi-
librium equation of the beam in its deformed configuration obtaining a homoge-
neous equation that had both the trivial solution, corresponding to the undeformed
configuration of the beam, and also an eigenvalue solution, with the eigenvalues cor-
responding to discrete values of the compressive force. The smallest eigenvalue was
called critical buckling load, Ncr, defined as
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Ncr = fi
2
EI

L2 . (2.1)

Eq.[2.1] is called Euler column formula [71] and E is the Young modulus of the
material, I is the moment of inertia of the beam cross-section and L is the beam
length.

The buckling behaviour of a structure is usually studied representing the possi-
ble solutions of the equilibrium equation in a load-displacement plot, reporting the
values of the transversal displacement of one point of the structure (on the hori-
zontal axis) for increasing values of applied compressive load (on the vertical axis).
The obtained curve is denoted as load-displacement equilibrium path because each
point of the curve represents an equilibrium condition for the beam.

Figure 2.7: Equilibrium paths and the bifurcation point for the Euler’s column.

The solutions of the equilibrium equation found by Euler are represented in
Fig.[2.7], normalising the load with respect to the critical value given by Eq.[2.1].
The curve corresponding to the homogeneous solution is called primary equilibrium
path, whereas the solution obtained for a value of the load corresponding to the
critical buckling load leads to a secondary equilibrium path. The symmetry of
the secondary path with respect to the vertical axis indicates that the beam can
deflect either upward (w > 0) or downward (w < 0). The two lines in Fig.[2.7]
intersect at the point corresponding to zero displacement and the critical buckling
load, meaning that more than one equilibrium state is possible when the beam
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is subjected to a compressive force equal to the critical buckling load (indifferent
equilibrium). The intersection point is called bifurcation point. The secondary path
in Fig.[2.7] indicates that when N0 = Ncr the beam deflection can be any value,
but this is a consequence of the hypothesis of small deflections made by Euler.

In [75], Timoshenko took into account the larger rotations for the analysis of a
cantilever column under compression. An important outcome of his study was a
more accurate relation between the applied compressive load and the transversal
deflection of the beam. As shown in Fig.[2.8], Timoshenko analysis could determine
the exact value of deflection for any applied load in the secondary equilibrium path.

Figure 2.8: Equilibrium paths and the bifurcation point for the Timoshenko’s col-
umn.

The equilibrium equation found by Euler was linear because the beam he con-
sidered (simply-supported and subjected to a concentrate force at the end) had
the internal axial force independent of the axial coordinate. In general cases, the
equilibrium equation is a nonlinear differential equation and the determination of
the equilibrium paths and the bifurcation point is more complicated. The Euler’s
method of the adjacent equilibrium configurations [71] is a technique which allows
the determination of the existence of a bifurcation point. This method is based on
the research of two possible equilibrium configurations for the same applied load
by considering a perturbation of an initial equilibrium configuration. A stability
equation is derived from the equilibrium equation and the existence of a solution of
the stability equation identifies the presence of more than one equilibrium condition
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for the same load. The advantage of this approach is that the stability equation is
a linear differential equation. As a consequence, the determination of a bifurcation
point and the corresponding value of applied load can be obtained solving a linear
differential equation, instead of a nonlinear equation. It is convenient method for
evaluating the load corresponding to a bifurcation point, but it does not provide
any information about the secondary equilibrium path.

Both Euler and Timoshenko assumed that the beam had a straight centroidal
axis, aligned to the load direction. This kind of beams are called perfect beams
to distinguish them from the case in which geometric imperfections are taken into
account and the centroidal axis has an initial deviation from a straight configu-
ration. The nonlinear response of a geometrically imperfect beam subjected to a
compressive load is indicated as postbuckling behaviour of the beam.

2.2.2 postbuckling behaviour of imperfect beams
The study of the response of a real beam subjected to a compressive load has

to take into account the beam geometric imperfections. As explained in [71], the
inclusion of geometric imperfections in the model of a structure makes the equilib-
rium equation inhomogeneous, thus the solution is a non-null value of transversal
displacement for any applied compressive load.

Figure 2.9: Load-displacement equilibrium path of a beam with an initial geometric
imperfection.
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In this case, there is only one possible load-displacement equilibrium path. The
curve representing the equilibrium states of an imperfect beam subjected to an
increasing compressive load is linear at the beginning, then the slope progressively
reduces approaching the critical buckling load of the beam in its perfect configu-
ration, as shown in Fig.[2.9]. The initial slope of the curve depends on the beam
initial deflection: the higher is the imperfection, the lower is the initial slope of the
equilibrium path.

In [76], Rivello investigated the influence of the initial imperfection on the non-
linear response of a beam considering a large deflections theory. He also derived
the curves indicating the yield stress limits for different geometrical characteristics
(beam length and size of the cross-section) of a homogeneous beam made of alu-
minium alloy, assuming a linearly elastic and perfectly plastic material behaviour.
His results showed that the beam started to deflect very fast when the load ap-
proached the critical value, but the actual failure happened for a value of load
slightly lower the Ncr, because the fibres on the concave surface of the deformed
beam exceeded the yield stress. In addition, the representation of the yield stress
limits in the (w, N0) plot indicated that the same beam reached the yield stress for
a lower value of N0 the higher was the imperfection.

In general, the determination of the actual postbuckling behaviour of a real
beam is obtained by solving a system of nonlinear equilibrium equations taking
into account the material characteristics, the geometric imperfections and the load-
ing conditions. The number of equations in the system depends on the number of
kinematic variables considered in the theory, thus the complexity of the solution
depends on the level of detail of the theory adopted, on the beam physical and ma-
terial characteristics and on the boundary and loading conditions. It is clear that,
if the beam is made of composite materials, the accuracy of a buckling and a post-
buckling analyses depends on the ability of the chosen theory to model composites
behaviour.

As an example, Sheinman and Adan [77] used a nonlinear TSDT and a vari-
ational method to find the nonlinear equilibrium equations of laminated beams.
The equilibrium equations were not solved exactly but employing the modification
of the Newton’s method proposed in [78]. They demonstrated the importance of
considering the shear deformation also for the buckling and postbuckling analyses,
especially for composites, highlighting the need of employing a higher-order theory
for low length-to-thickness ratios.

Barbero and Raftoyiannis [79] instead, used the Euler equation for calculating
the critical buckling loads and the failure modes of pultruded composite columns
with thin-walled cross-sections, deriving the constitutive equations of the beam
from the CLPT. Columns of various lengths were considered to investigate the
transition of the first failure mode from global to local buckling when the beam
length decreased. They also investigated the nonlinear behaviour of composite
beams with geometric imperfections both in pre- and postbuckling regimes.
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However, few years later Khedir and Reddy [80] highlighted the inaccuracy of
the classical theory for the calculation of the buckling loads of cross-ply laminated
beams. The comparison between BE, TBT and other HSDTs showed that BE
highly overestimated the buckling loads, whereas the other theories gave similar
results for the applications considered.

More than ten years later, Emam and Nayfeh [81] used the Bernoulli–Euler
beam theory to develop their model for studying the buckling of composite beams.
They found a closed-form solution for the equilibrium configurations of composite
beams loaded beyond the critical buckling load and studied both the stability in
postbuckling regime and the dynamic behaviour in the buckled state considering
various boundary conditions.

In more recent years, Li and Qiao [82] employed the Reddy TSDT to study
the pre- and postbuckling of laminated imperfect beams. Firstly they introduced
both the geometric nonlinearities and the imperfections in the theory formulation
and then they numerically solved the nonlinear equilibrium equations considering
several combinations of boundary conditions. They also investigated the effect of
the geometric imperfection and the beam lamination on the postbuckling response
of the beams.

Many other examples of HSDT employed for the buckling analysis of composite
beams [83, 84], for functionally-graded sandwich plates [85] and for the buckling of
composite beams with large initial imperfections [86] can be found in the literature.

2.2.3 Experimental buckling
A comprehensive study on the buckling phenomenon involves also the experi-

mental investigation. Extensive material can be found in the literature about the
experimental evaluation of the buckling load and the postbuckling behaviour of
structures. In [87], Salmon collected the most important studies about columns in
compression up to the beginning of the twentieth century, highlighting the impor-
tance of linking theory and practice. In his treatise, he also classified the possible
eccentricity of load, the initial curvature of the beam and the reduction of material
strength (due to defects of non-homogeneity) as column imperfections and all of
them had a significant influence on the beam buckling and postbuckling behaviour.

An experimental investigation about the influence of the load eccentricity on
the beam postbuckling behaviour was made by von Kármán [88]. He realised com-
pression tests of columns in almost perfect conditions, i.e. very straight specimens
and load direction aligned to the beam axis, and compared his results to those
obtained by Kirsch [89], characterised by a high load eccentricity, and those of von
Tetmajer [90], who made slightly less precise tests than von Kármán [88]. The
comparison showed that von Kármán’s results were very close to the theoretical
load-displacement path of a perfect beam and that the beams with higher load
eccentricity reached the yield limit for a significantly lower load.
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Important information about the buckling experiments, like the general rules
for the experimental setup, the test performance and the analysis of the experi-
mental data can be found in [72]. In the book, it is also highlighted the substantial
difference between the buckling tests performed to validate a theory and the tests
performed to evaluate the buckling and postbuckling behaviour of a real structure.

If a new theoretical method for calculating the critical buckling load and the
load-displacement equilibrium path has to be assessed, then the experiments have
to match with the assumptions made in the theory. As an example, the beam tested
needs to have the same imperfection considered in the mathematical model, the load
has to be perfectly centred if no eccentricity is considered and, very important, the
physical boundary conditions must reproduce exactly what is considered in the
mathematical model; this is because the postbuckling behaviour of a structure is
very sensitive and strongly affected by all these parameters. By contrast, when the
aim of the tests is to experimentally investigate the buckling behaviour of a real
beam, then the tests have to reproduce the imperfection, the load and the boundary
conditions of the real structure.

The most used method to correlate the experiments on real imperfect structures
and the theoretical predictions is the Southwell method [91]. The method allows the
calculation of the critical buckling load of a beam as the slope of the line obtained
plotting the transversal displacement of the beam, w, measured during the test, as
function of the ratio between the transversal displacement and the applied load,
w

N0
.

(a) Experimental load-displacement equi-
librium path.

(b) Southwell plot.

Figure 2.10: Application of the Southwell method for calculating the critical buck-
ling load of a beam.

The quantities w and N0 can be plotted in the (w, N0) plane for representing
the equilibrium path obtained experimentally (see Fig.[2.10a]); Southwell developed
his method approximating the experimental load-displacement equilibrium path of
the imperfect beam by a rectangular hyperbola and then he obtained a line in the
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2
plane by making a coordinate transformation(see Fig.[2.10b]). The slope

of the line in the
1

w

N0
, w

2
plane corresponds to the asymptotic load value of the

hyperbola, which is the Euler buckling load.
Lundquist [92] proposed a correction to the Southwell’s method to take into ac-

count a small pre-load and deflection measured at the beginning of the experiment.
Other modifications to the Southwell’s method can be found in [93, 94] for partic-
ular boundary conditions or for very straight beams, but the original version of the
method is still the most preferred one. The method has had a great success not only
because of its simplicity but also because it is a non-destructive technique to evalu-
ate the critical buckling load. It has been extended also to more complex structures
with suitable adjustments and corrections, but it has also many limitations as in
case of large deformations. Further details about the method, its extensions and
limitations, and also precise instructions on how to correctly perform a buckling
test to verify a theoretical model can be found in [72]. An important warning of the
authors is about the kind of boundary conditions to consider in the experimental
buckling tests of beams, stating that the fixed ends are much less reliable than
simply-supported conditions.

2.2.4 Buckling control and use of piezoelectric actuators
A big concern for aerospace structural applications is the possibility to increase

the critical buckling load of the elements subjected to high compressive loads. A
possible solution investigated by many authors is the use of piezoelectric actuators
to stiffen the structure by reducing the geometric imperfection (see Fig.[2.11]).

(a) (b)

Figure 2.11: Imperfection reduction using piezoelectric actuators: (a) initially im-
perfect beam; (b) beam deflection after the application of a negative voltage to the
top actuator and a positive voltage to the bottom actuator.

In [95], Chandrashekhara and Bhatiat presented their work on the dynamic
buckling control of composite plates considering both piezoelectric sensors and ac-
tuators. Their formulation was based on the FSDT developing both an analytical
and a finite element model able to model piezoelectric patches on plates. The nu-
merical results proved the possibility of increasing the critical buckling load with a
closed-loop control system.
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The buckling control of beams using piezo-actuators was discussed also by Berlin
in his doctoral thesis [96], mainly focusing on civil engineering applications. He
made both numerical simulations and experiments to prove that the buckling be-
haviour of structures could be significantly improved by using piezoelectric actua-
tors. The tests were conducted on a steel beam with piezoelectric patches bonded
on the beam external surfaces. By activating the actuators, Berlin was able to
increase the load-bearing strength of 5.6 times.

Thomson and Loughlan [97] conducted experiments to demonstrate that it is
possible to increase the load-bearing strength of beams by using piezoelectric ac-
tuators. They considered carbon/epoxy symmetrically laminated composite beams
with piezoelectric actuators on the external surface. The effect was demonstrated
comparing the experimental load-displacement equilibrium paths, showing that in
case of actuation in the piezoelectric patches the curve was very close to that of a
perfect beam.

In De Faria and De Almeida [98], the effect of piezoelectric layers attached to
the beam was included in the nonlinear formulation of Bernoulli-Euler beam theory
for initially imperfect composite beams under compression. The analysis showed
that the nonlinear response of slender composite beams in the pre-buckling regime
could be significantly modified by the piezoelectric actuation, obtaining a load-
displacement equilibrium path that was close to the ideal solution of perfect beams.
Chase [99, 100] conducted multiobjective analysis to find the optimal contollers for
the buckling of beams and plates.

Mukherjee and Chaudhuri [101] made a numerical study on the active control
of imperfect laminated beams with piezoelectric actuators and sensors subjected
to either a static or dynamic axial-compressive load. The composite beam was
made of unidirectional orthotropic layers in a symmetrically balanced configuration,
with the top and bottom layers made of piezoelectric material. The piezoelectric
layers were firstly used as sensors to detect the beam strains, and then as actuator,
applying a voltage calculated by a simple control law based on a gain factor for
controlling the beam lateral deflection. The deformation caused by the actuator had
a stiffening effect on the beam, which almost doubled its critical buckling load in
the static analysis and significantly reduced the amplitude of the dynamic response
of the first natural frequency in the dynamic analysis.

Abramovich and co-workers conducted many analytical and experimental inves-
tigations on the use of piezoelectric actuators to modify the structural response in
several applications. For the analytical formulation they always used the FSDT.

In [102], the authors employed the FSDT for the static, free-vibration and buck-
ling analyses of composite laminated beams (symmetric and anti-symmetric lami-
nations) with continuous piezoelectric layers. They also considered the piezoelectric
layers as sensor to detect the mechanical strain, and evaluated the voltage to apply
to the actuators implementing a control law based on a gain factor. The piezoelec-
tric layers, working as actuators, caused a counteractive bending moment opposite
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to the moment due to the mechanical compressive force. The results showed a
significant increment of the critical buckling load even for voltages which gave a
counteractive bending moment lower than the mechanical bending.

In [103], Waisman and Abramovich studied the stiffening effect due to the ac-
tuation of either piezoelectric patches or piezoelectric continuous layers on the free
vibrations of non-symmetrically laminated beams. They employed the FSDT to
analyse the beams behaviour subjected to axial and lateral tractions, in various
boundary conditions. They also verified their results through a comparison to an
Ansys finite element model.

The actuation of piezoelectric patches in shear-mode was studied in [104]. The
shear actuators were embedded in the foam core of sandwich beams with cross-ply
CFRP facesheets considering both symmetric, [0°/90°/foam+shear PZT/90°/0°],
and anti-symmetric, [0°/90°/foam+shear PZT/0°/90°], lay-ups. The aim of the
paper was to assess the effectiveness of these configurations with respect to those
with extensional piezoelectric patches on the external layers of the beams. The
authors performed several analyses for the beams subjected to static lateral and
axial forces.

The FSDT was the theory chosen for this kind of applications by many other
authors. As an example, Damanpack et al. considered piezoelectric actuators for
the active vibration control of sandwich beams [105]. They used the FSDT to
model the behaviour of the actuators and beam facesheets, whereas a higher order
sandwich theory was used for the core displacements. They also developed a beam
finite element for piezo-composite sandwich beams having eighteen nodes for the
mechanical degrees of freedom and two electric nodes to include the electric poten-
tial as a variable. More recently, the FSDT was used also by Muc, KÍdziora and
Stawiarski [106] for the buckling analysis of cylindrical shallow panels with piezo-
electric actuator patches. They demonstrated that the FSDT was more accurate
than CLPT assessing the two theories with a 3D finite element models (Cranes
Software, Inc.).

However, as discussed in the previous section, the FSDT has proven not to be
the best choice for the static and free-vibration analyses of composite beams that
are relatively thick or made of highly heterogeneous materials (see [48, 62, 63]). The
reason of its big success for this kind of applications is probably the simplicity of the
formulation. Indeed, when piezoelectric elements are considered in the structure,
the coupling between the mechanical and the electrical field has to be taken into
account in the formulation of the mathematical model [107]. Additional terms
corresponding to the electric strains and stresses have to be considered and the final
equations will contain more terms the higher the order of the theory adopted, thus
the use of a theory with a less complex formulation appears to be very convenient.
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2.2.5 Buckling of delaminated beams
The complex nature of composite materials, heterogeneous and often highly

anisotropic, influences the failure mechanisms of the composite structures. In gen-
eral, the damages in composites can be classified as intra-laminar damages or inter-
laminar damages. The intra-laminar damages refers to the possible fibre breakage,
the matrix crack or the debonding between the fibre and the matrix. The inter-
laminar damage, or delamination, refers to the debonding between two adjacent
layers. The presence of manufacturing defects in the structure or impacts can
cause delaminations between the layers of a composite laminate or the debonding
between the core and the skin of a sandwich. Moreover, under certain circum-
stances, a composite structure can exhibit intra-laminar damages that can finally
result in delaminations because of the loads acting on it. For this reason, the study
of the delamination initiation and propagation has got much attention and several
methods have been developed for the analysis of delaminated structures.

The delamination can strongly reduce the strength of a beam under compression
and the critical buckling load significantly decreases. Many authors attempted
to correctly predict the actual buckling loads of delaminated structures and the
corresponding buckling modes.

One of the first work about delaminations in structures under compression was
conducted by Chai, Babcock and Knauss [108–111]. They studied the delami-
nations due to impacts on plates subjected to compressive loading. In [112], they
considered a pre-delaminated plate and studied the delamination propagation using
the energy release rate criterion.

Kardomateas and Schmueser [113] developed an analytical method to study
the buckling and postbuckling of composite beams and plates focusing on the ef-
fect the transverse-shear stress had on both the value of the critical load and the
postbuckling behaviour of the structure. They assumed a mixed-mode buckling
instability and used the energy release rate criterion for the delamination growth
in postbuckling. They also identified the three possible modes of instability for the
compressed delaminated plate: a buckling of the whole structure (global buckling),
a mixed-buckling where both the two sublaminates buckled, and a local buckling,
where only one sublaminate in the delaminated area buckled, whereas the base
plate remained flat.

Shu [114] presented a model for the buckling of beams with two delaminations.
The author based the formulation on the BET and found an exact solution consid-
ering the beam as constituted of five independent beams. He also showed how the
buckling load diminishes increasing the delamination length and depth.

In [115], Hansen highlighted the difference between the delamination-buckling
problem from the debonding-buckling problem in sandwiches, distinguishing the
delamination, which could occur in all composites and in sandwiches it was located
between the consecutive layers of the facesheets, from the debonding between the
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core and the facesheet of a sandwich. The author focused on the debonding be-
tween the facesheet and the core performing tests on a FRP sandwich panel. He
also made a finite element model using shell elements for the facesheets and solid
elements for the core, for calculating the critical buckling load of a perfect struc-
ture. Subsequently, he introduced a geometric imperfection and performed the Riks
nonlinear analysis. The complex FE model was necessary because of the strong in-
homogeneity of the material, thus he tried to reduce the computational time by
modelling the core as a discrete set of springs and not as a continuous layer. He
got good correlation between experiments and the FE model in the prediction of
the critical buckling load of the debonded panel.

Figure 2.12: Failure of a sandwich panel with a pre-debonding between the core
and the bottom facesheet [116].

Mahfuz et al. [116] investigated the effect of the core density on the buckling
response of foam core sandwich plates with implanted delaminations, as the panel
shown in Fig.[2.12]. They conducted compression tests of four sandwich panels
with different core densities, analysing both the effect of the density and the pre-
implanted delaminations on the panels load-displacement response and calculating
the critical buckling load using the Southwell method. They also realised a FE
model in Ansys for the numerical calculation of the buckling load; the model was
made using solid elements, uncoupling the nodes of the two sublaminates in the
debonded/delaminated parts. The numerical buckling load was calculated solving
the conventional eigenvalue problem and a nonlinear analysis was also performed
evaluating the buckling load applying the Southwell method to the numerical load-
displacement results. However, the latter analysis was made for only one panel
because of the "prolonged running time and memory requirements".

Chen and Qiao[117] developed an analytical method for the study of the de-
lamination buckling of bi-layer columns. They modelled both the delaminated and
the intact part of the beam as two sub-layers and used the TBT introducing a
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flexible-joint model in the formulation, for the deformations at the delamination
tips. The model was assessed comparing it to a rigid-joint model, a semi-rigid joint
model and a detailed Ansys FE model. The plane-stress FE model realised in An-
sys was used as reference solution, highly refining the mesh close to delamination
tips. The authors investigated how the critical buckling load was affected by the
delamination length, the delamination location along the beam thickness (the ra-
tio between the thicknesses of the two sublayers) and the slenderness ratio of the
delaminated sublayer. The results showed that the buckling load decreased the
higher the delamination length and the slenderness ratio of the delaminated sub-
layer. Moreover, it decreased much more rapidly for beams with the two sublayers
of different thickness (asymmetric delamination buckling). The model was able to
capture the different buckling behaviours for asymmetrically delaminated beams,
exhibiting a global buckling for small delamination lengths (with respect to the
beam length) or for small slenderness ratio of the delaminated sublayer, whereas
the instability became local for higher values of those ratios. The solutions of all
models considered tended to converge for high delamination-to-beam length ratio,
indicating that the critical buckling load was not substantially influenced by the
local deformation at the delamination tip for big delamination length.

In their work, Akbarov and Yahnioglu [118] considered a sandwich plate-strip
with piezoelectric facesheets subjected to a compressive axial load. They also as-
sumed a small debonding between the core and the facesheets and studied the
crack growth under the applied mechanical load. They carried out the nonlinear
equilibrium equations for the electro-mechanical system, also considering geometric
imperfections of the facesheets in the debonded area. They highlighted the stiffen-
ing effect due to the piezoelectricity, the dependence of the critical buckling load
increment on the poling direction and the thickness of the piezoelectric facesheets.

Wang et al. [119] started from determining the critical buckling strain from the
beam equilibrium equations (force resultants-strains) assuming an a-priori locally
buckled configuration. They calculated the post-(local-buckling) energy release rate,
partitioning the total value in the two contributions, one for mode I and one for
mode II, to predict the consequent delamination propagation.

Juhász and Szekrényes [120] studied, both numerically and experimentally, how
the delamination affected the buckling of orthotropic rectangular plates. They cre-
ated a finite element model extending the FSDT to the analysis of delaminated
plates, with asymmetrically located trough-the-width delaminations. The spec-
imens for the tests were manufactured with a pre-induced delamination, insert-
ing a PTFE film between the layers. The tests were performed using an Instron
compression-testing machine clamping the plates on two edges. The numerical and
experimental results showed both the decreasing value of buckling load increasing
the delamination length but also the transition from a global buckling mode to a
local buckling.

Li and Shen [121] developed a finite element model based on the LWPT [37]
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for the static and vibration analyses of composite beams and plates with piezo-
electric actuators. They introduced two discrete functions to model, respectively,
the discontinuities in the displacement field induced by the delamination and the
discontinuities in the strains field due to the material variation along the thickness.
The model was assessed through a comparison with data found in the literature and
also developing a finite element model in Abaqus. The delamination in the finite
element model was obtained uncoupling the nodes in the delaminated area. They
investigated the effect of the delamination on the static and vibration response us-
ing the piezoelectric layers as sensor to find a correlation between the delamination
location and the sensed voltage.

2.3 Conclusion
On the basis of this literature review, it is believed that a new method based on

the RZT would be a successful technique for reducing the computational cost of the
buckling and postbuckling analyses for composite laminated and sandwich beams
geometrically imperfect and with piezoelectric actuators, keeping the same level of
accuracy of highly-detailed two- and three-dimensional finite element models.

The extension of this new method to the analysis of beam with piezoelectric
actuator patches bonded to the external surfaces (not only piezoelectric continuous
layers) would increase the method applicability to real situations.

In addition, the further extension of the method to the modelling of the buckling
of pre-delaminated beams would also allow the possibility to investigate the use of
piezoelectric actuators for controlling the local buckling. The superior accuracy
of the RZT for the analyses of sandwich beams would make this method very
attractive for modelling the buckling and postbuckling of sandwich beams with
debondings between the core and facesheets, and also for studying the possible
usage of piezoelectric actuators on relatively thick structures for static applications.
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Chapter 3

The Refined Zigzag Theory for
initially imperfect beams with
piezoelectric actuators

3.1 Introduction
As highlighted in the previous chapter, the increasing use of composite materials

for a broad range of applications and the inadequacy of classical theories to correctly
predict the through-the-thickness distribution of the in-plane displacements, led to
the development of new analytical approaches specific for composites.

In this chapter, a new analytical model is created for highly accurate and ef-
ficient buckling and postbuckling analyses of composite laminated and sandwich
beams. The model is based on the Refined Zigzag Theory, which is extended to the
nonlinear analysis of geometric imperfect composite beams. The converse piezo-
electric effect is also included in the formulation to investigate the possibility of
using piezoelectric actuators to control the buckling response (Section 3.2).

The response of initially imperfect composite beams with piezoelectric actua-
tors layers subjected to both distributed and concentrated loads can be calculated
solving the nonlinear equilibrium equations based on the RZT, derived applying
the Principle of Virtual Work for electro-mechanical systems (Section 3.3).

A finite element formulation is also created (Section 3.4) to accurately and
efficiently solve the beam equilibrium problem in more general situations, like anti-
symmetric laminations or in case of any boundary conditions. The solution of
the nonlinear FE equation is obtained applying the Newton-Raphson method to
evaluate the postbuckling nonlinear behaviour of composite beams subjected to
compressive forces (Section 3.5). In addition, a strategy based on the Lagrange
multipliers method is used to further generalise the new FE model capabilities to
the analyses of beams with geometrical discontinuities due to changes in material
and geometrical properties, like the presence of piezoelectric patches on a portion
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of the beam (Section 3.6).
The new nonlinear RZT-FE model is then extended to the analysis of delam-

inated composite beams using one-dimensional beam finite elements to evaluate
the buckling and the nonlinear response in the presence of delaminations (Section
3.6.1). This new method is much more general than other analytical models which
require a symmetric lamination hypothesis. In addition, the use of one-dimensional
finite elements results in less computational cost than the FE commercial codes,
where two- or three-dimensional models are necessary for this kind of problem.
Moreover, the presence of the converse piezoelectric effect in the model allows the
possibility to investigate the usage of piezoelectric actuators to control the local
buckling of delaminated sandwich beams.

3.2 Nonlinear RZT for composite beams with
piezoelectric layers: basic assumptions

The basic assumptions of the Refined Zigzag Theory for beams are here re-
called [48] and a nonlinear strain field based on the RZT is derived to extend
the theory to the analysis of composite beams with geometric nonlinearities and
geometric imperfections.

The beam reference system (x, y, z) is oriented in the way that the coordinate
x œ [xa, xb] corresponds to the beam longitudinal axis and the coordinate z œ
[≠h, h] corresponds to the beam thickness (see Fig.[3.1]). The length of the beam
is L and the cross-sectional area A = 2h ◊ b lays in the (y, z) plane. The beam
lamination is constituted of N orthotropic material layers, including piezoelectric
materials, with the orthotropy axes corresponding to the Cartesian coordinates1.
The thickness of each layer is 2h

(k), where the superscript (k) indicates the kth
material layer. The beam presents an initial geometric imperfection described by
the function w

ú(x) indicating the initial (stress-free) transversal deviations of the
beam from a straight axis configuration.

1The assumption of having layers with the orthotropy axes corresponding to the Cartesian
coordinates is a consequence of the fact that the RZT model considers beams in cylindrical bending
in the (x, z) plane; any other orientation of the layers would cause an out-of-plane displacement.
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Figure 3.1: Notation for beam geometry and applied loads.

The mechanical loads applied to the bottom (z = ≠h) and the top (z = +h)
beam surfaces are the distributed axial loads, p

b(x) and p
t(x), and the distributed

transverse loads, q
b(x) and q

t(x) (units of force/ length). In addition, the end
cross-sections are subjected to the prescribed axial (Txa, Txb) and transverse-shear
(Tza, Tzb) tractions. Only planar deformations in the (x, z) plane are considered
under the assigned load system.
The orthogonal displacement vector s in the Refined Zigzag Theory [51] is defined
as

s ©
I

u
(k)
x

(x, z)
uz(x, z)

J

=
C
1 0 z „

(k)

0 1 0 0

D
Y
___]

___[

u(x)
w(x)
◊(x)
Â(x)

Z
___̂

___\
© Zuu , (3.1)

where u
(k)
x

and uz are the displacements in the directions of the x≠ and z≠axis, re-
spectively. The transverse displacement uz © w is assumed to be uniform along the
beam thickness, thus it is independent of the kth layer characteristics. The vector u
contains the four kinematic variables of the theory: the uniform axial displacement,
u(x), the deflection, w(x), the average cross-sectional (bending) rotation, ◊(x), and
the zigzag rotation, Â(x). This variable was introduced to model the through-the-
thickness zigzag trend of the axial displacement. The total zigzag displacement is
obtained multiplying Â(x) and the zigzag function, „

(k). A subscript (i) is used
to indicate the interface between consecutive layers (i = 0,1, · · · , N), as shown in
Fig.[3.2].

32



3 – The Refined Zigzag Theory for initially imperfect beams with piezoelectric actuators

Figure 3.2: Through-thickness layer notation and zigzag function of the Refined
Zigzag Theory for a four-layered piezo-composite laminate: (a) layer notation and
(b) zigzag function.

The first interface layer, i = 0, is at z © z(0) = ≠h, and the last interface, i = N ,
is at z © z(N) = h; the axial displacement, u

(k)
x

(x, z), and the zigzag function, „
(k),

vanish on both the top and the bottom surfaces of the beam:

„(0) = „
(1)(≠h) = 0 and „(N) = „

(N)(+h) = 0 , (3.2)
u(0) = u(x, ≠h) = 0 and u(N) = u(x, h) = 0 . (3.3)

Within the layer, the function „
(k) is piecewise linear, C

0-continuous, and it is
also lamination and material dependent (see Fig.[3.2]). At the i-th layer interface,
the zigzag function is

„(i) = „(i≠1) + 2h
(i)

—
(i)

, i = 1, · · · , N ≠ 1, (3.4)

where —
(i) © „

(i)
,z

and it is piecewise-constant along the thickness. —
(k) (k =

1, · · · , N) can be expressed in terms of the displacements at the top and the bottom
interfaces of the kth layer:

—
(k) = u(k) ≠ u(k≠1)

2h(k) , k = 1, · · · , N. (3.5)

Taking into account Eq.[3.3], the following property can be derived from Eq.[3.5]:
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⁄

A

—
(k)

dA © b

Nÿ

k=1

1
u(k) ≠ u(k≠1)

2
= b(u(N) ≠ u(0)) = 0 . (3.6)

As shown in [48], the enforcement of the continuity of a transversal shear stress
component in the Refined Zigzag model leads to

G
(k)
xz

(1 + —
(k)) = G

(k+1)
xz

(1 + —
(k+1)) , k = 1, · · · , N ≠ 1, (3.7)

where G
(k)
xz

is the transverse-shear modulus of the kth layer. The quantity
G © G

(k)
xz

(1 + —
(k)) is then constant along the beam thickness and the function —

(k)

can be expressed as

—
(k) = G

G
(k)
xz

≠ 1 , k = 1, · · · , N. (3.8)

Integrating Eq.[3.8] over the beam cross-section and considering Eq.[3.6], G is
defined in terms of the transverse-shear moduli of all the layers:

G = 2h
s

h

≠h

1
1/G

(k)
xz

2
dz

= 2h

q
N

k=1
1
h(k)/G

(k)
xz

2 , (3.9)

Eqs.[3.4-3.8] show that the slope of the zigzag function along the thickness of
each layer depends on the transverse-shear modulus of the layer, G

(k)
xz

. However, in
case of an anti-symmetric lamination and an external layer with a transverse-shear
rigidity weaker than the adjacent one, the external layer behaviour is driven by
the internal layer and, consequently, the slope of the axial displacement function
(u(x, z)) along z is continuous at the interface. This means that also the zigzag
function slope has to be the same in the two consecutive layers. In [54], Gherlone
proved that the correct calculation of the zigzag function is obtained taking the
transverse-shear modulus of the inner layer as the value of the transverse-shear
modulus for the external weaker layer (only for defining the zigzag function).

A layer thickness coordinate, ’
(k) œ [≠1,1], is introduced to completely define the

linear distribution of „
(k) in the kth material layer located in the range [z(k≠1), z(k)]:

’
(k) = [(z ≠ z(k≠1))/h

(k) ≠ 1] , k = 1, · · · , N .

The full expression of „
(k) along the thickness of the kth material layer is

„
(k) © 1

2(1 ≠ ’
(k))„(k≠1) + 1

2(1 + ’
(k))„(k) .

The nonlinear axial strain is considered in the RZT formulation using the von
Kármán kinematic equations particularised to beam structures. Moreover, the

34



3 – The Refined Zigzag Theory for initially imperfect beams with piezoelectric actuators

RZT is here extended introducing also the geometric imperfections in the nonlinear
relations (it has never been done for the RZT in any other work):

‘x = ux,x + 1
2u

2
z,x

+ uz,xw
ú
,x

,

“xz = 1
2(ux,z + uz,x) . (3.10)

Substituting the derivatives of the displacement components of Eq.[3.1] in Eq.[3.10],
the RZT nonlinear axial strain, ‘

(k)
x

, and shear strain, “
(k)
xz

, are obtained:

‘
(k)
x

= u,x + z◊,x + „
(k)

Â,x + 1
2w

2
,x

+ w,xw
ú
,x

,

“
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(k)

Â . (3.11)

In matrix form,

‘
(k)
x

= Z(k)
‘

Ê + 1
2Ê

T HÊ + Ê
úT

Ê ,

“
(k)
xz

= Z(k)
“

Ê . (3.12)

The vectors Ê and Ê
ú contain, respectively, the derivative with respect to the

x-coordinate of the kinematic variables of the theory and of the initial imperfection
function, w

ú(x),

Ê © [u,x w,x ◊ Â ◊,x Â,x]T , (3.13)
Ê

ú © [0 w
ú
,x

0 0 0 0]T . (3.14)

The matrices Z(k)
‘

and Z(k)
“

contain the terms of Eq.[3.11] dependent on the
z-coordinate:

Z‘
(k) =

Ë
1 0 0 0 z „

(k)
È

, (3.15)
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Ë
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and H is a zero-one matrix which selects the suitable component of the vector
Ê to express the quadratic term of ‘

(k)
x

,

H =
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WWWWWWWWU
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3.2.1 Constitutive relations for electro-mechanical fields
The converse piezoelectric effect has been modelled for the piezoelectric layers of

the beam in Fig.[3.1] to work as actuators. The poling direction in each piezoelectric
layer is parallel to the z≠coordinates, as indicated in Fig.[3.3].

Figure 3.3: Piezoelectric layers characteristics.

The top and the bottom surfaces have two different electric charges, q
≠ and q

+,
giving an electric potential difference ∆V

(k) parallel to the poling direction. For
the assumptions made, the electric field vector, Ξ(k), and the electric displacement
vector, D(k), are

Ξ(k) =

Y
_]

_[

0
0

Ξ(k)

Z
_̂

_\
, D(k) =

Y
_]

_[

0
0

D
(k)
z

Z
_̂

_\
. (3.18)

The electrostatic behaviour of the piezoelectric layers is assumed to be linear,
thus the dielectric properties are not dependent on the electrostatic field intensity.

Making the hypotheses that the beam exhibits a plane-stress behavior in the
(x, z) plane and the transverse normal stress ‡

(k)
z

is negligibly small compared to
the axial and transverse-shear stresses, the constitutive relations of the beam for a
linearly coupled electro-mechanical field are

‡
(k)
x

= E
(k)
x

‘
(k)
x

≠ e
(k)
31 Ξ(k)
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,
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= e
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+ ‰
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33 Ξ(k)

z
. (3.20)

where E
(k)
x

and G
(k)
xz

are, respectively, the axial and the transverse-shear moduli
of the kth layer, and e

(k)
31 and ‰

(k)
33 are the piezoelectric stress coefficient and the
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dielectric permittivity of the material. All the mechanical and electrical properties
are assumed to be constant in time and within each layer.

The constitutive relations are particularised to the RZT-beam substituting
Eq.[3.11] in Eqs.[3.19 - 3.20], obtaining
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3.3 Nonlinear equilibrium equations for compos-
ite beams with piezoelectric actuators based
on the RZT

In this section, the Principle of Virtual Work (PVW) is employed in the form of
the electrical enthalpy to express the coupling between the mechanical and electrical
fields and derive the Euler-Lagrange equilibrium equations for imperfect beams with
piezoelectric actuator layers. Firstly, the electrical enthalpy and the work of the
external forces and charges are particularised to the nonlinear RZT for beams and
subsequently the nonlinear equilibrium equations and a set of consistent boundary
conditions are obtained assuming that the total virtual work vanishes.

3.3.1 The Principle of Virtual Work for electro-mechanical
applications

The PVW for electro-mechanical systems can be formulated as the equality of
the virtual variation of the electrical enthalpy, ”He, and the virtual work of the
external forces and electrical charges, ”LE [107]:

”HE ≠ ”L = 0 æ ”HE = ”L . (3.23)

The virtual variation of the electrical enthalpy

By definition, the electrical enthalpy is related to the internal energy, U , and to
the work of the internal charges, Ue, as follows [107]:

HE = U ≠ UE , (3.24)
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where

UE =
⁄

V

ΞT DdV . (3.25)

Since for an adiabatic process the virtual variation of the internal energy is [122]

”U =
⁄

V

”‘
T
‡dV +

⁄

V

”DT ΞdV , (3.26)

the virtual variation of the electric enthalpy is

”HE =
⁄

V

”‘
T
‡dV ≠

⁄

V

”ΞT DdV , (3.27)

where the quantities ‘ and ‡ are the strain and stress tensors.

Considering the assumptions made in the previous sections, the products in the
integrals of the Eq.[3.27] can be simplified as follows:

”HE =
⁄

xb

xa

⁄

A

Ë
”‘

(k)
x

‡
(k)
x

+ ”“
(k)
xz

·
(k)
xz

È
dAdx ≠

⁄

V

”Ξ(k)T
z

D
(k)
z

dV . (3.28)

A voltage source is assumed as electric power supplier of the piezoelectric actu-
ator layers. This means that the electric potential on each electrode of the generic
piezoelectric layer, and thus the electric field Ξ(k)

z
in the layer, is prescribed. For

this reason, the virtual variation ”Ξ(k)
z

vanishes.
Using the nonlinear strain-displacement relations for the RZT of Eq.[3.11], ”HE

becomes

”HE =
⁄

xb

xa

⁄

A

5
”

3
u,x + z◊,x + „

(k)
Â,x + 1

2w
2
,x

+ w,xw
ú
,x

4
‡

(k)
x

+

+ ”

1
w,x + ◊ + —

(k)
Â

2
·

(k)
xz

È
dAdx .

(3.29)

Defining the internal forces and moments as

[Nx, Mx, M„] ©
⁄

A

(1, z, „
(k))‡(k)

x
dA ,

[Vx, V„] ©
⁄

A

(1, —
(k))· (k)

xz
dA , (3.30)

and integrating over the beam cross-section, Eq.[3.29] is reduced to

”HE =
⁄

xb

xa

Ë
Nx”u,x + Mx”◊,x + M„”Â,x + Nx(w,x + w

ú
,x

)”w,x + Vx”w,x + Vx”◊+

+ V„”Â] dx .

(3.31)
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Integrating by parts, the expression of the electrical enthalpy virtual variation
for the nonlinear RZT for beams is obtained:

”HE =
⁄

xb

xa

Ë
≠Nx,x”u ≠ Mx,x”◊ ≠ M„,x”Â ≠ [Nx(w,x + w

ú
,x

) + Vx],x”w + Vx”◊+

+ V„”Â] dx + [Nx”u]xb
xa

+ [Mx”◊]xb
xa

+ [M„”Â]xb
xa

+ [(Nx(w,x + w
ú
,x

) + Vx)”w]xb
xa

.

(3.32)

The virtual work of the external forces and charges

The external action to be considered in the PVW for an electro-mechanical
system is the sum of the virtual work done by the external mechanical forces for an
arbitrary admissible virtual displacement field, ”Lm, and the virtual work done by
external charges for an arbitrary admissible virtual electric potential, ”LE [107]:

”L = ”Lm + ”LE . (3.33)
The quantity ”LE = 0 because the electric potential is prescribed, thus ”L

corresponds to ”Lm. For the load system represented in Fig.[3.1],

”L =
⁄

xb

xa

Ë
p

b
”u

(1)
x (≠h) + p

t
”u

(N)
x (+h) + q

b
”u

(1)
z (≠h) + q

t
”u

(N)
z (+h)

È
dx+

≠
⁄

A

Ë
Txa”u

(k)
x (xa, z) + Tza”u

(k)
z (xa, z)

È
dA +

⁄

A

Ë
Txb”u

(k)
x (xb, z) + Tzb”u

(k)
z (xb, z)

È
dA .

(3.34)

Considering the displacement field for the RZT-beam (Eq.[3.1]),

”L =
⁄

xb

xa

Ë
p

b · (”u ≠ h”◊) + p
t · (”u + h”◊) + q

b · ”w + q
t · ”w

È
dx+

≠
⁄

A

[Txa · (”u(xa) + z”◊(xa) + „”Â(xa)) + Tza · ”w(xa)] dA+

+
⁄

A

[Txb · (”u(xb) + z”◊(xb) + „”Â(xb)) + Tzb · w(xb)] dA .

(3.35)

It can be rearranged as

”L =
⁄

xb

xa

Ë
(pb + p

t) · ”u + h(pt ≠ p
b) · ”◊ + (qb + q

t) · ”w

È
dx+

≠
⁄

A

[Txa · ”u(xa) + zTxa · ”◊(xa) + „Txa · ”Â(xa) + Tza · ”w(xa)] dA+

+
⁄

A

[Txb · ”u(xb) + zTxb · ”◊(xb) + „Txb · ”Â(xb) + Tzb · w(xb)] dA .

(3.36)
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The applied concentrated forces and moments are defined as

[N̄x–, M̄x–, M̄„–, V̄ x–] ©
⁄

A

[Tx–, zTx–, „
(k)

Tx–, Tz–]dA , (– = a, b), (3.37)

while

[p̄, q̄, m̄] © [pb + p
t
, q

b + q
t
, h(pt ≠ p

b)] (3.38)

are the total distributed axial (p̄) and transverse (q̄) loads and the distributed
bending moment (m̄).

Simplifying Eq.[3.36], the expression of the virtual work of the external forces
is obtained:

”L =
⁄

xb

xa

[p̄ · ”u + m̄ · ”◊ + q̄ · ”w] dx ≠ N̄xa · ”u(xa) ≠ M̄xa · ”◊(xa) ≠ M̄„a · ”Â(xa)+

≠ V̄ xa · ”w(xa) + N̄xb · ”u(xb) + M̄xb · ”◊(xb) + M̄„b · ”Â(xb) + V̄ xb · ”w(xb) .

(3.39)

3.3.2 Nonlinear equilibrium equations based on the RZT
The PVW of Eq.[3.23] is particularised to the nonlinear RZT for beams consid-

ering the expression of the virtual variation of the electrical enthalpy of Eq.[3.32]
and the virtual work of Eq.[3.39]:

⁄
xb

xa

Ó
[Nx,x + p̄] · ”u + [Nx,x(w,x + w

ú
,x) + Nx(w,xx + w

ú
,xx) + Vx,x + q̄] · ”w+

+[Mx,x ≠ Vx + m̄] · ”◊ + [M„,x ≠ V„] · ”Â

Ô
dx = N̄xa · ”u(xa) + M̄xa · ”◊(xa)+

+M̄„a · ”Â(xa) + V̄ xa · ”w(xa) ≠ N̄xb · ”u(xb) ≠ M̄xb · ”◊(xb) ≠ M̄„b · ”Â(xb)+

≠V̄ xb · ”w(xb) + [Nx”u]xb
xa

+ [Mx”◊]xb
xa

+ [M„”Â]xb
xa

+ [(Nx(w,x + w
ú
,x) + Vx)”w]xb

xa
.

(3.40)

The first term of the equation gives the nonlinear equilibrium equations for
RZT:

Nx,x + p̄ = 0 ,

Nx,x(w,x + w
ú
,x

) + Nx(w,xx + w
ú
,xx

) + Vx,x + q̄ = 0 ,

Mx,x ≠ Vx + m̄ = 0 ,

M„,x ≠ V„ = 0 , (3.41)
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and the second term yields the boundary conditions:

u(x–) = ū– , or Nx(x–) = N̄x– ,

w(x–) = w̄– , or Vx(x–) = V̄ x– ,

◊(x–) = ◊̄– , or Mx(x–) = M̄x– ,

Â(x–) = Â̄
–

, or M„(x–) = M̄„– , (3.42)

where the bar superscript indicates prescribed quantities (either displacements and
rotations or forces and moments) at the beam edges for – = a, b.

Equilibrium equations in terms of displacement components

The nonlinear constitutive equations relate the stress resultants to the derivative
of the displacement components. They are obtained expressing the stresses in
Eqs.[3.30] as in Eqs.[3.19], and the strains as in Eqs.[3.12]. The resulting relations
can be written in matrix form as

R = ∆Ê + ∆̄
A

1
2

Ê
T

HÊ + Ê
úT

Ê

B

≠ Find
. (3.43)

The vector R © [Nx Vx V„ Mx M„]T contains the stress resultants and ∆
is the matrix defined as

∆ =

S

WWWWWWU

A11 0 0 0 B12 B13
0 ḠA ḠA (G ≠ Ḡ)A 0 0
0 (G ≠ Ḡ)A (G ≠ Ḡ)A (Ḡ ≠ G)A 0 0

B12 0 0 0 D11 D12
B13 0 0 0 D12 D22

T

XXXXXXV
, (3.44)

where the stiffness coefficients are

[A11, B12, D11] ©
⁄

A

E
(k)
x

[1, z, z
2]dA ,

[B13, D12, D22] ©
⁄

A

E
(k)
x

„
(k)[1, z, „

(k)]dA , (3.45)

and

Ḡ © 1
2h

⁄ +h

≠h

G
(k)
xz

dz , (3.46)

is the average thickness-weighted transverse-shear modulus of the total laminate.
The vector ∆̄ in Eq.[3.43] corresponds to the first column of the matrix ∆,

and Find contains the induced axial force and moments due to the piezoelectric
actuation,
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Find © [N ind

x
0 0 M

ind

x
M

ind

„
]T ©

⁄

A

e
(k)
31 Ξ(k)

z
[1,0,0, z, „

(k)]T dA . (3.47)

The Equilibrium equations in terms of displacement components can be ob-
tained substituting the stress resultant of Eq.[3.43] into Eq.[3.41]:

A11

C

u,xx +
31

2w
2
,x + w,xw

ú
,x

4

,x

D

+ B12◊,xx + B13Â,xx + p̄ ≠ N
ind

x,x = 0 ,

;5
A11

3
u,x + 1

2w
2
,x + w,xw

ú
,x

4
+ B12◊,x + B13Â,x ≠ N

ind

x

6
(w,x + w

ú
,x)

<

,x

+

+ ḠA(w,xx + ◊,x) + (G ≠ Ḡ)AÂ,x + q̄ = 0 ,

B12

C

u,xx +
31

2w
2
,x + w,xw

ú
,x

4

,x

D

+ D11◊,xx + D12Â,xx ≠ ḠA(w,x + ◊) ≠ (G ≠ Ḡ)AÂ+

+ m̄ ≠ M
ind

x,x = 0 ,

B13

C

u,xx +
31

2w
2
,x + w,xw

ú
,x

4

,x

D

+ D12◊,xx + D22Â,xx ≠ (G ≠ Ḡ)A(w,x + ◊)+

≠ (Ḡ ≠ G)AÂ ≠ M
ind

„,x = 0 .

(3.48)

It is worth noticing that the electric field in the kth piezoelectric layer can be
expressed as the ratio between the applied voltage, V(k), and the layer thickness,
2h

(k),

Ξ(k)
z

= V(k)

2h(k) , (3.49)

thus the induced resultant force and moments of Eq.[3.47] can be also written
as

[N ind

x
, 0, 0, M

ind

x
, M

ind

„
]T =

⁄

A

e
(k)
31

2h(k) V(k)[1,0, 0, z, „
(k)]T dA . (3.50)

The electrical quantities e
(k)
31 and V(k) are constant within the layer so they can

be taken out of the integral. In addition, the electrical stiffness coefficients per unit
of voltage in the kth layer can be defined as

Ë
a

(k)
E

, d
(k)
E

, c
(k)
E

È
© b

e
(k)
31

2h(k)

⁄
z

k+

zk≠

1
1, z, „

(k)
2

dz , (3.51)
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and consequently Eq.[3.50] becomes

[N ind

x
, 0, 0, M

ind

x
, M

ind

„
]T =

Nÿ

k=1
[a(k)

E
,0, 0, d

(k)
E

, c
(k)
E

]T V
(k)

. (3.52)

3.3.3 Example of an analytical solution of the RZT nonlin-
ear equilibrium equations

The equilibrium problem for a composite beam with piezoelectric layers and
geometric imperfections can be solved using Eqs.[3.41]. In general cases, it is not
easy or even possible to find a solution of the equilibrium equations. One case for
which a solution exists is when a simply-supported, symmetric laminated beam is
considered in the following conditions (refer to Fig.[3.4]):

• the initial imperfection function has a sinusoidal distribution along the beam
length, w

ú = w
ú
0 · sin(fix/L);

• the distributed axial load and the distributed bending moment are equal to
zero, p̄ = m̄ = 0;

• the beam is subjected to a sinusoidal distributed transverse load, q̄ = q0 ·
sin(fix/L), and to a compressive axial load ⁄N0 at the supported edge ( ⁄ is
constant and N0 is a reference load);

• two piezoelectric-actuator layers are uniformly distributed on the top and the
bottom beam surfaces with a constant voltage, V̄ , applied to both layers.

Figure 3.4: Geometrically imperfect beam with two piezoelectric actuator layers
subjected to a sinusoidal transverse load, q̄, and a compressive force, ⁄N0, in simply-
supported boundary conditions.
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For the assumptions made, Eqs.[3.41] become

Nx,x = 0 ,

Nx,x(w,x + w
ú
,x

) + Nx(w,xx + w
ú
,xx

) + Vx,x + q̄ = 0 ,

Mx,x ≠ Vx = 0 ,

M„,x ≠ V„ = 0 , (3.53)

and the boundary conditions at the beam edges, x=0 and x=L, are
Y
_____]

_____[

u(0) = 0 ,

w(0) = 0 ,

Mx(0) = 0 ,

M„(0) = 0

and

Y
_____]

_____[

Nx(L) = ≠⁄N0 ,

w(L) = 0 ,

Mx(L) = 0 ,

M„(L) = 0 .

(3.54)

The first equation of Eqs.[3.53] implies that Nx is constant with respect to x.
For the assumed boundary and loading conditions, Nx(x) = ≠⁄N0, thus the system
of equations Eqs.[3.53] can be simplified as

Y
_____]

_____[

Nx(x) = ≠⁄N0 ’x œ [0, L],
≠⁄N0(w,xx + w

ú
,xx

) + Vx,x + q̄ = 0 ,

Mx,x ≠ Vx = 0 ,

M„,x ≠ V„ = 0 .

(3.55)

Considering the constitutive equations for the nonlinear RZT for beams (Eqs.[3.43])
and the hypothesis of symmetric lamination (B12 = B13 = 0), the quantities in the
previous equations can be expressed in terms of the derivative of the kinematic
variables:

Nx = A11

3
u,x + 1

2w
2
,x

+ w,xw
ú
,x

4
≠ N

ind

x
,

Vx = ḠAw,x + ḠA◊ + (G ≠ Ḡ)AÂ ,

V„ = (G ≠ Ḡ)Aw,x + (G ≠ Ḡ)A◊ + (Ḡ ≠ G)AÂ ,

Mx = D11◊,x + D12Â,x ≠ M
ind

x
,

M„ = D12◊,x + D22Â,x ≠ M
ind

„
.

(3.56)

The induced force and moments are calculated using Eq.[3.52]:
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N
ind

x
= a

(1)
E

V̄ + a
(N)
E

V̄ = 2aEV̄ ,

M
ind

x
= d

(1)
E

V̄ + d
(N)
E

V̄ = 0 ,

M
ind

„
= c

(1)
E

V̄ + c
(N)
E

V̄ = 0 ,

(3.57)

because aE = a
(1)
E

= a
(N)
E

, dE = ≠d
(1)
E

= d
(N)
E

and cE = ≠c
(1)
E

= c
(N)
E

for the
hypothesis of symmetric lamination.
Substituting Eqs.[3.56] in Eqs.[3.55],

Y
________]

________[

A11

3
u,x + 1

2w
2
,x

+ w,xw
ú
,x

4
≠ N

ind

x
= ≠⁄N0 ,

(ḠA ≠ ⁄N0)w,xx + ḠA◊,x + (G ≠ Ḡ)AÂ,x = ⁄N0w
ú
,xx

≠ q̄ ,

ḠAw,x + ḠA◊ ≠ D11◊,xx + (G ≠ Ḡ)AÂ ≠ D12Â,xx = 0 ,

(G ≠ Ḡ)Aw,x + (G ≠ Ḡ)A◊ ≠ D12◊,xx + (Ḡ ≠ G)AÂ ≠ D22Â,xx = 0 .

(3.58)

Note that the derivatives of the induced moments vanish because M
ind

x
and

M
ind

„
are constant along x and also equal to zero.

The following expressions of the kinematic variables represent the solution of
the system and satisfy the boundary conditions:

Y
_____]

_____[

u(x) = u0 · sin(2fix/L) + Cx ,

w(x) = w0 · sin(fix/L) ,

◊(x) = ◊0 · cos(fix/L) ,

Â(x) = Â0 · cos(fix/L) .

(3.59)

The amplitudes of the kinematic variables w(x), ◊(x) and Â(x) are determined
solving the linear system obtained substituting the derivatives of Eqs.[3.59] in the
last three equations of Eqs.[3.58]:

Y
_________]

_________[

(ḠA ≠ ⁄N0) fi

L
w0 + ḠA◊0 + (G ≠ Ḡ)AÂ0 = ⁄N0

fi

L
w

ú
0 + q0 ,

ḠA
fi

L
w0 +

A

ḠA + D11

3
fi

L

42B

◊0 +
A

(G ≠ Ḡ)A + D12

3
fi

L

42B

Â0 = 0 ,

(G ≠ Ḡ)A fi

L
w0 +

A

(G ≠ Ḡ)A + D12

3
fi

L

42B

◊0 +
A

(Ḡ ≠ G)A + D22

3
fi

L

42B

Â0 = 0 .

(3.60)
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The constants u0 and C of the u(x) solution in Eqs.[3.59] can be found sub-
stituting the derivative of u(x) and w(x) in the expression of N(x) of Eqs.[3.56].
After some operations it becomes

N(x) = A11C ≠ 2A11
fi

L
u0 + A11

fi

L

5
4u0 + fi

L

31
2w

2
0 + w0w

ú
0

46
cos

2(fix

L
) ≠ N

ind

x
,

(3.61)

where w
ú
0 is the amplitude of the geometric imperfection function previously

defined. In order to satisfy the first equation in Eqs.[3.55], u0 and C must be

u0 = ≠ fi

8L

1
w

2
0 + 2w0w

ú
0
2

, (3.62)

C = ≠
3

fi

2L

42 1
w

2
0 + 2w0w

ú
0
2

+ N
ind

x
≠ ⁄N0

A11
. (3.63)

3.4 Finite element formulation of the nonlinear
RZT for imperfect beams with piezoelectric
actuators

The analytical solution shown in the previous section has been obtained for
a very particular beam which has a symmetric lamination and geometric imper-
fection. Nevertheless, the aim of this work is not to find the exact solution of
the equilibrium equations (Eqs.[3.48]) but to create a finite element formulation
based on the nonlinear RZT for piezo-composite imperfect beams able to solve the
equations in an approximate way, for any kind of beam lamination, boundary and
loading conditions.

Starting from the definition in Eq.[3.28], and using Eq.[3.12] and Eq.[3.21], the
electrical enthalpy is written in matrix form as
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”HE =
⁄

xb

xa

⁄

A

Ë
”Ê

T
Z‘

(k)T
E

(k)
x Z‘

(k)
Ê

È
dAdx + 1

2

⁄
xb

xa

⁄

A

Ë
”Ê

T
Z‘

(k)T
E

(k)
x Ê

T
HÊ

È
dAdx+

+
⁄

xb

xa

⁄

A

Ë
”Ê

T
Z‘

(k)T
E

(k)
x Ê

úT
Ê

È
dAdx +

⁄
xb

xa

⁄

A

Ë
”Ê

T
HÊE

(k)
x Z‘

(k)
Ê

È
dAdx+

+
⁄

xb

xa

⁄

A

5
”Ê

T
HÊE

(k)
x

31
2Ê

T
HÊ

46
dAdx +

⁄
xb

xa

⁄

A

Ë
”Ê

T
HÊE

(k)
x

1
Ê

úT
Ê

2È
dAdx+

+
⁄

xb

xa

⁄

A

Ë
”Ê

T
Ê

ú
E

(k)
x Z‘

(k)
Ê

È
dAdx +

⁄
xb

xa

⁄

A

5
”Ê

T
Ê

ú
E

(k)
x

31
2Ê

T
HÊ

46
dAdx+

+
⁄

xb

xa

⁄

A

Ë
”Ê

T
Ê

ú
E

(k)
x

1
Ê

úT
Ê

2È
dAdx ≠

⁄
xb

xa

⁄

A

Ë
”Ê

T
Z‘

(k)T
e

(k)
31 Ξ(k)

z

È
dAdx+

≠
⁄

xb

xa

⁄

A

Ë
”Ê

T
HÊe

(k)
31 Ξ(k)

z

È
dAdx ≠

⁄
xb

xa

⁄

A

Ë
”Ê

T
Ê

ú
e

(k)
31 Ξ(k)

z

È
dAdx+

+
⁄

xb

xa

⁄

A

Ë
”Ê

T
Z“

(k)T
G

(k)
xz Z“

(k)
Ê

È
dAdx .

(3.64)
In Eq.[3.64], the kinematic variables appear in the vector Ê with the highest

order of the derivatives, with respect to the spatial coordinate x, corresponding
to the first order, thus C

0-continuous shape functions can be used for the finite
element approximation. The linear Lagrange polynomials could be used as shape
functions for the approximation of all the RZT kinematic variables (isoparametric
interpolation), as for the standard formulation of the beam element based on the
Timoshenko Beam Theory. However, in [5] it was proven that the use of the same
polynomials degree for the shape functions approximating u(x), w(x) and ◊(x), is
the cause of the shear-locking phenomenon [4] in the TBT FE models, and to avoid
this, the polynomial approximating w(x) has to be one degree higher than the one
used for ◊(x). In this way, the condition of zero transverse-shear strain “xz for the
thin-beam limit (L/2h æ Œ) can be guaranteed.

For this reason, the linear Lagrange polynomials, N
L

i
, are here used for the

variables u(x), ◊(x) and Â(x) whereas the quadratic Lagrange polynomials, N
Q

j
,

are used for the variable w(x). This kind of interpolation is called anisoparametric
interpolation because w(x) and ◊(x) have different polynomial degrees. A non-
dimensional axial coordinate › © 2x/L

e ≠ 1 œ [≠1,1] is introduced to define the
polynomials N

L

i
and N

Q

i
:

[NL

1 , N
L

2 ] =
51
2(1 ≠ ›), 1

2(1 + ›)
6

, (3.65)

[NQ

1 , N
Q

m
, N

Q

2 ] =
51
2›(› ≠ 1), (1 ≠ ›

2), 1
2›(› + 1)

6
. (3.66)

The anisoparametric interpolation results in a three-node finite element with
four degrees of freedom at each external node and one degree of freedom, wm, at
the internal node, as shown in Fig.[3.5].
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Figure 3.5: Three-node anisoparametric element based on the Refined Zigzag The-
ory for beams.

The vector of the nodal degrees of freedom of the three-node anisoparametric
element is ue

au
©

Ë
u1 w1 ◊1 Â1 wm u2 w2 ◊2 Â2

È
T

, thus the corresponding
finite element approximation of the kinematic variable vector, u, is

u =

Y
___]

___[

u(x)
w(x)
◊(x)
Â(x)

Z
___̂

___\
ƒ Nauue

au
, (3.67)

where the shape function matrix Nau is

Nau ©

S

WWWWU

N
L

1 0 0 0 0 N
L

2 0 0 0
0 N

Q

1 0 0 N
Q

m
0 N

Q

2 0 0
0 0 N

L

1 0 0 0 0 N
L

2 0
0 0 0 N

L

1 0 0 0 0 N
L

2

T

XXXXV
. (3.68)

As shown in [51], the topology of the three-node finite element can be simpli-
fied to obtain a two-node finite element with four degrees of freedom per node by
imposing a constraint condition on the transverse-shear force resultant Vx. The
definition of Vx of Eq.[3.30] can be rewritten as

Vx = ḠA [w,x(x) + ◊(x) + rÂ(x)] , (3.69)
where r œ [≠1,0] is a transverse-shear parameter depending on the materials of

the beam. The parameter is defined as

r © ≠Ḡ ≠ G

Ḡ
. (3.70)

Introducing the anisoparametric interpolation of the kinematic variables of Eq.[3.67]
in Eq.[3.69]:
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Vx ƒ ḠA

Ë
N

Q

1,xw1 + N
Q

m,x
wm + N

Q

2,xw2 + N
L

1 (◊1 + rÂ1) + N
L

2 (◊2 + rÂ2)
È

. (3.71)

Eq.[3.71] indicates that Vx has a linear distribution along the x-coordinate of
a three-node anisoparametric finite element. Imposing the constraint condition
Vx,x = 0 (Vx constant along x), the degree of freedom wm can be expressed as a
function of the degrees of freedom of the external nodes:

wm = ≠
N

Q

1,xx

N
Q
m,xx

w1 ≠
N

Q

2,xx

N
Q
m,xx

w2 ≠
N

L

1,x

N
Q
m,xx

(◊1 + rÂ1) ≠
N

L

2,x

N
Q
m,xx

(◊2 + rÂ2) . (3.72)

Substituting the derivative of the Lagrange polynomials of Eq.[3.66] in Eq.[3.72]:

wm = w1 + w2
2 + L

e

8 [(◊2 + rÂ2) ≠ (◊1 + rÂ1)] . (3.73)

The anisoparametric-constrained approximation of the kinematic variable vector
u is obtained substituting Eq.[3.73] in Eq.[3.67]:

u =

Y
___]

___[

u(x)
w(x)
◊(x)
Â(x)

Z
___̂

___\
ƒ Nue

, (3.74)

where ue is a vector containing the degrees of freedom of the external nodes
only,

ue ©
Ë
u1 w1 ◊1 Â1 u2 w2 ◊2 Â2

È
T

, (3.75)

and the shape function matrix, N, is

N ©

S

WWWU

N
L

1 0 0 0 N
L

2 0 0 0
0 N

L

1 ≠l
e
N

Q

m
≠l

e
rN

Q

m
0 N

L

2 l
e
N

Q

m
l
e
rN

Q

m

0 0 N
L

1 0 0 0 N
L

2 0
0 0 0 N

L

1 0 0 0 N
L

2

T

XXXV , (3.76)

where l
e = L

e
/8.

The finite element corresponding to the anisoparametric-constrained approxi-
mation has only two nodes and eight degrees of freedom, as shown in Fig.[3.6]. The
complete derivation of the anisoparametric-constrained finite element based on the
RZT for beams and further details on the constraint condition can be found in [51].
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Figure 3.6: Two-node constrained anisoparametric element based on the Refined
Zigzag Theory for beams.

The vector of the derivative of the kinematic variables, Ê, can be approximated
as

Ê ƒ Beue
, (3.77)

where the matrix Be contains the derivative of the shape functions with respect
to the x coordinate,

Be ©

S

WWWWWWWWU

N
L

1,›
0 0 0 N
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2,›
0 0 0

0 N
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1,›
≠l

e
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e
cN
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0 N

L

2,›
l
e
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2
0 0 N
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1,›
0 0 0 N

L

2,›
0

0 0 0 N
L

1,›
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L

2,›

T

XXXXXXXXV

. (3.78)

The initial imperfection function, w
ú(x), is approximated within the finite ele-

ment using the quadratic Lagrange polynomials (see Fig.[3.7]):

w
ú(x) ƒ

Ë
N

Q

1 N
Q

m
N

Q

2
È

Y
_]

_[

w
ú
1

w
ú
m

w
ú
2

Z
_̂

_\
© Núuúe

. (3.79)

The values of w
ú(x) at the finite element edges, w

ú
1 and w

ú
2, and at the mid-point,

w
ú
m

, correspond to the real (measured) values of the imperfection in the x-locations,
thus they are prescribed quantities.
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Figure 3.7: Parabolic approximation of the initial imperfection in the finite element.

The finite element approximation of the vector Ê
ú is then

Ê
ú ƒ Búeuúe = 1

Le

S

WWWWWWWWU

0 0 0
N

Q

1,›
N

Q

m,›
N

Q

2,›

0 0 0
0 0 0
0 0 0
0 0 0

T

XXXXXXXXV

Y
_]

_[

w
ú
1

w
ú
m

w
ú
2

Z
_̂

_\
. (3.80)

Introducing the finite element approximation for Ê (Eq.[3.77]) and Ê
ú (Eq.[3.80])

in Eq.[3.64], and considering that Be and H are not dependent on the cross-sectional
variables, the virtual variation of the electrical enthalpy in the finite element ap-
proximation is
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(3.81)

Collecting ”ueT , Eq.[3.81] becomes
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(3.82)

It is convenient to define a vector Ve

P
containing the values V

ek

P
of the voltage

applied in kth layer of the finite element (V ek

P
= 0 if the layer is not made of

piezoelectric material or if the applied voltage is zero):

Ve

P
©

Ë
Ve1

P
... Vek

P
... VeN

P

È
T

. (3.83)

Considering Eqs.[3.49-3.52], after some operations, the integrals related to the
piezoelectric contribution in Eq.[3.82] can be simplified as follows:
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In addition, it is useful to introduce a matrix Ze

N
:

Ze

N
©

⁄

A

[E(k)
x

Z‘
(k)]dA , (3.86)

which can be written in terms of the stiffness coefficients A
e

11, B
e

12 and B
e

13 of
the finite element, e, using Eqs.[3.15]-[3.45]:

53



3 – The Refined Zigzag Theory for initially imperfect beams with piezoelectric actuators

Ze

N
=

Ë
A

e

11 0 0 0 B
e

12 B
e

13
È

. (3.87)

The finite element approximation of the electrical enthalpy virtual variation is
then
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The following stiffness matrices can be defined, indicating those dependent on
ue with an overbar:
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Eq.[3.88] is simplified as
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(3.98)

Indicating with Fe the vector of nodal forces equivalent to the applied me-
chanical forces, the virtual work done by the external forces in the finite element
approximation is

”L
e ƒ ”ueT Fe

. (3.99)

Applying the Principle of Virtual Work (Eq.[3.23]) using Eq.[3.98] and Eq.[3.99],
the problem of the equilibrium is reduced to the solution of the following nonlinear-
matrix equation:
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3.4.1 Constant axial force
It is here shown that for particular boundary and loading conditions the beam

axial force is independent of the degrees of freedom and Eq.[3.100] is reduced to a
linear relation.

The general definition of the normal force is
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⁄

A

‡xdA . (3.101)

Substituting Eq.[3.12] in the axial stress definition of Eq.[3.19] and then in
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In the finite element approximation (Eq.[3.77] and Eq.[3.80]), it is

Nx ƒ
⁄

A

5
E

(k)
x

3
Z(k)

‘
Beue + 1

2ueT BeT HBeue + uúeT BúeT Beue

4
≠ e

(k)
31 Ξ(k)

z

6
dA .

(3.103)

The virtual variation of the normal force due to a virtual variation of the vector
ue is
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(3.104)

Collecting the appropriate terms in the electrical enthalpy virtual variation
(Eq.[3.88]), ”Nx appears in the two terms at the end of the following equation:
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Moreover, the term linearly dependent on ue in the axial force expression
(Eq.[3.102]) can be defined as follows:
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(3.107)

When the axial force is assigned as boundary condition of the beam (e.g. the
applied axial force at the supported edge of a simply-supported beam), Nx is in-
dependent of ue, thus the virtual variation ”Nx = 0 and Eq.[3.107] is simplified
as
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e
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⁄
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xa

BeT Búe
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(3.108)

Considering Eqs.[3.89, 3.95-3.99], Eq.[3.23] becomes

Ë
Ke ≠

1
N

inde

x
≠ N

e

xc

2
Ke

G

È
· ue = Fe +

1
N

inde

x
≠ N

e

xc

2
Kúe

G
uúe + Ke

P
Ve

P
. (3.109)
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All the matrices in Eq.[3.109] are independent of the degrees-of freedom vec-
tor, thus, the equation can be solved in the conventional way without using the
Newton-Raphson method. Eq.[3.109] and, in general, Eq.[3.100] can be used to
find the equilibrium condition of a composite beam for any applied mechanical
load and electrical voltage. The entire nonlinear load-displacement equilibrium
path of axially-compressed beams can be reconstructed by iteratively solving the
equation increasing the load from zero to the desired value.

In addition, Eq.[3.109] can be used to find the critical buckling loads of a simply-
supported beam solving the eigenvalue problem:

(Ke ≠ P
e

i
Ke

G
) · ûe = 0 , (3.110)

where the eigenvalues P
e

i
= N

inde

x
≠ N

e

xc
are the buckling loads and the eigen-

vectors ûe

i
are the buckling mode shapes.

3.5 The Newton-Raphson method for solving the
nonlinear RZT-FE equation

In the FE equilibrium equation (Eq.[3.100]), the matrices with a bar super-
script are function of the degrees of freedom vector ue, thus the resulting nonlinear
equation is solved using an incremental-iterative technique based on the Newton-
Raphson method, as shown in [123]. The nonlinear equation for the beam structure
is obtained assembling the matrices and vectors of all the finite elements of the
model:

3
K + 1

2K̄GI

T + K̄GI + Kú
GI

T + Kú
GI

+ 1
2K̄GII + Kú

GII
+ 1

2K̄GM

T + K̄GM+

≠ KGAe

2
· u ≠ F ≠ Kú

GAe
uú ≠ KPVP = 0 ,

(3.111)

where KGAe and Kú
GAe

are obtained assembling the element-based matrices
N

inde

x
Ke

G
and N

inde

x
Kúe

G
.

Using a vectorial function g(u, ⁄), Eq.[3.111] can be written as

g(u, ⁄) = qi(u, ⁄) ≠ ⁄qe = 0 . (3.112)
The vector qi(u, ⁄) is the internal forces vector and it is a function of both the

degrees of freedom vector u and the increment factor, ⁄. The external forces vector,
qe, increases by ⁄ at each increment.

The applications presented in this work can be classified as electrical-forces-only
or mechanical-forces-only because the mechanical and the electrical load increments

58



3 – The Refined Zigzag Theory for initially imperfect beams with piezoelectric actuators

have never been applied at the same time. These two conditions can be described
as follows:

1. Electrical forces only: no mechanical loads are applied and the voltage vector
VP is increased. At the i-th increment, the applied voltage is VP i = ⁄iVP 1,
where VP 1 is the initial reference voltage vector.
Note that the quantity N

inde

x
contains the voltage, thus the matrices KGAe

and Kú
GAe

change with ⁄. For VP = VP 1, KGAe = KGAe1 and Kú
GAe

=
Kú

GAe1
, thus:

qi =
3

K + 1
2K̄GI

T + K̄GI + Kú
GI

T + Kú
GI

+ 1
2K̄GII + Kú

GII
+

+1
2K̄GM

T + K̄GM ≠ ⁄KGAe1

4
· u ,

(3.113)

qe = Kú
GAe1

uú + KPVP1 . (3.114)

2. Mechanical forces only: the voltage in the actuators has a constant value and
the incremental-iterative solution is related only to the applied mechanical
forces. This means that the matrices KGAe and Kú

GAe
are independent of ⁄

and the internal forces vector is a function of u only.
Indicating with F1 the initial reference mechanical load vector,

qi =
3

K + 1
2K̄GI

T + K̄GI + Kú
GI

T + Kú
GI

+ 1
2K̄GII + Kú

GII
+

+1
2K̄GM

T + K̄GM ≠ KGAe

4
· u ≠ Kú

GAe
uú ≠ KPVP ,

(3.115)

qe = F1 . (3.116)

The solution procedure at each step combines an incremental solution, that is
the tangential increment of u corresponding to the load increment of the step, used
as predictive starting solution point (predictor) and Newton-Raphson iterations
(corrector), which find a convergent value of u for the assigned load. The procedure
is briefly described below using a superscript for the increments and a subscript for
the iterations:

1. the starting equilibrium point is the homogeneous condition, because u = 0
when no loads are applied. It is indicated by the superscript (0), thus:

(u(0) = 0, ⁄
(0) = 0) and g(0) = g(u(0)

, ⁄
(0)) = 0 ;
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2. the tangent stiffness matrix is calculated for the initial condition:

KT
(0) =

A
dg
du

B(0)

;

3. the first incremental solution (predictor) is calculated as

u(1)
0 = u(0) +

1
KT

(0)
2≠1

∆qe

(1)
,

where ∆qe

(1) = ⁄
(1)qe1 and qe1 is unitary reference load vector;

4. the function g is calculated in the (u(1)
0 , ⁄

(1)) condition,

g(1)
0 = g(u(1)

, ⁄
(1)) .

If g(1)
0 /= 0 and does not satisfy the convergence criterion of the predictor, the

Newton-Raphson iterations begin for the load factor increment ⁄
(1)

(a) the tangent stiffness matrix is calculated for (u(1)
0 , ⁄

(1)):

KT

(1)
0 =

A
dg
du

B(1)

0
;

(b) the increment at the first iteration is then

”u(1)
1 = ≠

1
KT

(1)
0

2≠1
g(1)

0 ;

(c) the solution at the first iteration is

u(1)
1 = u(1)

0 + ”u(1)
1 ;

(d) if the function g(1)
1 = g(u(1)

1 , ⁄
(1)) /= 0 and does not satisfy the conver-

gence criterion for the corrector, another iteration is needed;
(e) the tangent stiffness matrix is calculated for (u(1)

1 , ⁄
(1)):

KT

(1)
1 =

A
dg
du

B(1)

1
;

(f) the increment at the second iteration is

”u(1)
2 = ≠

1
KT

(1)
1

2≠1
g(1)

1 ;
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(g) the solution at the second iteration is

u(1)
1 = u(1)

1 + ”u(1)
2 ;

(h) the function g(1)
2 = g(u(1)

2 , ⁄
(1)) is calculated to check the convergence.

The last nth iteration is the one for which g(1)
n

satisfies the corrector
convergence criterion.

The second equilibrium point is then (u(1)
, ⁄

(1)), where u(1) = u(1)
n

. The pro-
cedure continues starting from point 1, but with (u(1)

, ⁄
(1)) as initial condition

and the load factor ⁄ = ⁄
(2).

The convergence criterion adopted for both the predictor increments and the
corrector iterations is based on the calculation of a parameter indicated as coit

[123],

coit(g, qe) =
1
gT · g

20.5
≠ 0.01

1
qe

T · qe

20.5
.

The nth predictor increment converges if coit(g = g(n)
, qe = qe

(n)) < 0 and
the ith corrector iteration of the m-th predictor increment converges if coit(g =
g(m)

i
, qe = qe

(m)
i

) < 0.

The load factor changes at each increment and is calculated as

⁄
(n) = ⁄

(n≠1)

Û
I

ref

In≠1 , (3.117)

where ⁄
n≠1 is the previous increment factor for which I

n≠1 iterations were re-
quired and I

ref is a reference number of desired iterations.

3.5.1 Tangent stiffness matrix calculation for the RZT model
The element-based tangent stiffness matrix is defined as

Ke

T
(ue) = dge

due
. (3.118)

The definition of the vectorial function g in Eq.[3.112] shows that only the
internal forces vector qi depends on the degrees of freedom vector u, thus for the
finite element e:

dge

due
= dqe

i

due
. (3.119)

For the mechanical forces only case the derivative dqe

i
/due is (refer to Eq.[3.115])
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dqe

i

due
= Ke + Kúe
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(3.120)

The matrices with the overbar are a function of the degrees of freedom vector
ue, thus it is useful to introduce the following derivatives:

d
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È
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, (3.121)
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, (3.123)
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, (3.124)
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, (3.125)

where
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(3.126)

The full expression of the tangent stiffness matrix for the nonlinear RZT model
is then

Ke

T
(ue) = Ke + Kē

GI

T + K̄e

GI
+ K̄e

GI2
+ Kúe

GI

T + Kúe

GI
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+ K̄e

GM2
≠ Ke
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.

(3.127)
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3.6 Interfaces between beam finite elements
The finite element formulation presented in the previous sections provides the

equilibrium solution of axially-loaded composite beams with geometric imperfec-
tions and piezoelectric actuators for any kind of boundary conditions. However,
the formulation needs to be further generalised to correctly model beams with dis-
continuities in the material or geometrical properties (e.g. the finite elements have
different material or geometrical characteristics). In general, two kinds of disconti-
nuity, or interface, can occur between two consecutive finite elements:

• an analytical interface, when different analytical models are used for the two
elements (Fig.[3.8a]).

• a physical interface, when the elements have either different material proper-
ties (Fig.[3.8b]) and/or there is an offset between the axes of the two elements
(one element is thicker or the two elements are misaligned, Figs.[3.8c-3.8d]);

(a) (b)

(c) (d)

Figure 3.8: Interfaces between two consecutive finite elements: (a) analytical in-
terface; geometrical interfaces due to (b) a change of the material layers, (c) an
additional layer in the second element and (d) a misalignment between the ele-
ments.

In these cases, the displacement field vectors of the two elements at the interface
are different because either the mathematical model or the geometric and material
characteristics change. This inconsistency can be solved minimising the difference
between the displacements fields by using a strategy based on the Lagrange multi-
pliers method.
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Figure 3.9: Geometrical interface between the elements – an —.

Considering a beam modelled using two finite elements, – and —, with an inter-
face at x = xi (see Fig.[3.9]), the total potential energy of the system is the sum of
the total potential energy of the first element and the total potential energy of the
second element:

Π = Π– + Π—
. (3.128)

The problem of the beam equilibrium can be solved finding the minimum of
the total potential energy subjected to the constraint condition that the work done
by fictitious forces on the difference between the two displacement fields at the
interface, s–

i
and s—

i
, is zero. The physical meaning of this constraint condition is

that, since the two elements are joint at the interface, the two displacement fields
have to be the same, thus the beam cannot be deformed as if it was split in that
location [124]. The total potential energy of the generic finite element j (j = –, —)
is the difference between the strain energy, U

j, and the work done by the external
forces L

j

m
:

Πj = U
j ≠ L

j

m
. (3.129)

Considering the finite element approximation for nonlinear and geometric im-
perfect beams (for the sake of simplicity, the condition of constant normal force
and no electrical contribution is shown), the total potential energy of the element
j is

Πj = 1
2ujT Kjuj + N

j

xc

1
2ujT Kj

G
uj + N

j

xc
ujT Kúj

G
uúj ≠ ujT Fj

, (3.130)

thus the total potential energy Π is a function of the degrees of freedom vectors
of the two elements, Π = Π(u–

, u—).
The Langrange function is introduced to transform a constrained minimum

problem of the function Π = Π(u–
, u—), to an unconstrained minimum problem

of a function, Πi = Πi(u–
, u—

, ⁄), which depends also on the Lagrange multipliers
vector, ⁄,
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Πi = Π– + Π— +
⁄

Ai

⁄
T ·

1
s–

i
≠ s—

i

2
dA . (3.131)

The additional term in Πi is the fictitious work given by the integral over the
interface cross-section, Ai = hi ◊ b, of the product between the fictitious stresses
⁄ and the difference between the displacement fields of the two elements at the
interface. Note that hi is the thickness shared by the two elements indicated in
Fig.[3.9].

The function Πi of Eq.[3.131], can be then written taking into account also
Eq.[3.1] and Eq.[3.74]:
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2
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(3.132)

Note that the shape function matrices of both elements Nj are evaluated at
x = xi, i = –, — .

The Lagrange multipliers vector has two components, ⁄u and ⁄w, one for each
displacement variable. The through-the-thickness distribution of the Lagrange mul-
tipliers at the interface is defined using the variables ⁄̄u1, ⁄̄u2 and ⁄̄w, because a
linear distribution is assumed for ⁄u, whereas ⁄w is constant over the beam cross-
section:

⁄ =
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2 0
0 0 1

D Y
_]

_[

⁄̄u1
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Z
_̂

_\
© N⁄⁄̄ . (3.133)

N
L

1 and N
L

2 are the linear Lagrange polynomials defined in Eq.[3.65], but in this
case they are function of the thickness coordinate z.

Defining the matrix Hj for the element j,

Hj = b
j

⁄

hi

N⁄
T Zj

u
dz Nj(xi) , (3.134)

the function Πi is then
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(3.135)
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The minimum of the function Πi can be found solving the system:
Y
________]
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(3.136)
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(3.137)

In matrix form, the degrees of freedom and the Lagrange multipliers can be
collected in one vector because they are the variables of the system,
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(3.138)

that is

(K + KGN) u = ≠Kú
GN

uú + F , (3.139)

where the vector u contains both the degrees of freedom of the beam and the
Lagrange multipliers variables.

It can be seen that the stiffness matrix K of a beam with an interface has
additional rows and columns for the new degrees of freedom at the interface but
also other terms related to the variables of the Lagrange multipliers. The geometric
stiffness matrices of the beam, KGN and Kú

GN
, contain the geometric stiffness

matrices of each element multiplied by the normal force acting on the element.
KGN, Kú

GN
and the vector F have additional rows and columns of zero-elements

corresponding to the Lagrange multipliers variables.

66



3 – The Refined Zigzag Theory for initially imperfect beams with piezoelectric actuators

3.6.1 Modelling delaminated composite beams using RZT-
beam finite elements

The strategy based on the Lagrange Multipliers method can be employed also for
modelling beams with delaminations, like the six-layer beam shown in Fig.[3.10].
The fourth and the fifth layers of the beam are separated between x = xm and
x = xn, thus the laminate is divided in two sublaminates along Ld = xn ≠ xm.

Figure 3.10: Six-layer composite beam with a delamination.

In order to model the behaviour of each sublaminate, two RZT-beam finite
elements have to be employed along the thickness in the delaminated part. The
minimum number of RZT-beam finite elements required to model the delaminated
beam in Fig.[3.10] is four, and they are indicated as a, b, c and d in Fig.[3.11].

Figure 3.11: FE model of a delaminated composite beam using beam-RZT finite
elements.

At x = xm and x = xn the finite elements of the non-delaminated parts (a
and d respectively) have to be linked to the two finite elements of the delaminated
part (b and c). The elements in the delaminated part have a different thickness
and their axes are not aligned to those of the elements in the non-delaminated
parts. This means that to link the element a to both the elements b and c, the
Lagrange multipliers method can be employed as shown in the previous section, but
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considering that there are two interfaces at the same point (x = xm), one interface
is between a and b and the other interface is between a and c. The same happens
at x = xn, where both the elements b and c have to be linked to the element d.
The resulting number of interfaces is then four. Introducing a vector of Lagrange
multipliers for each interface, the function Πi for the delaminated beam model of
Fig.[3.11] is

Πi = Πa + Πb + Πc + Πd +
⁄

Am1
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T ·
1
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m
≠ sb

m

2
dA +

⁄

Am2
⁄2

T · (sa

m
≠ sc

m
) dA+

+
⁄
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1
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n
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n

2
dA +

⁄

An2
⁄4

T ·
1
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n
≠ sd

n

2
dA ,

(3.140)

where s
j

i
is the displacement vector of the element j at the interface x = xi.

Considering Eq.[3.133], the finite element formulation of Πi for the delaminated
beam is
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(3.141)

The matrix Hj

il
is defined for the interface l (l = 1,2) of the element j at x = xi,

as

Hj

il
=

⁄

Ail

N⁄
T Zj

u
dz Nj(xi) . (3.142)

The condition that the partial derivatives of the function Πi with respect to its
variables ua, ub,uc, ud, ⁄1̄, ⁄2̄, ⁄3̄, ⁄4̄, have to vanish leads to the following matrix
equation (for the sake of simplicity, the condition of constant normal force and the
absence of electrical forces and geometric imperfections is considered):

(K + KGN) u = F , (3.143)

where the vector of the unknowns contains both the degrees of freedom and the
four vectors of Lagrange multipliers variables,
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The stiffness matrix of the beam, K, contains the terms related to the interfaces
(Hj

il
) as follows:
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while the geometric stiffness matrix and the force vector have additional zero-
element terms
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3.7 Conclusion
A new analytical model based on the Refined Zigzag Theory has been created

for the buckling and postbuckling analyses of composite laminated and sandwich
beams subjected to axial compressive loads. The geometric nonlinearities and the
geometric imperfections have been introduced for the first time in the RZT for-
mulation in order to generate a model able to evaluate the buckling loads and the
nonlinear response of geometrically imperfect composite beams.

In addition, one of the capabilities of the model is that the beam layers can be
made of piezoelectric material. The converse piezoelectric effect has been considered
in the formulation to investigate the possibility to control the buckling response with
piezoelectric actuators using a theory as efficient as the Timoshenko Beam Theory
but suitable for composites.

Firstly, the equilibrium equations based on the nonlinear RZT have been de-
rived to find the response of initially imperfect composite beams with piezoelectric
actuator layers subjected to both distributed and concentrated loads. An example
of the analytical solution has been shown for a symmetric, piezo-composite lami-
nated beam, with an initial deflection approximated by a sinusoidal function, with
simply-supported boundary conditions and subjected to an axial-compressive force
and a sinusoidal-distributed transverse load.

Subsequently, a finite element formulation based on C
0 RZT-beam finite ele-

ments has been created to solve the buckling and the nonlinear equilibrium problem
of composite beams for any lamination, load system, boundary conditions and ge-
ometric imperfection. In addition, a strategy based on the Lagrange multipliers
method has been employed to correctly model any kind of discontinuity in the
beam lamination. As a consequence, the new RZT-FE model can be used for the
analysis of beams with local thickness and material changes due to piezoelectric
actuator patches on the beam surfaces. The actuators for the buckling control
can be then either continuous piezoelectric layers (internal or external) or patches
externally bonded to the beam.

A further application of the model is the analysis of delaminated composite
beams. The new RZT-FE model is extended to the buckling and postbuckling
analyses of delaminated composite and sandwich beams, with the possibility to
investigate the local buckling control using piezoelectric actuator patches.

The new RZT-FE model is very attractive because it is based on a theory suit-
able for composites and sandwiches with a very simple formulation, characterised by
only one additional degree of freedom per node with respect to the Bernoulli-Euler
and Timoshenko beam theories, and it can be employed for various and general
applications, for both symmetrically and anti-symmetrically laminated beams. It
combines accuracy and efficiency and it can be used to study the control of both
the global and the local buckling of composite and sandwich beams.
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Chapter 4

Numerical verification

4.1 Introduction
The new nonlinear RZT-FE model is implemented in a Matlab routine to per-

form the buckling and postbuckling analyses of composite beams with and without
pizoelectric actuators. In this chapter, the model is numerically assessed for the
buckling and the nonlinear static (postbuckling) analyses of both sandwich beams
and composite laminated beams with piezoelectric actuators.

Firstly, three sandwich beams with aluminium facesheets and a foam core, with
various slenderness and face-to-core thickness ratios, are considered (Section 4.2).
Two different structural foams are taken into account in order to study the influence
of the face-to-core stiffness ratio on the numerical predictions. The buckling loads
and the nonlinear response to a compressive force are calculated for each beam and
the RZT results are compared to those obtained by both one-dimensional models
based on Timoshenko beam finite elements and two-dimensional, highly-detailed,
finite element models realised either in Abaqus or in Nastran. The high-fidelity
Abaqus and Nastran solutions are taken as a reference to demonstrate that the RZT
is very accurate and also more efficient than the commercial codes. In addition,
it is shown that the Timoshenko FE models are not able to correctly predict the
buckling loads and the nonlinear response of sandwich beams with low slenderness
ratios and highly heterogeneous materials.

Subsequently, the RZT model is employed for the analysis of five composite mul-
tilayer beams with piezoelectric actuator patches bonded to the external surfaces
considering various geometries and actuator locations (Section 4.3). In Abaqus, the
piezoelectric properties can be assigned only to solid elements, thus the reference
models are realised using three-dimensional finite elements. The buckling analysis
is performed and then the buckling modes are used to introduce the geometric im-
perfections in each model to calculate the nonlinear static response of the imperfect
beams subjected to an axial compressive load. For both these analyses the piezo-
electric effect is not considered and the actuators are just geometric entities which
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introduce geometric and material discontinuities to assess the RZT in this condi-
tion. The piezoelectric actuation is then taken into account applying a voltage to
the actuators. The nonlinear static response of the imperfect beams is calculated
in terms of transversal deflection; the RZT and Abaqus predictions are compared
to demonstrate that RZT is very accurate also for high voltages and it is a more
efficient and convenient way to perform these analyses.

4.2 Nonlinear static and buckling analyses of
sandwich beams

Three sandwich beams with different material and geometrical properties have
been considered for the numerical validation of the nonlinear FE model based on
the RZT, with a focus on highly heterogeneous materials and low slenderness ratios.
All the beams have a foam core and aluminium facesheets; two of them, the IG-
32-5 and the WF-32-5, have the same geometry (length and thicknesses) but the
material of the core is the Rohacell® IG31 for the IG-32-5 and the Rohacell® WF110
for the WF-32-5. The third beam, named IG-96-2, has a Rohacell® IG31 core but
it is longer than the other two beams. Moreover, the IG-32-5 and the WF-32-5
have a slenderness ratio of 20 and a core-to-face thickness ratio of 1.2, whereas
the slenderness ratio of the IG-96-2 is 40 and its core-to-face thickness ratio is
10. These beams were realised for the experimental assessments of the RZT for the
static and dynamic analyses ([62]-[63]) and their material properties and dimensions
can be found in Tables [4.1-4.2]. Figs.[4.1] show the IG-32-5 and the IG-96-2 in the
configuration used in a previous work for the free-vibration analysis.

(a) IG-32-5 (b) IG-96-2

Figure 4.1: The IG-32-5 and the IG-96-2 sandwich beams employed to validate the
RZT for the free-vibration analysis [63].
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Ergal® Rohacell®IG31 Rohacell®WF110
E (MPa) 69,570 40.3 196
G (MPa) 25,766 12.4 65.4

Table 4.1: Material properties of the sandwich beams for the numerical validation.

Beam L b hc hf

IG-32-5 320 48.53 6.07 5
WF-32-5 320 48.18 6.10 5
IG-96-2 960 72.40 19.93 2

Table 4.2: Geometrical properties of the sandwich beams for the numerical valida-
tion (mm).

The buckling and the nonlinear static analyses have been conducted for each
beam in both simply-supported and cantilever boundary conditions (see Fig.[4.2]).

Figure 4.2: Load and boundary conditions: (a) simply-supported- (b) clamped-free-
beam subjected to an axial-compressive force.

4.2.1 Finite element models of the sandwich beams
Each beam has been analysed using three different finite element models: a high-

fidelity two-dimensional model realised either in Abaqus® or in MSC/Nastran®, a
one-dimensional model based on RZT-beam finite elements and a one-dimensional
model based on TBT-beam finite elements.

The 2D models were experimentally validated in previous works for the static
and free-vibration analyses of sandwich beams, thus they are taken as the reference
solution. Four-node 2D finite elements (S4R for Abaqus and QUAD4 for Nastran)
have been used in the (x, z) plane for a plane stress model of the beams oriented
as in Fig.[3.1]. A suitable element dimension has been chosen to guarantee the
presence of at least two elements along the thickness in each layer, as shown in
Fig.[4.3]. The exact numbers of nodes and elements of the 2D meshes are reported
in Table [4.3].
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(a) (IG-WF)-32-5. (b) IG-96-2.

Figure 4.3: Two-dimensional models of the beams using four-node 2D finite ele-
ments.

The usual way for modelling beam-like structures in the finite element commer-
cial codes is using 1D-beam elements. These elements are based on the Timoshenko
Beam Theory and have only two nodes, thus the resulting finite element model of
a beam has a considerably lower number of degrees of freedom than a 2D model.
For this reason, the analyses have been conducted also for 1D models based on the
TBT to show that, despite the lower computational cost, possible issues can occur
for particular beam geometries and material characteristics, even using an ad-hoc
shear correction factor k based on the transverse-shear strain energy [22].

No. of nodes No. of elements
along L along hf along hc total

(IG/WF)-32-5 5,457 320 5 6 5,120
IG-96-2 25,947 960 2 20 23,040

Table 4.3: Number of nodes and finite elements of the two-dimensional models in
Nastran and Abaqus.

The RZT and the TBT finite element models have been implemented in Mat-
lab, and the inputs needed in the routine are the beam geometrical and material
characteristics, the load and boundary conditions and the desired number of finite
elements.

To set the number of finite elements of the one-dimensional models, the buckling
and postbuckling analyses of the beams have been performed several times for an
increasing the number elements. The minimum number of elements which did not
give appreciable differences comparing the solutions to those obtained with a higher
number of elements was 40 for the shortest beams, thus a mesh of 40 finite elements
has been considered for both the TBT and the RZT models of all the beams.
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4.2.2 Buckling analysis of the sandwich beams
The buckling loads of the beams modelled with RZT finite elements have been

calculated solving the eigenvalue problem of Eq.[3.110] in 3.4.1. An equivalent
equation has been solved for the models based on the TBT, considering a specific
shear correction factor, k, calculated for each beam: k

2 = 1.1163 ◊ 10≠3 for the IG-
32-5, k

2 = 5.1762◊10≠3 for the WF-32-5 and k
2 = 1.4914◊10≠2 for the IG-96-21. In

Abaqus, the buckling analysis has been performed applying a distributed piecewise
constant load along the thickness at the supported edge. The load magnitude in
each layer is proportional to the Young modulus of the corresponding material to
guarantee a constant axial strain in the cross-section and to avoid local effects (that
cannot be modelled by RZT and TBT).

The values of the first two buckling loads for each beam are reported in Table
[4.4] for the cantilever boundary conditions, and in Table [4.5] for the simply-
supported conditions, indicating the percentage deviation, ∆, of RZT and TBT
from the Abaqus solution.

Beam ABAQUS RZT ∆ TBT ∆
(N) (N) % (N) %

IG-32-5 9,850 9,905 0.56 9,159 -7.02
26,292 26,856 2.15 13,196 -49.81

WF-32-5 19,498 19,540 0.22 19,409 -0.46
63,985 64,303 0.50 55,153 -13.8

IG-96-2 5,017 5,026 0.18 5,025 0.16
15,973 16,076 0.64 15,994 0.13

Table 4.4: Buckling loads for cantilever boundary conditions.

It can be noticed that the RZT and TBT percentage deviations in Table [4.5]
for the simply-supported boundary conditions are higher than the corresponding
values in Table [4.4] for the cantilever configuration, but the RZT deviations are
generally much lower than the TBT in both cases. The RZT deviation on the first
buckling load is higher than 1% only for the shortest and most heterogeneous beam,
the IG-32-5, reaching 1.84% in simply-supported boundary conditions. The RZT
predictions are very accurate also for the second buckling load, with the deviation
up to 3.27% only for the IG-32-5 and lower than 2% in all other cases. On the other

1As explained in the literature review, the method proposed in [22] is based on the calculation
of the transverse-shear strain energy in two different ways. The final expression of the shear
correction factor depends on the stiffness coefficients of the beam, thus different laminations and
thicknesses lead to different values of the coefficient.
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hand, the TBT is accurate only for the IG-96-2, which has the highest slenderness
ratio, and for the first buckling load of the WF-32-5 in cantilever configuration,
but when simply-supported boundary conditions are considered, the deviation is
almost 5%. In any other case TBT is inaccurate, especially for the simply-supported
boundary conditions, where the values reach almost 30% and 65% for the first and
second buckling loads of the IG-32-5.

These results point out that, in the FE commercial codes, the model of a com-
posite beam has to be at least two-dimensional to guarantee the right solution for
any kind of beam geometry and material properties, because the one-dimensional
models can give incorrect results as they are based on the TBT. However, the major
drawback of the two-dimensional FE models is the computational cost. The time
for the RZT and TBT buckling analyses is always less than one second, while the
time needed by Abaqus to perform the same analyses is one (for the (IG/WF)-32-5)
or two (for the IG-96-2) orders of magnitude higher. For this reason, the RZT is
an excellent compromise between accuracy and computational effort.

Beam ABAQUS RZT ∆ TBT ∆
(N) (N) % (N) %

IG-32-5 17,361 17,681 1.84 12,346 -28,89
37,745 38,980 3.27 13,522 -64.18

WF-32-5 45,005 45,311 0.68 42,828 -4.84
80,009 81,329 1.65 61,332 -23.34

IG-96-2 11,894 11,946 0.44 11,926 0.27
18,172 18,354 1.00 18,162 -0.06

Table 4.5: Buckling loads for simply-supported boundary conditions.

4.2.3 Nonlinear response of the sandwich beams subjected
to a compressive force

The nonlinear response of the beams has been obtained for various initial im-
perfection configurations and in both simply-supported and cantilever boundary
conditions. A compressive force N0 has been applied at the supported edge and the
RZT beam response has been evaluated solving Eq.[3.109] with N

e

xc
= ≠N0, and

with N
inde

x
= 0 and Ve

P
= 0 because no piezoelectric actuators are considered:

[Ke ≠ N0Ke

G
] · ue = Fe + N0Kúe

G
uúe

. (4.1)

Eq.[4.1] has been solved for 20 values of N0, with constant increments of load
from N0 = 0 to N0 = 0.99Ncr. For each value of N0, the equation has been solved
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in the conventional way since the stiffness matrices in the equation are independent
of the degrees of freedom. A formally equivalent equation has been solved for the
TBT FE models.

A first analysis has been conducted for the IG-32-5 in cantilever configuration
and the geometric imperfection is described by the following relation:

w
ú(x) =

L
2 + µ

2 ≠
Ò

(L2 + µ2)2 ≠ 4µ2x2

2µ
. (4.2)

The parameter µ indicates the maximum deflection at the tip and the value
chosen is µ = w

ú(L) = 1 mm.
The reference 2D model has been realised in MSC/Patran with the geometry

reproducing the beam in its imperfect configuration (see Fig.[4.4]).

Figure 4.4: Nastran model of a cantilever beam with an initial geometric imperfec-
tion function defined in Eq.[4.2].

The geometric imperfection can be easily introduced in the 1D models (RZT
and TBT) indicating the expression of the function w

ú(x), which is approximated
in the finite element method as explained in 3.4.

The nonlinear response of the beam has been calculated2 for the three models
increasing the applied load N0 from 0 to 99% of the critical buckling load calculated
in the previous section. The load-transversal displacement equilibrium path of the
node at the beam tip is reported in Fig.[4.5].

2In Nastran, to perform a nonlinear static analysis, the modified Newton-Raphson method has
been used with a number of load increments of 10 and a maximum iteration number of 25 [19].
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Figure 4.5: Load–deflection curves for the cantilevered IG-32-5 beam with initial
imperfection.

The main disadvantage of Nastran is that the imperfections can be taken into
account only if the model geometry has the actual initial deformed shape.

In Abaqus, the imperfection can be optionally introduced in the model of a
perfect beam as a linear combination of the buckling modes. For this reason,
Abaqus has been used to validate the RZT predictions for various imperfections.
Moreover, for each beam, three different configurations have been chosen as initial
deflection, described by the following combinations of buckling modes:

1. imperfection corresponding to the first buckling mode

2. imperfection corresponding to the second buckling mode

3. imperfection corresponding to a linear combination of the first and the second
buckling mode, 70% and 30% respectively.

In each case, the actual initial deflection has been obtained setting to 1 mm the
maximum deflection of the deformed shape3.

3The method used in Abaqus for the nonlinear static analysis is the arc-length method. The
first increment has been set at 10% of the maximum applied load (corresponding to the buckling
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The nonlinear response of the beams is calculated for both simply-supported and
cantilever boundary conditions and considering all the imperfection combinations
described above. The results of RZT, TBT and Abaqus are compared in Figs.[4.6-
4.14].

As expected, the load-deflection curves of the beams with the geometric imper-
fection described by either a generic function (Fig.[4.5]) or the first buckling mode
(Figs.[4.6, 4.9, 4.12]) have a horizontal asymptote that corresponds to the first
buckling load indicated in Tables [4.4-4.5]. The load asymptotic value is the first
buckling load also when a linear combination of the first and the second buckling
load is considered as initial imperfection, as shown in Figs.[4.8, 4.11, 4.14]. On the
other hand, when the imperfection exactly reproduces the second buckling load,
the curve tends asymptotically to the corresponding second buckling load value
(Figs.[4.7, 4.10, 4.13]).

Figs.[4.12-4.14] show that in all cases, the IG-96-2 load-deflection equilibrium
paths are very well predicted by both the RZT and TBT, like the evaluation of the
corresponding buckling loads.

The curves for the IG-32-5 and the WF-32-5 in Figs.[4.6-4.11] show that the
accuracy of TBT is highly dependent on the initial imperfections, with higher
deviations when the second buckling mode shape is assumed as initial deflection
(Figs.[4.7]-[4.10]). Moreover, the mismatch between TBT and Abaqus is signifi-
cantly bigger for the IG-32-5, because of both the low slenderness ratio and the
higher heterogeneity between the materials of the core and facesheets of this beam.
There is also a dependence on the boundary conditions with better predictions of
both TBT and RZT when cantilever configurations are considered.

By contrast, the RZT solution is noticeably accurate for all the beams in all
configurations, and this precision is reached in less than 10 seconds while the Abaqus
total CPU time to perform the same analyses is two orders of magnitude higher.
The time required by the RZT and the Abaqus models for the buckling and the
postbuckling analyses is reported in Table [4.6].

load) and the minimum and maximum number of increments allowed has been set to 10 and 1000
respectively [18].
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(a) CF

(b) SS

Figure 4.6: Load-displacement equilibrium path for the IG-32-5 sandwich beam
with the initial imperfection corresponding to the first buckling mode.
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(a) CF

(b) SS

Figure 4.7: Load-displacement equilibrium path for the IG-32-5 sandwich beam
with the initial imperfection corresponding to the second buckling mode.
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(a) CF

(b) SS

Figure 4.8: Load-displacement equilibrium path for the IG-32-5 sandwich beam
with the initial imperfection corresponding to a linear combination of the first and
the second buckling modes. 82
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(a) CF

(b) SS

Figure 4.9: Load-displacement equilibrium path for the WF-32-5 sandwich beam
with the initial imperfection corresponding to the first buckling mode.
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(a) CF

(b) SS

Figure 4.10: Load-displacement equilibrium path for the WF-32-5 sandwich beam
with the initial imperfection corresponding to the second buckling mode.
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(a) CF

(b) SS

Figure 4.11: Load-displacement equilibrium path for the WF-32-5 sandwich beam
with the initial imperfection corresponding to ta linear combination of the first and
the second buckling modes. 85
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(a) CF

(b) SS

Figure 4.12: Load-displacement equilibrium path for the IG-96-2 sandwich beam
with the initial imperfection corresponding to the first buckling mode.
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(a) CF

(b) SS

Figure 4.13: Load-displacement equilibrium path for the IG-96-2 sandwich beam
with the initial imperfection corresponding to the second buckling mode.
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(a) CF

(b) SS

Figure 4.14: Load-displacement equilibrium path for the IG-96-2 sandwich beam
with the initial imperfection corresponding to a linear combination of the first and
the second buckling modes. 88
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Buckling Analysis Nonlinear Analysis
RZT ABAQUS RZT ABAQUS

SS CF SS CF SS CF SS CF
IG-32-5 0.64 0.64 9.4 11 9.10 9.00 267 130

WF-32-5 0.64 0.64 9.5 11 9.10 9.00 267 130
IG-96-2 0.42 0.42 80 80 9.70 9.20 315 302

Table 4.6: Time (s) required by RZT and Abaqus for performing the buckling and
the nonlinear analyses of the sandwich beams in simply-supported and cantilever
configurations.

The load-deflection equilibrium paths in Figs.[4.6-4.14] report the transversal
deflection of a single point on the beam axis as function of the applied load. To
further verify the RZT accuracy, the deformed shape of the IG-32-5 has been com-
pared to the transversal deflection of all points on the beam axis of the Abaqus
two-dimensional model.

In order to prove the RZT capabilities in general conditions, the IG-32-5 with
the initial imperfection corresponding to the linear combination of the first and
second buckling modes has been chosen. The IG-32-5 is the beam with the lowest
slenderness ratio and the biggest differences in the material properties, thus it is
the most challenging problem. The deformed shapes for different values of applied
load are reported in Figs.[4.15a-4.19a] for cantilever boundary conditions and in
Figs.[4.15b-4.19b] for simply-supported boundary conditions. In Figs.[4.15a-4.15b]
the applied load is N0 = 0, thus the deformed shape corresponds to the initial
imperfection. In Figs.[4.16-4.19] the applied load is, respectively, 25%, 45%, 66%,
and 89% of the critical buckling load Ncr.

The perfect match between the Abaqus and the RZT deformed shapes demon-
strate that RZT is highly accurate for the calculation of the nonlinear response,
even for highly heterogeneous beams subjected to compressive loads very close to
the critical buckling value, where the influence of the nonlinearities is predominant.
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(a) CF

(b) SS

Figure 4.15: Deformed shape of the IG-32-5 with an initial imperfection corre-
sponding to a linear combination of the first and the second buckling modes and
for N0 = 0.
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(a) CF

(b) SS

Figure 4.16: Deformed shape of the IG-32-5 with an initial imperfection corre-
sponding to a linear combination of the first and the second buckling modes and
for N0 = 0.25Ncr.
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(a) CF

(b) SS

Figure 4.17: Deformed shape of the IG-32-5 with an initial imperfection corre-
sponding to a linear combination of the first and the second buckling modes and
for N0 = 0.45Ncr.
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(a) CF

(b) SS

Figure 4.18: Deformed shape of the IG-32-5 with an initial imperfection corre-
sponding to a linear combination of the first and the second buckling modes and
for N0 = 0.66Ncr.
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(a) CF

(b) SS

Figure 4.19: Deformed shape of the IG-32-5 with an initial imperfection corre-
sponding to a linear combination of the first and the second buckling modes and
for N0 = 0.89Ncr.

94



4 – Numerical verification

4.3 Nonlinear static and buckling analyses of
composite beams with piezoelectric actuators

In this section, the finite element model based on the nonlinear RZT is employed
for the buckling and nonlinear static analyses of composite multilayer beams with
piezoelectric actuator patches bonded to the beam external surfaces.

In practical applications, the piezoelectric actuators can be used to reduce the
beam initial deflection, making the beam axis closer to a straight configuration, in
order to increase the critical buckling load. The presence of discrete elements on
the beam surface, like the actuator patches, introduces a local change in the ma-
terial and thickness properties. These geometrical discontinuities can be correctly
modelled by the RZT using the strategy based on the Lagrange multipliers method
described in 3.6.

The new RZT-FE model is assessed comparing the results and the correspond-
ing computational cost to those obtained by equivalent Abaqus models. In Abaqus,
the usual way to model piezoelectric actuator patches is by using solid elements be-
cause the piezoelectric properties can be attributed to them, thus three-dimensional
models are necessary when the piezoelectric behaviour is considered.

The buckling loads and the nonlinear response to a compressive force are calcu-
lated for five composite beams with piezoelectric patches by both the RZT and the
Abaqus finite element models. Various geometries and patch locations are consid-
ered to demonstrate the validity of the RZT predictions in general situations and
to show its advantages in terms of computational cost. These two kinds of anal-
yses do not involve the piezoelectric effect because the patches are not activated,
but only the mechanical behaviour is considered. Then the same models but with
piezoelectric finite elements are used to evaluate the beam transversal deflection
due to the voltage applied to the actuators to verify the RZT predictions. The
results reported in this chapter have been also validated experimentally, as shown
in the following chapter.

4.3.1 Finite element models of the composite beams with
piezoelectric actuators

The five beams are made of four Carbon Fibre Reinforced Polymer (CFRP)
material layers, in either cross-ply symmetric, [0°/90°/90°/0°], or anti-symmetric,
[90°/0°/90°/0°], orientation. The names and geometrical properties of the beams
are indicated in Table [4.7]. As shown in Fig.[4.20], simply-supported boundary
conditions are considered and one or two piezoelectric patches are bonded to the
external surfaces of each beam. The location of the actuators is expressed by the
distance between the hinged edge of the beam and the first section of the patch,
indicated as la or lb in Table [4.7].
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Beam L b h Ply orientations la lb

(mm) (mm) (mm) (mm) (mm)
BPZT1 298.0 20.83 0.65 [0°/90°/90°/0°] 99.0 -
BPZT2 299.0 23.03 0.73 [90°/0°/90°/0°] 99.5 -
BPZT3 447.5 21.46 0.72 [0°/90°/90°/0°] 143.0 -
BPZT4 448.0 22.59 0.75 [90°/0°/90°/0°] 143.5 -
BPZT5 448.5 22.24 0.78 [90°/0°/90°/0°] 63.0 286.0

Table 4.7: Beams geometrical properties, material orientation and actuators loca-
tion.

(a)

(b)

(c)

(d)

(e)

Figure 4.20: Composite beams with piezoelectric actuators patches: (a) beam
BPZT1, (b) beam BPZT2 (c) beam BPZT3 (d) beam BPZT4 (e) beam BPZT5.
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The beam BPZT1 has two actuators located symmetrically with respect to the
mid-plane, one on the top and one on the bottom surface of the beam, at a distance
la from the hinged edge. The BPZT2, BPZT3 and BPZT4 have only one actuator
on the top surface whereas the beam BPZT5 has two actuators, one on each side
of the beam, distant, respectively, la and lb from the hinged edge. The actuator
on the top surface of the BPZT3 makes the lamination anti-symmetric, thus the
BPZT1 is the only symmetric beam.

Figure 4.21: Model of the piezoelectric actuator patch.

The Macro Fiber Composite (MFC) M8514-P1 piezoelectric transducer has been
taken as reference for the actuator modelling because they are the actuators used
for the experimental assessments. The patch is modelled as Fig.[4.21], with two
external parts made of Kapton and long lk = 8 mm, and the internal area made of
piezoelectric material whose length is lp = 85 mm. The thickness is hp = 0.3 mm,
while the width is assumed to be the same of the beam on which the patch is bonded,
since the RZT cannot model any variations of width along the thickness. The
mechanical and electrical properties of the materials are reported in Table [4.8]4.
The properties of the CFRP correspond to those of carbon/epoxy unidirectional
prepregs VTM264-T700 (35% of resin content, Advanced Composites Group); the
characteristics of the Kapton and the piezoelectric materials are those indicated in
the MFC transducer datasheets [125].

Fig.[4.22] outlines the type of geometrical interfaces introduced by the actuators.
The BPZT1 has four discontinuities indicated by ik (k = 1,2,3,4) for the change of
lamination due to the actuators. Two interfaces, the i1 and the i4, correspond to

4The piezoelectric coefficient indicated in Table [4.8] is the d33 because the operational mode
of the MFC P1-type actuators is the d33-effect. The d33-effect refers to a different behaviour from
the one considered in the RZT model, the e31-effect. The way this difference has been taken into
account will be explained in Section 4.3.4.

97



4 – Numerical verification

CFRP-VTM264 Piezoelectric Kapton
E1 (MPa) 120,000 E1 (MPa) 30,340 E (MPa) 2,500
E2 (MPa) 7,500 E2 (MPa) 15,860 ‹ 0.34
E3 (MPa) 7,500 E3 (MPa) 15,860
G12 (MPa) 3,900 G12 (MPa) 5,510
G13 (MPa) 3,900 G13 (MPa) 5,510
G23 (MPa) 2,300 G23 (MPa) 5,510
‹12 0.32 ‹12 0.31
‹13 0.16 ‹13 0.16

d33 (m/V) 4.6 ◊ 10≠10

‰33 (F/m) 1.64 ◊ 10≠8

Table 4.8: Mechanical properties of the materials of the beams and actuators.

the sections between the beam-only part (part of the beam without the patch) and
the regions of the beam with Kapton layers bonded to the external surfaces. The
interfaces i2 and i3 correspond to the sections between the part of the beam with
Kapton layers and the part of the beam with piezoelectric layers on the external
surfaces.

(a) (b)

(c) (d)

Figure 4.22: Geometrical discontinuities and corresponding offsets due to the actu-
ator patches: four interfaces for (a) the BPZT1, (b) the BPZT3 and (c) the BPZT2
and BPZT4; (d) eight interfaces for the BPZT5.

The BPZT(2-4) have four interfaces too, whereas the BPZT5 has eight interfaces
(ik, k = 1,2, . . . ,8). In the BPZT(2-5), the use of only one actuator or two actuators
not symmetrically located on the top and bottom surfaces of the beam, changes

98



4 – Numerical verification

the half-thickness axis location, thus, at the interfaces, there are both a change
of material lamination and an offset of the half-thickness axis. The offset value
is given by the distance between the half-thickness axis and the x≠axis and it is
positive for z > 0. The offset of the part of the beam with an actuator bonded to
the top surface corresponds to +hp/2 (for the BPZT(2-4) and the first actuator of
BPZT5), whereas the offset of the actuator bonded to the bottom surface of the
BPZT5 is ≠hp/2.

Each beam can be considered as divided in different parts between two consecu-
tive geometrical interfaces (including the sections at beam edges) characterised by
the same material and geometrical properties. The BPZT(1-4) are then constituted
of five parts while the BPZT5 is made of nine parts.

The number of RZT finite elements has been set taking into account the dis-
continuities along the beam length by considering a node at each interface. In
addition, the shortest parts on the beams are those with the Kapton layers and
they are lk = 8 mm, thus 8 mm is the maximum length the elements can have
to guarantee a uniform mesh. The buckling and postbuckling analyses have been
performed several times increasing the number of finite elements by progressively
reducing the element average length. It has been verified that there are not appre-
ciable differences between the solutions obtained for a mesh with elements 2 mm
long and the solutions with smaller elements, thus the average length of the finite
elements considered in the RZT models is 2 mm.

Figure 4.23: Abaqus finite element model of the piezoelectric actuator using 3D
elements.

The mesh of the three-dimensional Abaqus models has been realised using con-
tinuum shell elements (SC8R type) for the beam-only parts, whereas 3D stress
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elements (C3D8/C3D8E type) have been used for the actuator patches. Two finite
elements has been set along the z-coordinate in order to have a minimum number
of three nodes along the beam thickness. The average dimensions of the contin-
uum shell elements are then 1 ◊ 1 ◊ h mm3, where h is half thickness of the beam
considered. Fig.[4.23] shows the mesh of the actuator part of the Abaqus models;
only one element has been considered along the actuator thickness direction, thus
the average dimensions of the finite elements are 1 ◊ 1 ◊ hp mm3.

The resulting number of nodes and finite elements for both the RZT and the
Abaqus models are indicated in Tables [4.9-4.10], specifying the values of both
the individual and the assembled parts for the Abaqus models. The numbers of
nodes and elements of the actuator part of the BPZT1 and the BPZT5 refer to one
actuator only.

No. of nodes
ABAQUS RZT

Beam Actuator total
BPZT1 19,800 4,488 28,776 145
BPZT2 21,672 4,896 26,568 145
BPZT3 29,634 4,488 34,122 223
BPZT4 32,400 4,896 37,296 225
BPZT5 31,050 4,692 40,434 219

Table 4.9: Number of nodes of the Abaqus and the RZT models.

No. of elements
ABAQUS RZT

Beam Actuator total
BPZT1 12,558 2,121 16,800 144
BPZT2 13,800 2,323 16,123 144
BPZT3 18,816 2,121 20,937 222
BPZT4 20,654 2,323 22,977 224
BPZT5 19,756 2,222 24,200 218

Table 4.10: Number of finite elements of the Abaqus and the RZT models.

A tie constraint is used to connect the patch to the beam surfaces in the Abaqus
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models. The simply-supported boundary conditions have been defined at the half-
thickness nodes of the beam edges while compressive concentrated forces have been
applied to all the nodes at the supported edge. A representation of the Abaqus
models for all the beams can be found in Figs.[4.24].

(a) (b)

(c) (d)

(e) (f)

Figure 4.24: Abaqus models: (a) BPZT1, (b) BPZT2, (c) BPZT3, (d) BPZT4, (e)
top surface of the BPZT5 and (f) bottom surface of the BPZT5.
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4.3.2 Buckling analysis of the composite beams with
piezoelectric actuators

The RZT buckling loads have been calculated solving the eigenvalue problem of
Eq.[3.110] in 3.4.1. In Abaqus, C3D8 elements have been considered for the actu-
ators because the piezoelectric behaviour is not involved in the buckling analysis.
Axial-compressive forces of the same intensity have been applied to the nodes at
the supported edge and their sum is equal to 1 N, thus the eigenvalues correspond
to the actual buckling loads.

The first two buckling loads calculated with Abaqus and RZT are reported in
Table [4.11]. The percentage deviation of the RZT with respect to Abaqus is always
less than 3%, with values higher than 2% only for the BPZT5, which is the beam
with the highest anti-symmetry because of both the beam lamination and the patch
locations.

Beam ABAQUS RZT ∆
(N) (N) %

BPZT1 8.56 8.40 -1.88
24.61 24.40 -0.86

BPZT2 6.00 5.90 -1.71
19.08 18.90 -0.92

BPZT3 4.07 4.00 -1.65
14.57 14.47 -0.67

BPZT4 2.56 2.52 -1.41
8.97 8.90 -0.80

BPZT5 2.92 2.85 -2.62
14.46 14.07 -2.67

Table 4.11: Buckling loads of composite beams with piezoelectric actuators.

The remarkable advantage of the RZT is in the computational effort because
the time to run the buckling analysis in Matlab for the RZT model is of just 3 s
while in Abaqus it is ten times bigger, being 30 s on average.

4.3.3 Nonlinear response of the composite beams with
piezoelectric actuator patches subjected to a com-
pressive force

The nonlinear response to a compressive load acting at the supported edge is
calculated for both the RZT and the Abaqus models. The actuators are imagined
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to be disconnected from any power supply, thus the piezoelectric behaviour has not
been taken into account and C3D8 finite elements have been used for the actuators
parts in Abaqus. An initial geometric imperfection is considered for each beam
introducing it as a linear combination of the buckling modes of the beam without
imperfections.

In the RZT, the function w
ú(x) describes the imperfection distribution and it

is defined by the following linear combination of the first three buckling modes:

w
ú(x) = a1 · sin

3
fix

L

4
+ a2 · sin

32fix

L

4
+ a3 · sin

33fix

L

4
. (4.3)

The coefficients ak of the linear combination are different for each beam, and
they are indicated in Table [4.12]5. The same values have been used in Abaqus to
define the imperfection as a linear combination of the buckling modes calculated in
previous analyses.

BPZT1 BPZT2 BPZT3 BPZT4 BPZT5
a1 1.66 3.97 1.60 8.62 9.24
a2 0.10 0.19 0.76 -0.15 -0.36
a3 0.27 0.30 0.22 0.72 0.46

Table 4.12: Coefficients of the linear combination approximating the imperfection
function.

The nonlinear response of the beams increasing the compressive load, N0, from
N0 = 0 to N0 = 0.99Ncr is shown in Figs.[4.25-4.29] for both the RZT and
the Abaqus models. An almost perfect match between the two solutions can
be observed for the BPZT(1-4) in Figs.[4.25]-[4.28] for values of N0 up to N0 =
0.5Ncr. Moreover, the RZT is remarkably precise for the BPZT1 and the BPZT3
(Figs.[4.25]-[4.27]), even for higher values of N0 and very close to the critical buck-
ling load. A slight difference can be observed, instead, for the BPZT2 and the
BPZT4 when N0 approaches Ncr but for all the beams BPZT(1-4) the RZT response
indicates a softer behaviour than Abaqus when N0 is close to Ncr (Figs.[4.25-4.28]).

By contrast, the RZT response for the BPZT5 in Fig.[4.29] indicates a stiffer
behaviour of the beam than that predicted by Abaqus for any value of applied
compressive load. This difference is probably due to the difference in the initial
deflection of the RZT and the Abaqus models.

5The finite element models in this section reproduce the beams realised for the experiments
presented in the following chapter. The values ak are used to define the function w

ú(x) which
approximates the initial deflection measured on the real beams.
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Indeed, the initial deflection of the nodes on the beam axis in the two-dimensional
Abaqus models does not perfectly correspond to the initial imperfection of the one-
dimensional RZT models, because the imperfection has been introduced both in
Abaqus and in RZT as a linear combination of the corresponding buckling modes.
The same coefficients for linear combination have been considered in both cases,
but Abaqus combines the buckling modes of a two-dimensional model whereas RZT
combines the modes of a one-dimensional model. This results in an initial deviation
of the BPZT(1-4) RZT models that is slightly higher than the Abaqus imperfec-
tion, leading to a moderately softer response. In the points where the response is
calculated, the RZT initial deflection is only 0.2% higher than the Abaqus’ for the
BPZT1 and the BPZT3, whereas it is 0.9% and 0.8% higher than Abaqus for the
BPZT2 and the BPZT4, respectively. The slightly higher mismatch between the
initial deviations of the two models and also the non-symmetric beam lamination
could explain the bigger difference in the RZT and Abaqus solutions for high values
of N0 in the response of the BPZT2 and the BPZT4.

On the other hand, the RZT model of the BPZT5 has an initial deflection that
is 2.3% lower than the Abaqus imperfection in the same point, explaining the stiffer
behaviour of the RZT. The high mismatch between the RZT and the Abaqus initial
deflection for the BPZT5 is probably the cause of the discrepancy between the two
solutions, bigger than the other cases.

Nevertheless, even if the two curves in Fig.[4.29] do not overlap perfectly for
most of the load values considered, there is a very good agreement between in the
initial-linear range with very similar changes in the curve slope. The RZT results
are acceptable for both the buckling load values and the nonlinear response, even
for this beam and it can be concluded that the RZT is able to correctly predict
beam nonlinear behaviour of composite beams, even for anti-symmetric laminations
and with with geometrical interfaces.
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Figure 4.25: Load-displacement equilibrium path for the BPZT1.

Figure 4.26: Load-displacement equilibrium path for the BPZT2.
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Figure 4.27: Load-displacement equilibrium path for the BPZT3.

Figure 4.28: Load-displacement equilibrium path for the BPZT4.
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Figure 4.29: Load-displacement equilibrium path for the BPZT5.

This is the application where the RZT capabilities are best shown because, even
for very slender beams and simple geometries, the computational cost significantly
increases for the Abaqus solutions. The average time for the nonlinear analyses
of the BPZT(1-4) is less than 1 minute for the RZT whereas it is 5 minutes for
Abaqus. The BPZT5 analyses require more computational effort in both models,
but the time is 80 s for RZT and 40 minutes for Abaqus. It is clear then even
a small variation in the geometry complexity results in a higher computational
cost, but while for RZT it slightly increases, in Abaqus it is ten times bigger than
simpler geometries and it is obviously not acceptable when many analyses have to
be performed. The actual time required for the buckling and postbuckling analyses
of each beam using the RZT or the Abaqus model is reported in Table [4.13] at the
end of the next section.

4.3.4 Model of the MFC-P1 actuators
The MFC multilayer structure allows a bigger elongation for the same applied

voltage compared to the conventional configuration of piezoceramic actuators. De-
pending on the operational mode, two type of MFCs are available, the P1 and
the P2 types [125]. The MFC-P1 type actuators have been chosen in this work
because, for the same applied voltage, their elongation is double the MFC-P2 type
contraction.
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Figure 4.30: Structure of the MFC-P1 actuator [125].

Fig.[4.30] illustrates the structure of the MFC-P1 type piezoelectric transducers.
They have an inner layer made of rectangular piezoceramic rods, aligned along their
longitudinal direction and bonded to each other by a structural epoxy adhesive. The
top and bottom layers are made of two interdigitated electrodes (IDE) bonded to
the piezoceramic layer with the same epoxy adhesive used between the piezoceramic
rods. The P1-MFC actuator operational mode is the d33 coupling, where the strain
component and the electric field have the same direction indicated by the subscripts
3, that corresponds to fibre longitudinal direction (x≠axis in Figs.[4.30-4.31]). The
interdigitated electrodes are orthogonal to the piezoelectric rods which have an
alternate polarisation along the longitudinal direction (see Fig.[4.31]). For this
reason, when a positive voltage is applied to the IDEs, the electric field and the
poling direction in each part of the piezoelectric fibres between two microelectrodes
will have the same orientation and the fibres will expand.

The piezoelectric strain coefficient d33 = 460 ◊ 10≠12 m/V indicates the strain
along x of a single portion of a piezoelectric rod between two consecutive micro-
electrodes for a unitary electric field component, E3, along x and under a constant
stress field.
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Figure 4.31: Operational mode of the MFC-P1 actuator [125].

In Chapter 3, the inverse piezoelectric behaviour is introduced in the RZT model
considering the d31 coupling, where the electric field direction is orthogonal to the
actuator axial strain. The two piezoelectric effects are compared in Fig.[4.32],
with the d33 coupling on the left side and the d31 coupling on the right. It is
clear that the design of the actuator defines the kind of coupling: the positive and
negative electrodes have to be spaced along the piezoelectric longitudinal direction
to realise a d33 coupling, whereas they have to be on the bottom and top surface of
the piezoelectric patch to create an electric potential difference along the vertical
direction to get a d31 coupling .

Figure 4.32: Comparison between the d33 piezoelectric coupling (on the left) and
the d31 piezoelectric coupling (on the right).

Unlike the d33 effect, the subscript 3 in the d31 indicates the transversal direction
while the longitudinal direction is indicated by the subscript 1. The axial strain is
then ‘x = ‘3 = d33E3 for a d33 actuator whereas ‘x = ‘1 = d31E3 in a d31 actuator.
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In order to use the same notation of the RZT equations, it is useful to model the
MFC 8514-P1 as a d31 actuator. The piezoelectric coefficient value is calculated
assuming that the axial strain for the d31 effect is the same as the actual d33
strain under the same applied voltage. The electric field E3 corresponding to the
electric potential difference ∆V

(k) is E3 = ≠∆V
(k)

/te for a d33 actuator and E3 =
≠∆V

(k)
/hp for a d31 actuator. Equalling the strain in the two cases:

d31
∆V

(k)

hp

= d33
∆V

(k)

te

. (4.4)

The number of sections between two consecutive microelectrodes in a MFC
8514-P1 is 170 and the distance between the consecutive microelectrodes is te = 0.5
mm. The d31 coefficient to be used to model the d33 effect of this kind of actuator
as a d31 effect is d31 = 276 ◊ 10≠12 m/V. The corresponding piezoelectric stress
coefficient is e31 = E1 ◊ d31 = 0.0084 N/mm/V, where E1 is the Young modulus in
the longitudinal direction of the piezoelectric material defined in Table [4.8].

4.3.5 Nonlinear static response of the piezo-composite
beams to the voltage

In this section, the transversal deflection of the beams is calculated considering
a voltage source connected to the actuators. The e31 operational mode has been
considered for the actuators in both the RZT and the Abaqus model, with a piezo-
electric stress coefficient corresponding to e31 = 0.0084 N/mm/V. The beams are
hinged at both ends and subjected to only the voltage in the actuators, without
any mechanical load.

Eq.[3.109] cannot be used for double-hinged boundary conditions, thus the RZT
solution has been obtained solving Eq.[3.111] with the Newton-Raphson method for
increments on the electric voltage and F = 0. The voltage has been increased from
0 V to 700 V deflecting the beams in the opposite direction of the imperfection,
thus a negative voltage has been applied to all the actuators but the one on the
bottom surface of the BPZT1, which has positive values instead. The geometric
imperfection of the beams has been also included as in the previous analyses.

The piezoelectric behaviour has been introduced in Abaqus modelling the piezo-
electric part of the actuators with C3D8E finite elements and defining the voltage
as a boundary condition. In general, the positive value of the e31 coefficient indi-
cates that the actuator expands along its longitudinal direction when the applied
voltage is positive.

In Abaqus, the voltage has to be defined as a difference between two values
applied on the top and the bottom surfaces of each piezoelectric part; if the electric
field vector corresponding to the voltage difference has the same direction of the
z-axis, the actuator expands because e31 > 0 (refer to Fig.[3.3] for the electric field
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and voltage difference directions). The voltage on the top surface (with respect to
the z-axis) of the piezoelectric part is set to 0 V, whereas the desired voltage, V̄ , is
applied to the bottom surface of the piezoelectric part with its positive or negative
sign (see Fig.[4.33]). In this way, when V̄ > 0 the electric field is positive and the
actuator expands, whereas when V̄ < 0 the actuator contracts.

Figure 4.33: Application of the voltage to the actuators of the Abaqus models.

The Abaqus general nonlinear static analysis has been performed for the beams
with the geometric imperfections defined as a linear combination of the buckling
modes, as described in the previous section. The analysis has been run 17 times,
every time for a different voltage6.

The transversal deflection of the beams as a function of the increasing voltage is
reported in Figs.[4.34-4.38] for both the RZT and the Abaqus models. The curves
refer to the same points along the x-direction considered in the analyses of Section
4.3.3. The comparison between the two solutions indicates that RZT is extremely
accurate, even for very high voltage values. Moreover, RZT correctly predicts the
curvature change in the response of the BPZT1 and the BPZT3 (Figs.[4.34]-[4.36]),
which takes place when the transversal displacement w reaches exactly the opposite
value of the beam initial deviation in that point. Further increasing the voltage,
the beam starts to bend in the opposite direction, and the curvature changes. The
other beams do not exhibit this behaviour in the range of voltage considered because
their initial imperfection is too big and higher voltages would be needed to invert

6The voltage values considered are V̄ =25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300,
350, 400, 500, 600, 700 V.
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the deflection. The slight difference between the two solutions, especially for the
anti-symmetric beams (BPZT(2-5), Figs.[4.35]-[4.38]) depends on the fact that the
initial deflection is not exactly the same in the two models, since the imperfection
is introduced as a linear combination of the buckling modes of a one-dimensional
model for the RZT and a three-dimensional model for Abaqus.

The remarkable advantage of the RZT is that the nonlinear response can be
evaluated performing just one analysis for each beam, specifying the highest voltage
value desired, 700 V in this case. The routine calculates the solution for any applied
voltage from 0 V up to 700 V, with increments that can vary between a certain
range. The minimum and the maximum values chosen for the increments are 0.01
V and 25 V respectively, and the effective increment at each step is the maximum
value in this range which satisfies the convergence criterion. This means that the
nonlinear equation has been solved for at least 28 increments, and the average
time for the analysis is 40 seconds. In Abaqus several analyses have to be run,
one for each voltage value, and the time required by each analysis is 15 seconds
on average. Consequently, the time to perform the same analysis in Abaqus is
one order of magnitude higher than RZT. The comparison between the time of the
RZT analyses and the resulting time for the Abaqus analyses can be found in Table
[4.13].

Figure 4.34: Transversal displacement (x = 148 mm) of the BPZT1 increasing the
voltage in the actuators.
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Figure 4.35: Transversal displacement (x = 149 mm) of the BPZT2 increasing the
voltage in the actuators.

Figure 4.36: Transversal displacement (x = 224 mm) of the BPZT3 increasing the
voltage in the actuators.
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Figure 4.37: Transversal displacement (x = 223.5 mm) of the BPZT4 increasing
the voltage in the actuators.

Figure 4.38: Transversal displacement (x = 224.3 mm) of the BPZT5 increasing
the voltage in the actuators.
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Buckling Nonlinear Actuation
Analysis Analysis Response

RZT ABAQUS RZT ABAQUS RZT ABAQUS
BEAM1 2.5 23 42 272 35 289
BEAM2 2.3 26 38 280 30 170
BEAM3 2.8 32 53 305 41 255
BEAM4 2.8 32 56 366 42 238
BEAM5 3.1 31 80 2400 50 340

Table 4.13: Time (s) required by RZT and Abaqus for performing the buckling
analysis, the nonlinear analysis and the nonlinear static analysis of the beams sub-
jected to the piezoelectric voltage.

4.4 Conclusion
The new FE model based on the nonlinear Refined Zigzag Theory has been nu-

merically validated for the buckling and nonlinear static analyses of highly heteroge-
neous sandwich beams and composite multilayer beams with piezoelectric actuator
patches.

A Matlab routine has been realised to implement the new FE-RZT model for
the buckling and the nonlinear static analyses of composite beams using RZT-
beam finite elements. The model includes the inverse piezoelectric effect and the
possibility to have geometric discontinuities along the beam length, thus it is able
to model more complex geometries like beams with actuator patches bonded to the
external surfaces.

A similar Matlab routine has been realised for the FE models based on the
Timoshenko Beam Theory, including the calculation of a shear correction factor
based on the transverse-shear strain energy to increase the solution accuracy.

The RZT model has been assessed in terms of both accuracy and computational
cost for the buckling and postbuckling analyses through comparisons with highly-
detailed FE commercial codes. The TBT solution represents the most efficient
option for the beam-like structure modelling in the commercial codes, thus it has
been used to evaluate the most desirable computational effort. Two-dimensional
and three-dimensional models realised in Abaqus and Nastran have been considered
as reference to verify the RZT accuracy.

The first analyses have been performed considering sandwich beams of vari-
ous geometries and material properties. The comparison between RZT, TBT and
two-dimensional Abaqus and Nastran solutions has proven that the RZT is very
accurate for the buckling and nonlinear analyses of sandwich beams, even in case of
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low slenderness ratios and highly heterogeneous materials that cannot be correctly
predicted using TBT finite elements. In addition, the RZT computational cost is
one order of magnitude lower than that of the analyses based on two-dimensional
finite elements, but reaches the same level of precision.

The RZT capabilities to model beams with geometric discontinuities has been
demonstrated comparing the RZT to three-dimensional Abaqus models for the
buckling and postbuckling analyses of multilayer beams with patches bonded to
the external surfaces. Several geometries, laminations and patch locations have
been considered to generalise the conditions. The results show that the RZT can
reach the same accuracy of three-dimensional Abaqus models with a remarkable
saving of computational time. Subsequently, the inverse piezoelectric behaviour
has been introduced to consider the patches as piezoelectric actuators. The static
response of the beams has been calculated for different voltages applied to the
actuators, taking into account both the geometric imperfections and the geometric
nonlinearities. The RZT has proven to be highly accurate, even for high voltages
and in case the beam inverts its deflection. Moreover, the use of the RZT Matlab
routine saves a lot of time because only one analysis has to be performed to evaluate
the response to an increasing voltage; it takes less than 40 seconds for a range 0-700
V. On the other hand, in Abaqus one analysis has to be run for each voltage value
and each of them runs for 15 seconds on average.

In conclusion, the RZT has proved to be an excellent compromise between ac-
curacy and computational cost for the buckling and the nonlinear static analyses
of composite beams. It has been demonstrated that it is a very convenient alterna-
tive to the commercial codes when highly heterogeneous materials or piezoelectric
elements are considered, especially if nonlinearities are taken into account.
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Chapter 5

Experimental validation

5.1 Introduction
In this chapter, the new nonlinear RZT model is validated experimentally for

the buckling of sandwich and composite laminated beams and for the nonlinear
static analysis of beams with piezoelectric actuators.

The specimens manufacturing has been part of the activity, thus in Section 5.2
it is accurately described how the beams have been made and how the piezoelec-
tric actuator patches have been bonded to the external surfaces of the monolithic
beams. Particular supports have been realised for the boundary conditions to allow
the beam rotation around the width-axis and to consider simply-supported bound-
ary conditions also for the sandwich beams. The geometric imperfection of the
monolithic beams is also taken into account and the way it has been measured and
modelled is presented in Section 5.3.

The buckling tests of both kinds of beams are performed using the Instron com-
pression testing machine available at the RMIT material testing laboratory, and
the Southwell method is employed for the buckling loads evaluation (Sections 5.4-
5.5.1). The RZT capabilities to predict the response of the beams subjected to the
piezoelectric actuation, considering also the geometric nonlinearities and imperfec-
tions, is assessed performing static and buckling tests with voltage applied to the
actuators. The experimental static response of the beams subjected to increasing
values of voltage is compared to the RZT results to prove that RZT is able to eval-
uate the deflection of the beam due to the actuation (Section 5.5.2). Subsequently,
different values of voltage are applied to reduce the geometric imperfection of the
beams before performing the buckling tests in order to verify that RZT can evaluate
the increasing value of the buckling load as the geometric imperfection decreases
(Section 5.5.3).
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5.2 Beams manufacturing
Composite laminated plates have been cut in stripes of various lengths and

widths to make both the facesheets of the sandwich beams and the composite
laminated beams on which the piezoelectric actuators have been subsequently
bonded. The plates have been made using T700 carbon/epoxy unidirectional
prepregs (VTM264, Advanced Composite Group).

For the sandwich beam facesheets, symmetric laminates with [0°/90°/90°/0°]
fibre orientation have been realised laying up a number of prepreg layers dependent
on the final thickness of the facesheets (see Fig.[5.1]). Moreover, different plates
have been made laying up, respectively, one, four or eight prepreg layers for each
orientation angle resulting in thin plates made of 4 prepreg layers, medium-thickness
plates made of 16 prepreg layers and thick plates made of 32 prepreg layers.

Figure 5.1: Layup of 0¶ ≠ 90¶ CFRP prepreg layers.

The plates to realise the piezo-composite beams have been made of two different
laminations, symmetric [0°/90°/90°/0°] and anti-symmetric [90°/0°/90°/0°], with
one prepreg layer for each orientation angle.

The same manufacturing process has been followed for all the plates. During the
lay-up, the assembled material has been vacuum debulked every subsequent fourth
ply for 2 minutes (3 minutes for the thicker lay-ups made of 16 and 32 prepreg lay-
ers), covering it with a perforated release film (A2500) and a heavy weight polyester
material layer (Airbleed 10, Fig.[5.2]) to ensure a good consolidation and remove
any residual air from the laminate.
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Figure 5.2: Debulking of a CFRP lay-up.

Subsequently, the laminates have been prepared for the autoclave hot-curing
process following the scheme reported in Fig.[5.3] for the vacuum-bag.

Figure 5.3: Vacuum bag scheme.

An aluminium plate has been used as mould and a VAC-PAK® A6200 EFEP
solid release film has been placed on the plate top surface to protect the prepreg
laminate from sticking to the mould. Once arranged on the EFEP film, the lay-
up has been covered with an FEP perforated release film (A2500) to control the
amount of resin flow during cure and protect the laminate from bonding to the rest
of the vacuum bag materials. A porous nylon peel ply bleeder (B100) has been

119



5 – Experimental validation

used to absorb the excessive resin bleeding from the perforated film. An additional
layer of solid EFEP film has been placed on the bleeder over the lay-up area to stop
the resin bleed, extending it to 12 mm short of the edge of the bleeder to allow the
gas flow under vacuum or autoclave pressure. The Airbleed 10 polyester material
layer has been used as breather to allow the free passage of air and gases from the
laminate while evenly distributing the vacuum or pressure within the bag. The
vacuum valve has been laid on the breather, not in the area over the prepreg to not
damage the laminate. The entire mould has been covered by a Quickdraw® HS8171
high performance nylon film, air-tightly sealing it using the Tacky Tape® SM5143
sealant tape. The sealed bag has been connected to a vacuum pump to apply
a pressure of 1 atm to the prepreg. All the prepreg lay-ups have been cured in
autoclave with a cure cycle of 1 hour, 120¶C and 90psi (620 kPa).

Sandwich beams manufacturing
The sheets of structural foams Rohacell® IG31 and Rohacell® WF110 have been

cut of the appropriate dimensions to make the cores of the sandwiches. The same
dimensions have been considered for cutting the corresponding facesheets from the
previously manufactured plates. One side of each facesheet has been prepared for
bonding by sanding is with a 3M™ Sandpaper and using alcohol to clean the surface
from dust and grease.

The 3M™ AF163-2K structural adhesive film has been used to bond together
the facesheets and the core. Once assembled in sandwiches, the beams have been
arranged in vacuum bags for the autoclave curing of the adhesive.

Aluminium frames have been realised to prevent the foam from squashing under
the vacuum or autoclave pressure taking into account the various thicknesses and
lengths of the beams. A polyester tape (Flashtape1) has been used to protect the
beams from bonding to the surrounding frames, as shown in Fig.[5.4]. The same
scheme of Fig.[5.3] has been followed for the bagging process and the cure cycle of
1 hour, 120¶C and 90psi has been considered also in this case.
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Figure 5.4: Vacuum bag with aluminium frames for the sandwich beams curing
process.

After the curing, the beam edges have been adjusted and refined using the
surface grinder shown in Fig.[5.5]. Two beams, the WF-1- L1 and the WF-1-L2,
have been made using a WF110 foam core, whereas other three beams, named
IG-2-L1, IG-4-L1 and IG-4-L2, have been made with an IG31 foam core. The
total thickness and the width of the beams have been measured in three different
locations along the length: at the beam ends and the centre and the values are
reported in Tables [5.1-5.2]. In the Tables it is also indicated the average values of
the thickness and the width, h̄ and b̄ respectively, the standard deviation, ‡, and
the coefficient of variation, CV .
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Figure 5.5: Surface grinder used to refine the sandwich beam edges.

h1 h2 h3 h̄ ‡ CV
(mm) (mm) (mm) (mm) (mm) %

WF-1-L1 21.87 21.8 21.855 21.84 0.04 0.17
WF-1-L2 21.86 21.85 21.805 21.84 0.03 0.13
IG-2-L1 8.62 8.57 8.65 8.61 0.04 0.47
IG-4-L1 12.15 12.02 12.075 12.08 0.07 0.54
IG-4-L2 12.25 12.25 12.35 12.28 0.06 0.47

Table 5.1: Thickness measurements along the length of the sandwich beams: aver-
age, standard deviation and coefficient of variation.

The nominal values assumed for the geometrical properties of the five sandwich
beams used in the tests are reported in Table [5.3]. The nominal width indicated in
Table [5.3] correspond to the average b̄ of Table [5.2] and it is approximately three
times the total thickness. The thicknesses of the facesheets and the cores have
been measured before the curing for bonding them together, whereas the adhesive
thickness, ha, has been measured as the difference between the total thickness of
the sandwich after cured and the sum of core and facesheets thicknesses. The
WF-1-L(1-2) have the biggest length, L, and the smallest facesheet thickness, hf .
The IG-2-L1 is the shortest, whereas the IG-4-L1 and the IG-4-L2 have the highest
face-to-core thickness ratio (hf/hc).
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b1 b2 b3 b̄ ‡ CV
(mm) (mm) (mm) (mm) (mm) %

WF-1-L1 63.05 63.31 62.65 63.00 0.33 0.53
WF-1-L2 64.2 64.32 64.35 64.29 0.08 0.12
IG-2-L1 25.73 25.61 25.72 25.69 0.07 0.26
IG-4-L1 36.29 36.22 36.25 36.25 0.04 0.10
IG-4-L2 37.66 37.68 37.66 37.67 0.01 0.03

Table 5.2: Width measurements along the length of the sandwich beams: average,
standard deviation and coefficient of variation.

L b hc hf ha

WF-1-L1 443 63 20 0.68 0.241
WF-1-L2 427 64.29 20 0.68 0.24
IG-2-L1 160 25.69 5.4 1.45 0.157
IG-4-L1 230 36.25 5 3.4 0.14
IG-4-L2 230 37.67 5 3.4 0.24

Table 5.3: Geometrical properties of the sandwich beams for the experimental
validation (mm).

Piezo-composite beams manufacturing
The beams considered for the numerical validation in Chapter [4.3] have been

made cutting four-layer plates. The thickness and the width have been measured in
three different locations along the length of each beam and the values are indicated
in Tables [5.4-5.5], where the average values, h̄ and b̄, the standard deviation, ‡, and
the coefficient of variation, CV , are also reported. h̄ and b̄ have been considered as
nominal thickness and width; all the geometric characteristics correspond to those
shown in Table [4.7].

The actuators chosen for the experiments are the Macro Fiber Composite (MFC)
M8514-P1 (see Fig.[5.6]). The geometrical properties of the M8514-P1 are indicated
in Table [5.6], where the actual length and width of the piezoelectric material part
(Lactive and bactive respectively) are distinguished from the total length and width
of the patch.

Figure 5.6: MFC M-8514-P1 piezoelectric transducer.
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h1 h2 h3 h̄ ‡ CV
(mm) (mm) (mm) (mm) (mm) %

BPZT1 0.65 0.64 0.66 0.65 0.01 1.54
BPZT2 0.74 0.73 0.73 0.73 0.01 0.79
BPZT3 0.71 0.71 0.74 0.72 0.02 2.41
BPZT4 0.77 0.74 0.74 0.75 0.02 2.31
BPZT5 0.77 0.78 0.78 0.78 0.01 0.74

Table 5.4: Thickness measurements along the length of the piezo-composite beams:
average, standard deviation and coefficient of variation.

b1 b2 b3 b̄ ‡ CV
(mm) (mm) (mm) (mm) (mm) %

BPZT1 20.78 20.88 20.82 20.83 0.05 0.24
BPZT2 23.02 23.09 22.98 23.03 0.06 0.24
BPZT3 21.33 21.56 21.49 21.46 0.12 0.55
BPZT4 22.36 22.71 22.69 22.59 0.20 0.87
BPZT5 22.09 22.24 22.38 22.24 0.15 0.65

Table 5.5: Width measurements along the length of the piezo-composite beams:
average, standard deviation and coefficient of variation.

The MFC actuators have been bonded to the external surfaces of the monolithic
beams in the locations shown in Fig.[4.20]. The beams have been prepared for the
bonding by uniformly sanding the external surfaces to have a constant thickness
along the length. Subsequently, the surfaces have been degreased and cleaned to
ensure a successful bonding

The upper side of the MFC has been covered with the polyester tape to pro-
tect the piezoelectric fibres from being damaged during the bonding process while
the bottom side has been degreased using alcohol. A thin layer of 3M™Scotch-
Weld™ DP460NS epoxy adhesive has been applied to the MFC’s bottom surface,
with a small additional quantity in the middle as adhesive reservoir. Once placed
in the desired location on the beam surface, the MFC has been pressed against
the beam to remove any air bubble from the adhesive layer. After removing the
excessive resin, the flashtape has been used to keep the patch in that location.

A perforated FEP film has been placed around the beams, wrapping everything
with a layer of breather cloth, as shown in Fig.[5.7].
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L b h Lactive bactive

101 20 0.3 85 14

Table 5.6: Geometrical properties of the MFC M8514-P1 piezoelectric transducer
(mm).

Figure 5.7: Vacuum bag for the MFC piezoelectric patches bonding.

A vacuum bag has been prepared with the HS8171 nylon film and, after the
vacuum, the adhesive has been cured for 2hr at 49¶C in the oven.
An antistatic wrist strap has been worn during the entire bonding process to protect
the MFCs.

Edges for simply-supported boundary conditions
Many preliminary tests have been performed to determine the best way to

reproduce either clamped or simply-supported boundary conditions for composite
beams. For a buckling test, the beam cannot be directly clamped into the grips of
a compression testing machine because the grips would apply a local compression
along the thickness and a shear load on the top and bottom surfaces of the beam.
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As a first attempt to realise full restraint conditions, the beam edges were im-
mersed for 1/3 of their final length into resin poured into cylindrical moulds, align-
ing the beam x-axis with the cylinder axis (see Figs.[5.8]). The resulting specimens
were beams with two blocks of resin, one on the top and one on the bottom.

(a) Broken specimen after the buck-
ling test.

(b) Breakage of the resin support.

Figure 5.8: Composite beam (CFRP, [0°/90°/90°/0°] ply orientation) with resin
supports for clamped boundary conditions.

However, even if the specimens had all the same geometrical and material prop-
erties, the compression tests gave different results for the buckling load calculations.
Indeed, Singer et al. [72] strongly recommend the simply-supported conditions for
the buckling of columns for two main reasons, the first one is that with pinned-end
conditions the critical cross-section is at half length of the beam, thus it is far less
influenced by the ends, and the second reason is that, with clamped conditions, the
effective length of the beam is hard to determine because it is highly dependent on
the restraining method. The tests made on the specimens with resin blocks at the
edges proved that even small imperfections of the restraint conditions (either ma-
terial or geometrical) can strongly influence the effective length, thus the clamping
method used was not reliable for buckling tests of composite beams.

126



5 – Experimental validation

For this reason, only simply-supported conditions have been considered for the
tests. Particular kinds of supports have been designed for the beam edges in order to
allow the free rotation of the beams around the width-axis direction (y-axis). Semi-
cylindrical pin-ended supports (see Fig.[5.9]) have been realised for the sandwich
beams because they are relatively thick. The radius of the semi-cylinder, Re, has
been set equal to the nominal thickness of the beam and the angle of the circular
sector of the cylinder cross-sectional area has been set to 140¶, a value much higher
than the expected rotations around the y-axis. A hard material has to be used
for the supports to not damage them during the tests with high compressive loads,
thus they have been made of steel. The DP460NS epoxy adhesive has been used
to bond them to the beams, locating the centroid of the beam end cross-section
exactly coincident with the centre of the support surface, as shown in Fig.[5.10a].

Figure 5.9: Steel edges for sandwich beams simply-supported boundary conditions:
geometrical properties.

(a) Steel support bonded to a sand-
wich beam.

(b) Aluminium supports for the
monolithic beams

Figure 5.10: Pin-ended supports for the buckling tests of the piezo-composite
beams.
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The aluminium supports shown in Fig.[5.10b] have been realised for the mono-
lithic beams because the thickness of these beams is very small. The V-shape
allows the beam to rotate around the y≠axis; the support dimensions are indicated
in Fig.[5.11].

Figure 5.11: Geometric dimensions of the supports for simply-supported boundary
conditions of the monolithic beams.

The advantage of this kind of fixture is that the same two supports have been
used to test all the piezo-composite beams, whereas a couple of semi-cylindrical
elements had to be realised for each sandwich beam.

5.3 Imperfection measurements and interpolation
for the monolithic beams

The monolithic beams are highly bent in their initial stress-free state, especially
those with an anti-symmetric lamination. The initial deviation from a straight axis
configuration has been measured in a discrete number of points along the length
and at half width using a Keyence LC-2320 laser displacement meter sensor, as
shown in Fig.[5.12]. Neglecting thickness variations and assuming a constant trans-
verse displacement along the beam thickness, the values represent the transverse
deflection of the beam axis.
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Figure 5.12: Geometric imperfection measurement of a monolithic beam.

One edge of the beam has been chosen as the origin of the x≠axis and the
locations of the measurement points have been referred to it. The imperfection has
been measured before and after the actuators bonding, but the final measurements
have been considered in the analyses. The x≠coordinate of each point and the
corresponding vertical deflection, w̄

ú, are reported in Table [5.7].
In order to introduce the geometric imperfection in the numerical models, whose

solution has to be compared to the experiments, the geometric imperfection of each
beam has been expressed by a function w

ú(x), obtained by the following linear
combination:

w
ú(x) = a1 · sin

3
fix

L

4
+ a2 · sin

32fix

L

4
+ a3 · sin

33fix

L

4
. (5.1)

The trigonometric functions in Eq.[5.1] correspond to the first three buckling
mode shapes of a simply-supported beam in its perfect configuration, thus the
imperfection function has been approximated by a linear combination of the first
three buckling modes. The coefficient of the linear combination of each beam, a1, a2
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BPZT1 BPZT2 BPZT3 BPZT4 BPZT5
x w̄

ú
x w̄

ú
x w̄

ú
x w̄

ú
x w̄

ú

0 0 0 0 0 0 0 0 0 0
30 0.95 37 1.94 56 1.16 56 3.9 56 3.8
60 1.23 75 3.19 112 2.12 112 6.37 112 6.5
149 1.43 149.5 3.68 168 1.96 168 7.60 168 8.0
238 1.02 224 2.82 224 1.52 224 7.97 224 8.8
268 0.85 262 1.65 280 0.64 280 7.75 280 8.64
298 0 299 0 336 0.4 336 6.67 336 7.34

392 0.6 392 4.2 392 4.07
447.5 0 448 0 448.5 0

Table 5.7: Values of the geometrical deviation measured along the monolithic beams
(mm).

and a3, have been found applying the least squares method using the experimental
data of Table [5.7]. The obtained ak values are those indicated in Table [4.12] used
also for the numerical validation in Chapter 4. The R

2 values of the fits are reported
in Table [5.8]; they are all above 0.90, indicating a good correlation between the
imperfection prediction and the actual deflection of the beams in the points where
it has been measured.

BPZT1 BPZT2 BPZT3 BPZT4 BPZT5
R

2 0.96 0.99 0.95 0.99 0.99

Table 5.8: R
2 values of the fit used for the approximation of the geometric imper-

fection of the beams.

5.4 Buckling tests of sandwich beams
The Southwell method [91] has been employed to calculate the critical buckling

load of the sandwich beams performing non-destructive buckling compression tests.
Before the tests, the beams have been numerically modelled to evaluate the

buckling loads, using both the RZT and the TBT finite elements methods. The
RZT results have been taken as reference values for the experiments to avoid the
beam breakage.

The sandwich beams have been tested in compression using the Instron hy-
draulic testing machine with a 50 kN load cell. Compression platens have been
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used as fixtures of the Instron to guarantee a uniformly distributed compressive
load along the beam width. As shown in Fig.[5.13], the ends of the beams were
simply placed on the platens without restricting any possible lateral displacement
under compression. Nevertheless, the exceptional precision in aligning the centroids
of the beam sections at the edges to the centre of the semi-cylindrical supports and
to the centre of the plates prevented the beams from sliding laterally. The alignment
between the beam and the supports was checked also at the end of each test.

A laser displacement sensor, the SICK OD1-B100H50U14, has been used for
measuring the transversal displacement of the point located at half length and at
half width of each beam. The experimental setup is shown in Figs.[5.13] for the
beam IG-4-L1.

(a) (b)

Figure 5.13: Experimental setup for the buckling tests of sandwich beams.

During the tests, the load, N0, has been progressively increased measuring the
corresponding transversal displacement, w, at each step. The test has been repeated
three times for each beam and the displacement control has been used to prevent
any beam damage.

The values of the applied load and the transversal deflection have been recorded
and plotted in Figs.[5.14a-5.18a] as load-displacement equilibrium paths of each
beam. The curves of the beams WF-1-L1 and WF-1-L2 (Figs.[5.14a-5.15a]) show
a linear relation between the load and the transversal displacement for low values
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of N0. A rapid reduction of the slope can be seen for loads higher than 12,000 N
for the WF-1-L1 and higher than 17,000 N for the WF-1-L2, and all the curves
tend asymptotically to about N0 = 25,000 N. The curve related to the Test 3 of
the WF-1-L2 (Fig.[5.15a]) ends before 20,000 N because, during the test, one of
the semi-cylindrical steel supports at the beam edges debonded, thus the test was
stopped. A misalignment between the load direction and the beam axis and the
consequent bending moment on the steel element is a reasonable cause of the failure.

The same trend of Figs.[5.14a-5.15a], with an initial linear behaviour and a
subsequent decreasing of the slope, can be observed also in Fig[5.16a] for the IG-
2-L1. On the other hand, the load-displacement curves of the IG-4-L1 and the
IG-4-L2 in Figs.[5.17a-5.18a] exhibit some disturbances due to their high stiffness.
These two beams have a very high face-to-core thickness ratio and a relatively
low slenderness ratio. In addition, the geometric imperfections of the IG-4-L(1-2)
measure hundredths of millimetre, which means they are very straight beams. The
consequence of having small geometric imperfections is that the load-displacement
curve tends to be the axis w = 0 (the typical load-displacement equilibrium path of
a perfectly straight beam) until the applied load reaches the critical buckling value,
and then even a small perturbation of the load direction can lead to a sudden rise
of the transversal displacement and to the beam breakage. For this reason, the
tests have been stopped even if the deflection measured was less than 1 mm, as it
can be seen in Figs.[5.17a]-[5.18a], because the applied load was very close to the
critical value calculated by RZT but the small geometric imperfection makes the
curves very close to the w = 0 line.

Employing the Southwell method, these curves are approximated as rectangu-
lar hyperbolas with the asymptotes corresponding to the axes w = 0 and N0 =
Ncr. These hyperbolas can be transformed and become straight lines in the plane3

w

N0
, w

4
with a slope corresponding to Ncr. The method can be then used to eval-

uate the critical buckling load by plotting the recorded values of N0 and w in the3
w

N0
, w

4
plane. The curves obtained applying the Southwell method to the load-

displacement curves are reported in Figs.[5.14b-5.18b]. Only the values of load
higher than 80% the maximum load and the corresponding transversal displace-
ments have been considered, as prescribed in [72]. The least squares method has
been applied to the remaining points and the slope of the line has been assumed as
experimental critical buckling load of the test.
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(a)

(b)

Figure 5.14: Buckling test of the WF1L1 sandwich beam.
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(a)

(b)

Figure 5.15: Buckling test of the WF1L2 sandwich beam.
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(a)

(b)

Figure 5.16: Buckling test of the IG-2-L1 sandwich beam.
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(a)

(b)

Figure 5.17: Buckling test of the IG4L1 sandwich beam.
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(a)

(b)

Figure 5.18: Buckling test of the IG-4-L2 sandwich beam.

The critical buckling loads have been experimentally evaluated for each beam
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and compared to the numerical predictions of the RZT and TBT models. The ma-
terial properties of the Rohacell foams, used for the cores, and the CFRP-VTM264,
used for the facesheets, are reported in Tables [4.1]-[4.8] of 4.2, whereas the Young
and transverse-shear moduli of the AF163-2K adhesive are 1,100 MPa and 400 MPa
respectively. Comparing the material properties of the AF163-2K to those of the
Rohacell structural foams (Table [4.1]), it is clear that the adhesive is much stiffer
than the foams. For this reason, the adhesive layers have been also considered in
the analyses since they influence the buckling loads, significantly increasing their
value1 even having a very small thickness, as indicated in Table [5.3].

The number of finite elements considered for the numerical analyses is 80 and
the time to calculate the critical buckling loads is less than 10 seconds for both the
RZT and the TBT.

EXP ‡ CV RZT ERR TBT ERR
(N) (N) % (N) % (N) %

WF-1-L1 24,831 440.57 1.77 23266 -6.30 23,264 -6.31
WF-1-L2 24,929 2407.13 10.23 25,053 0.50 25,052 0.49
IG-2-L1 3,188 79.46 2.49 3,224 1.13 2,809 -11.89
IG-4-L1 11,297 750.58 6.64 10,695 -5.33 7,061 -37.50
IG-4-L2 12,374 256.74 2.07 11,399 -7.88 7,617 -38.44

Table 5.9: Buckling loads of the sandwich beams: comparison between the experi-
mental results (EXP), RZT and TBT.

The average of the buckling loads calculated experimentally for each beam is
reported in Table [5.9], with the corresponding standard deviation, ‡, and the
coefficient of variation, CV used to indicate the dispersion of the results around
the mean. Assuming a range for experimental variance of two standard deviations of
the mean, the RZT predictions for the critical buckling loads exceed the range only
in case of the WF-1-L1 and the IG-4-L2, for which the numerical critical buckling
loads are 2.8% and 3.9% lower than the lower bound. This slight difference is
probably due to the fact that the number of experiments is lower than five.

The WF-1-L2 was damaged during the Test 3 before a sufficient number of
measurements were collected, thus the mean value in Table [5.9] is between the
buckling loads of Test 1 and Test 2 only.

The comparisons between the numerical and the experimental results highlights
a strong dependence of the TBT accuracy on the facesheets thickness. The predic-
tions of RZT and TBT are both accurate for the WF110-core beams. The numerical

1The RZT critical loads calculated without the adhesive are all out of a range of experimental
variance of three standard deviations of the mean.
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results for the WF-1-L2 are excellent, with errors lower than 1%, whereas for the
WF-1-L1 the error reaches only 6% error. However, considering beams with thicker
facesheets and a lighter foam core, the TBT error increases a lot. The IG-2-L1 has
a facesheets thickness that is two times the thickness of the WF-1-L(1-2) beams
facesheets, and the TBT error on the buckling load is almost 12%. Moreover, the
IG-4-L(1-2) have the facesheets thickness that is two times the thickness of the
IG-2-L1 and the error goes up to 40%. On the other hand, the RZT buckling loads
are very accurate in all cases. The RZT percentage error is only 1.13% for the
IG-2-L1, and in the most challenging situations, the IG-4-L(1-2), it is lower than
8%, that is an excellent result for experimental validations.

5.5 Experiments on piezo-composite beams
The experimental buckling tests have been conducted also for the piezo-composite

beams in order to validate the RZT predictions of the critical buckling loads of
composite beams with piezoelectric actuator patches in both symmetrical and anti-
symmetrical lamination conditions.

In the following section (5.5.1), the piezoelectric actuators are considered just
as geometric entities because they are not connected to any power supply. The aim
of the tests is to assess the RZT models of [4.3.2] in Chapter [4] for the buckling
load calculation of beams with geometric discontinuities.

Subsequently (in 5.5.2-5.5.3), the possibility to increase the buckling load using
the actuators is investigated and the RZT capabilities at modelling and predicting
these situations are verified.

5.5.1 Buckling tests of piezo-composite beams
The buckling tests of the piezo-composite beams have been performed using the

Instron machine with a load cell of 10 kN. The aluminium supports have been placed
in the machine grips aligning the beam centroidal axis with the load direction. The
laser LVDT has been used to record the beam transversal displacement of the beam
half-length and half-width point, as shown in Fig.[5.19].
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Figure 5.19: Experimental setup for the buckling test of beams with piezoelectric
actuators.

The load has been progressively increased from N0 = 0 N, measuring the
transversal displacement at each step considering displacement control.

The tests have been repeated three times for each beam and the load-displacement
curves are reported in Figs.[5.20a-5.24a].

Despite the geometrical characteristics, the load asymptotic value of the BPZT1
in Fig.[5.20a] is almost double the load asymptotic value of the BPZT2 in Fig.[5.21a].
The BPZT1 is stiffer because of the additional piezoelectric patch and the symmet-
ric lamination.

Both the beams BPZT3 and BPZT4 have just one piezoelectric patch on the
top surfaces, almost in the same location and the geometrical characteristics of
the two beams are approximately the same, but the BPZT4 is slightly thicker and
wider. Comparing the load-displacement curves of the two beams in Figs.[5.22a-
5.23a] it can be seen that the transversal deflection of the BPZT4 is almost 12
times higher than the BPZT3 for the same applied load. The tests have been
interrupted before the asymptotic load values were visible because, for the BPZT3
in Fig.[5.22a], the load was very close to the critical value predicted by RZT and
for the BPZT4 in Fig.[5.23a] higher deflections could have damaged the actuator.
For the same reason, even if the load was still considerably lower than the predicted
buckling value of the BPZT5 and the curve slope had not reduced significantly, the
transversal deflection was higher than 10 mm thus the tests have been stopped. The
curves obtained applying the Southwell method are shown in Figs.[5.20b-5.24b].
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(a)

(b)

Figure 5.20: Buckling test of the BPZT1 beam.
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(a)

(b)

Figure 5.21: Buckling test of the BPZT2 beam.
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(a)

(b)

Figure 5.22: Buckling test of the BPZT3 beam.
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(a)

(b)

Figure 5.23: Buckling test of the BPZT4 beam.
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(a)

(b)

Figure 5.24: Buckling test of the BPZT5 beam.

Comparing the buckling loads of the BPZT3 and BPZT4 (Figs.[5.22b-5.23b]) it
is evident that the anti-symmetric lamination influences the buckling load since the
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value of the BPZT4 is almost half the BPZT3 value. The same happens between
the BPZT1 and BPZT4 in Figs.[5.20b-5.21b], but in that case the higher buckling
load of the BPZT1 is justified also by the additional patch which increases the
beam stiffness. Moreover, comparing the results for the BPZT4 and the BPZT5,
the buckling load of the BPZT5 is rightfully higher since the beam has an additional
patch.

The mean values of the buckling loads evaluated experimentally for each beam
are indicated in Table [5.10] with the corresponding standard deviation, ‡, and co-
efficients of variation, CV . The RZT models are those shown in Chapter 4 and the
buckling loads numerically calculated are those indicated in Table [4.11]. The RZT
critical buckling load of the BPZT1 is within the range of two standard deviations
of the mean of the critical loads found experimentally, whereas the numerical pre-
dictions for all the other beams are all within the range of one standard deviation
of the mean of the experiments.

EXP ‡ CV RZT ERR
(N) (N) % (N) %

BPZT1 8.64 0.14 1.64 8.40 -2.78
BPZT2 5.97 0.09 1.51 5.90 -1.23
BPZT3 3.97 0.10 2.45 4.00 0.84
BPZT4 2.42 0.20 8.39 2.52 4.13
BPZT5 2.84 0.08 2.66 2.85 0.23

Table 5.10: Buckling loads of the monolithic beams: comparison between the ex-
perimental results (EXP) and RZT.

The results in Table [5.10] prove the high accuracy of the RZT also for the buck-
ling load calculation of beams with geometric discontinuities and anti-symmetric
laminations. The predictions are excellent for the BPZT(2,3,5), with errors lower
than 1% for the BPZT(3,5) and with only -1.23% error for the BPZT2. The neg-
ative value can be explained by the fact that the adhesive used for the actuator
bonding has not been considered in the numerical model because it has been applied
only on a small portion of the beam. However, it probably has a small influence
on the shortest beams, the BPZT2 and also the BPZT1, which has two actuators
and the RZT error is -2.8%. The error is slightly higher for the BPZT4 reaching
4%, but it is still excellent for experimental results.

For these beams, the RZT load-displacement equilibrium paths shown in 4.3.3
have been compared to the corresponding experimental curves in Figs.[5.25-5.29].
It can be seen that RZT is extremely accurate not only for the buckling load
calculation but also for prediction of the nonlinear response of beams with geometric
discontinuities subjected to an axial-compressive load. A small difference can be
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observed only for the BPZT5 in Fig.[5.29], but this beam has a very strong anti-
symmetry due to its anti-symmetric lamination and location of the patches.

It can be noticed that some curves in the Southwell plots of Figs.[5.22b-5.24b]
slightly deviate from the linear trend predicted by the Southwell method, indicating
that the portion of the corresponding curves in the load-displacement path do not
perfectly have the shape of rectangular hyperbolas (which become straight lines in
the

1
w

N0
, w

2
plane). In general, the Southwell method is very sensitive to which

point is chosen to select the portion of curve in the load-displacement path that is
approximated as a rectangular hyperbola (the starting point). In these experiments,
the chosen points correspond to 80% of the maximum applied load of each case
(value suggested by Southwell). Considering that Southwell formulated his method
for homogeneous beams, it is reasonable to believe that the composite nature of
the material of the piezo-composite beams, the anti-symmetric lamination and the
geometric interfaces can affect the load-displacement path which deviates from a
rectangular hyperbola trend. Moreover, for each beam, only one of the three curves
in the Southwell plot significantly deviates from a straight line, but the slope of
the fitting line is close to those obtained by the other tests. Only the curve of the
Test 3 in Fig.[5.23b] exhibits a significant deviation, which is also indicated by the
higher value of CV in Table [5.10]. However, also in this case the CV is less than
10%, thus it is reasonably acceptable for experiments.

Figure 5.25: Comparison between the experimental and the RZT nonlinear response
for the BPZT1.
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Figure 5.26: Comparison between the experimental and the RZT nonlinear response
for the BPZT2.

Figure 5.27: Comparison between the experimental and the RZT nonlinear response
for the BPZT3.
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Figure 5.28: Comparison between the experimental and the RZT nonlinear response
for the BPZT4.

Figure 5.29: Comparison between the experimental and the RZT nonlinear response
for the BPZT5.
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5.5.2 Static response to the actuation
The BPZT(1-3) have been considered in the following analyses for investigating

the possibility to use the piezoelectric actuators to decrease the initial geometric
imperfection of the beams and increase the buckling load. The numerical analyses
have been performed in Section 4.3.5 of Chapter 4, but considering a maximum
voltage of -700 V. However, in practical application this is not possible because
the maximum operational negative voltage for the MFC-P1 is -500 V, thus the
maximum voltage considered for the tests is -350 V to not be too close to the limit.
The BPZT(2,4-5) have an initial deviation that is too big to be significantly reduced
in this voltage range, using one actuator or two actuators in the configuration of
the BPZT5. The BPZT2 has been considered just as comparison to the BPZT1
because they have a similar geometry but symmetric (BPZT1) and anti-symmetric
(BPZT2) laminations.

The voltage has been applied to the actuators of the BPZT(1-3) in order to
deflect the beams in the opposite direction to their initial deviation. A negative
voltage is then applied to the actuator on the top surfaces of the BPZT(1-3) and
a positive voltage has been applied to the actuator on the bottom surface of the
BPZT1. Two power supplies, the Trek 677A, have been used, one to apply the
positive voltage and one for the negative.

The beams have been tested in the Instron machine in the same configuration of
the buckling tests (Fig.[5.19]) but not applying any mechanical load. The voltage
has been slowly increased from 0 to ±350 V in steps of 50 V, waiting 30 s per each
increment and measuring the corresponding transversal deflection. The test has
been repeated three times for each beam.

Figs.[5.30-5.32] report the results of the tests and the RZT numerical predic-
tions. For this kind of tests, the beams are hinged at both ends since the actuation
tends to straighten them and the Instron grips do not move. The nonlinear response
of the beams to the actuation is calculated solving Eq.[3.100] with the Newton-
Raphson method, as explained in 4.3.5. It can be seen that the RZT model is able
to accurately predict the beam response to a piezoelectric voltage for both the sym-
metric, BPZT(1,3), and the anti-symmetric, BPZT2, beams. The slight difference
between the experiments and RZT in Figs.[5.30]-[5.32] for high values of voltage
is due to the fact that the transversal deflection at the measuring point along the
length of the BPZT1 and the BPZT3 is reaching the location corresponding to
those of the beams in their straight axis configuration (w ú (x = 148) = 1.39 for the
BPZT1 and w ú (x = 224) = 1.37 for the BPZT3). As explained in 4.3.5, the RZT
curve changes its curvature because, for further increments of voltage, the beam
starts to deflect in the opposite direction with respect to its axis. The deflection
measured during the experiments, instead, simply increases with the voltage with-
out changing its curvature because when the beam starts to bend in the opposite
direction the actuation increases the imperfection and the supports used at the
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beam ends become simply-supported boundary condition. It can be seen that the
difference between the numerical prediction and the experiments for the BPZT1 in
Fig.[5.30] is higher than that for the BPZT3 in Fig.[5.32]. This is probably due
the fact that the BPZT1 is shorter, thus the difference between the RZT boundary
conditions and the actual boundary conditions when the beam starts to deflect in
the opposite direction affects the results more than in the BPZT3, which is also
less stiff (it is longer and has only one piezoelectric patch). The modelling of the
response of the beam when it bends in the opposite direction is not a purpose of
this work because the actuators are supposed to reduce the imperfection. This is
also the reason why the comparison for the BPZT3 has been done for a range of
voltage 0-300 V, because further increments cause the imperfection inversion.

Figure 5.30: Transversal deflection of the beam BPZT1 in double-hinged boundary
conditions increasing the voltage from 0 V to 350 V.
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Figure 5.31: Transversal deflection of the beam BPZT2 in double-hinged boundary
conditions increasing the voltage from 0 V to 350 V.

Figure 5.32: Transversal deflection of the beam BPZT3 in double-hinged boundary
conditions increasing the voltage from 0 V to 300 V.

152



5 – Experimental validation

5.5.3 Use of the piezoelectric actuators for increasing the
buckling load

The buckling tests have been repeated for the BPZT(1-3) applying a differ-
ent voltage in the actuators every time. The voltage has been applied before the
mechanical-compressive load in order to reduce the beam initial deflection and then
it has been kept constant while the beam has been subjected to an increasing com-
pressive load. Values of 50 V, 100 V, 200 V have been considered for the BPZT1
and BPZT3 tests, with negative values for the actuators on the top surfaces and
positive values for the actuator on the bottom surface of the BPZT1. Higher volt-
ages would have caused the imperfection inversion. The values of voltage considered
for the BPZT2 are -50 V, -100 V, -200 V and also -350 V, since the beam has a
higher imperfection than the BPZT1 and only one actuator, thus a lower deflecting
capability.

In Figs.[5.33-5.35] the experimental load-displacement curves are compared to
the RZT. To obtain the numerical results, a first nonlinear analysis has been per-
formed for a two-hinged beam with only the electrical voltage applied and, subse-
quently, the beam nonlinear response to an increasing mechanical-compressive load
has been calculated considering the initial imperfection corresponding to the final
deformed shape of the previous analysis and simply-supported boundary conditions.

In general, it can be seen that the initial slope of the curve is higher decreasing
the initial imperfection by applying an increasing value of voltage and this is much
more evident for the BPZT1 (Fig.[5.33]) comparing the curves corresponding to 0 V
to those corresponding to 200 V. Moreover, increasing the voltage, the experimental
curves of all the beams do not translate simply backward, but the slope at higher
value of voltage increases too. As a consequence, applying the Southwell method
the experimental buckling load increases, as indicated in Table [5.11].

Ncr

0 V 50 V 100 V 200 V 350 V
BPZT1 8.60 9.74 9.96 10.28 -
BPZT2 5.90 5.94 6.83 6.99 7.23
BPZT3 4.00 4.16 4.66 5.31 -

Table 5.11: Experimental critical buckling loads for different applied voltage.

The numerical methods based on the calculation of the buckling loads as the
eigenvalues of Eq.[3.110] are not able to predict this increment, since the asymptotic
value of the load does not change when the imperfection, and thus the initial slope
of the load-displacement curve, reduces. Nevertheless, it can be seen that RZT is
able to predict the curve trends for the considered voltages. For the BPZT1 and
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the BPZT3 in Figs.[5.33-5.35] it can be seen that the RZT curves for 0 V, 50 V and
100 V are very close for low values of N0, while the curve at 200 V has a clearly
higher slope since the beginning. On the other hand, in Fig.[5.34] all the curves
have the approximately the same initial slope in both experimental and numerical
results.

In practical application, a non-destructive critical buckling load is defined as
the load corresponding to the point of the curve before the slope decreases of a
certain percentage (e.g. 20% in [120]), thus the initial slope is the most significant
quantity to predict. Moreover, both the experimental results and RZT show that,
increasing the voltage in the actuators, the load-displacement equilibrium paths of
the beams become closer to the curve that ideally approximates the behaviour of a
perfect column which implies an increasing value of the real critical buckling load
determined by the yield-stress limit [72].

Figure 5.33: Load-deflection equilibrium curves for different values of voltage ap-
plied in the actuator of the BPZT1: experimental and RZT solution.
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Figure 5.34: Load-deflection equilibrium curves for different values of voltage ap-
plied in the actuator of the BPZT2: experimental and RZT solution.

Figure 5.35: Load-deflection equilibrium curves for different values of voltage ap-
plied in the actuator of the BPZT3: experimental and RZT solution.
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5.6 Discussion on the time required for manufac-
turing and testing

In order to compare the time required for calculating the critical buckling load
with the numerical methods and the experiments, an estimate of the time spent for
making one sample of each kind of beams considered in this thesis is here given.
This estimate is clearly based on the author experience and knowledge.In general,
the manufacturing time is strongly dependent on the equipment available in the
laboratory, the number of people working and their abilities. The specimens used
in this project were all manufactured and tested by the author only.

The overall time needed for manufacturing the beams and performing the tests
was five months, not including the collection of the materials and the tools used in
the experiments. The activity which required the biggest amount of time was the
specimens manufacturing and the preliminary tests for characterising the boundary
conditions.

The manufacturing of the CFRP plates for making the piezo-composite beams
and the sandwich beam facesheets was done in one day. This estimate includes
the prepreg thawing (a minimum time of six hours at 20 degC was considered),
the cutting, the laying-up and the debulking every fourth ply, the vacuum bag
preparation and the autoclave curing process, which takes up to 4 hours if the
heating up and the cooling down are considered.

Many other samples were fabricated for the boundary conditions testing and
those specimens were made of various thickness, which meant that a higher number
of plates had to be manufactured (one for each thickness and layer orientation).
The specimens for the boundary conditions were relatively thick, thus the lay-up
process was considerably longer than that for the specimens used in the tests for
the RZT validation.

The piezo-composite beams were obtained from the CFRP plates, cutting them
and bonding the piezoelectric patches to the CFRP stripes. The cutting, the surface
preparation and the bonding of the piezoelectric patches (cured in oven for 3 hours)
took up to one day. Nevertheless, the manufacturing of the sandwich specimens
was much more time consuming. Indeed, once the facesheets were cured they had
to be sanded and prepared for bonding. An additional cure cycle was required for
bonding the facesheets to the core, and the specimens in the vacuum bag had to
be protected with frames to avoid the squashing of the foam under the pressure
(the frames had to be manufactured too). After the curing, the beam edges had
to be refined to obtain very straight samples (parallel edges). The manufacturing
of the sandwich beams, their refinement and the bonding to the supports used as
simply-supported boundary conditions took one month, but this strongly depended
on the available equipment.

Assuming that all the materials and the tools are available, such as the frames
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for the sandwich beam bagging, the average time required for the fabrication and
the testing of one piezo-composite beam is 2 days, whereas 4 days are necessary for
one sandwich beam.

In conclusion, the need of experiments for validating the numerical methods is
undisputed, but they can be extremely onerous in terms of both time and cost,
especially for testing composites. Comparing these estimates to the time required
by the RZT and Abaqus shown in the previous sections, it is clear that reliable
numerical methods represent an essential instrument for the structural analysis,
especially for parametric and design studies.

5.7 Conclusion
The new nonlinear RZT finite element model has been experimentally validated

for the buckling analysis of composite beams in different situations, like highly
heterogeneous sandwich beams and composite laminated beams with geometric
discontinuities due to the presence of piezoelectric actuator patches.

Sandwich beams with CFRP facesheets and foam core have been realised and
tested in compression for the buckling load evaluation using the Southwell method.
For these beams, specific supports have been created to make simply-supported
boundary conditions for thick beams, since they guarantee a higher reliability of
the experimental buckling tests compared to other boundary conditions. The re-
sults of the tests have been used to verify the RZT predictions of buckling loads,
demonstrating the superior capabilities of RZT also for highly heterogeneous and
relatively thick beams.

The buckling load has been evaluated also for monolithic beams with piezoelec-
tric patches actuators to assess the RZT predictions in case the beam has geometric
discontinuities. Compared to the experimental data, the RZT buckling loads and
the nonlinear responses are excellent. Moreover, it has been shown that the fibre
orientation in the beam layers has a significant influence on the nonlinear response
and the critical buckling load value, also for very thin beams, thus the importance
of using finite elements based on theory suitable for composites has been demon-
strated. Then, the static response to the voltage applied to the actuators has been
measured and compared to the RZT. The voltage has been used to reduce the
initial geometric imperfection of the beams in order to increase the buckling load.
For this reason, the buckling tests have been performed again but with voltage
applied to the actuators. The comparison between the experiments and the RZT
has proven the excellent capabilities of the theory for predicting both situations,
correctly evaluating the nonlinear static response of the beam to the voltage and
the increment of the initial slope of the load-displacement curves for various values
of voltage.
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Chapter 6

Buckling and postbuckling
analyses of a pre-debonded
piezo-composite sandwich beam

6.1 Introduction
In this chapter the new RZT-FE model is extended to the analysis of pre-

debonded beams subjected to axial-compressive loads.
The model is assessed for the challenging application of a sandwich beam with

a debonding between the core and one of the facesheets. The first two buckling
loads and buckling modes are calculated for several values of debonding length and
compared to the results obtained by a highly-detailed FE model realised in Nastran.

Subsequently, the beam is modelled with two piezoelectric layers on the external
surfaces, one on top and one on the bottom. The piezoelectric layers are activated
considering different voltage values, either constant or variable along the beam
length, to identify to best voltage distribution for controlling the local buckling.

6.2 Finite element models of a pre-debonded
sandwich beam

The sandwich beam considered for this application, called WF-32-2-d, has
CFRP facesheets and a Rohacell®WF110 foam core (see Tables [4.1 and 4.8] for
the material properties). The facesheets are made of four layers with a ply orien-
tation of [0°/90°/0°/90°] for the bottom facesheet and [90°/0°/90°/0°] for the top
facesheet. Each facesheet has a thickness hf = 2 mm whereas the thickness of the
core is hc = 4 mm. The assumed width, b, is three times the total thickness and
the total length of the beam is L =320 mm.
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A debonding is assumed between the core and the top facesheet. The total
length of the debonding is indicated as Ld and it is symmetrically distributed on
the left and the right of the beam centre, as shown in Fig.[6.1]. The extension
of RZT model to this application does not include any control on the contact
between the two sublaminates, thus the method cannot predict the initiation or
the propagation of the debonding. The aim of this study is a numerical verification
of the RZT for the calculation of the buckling loads and modes of a sandwich beams
with one facesheet locally separated from the core in the way it is done by other
authors in the literature using commercial finite element codes. For this reason, the
adhesive layer between the core and the facesheets has not been considered neither
in the RZT nor in the finite element model realised using the commercial code.

Figure 6.1: Sandwich beam with a debonding between the core and the top
facesheet.

The strategy adopted for modelling beams with delaminations/debondings using
the new RZT model is explained in 3.6.1 of Chapter 3.

The debonding between the core and the top facesheet divides the beam into
two sub-laminates in the region where they separate; one sublaminate corresponds
to the bottom facesheet and the core and the other sublaminate corresponds to the
top facesheet. As a consequence, both the sublaminates have an anti-symmetric
lamination whereas the intact parts of the beam are symmetric. Two RZT-beam
finite elements are considered across the thickness along Ld, whereas only one finite
element is considered across the thickness of the intact parts of the beam (see
Fig.[6.2]). Indicating with xm and xn the axial coordinates where the debonding
respectively starts and ends, two geometrical interfaces are considered at x = xm

and at x = xn. At x = xm, the first interface is between the intact beam and the
bottom sublaminate, whereas the second interface is between the intact beam and
the top sublaminate (the top facesheet). Vice versa, for x = xn the first interface is
between the bottom sublaminate and the intact beam, whereas the second interface
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is between the top sublaminate and the intact beam. In all cases, the geometrical
interface is due to a variation of both the thickness and the materials between two
consecutive finite elements, and the strategy based on the Lagrange multipliers
method is employed to correctly link the finite elements at the interfaces.

Figure 6.2: Finite element model of the sandwich beam with a debonding between
the core and the top facesheet.

Six different values are assumed for Ld, corresponding to 0%, 10%, 20%, 50%,
80% and 90% of the total length of the beam.

The number of finite elements of the RZT model depends on the value of Ld.
The same number of finite elements is considered in the two intact parts and the
same number of finite elements is considered in the two sublaminates. Assuming a
length of 4 mm for each finite element, the resulting numbers of elements for each
value of Ld are those shown in Table [6.1].

Ld No. of elements
(mm) intact part along Ld total
0 80 - 80
32 36 8 88
64 32 16 96
160 20 40 120
256 8 64 144
288 4 72 152

Table 6.1: Number of finite elements of the one-dimensional RZT model.

The reference, plane-stress, model is realised in Nastran using 2D shell elements
in the (x, z) plane. The debonding is taken into account uncoupling the nodes at
the interface between the core and the top facesheet for a length corresponding to
Ld. Since the beam material and geometrical properties do not change from one
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case to the other because the only difference is the number of uncoupled nodes
depending on Ld, the creation of a Nastran session file is very convenient.

6.3 Buckling analysis of the pre-debonded beam
The RZT model is assessed for the buckling analysis of the sandwich beam pre-

sented in the previous section considering simply-supported boundary conditions.
The first two buckling loads and mode shapes are compared to those obtained from
a buckling analysis of a Nastran highly-detailed two-dimensional finite element
model.

The buckling loads of the RZT models are calculated solving the eigenvalue
problem of Eq.[3.110] in 3.4.1.

In Table [6.2], the first two buckling loads are reported and compared to the
corresponding Nastran values.

Ld Nastran RZT ERR
(N) (N) %

0% 4569.77 4579.37 0.21
10215.96 10265.48 0.48

10% 4567.66 4227.60 -7.45
7011.456 7019.18 0.11

20% 3409.43 3206.70 -5.95
4528.39 4053.13 -10.50

50% 1093.79 1028.92 -5.93
2030.26 2141.94 5.50

80% 767.18 741.46 -3.35
879.27 924.80 5.18

90% 700.71 735.00 4.89
750.19 735.72 -1.93

Table 6.2: First two buckling loads of the sandwich beam for various debonding
lengths Ld expressed as percentage of the total beam length L.

As already demonstrated in the previous chapters, RZT is extremely accurate for
predicting the buckling loads of the intact beam. In the other cases, the percentage
error is higher than 1% (in modulus), but the results show that the error and the
debonding length value are uncorrelated. Indeed, the maximum error on the first
buckling load is obtained for the shortest value of Ld, where RZT underestimates
the critical load of 7.45%. Increasing the value of Ld, the percentage error on
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the first buckling load slightly diminishes, reaching a minimum of 3.35% when
Ld = 0.8L. At the maximum debonding length considered (Ld = 0.9L) instead,
the RZT critical buckling load is 4.89% higher than the prediction obtained by
Nastran. A similar trend can be observed for the percentage error on the second
buckling load, however, in this case the error is lower than 1% for both Ld = 0
and Ld = 0.1L. The maximum error on the second buckling load is obtained
for Ld = 0.2L, where RZT underestimates the buckling load of 10.50%, whereas
for Ld = 0.5L and Ld = 0.8L the RZT overestimates the buckling load of 5%. At
Ld = 0.9L, the RZT second buckling load is lower than Nastran, and the percentage
error is only -1.93%.

This results show that even small debondings cause a reduction of the buckling
loads. The percentage difference (∆%) between the buckling loads obtained for each
value of Ld and the corresponding buckling load of the intact beam are reported in
Table [6.3]. In the RZT analysis, the buckling loads are reduced by 7.7% and 30%
when a debonding of 10% is considered, whereas in Nastran there is a significant
decrement only for the second buckling load (30% as RZT). In any other case, the
reduction of the buckling load value with respect to the intact beam calculated by
RZT and Nastran are almost the same, reaching -84% on the critical buckling load
and -92% on the second buckling load for Ld = 0.9L.

Ld ∆%
1st buckling load 2nd buckling load
Nastran RZT Nastran RZT

10% -0.04 -7.67 -31.37 -31.62
20% -25.40 -29.96 -55.68 -60.52
50% -76.06 -77.53 -80.13 -79.13
80% -83.22 -83.82 -91.40 -90.99
90% -84.66 -83.95 -92.66 -92.83

Table 6.3: Percentage difference between the buckling load obtained for Ld /= 0 and
the corresponding buckling load of the intact beam, for each value of Ld.

The first two buckling mode shapes obtained by RZT and Nastran are plotted
in Figs.[6.3-6.8] for every value of Ld considered. The conventional buckling mode
shapes of a simply-supported beam can be seen in Figs.[6.3] for the case of the
intact beam, where the Nastran solution is plotted as a two-dimensional model.
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(a) 1st mode Nastran. (b) 2nd mode Nastran.

(c) 1st mode RZT. (d) 2nd mode RZT.

Figure 6.3: Buckling mode shapes of the WF-32-2-d sandwich beam for Ld = 0.

In Figs.[6.4a-6.8a], the mode shapes obtained in Nastran are represented report-
ing the transversal displacements of only the nodes at half thickness of each part
of the beam (as the black nodes indicated in Fig.[6.2]), with those corresponding
to the upper sublaminate in red to distinguish them from the lower sublaminate.

In Figs.[6.4] it can be seen that the presence of even a small debonding between
the core and the top facesheet influences both the mode shapes. The effect on the
first buckling mode is more evident for RZT (Fig.[6.4c]), where it can be seen that
the two sublaminates tend to separate. However, it is still a global buckling because
the order of magnitude of the displacements in both sublaminates is the same. The
second buckling mode shape is anti-symmetric, as for an intact beam, but the shape
is slightly different because the locations of the points which have the maximum or
minimum transversal displacements are not x = L/4 and x = 3/4L, but they are
closer to the beam centre. For higher values of Ld the two mode shapes exchange
(Figs.[6.5-6.7]) and the buckling mode corresponding to the critical buckling load
is anti-symmetric (Figs.[6.5a-6.7d]). The maximum and minimum peaks of the
transversal displacement move from the centre of the beam to the beam ends the
higher is the value of debonding length, for 0.2L Æ Ld Æ 0.8L. The second buckling
mode shape, instead, is similar to the first and symmetric buckling mode of the
intact beam. The two sublaminates deflect on the same side of the beam but the
upper sublaminate (the top facesheet in the debonded part of the beam) has a
higher deflection than the lower sublaminate.

When Ld reaches 90% of the total length, the two mode shapes exchange again
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(Fig.[6.8]). At the critical buckling load, the beam exhibits a local buckling be-
cause the deflection of the top sublaminate is significantly higher than the bottom
sublaminate which remains almost flat.

The inversion of the two buckling mode shapes was proven experimentally in
[120], where it is shown that increasing the debonding length in a composite multi-
layer beam, the beam buckles in an anti-symmetric mode when the debonding has
a length between the values corresponding to the global and the local buckling.

(a) 1st mode Nastran. (b) 2nd mode Nastran.

(c) 1st mode RZT. (d) 2nd mode RZT.

Figure 6.4: Buckling mode shapes of the WF-32-2-d sandwich beam for Ld = 0.1L.
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(a) 1st mode Nastran. (b) 2nd mode Nastran.

(c) 1st mode RZT. (d) 2nd mode RZT.

Figure 6.5: Buckling mode shapes of the WF-32-2-d sandwich beam for Ld = 0.2L.

(a) 1st mode Nastran. (b) 2nd mode Nastran.

(c) 1st mode RZT. (d) 2nd mode RZT.

Figure 6.6: Buckling mode shapes of the WF-32-2-d sandwich beam for Ld = 0.5L.
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(a) 1st mode Nastran. (b) 2nd mode Nastran.

(c) 1st mode RZT. (d) 2nd mode RZT.

Figure 6.7: Buckling mode shapes of the WF-32-2-d sandwich beam for Ld = 0.8L.

(a) 1st mode Nastran. (b) 2nd mode Nastran.

(c) 1st mode RZT. (d) 2nd mode RZT.

Figure 6.8: Buckling mode shapes of the WF-32-2-d sandwich beam for Ld = 0.9L.
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In Fig.[6.9], the ratio between the critical buckling load, Ncr, and the critical
buckling load of the intact beam Ncr0 is reported as function of Ld/L. Initially,
the ratio slightly decreases to 0.9 for Ld/L = 0.1. In this region the analysis of the
buckling mode shapes indicates that the buckling is still global. For higher values
of Ld/L the curve rapidly drops down to almost Ncr/Ncr0 = 0.2 for Ld/L = 0.5 and
then the slope starts to diminish in modulus and the curve almost becomes flat.
The behaviour of the beam for 0.2L Æ Ld Æ 0.8L is usually indicated as mixed-
mode buckling because the beam exhibits both a global and a local instability. The
beam behaviour for Ld/L = 0.9 is a local buckling because the bottom sublaminate
do not deflect significantly compared to the top sublaminate.

Figure 6.9: Critical buckling load reduction increasing the value of the debonding
length Ld.

6.4 Nonlinear analysis of the pre-debonded sand-
wich beam with piezoelectric actuators

Two layers of piezoelectric material are considered on the top and the bottom
surfaces of the sandwich beam. The material properties of the pieoelectric layers
are those indicated in Table [4.8] and the e31≠effect is assumed as operational
mode of the piezoelectric actuators. The critical buckling load changes because of
the additional piezoelectric layers, increasing from 4579.37 N to 5015.5 N for the
intact beam and from 735 N to 867.81 N for the debonded beam with Ld/L = 0.9

167



6 – Buckling and postbuckling analyses of a pre-debonded piezo-composite sandwich beam

(Ld = 288 mm).
The first buckling mode shapes of the sandwich beam with piezoelectric actuator

layers are reported in Fig.[6.10] for the intact and the debonded configurations.

(a) Intact beam. (b) Debonded beam, Ld/L = 0.9.

Figure 6.10: First buckling mode of the sandwich beams with piezoelectric actuator
layers.

Figure 6.11: Initial geometric imperfection for the debonded beam corresponding
to 1% of the first buckling mode shape.

The nonlinear response of the debonded beam to an increasing axial-compressive
load is calculated assuming that the beam has an initial geometric imperfection cor-
responding to 1% of the first buckling mode shape normalised setting to 1 mm the
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maximum transversal displacement. As a consequence, the beam initial imperfec-
tion has a maximum deflection of 0.1 mm at x=160 mm, as shown in Fig.[6.11].

The beam nonlinear response is calculated solving Eq.[3.109] with N
e

xc
= ≠N0.

The value of the applied compressive load, N0, is increased from N0 = 0 to N0 =
0.9Ncr in steps of ∆N0 = 60.8 N. For each N0, the beam deformed shape and the
transversal displacements of the two nodes at x=160 mm are calculated. Indeed,
the two sublaminates have different finite elements, thus there are two nodes at
x=160 mm, one belonging to the lower sublaminate and one belonging to the upper
sublaminate. The corresponding transversal displacements are indicated as wb and
wt, respectively. Fig.[6.12a] reports the deformed shapes for all the values of N0
considered, whereas Fig.[6.12b] shows the load-displacement equilibrium paths of
wb and wt. Each colour in Figs.[6.12a-6.12b] corresponds to a specific value of
N0, thus the load corresponding to a certain deformed shape in Fig.[6.12a] can be
derived from the ordinate of the markers in Fig.[6.12b] with the same colour as the
deformed shape.

(a) Deformed shapes for the values of N0
reported in Fig.[6.12b].

(b) Equilibrium paths for x=160 mm.

Figure 6.12: Beam response increasing N0.

6.5 Local buckling control using piezoelectric ac-
tuators

In this section, the possibility of controlling the local buckling using the piezo-
electric actuator layers is investigated performing the postbuckling analysis of the
beam considering various values of voltage in the actuator. Ideally, the equilib-
rium paths of the nodes of the sublaminates should be the same to avoid the local
buckling, which is characterised by a significantly bigger deflection of the top sub-
laminate than the lower sublaminate for the same value of load applied to the
sandwich beam.

Seven different combinations of voltage value and distribution are considered
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to identify the most efficient combination for the local buckling control. They
are indicated as case B, C, D, E, F, G, H whereas case A indicates the solution
obtained in the previous section for zero applied voltage.

Case B

A first analysis is conducted activating the entire upper piezoelectric layer with
a voltage V̄

B = ≠50 V, constant along the beam length. As a consequence of the
negative voltage, the piezoelectric layer contracts and the beam deflects opposite
to the z≠coordinate, towards its perfect configuration. In Fig.[6.13a] it is indicated
the beam in its initial configuration, with a geometric imperfection corresponding to
1% of the first buckling mode, and the deformed shape after the application of V̄

B =
≠50 V. It can be seen that the maximum deflection of the top sublaminate decreases
from 0.1 mm to 0.09 mm whereas the bottom sublaminate almost reaches the perfect
configuration. In Fig.[6.13b], the nonlinear response of the beam increasing N0 is
reported in terms of the transversal displacement of the node of each sublaminate
for x=160 mm. The results obtained in this case correspond to the blue curves,
indicated as B, to distinguish them from those of obtained for zero actuation,
indicated as case A.

The comparison between the case A and the case B in Fig.[6.13b] indicates
that the application of V̄

B = ≠50 V to the top layer does not affect the nonlinear
response significantly, thus in the following case a higher voltage is considered.

(a) Deformed shape due to the actuation. (b) Equilibrium paths for x=160 mm.

Figure 6.13: Nonlinear analysis of the beam: (a) deformed shape due to the actu-
ation (case B) and for N0 = 0, (b) nonlinear response increasing N0.

Case C

The results obtained applying a voltage V̄
C = ≠100 V to all the top layer

are reported in Fig.[6.14]. After the actuation, the maximum deviation of the top
sublaminate from the straight axis configuration is 0.08 mm, lower than the corre-
sponding value in case B. The bottom sublaminate translates downward, indicating
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that the high voltage in the top piezoelectric layer is able to considerably influence
also the bottom sublaminate (see Fig.[6.14a]). The effect of the actuation V̄

C on
the nonlinear response of the beam is shown in Fig.[6.14b]. The curve correspond-
ing to wt is slightly closer to wb than the previous case (as an example, it can be
seen that for N0 = 700 N, the value of wt = 0.5 mm in case C whereas it is wt = 0.6
mm in case B) indicating a better performance than before.

(a) Deformed shape due to the actuation. (b) Equilibrium paths for x=160 mm.

Figure 6.14: Nonlinear analysis of the beam: (a) deformed shape due to the actu-
ation (case C ) and for N0 = 0, (b) nonlinear response increasing N0.

Case D

In case D the effect of different voltage values along the beam length is in-
vestigated to assess the influence of the actuation location on the beam response.
For this reason, the piezoelectric layers are assumed to be made of 20 piezoelectric
patches, each of them 16 mm long. Consequently, on the external surface of each
sublaminate there are 18 patches. In case D, only the patches on the top sublam-
inate are activated with constant values of V̄

D

1 = ≠50 V in the first six patches,
V̄

D

2 = ≠100 V in the following six patches and V̄
D

3 = ≠50 V in the remaining six
patches. The results for this configuration are shown in Fig.[6.15]. Comparing the
two deformed shapes of case C and case D after the actuation, it can be seen a
much better result for case D, where both sublaminates are closer to the straight
axis configuration than case C. This is obtained using V̄

D

2 = ≠100 V, which means
that -100 V are applied to less than 1/3 of the beam length and in the remaining
part the voltage is lower (either V̄

D

1 = V̄
D

3 = ≠50 V or null). In case C instead,
it is V̄

C = ≠100 V along the entire top layer. This clearly indicates a strong de-
pendence of the beam deflection on the actuators location. However, the better
initial configuration due to the case D actuation does not significantly improve
the beam postbuckling behaviour (Fig.[6.15]), which is almost the same as case B
(Fig.[6.14b]), but it is worth noting that the same result has been obtained with
an average lower voltage.
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(a) Deformed shape due to the actuation. (b) Equilibrium paths for x=160 mm.

Figure 6.15: Nonlinear analysis of the beam: (a) deformed shape due to the actu-
ation (case D) and for N0 = 0, (b) nonlinear response increasing N0.

In the following cases (case E, F, G) it is assumed a continuous distribution of
the applied voltage dependent on the initial imperfection. In each finite element,
the average of the initial imperfection values measured at the two nodes is taken
as factor to create a distribution of voltage along the piezoelectric layers.

Cases E and F

In case E and case F, the voltage is applied only to the top sublaminate assuming
a distribution of the voltage values proportional to the initial geometric imperfection
of the beam in that region. In case E, the maximum applied voltage is V̄

E

max
= ≠100

V whereas in case F the maximum value is V̄
F

max
= ≠200 V.

The results obtained for case E are reported in Fig.[6.16]; despite the better
effect of the actuation on the deformed shape for N0 = 0, there is not any significant
improvement on the nonlinear response with respect to case D (compare Fig.[6.16b]
to Fig.[6.15b]).

A considerably better response is obtained in case F. The two sublaminates
are much closer after the actuation ( Fig.[6.17a]) and also the curve indicating the
postbuckling response of the upper sublaminate almost doubles its slope moving
towards the equilibrium-path of the lower sublaminate (as an example in Fig.[6.17b]
for N0 = 700 N, wt = 0.25 mm).
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(a) Deformed shape due to the actuation. (b) Equilibrium paths for x=160 mm.

Figure 6.16: Nonlinear analysis of the beam: (a) deformed shape due to the actu-
ation (case E) and for N0 = 0, (b) nonlinear response increasing N0.

(a) Deformed shape due to the actuation. (b) Equilibrium paths for x=160 mm.

Figure 6.17: Nonlinear analysis of the beam: (a) deformed shape due to the actu-
ation (case F) and for N0 = 0, (b) nonlinear response increasing N0.

Case G

To further improve the response, a negative voltage is applied to the bottom
piezoelectric layer. The contraction of the actuator layer deflects the lower sublam-
inate upward, toward the upper sublaminate. In case G, the voltage is applied as
a continuous distribution in both the piezoelectric layers. The distribution is pro-
portional to the initial geometric imperfection of the beam but its maximum value
is defined independently in each piezolectric layer. Moreover, the maximum (nega-
tive) value applied to the top layer is V̄

G

max
= ≠200 V, whereas it is V̄

G

max
= ≠400

V in the bottom layer. The results for case G are reported in Fig.[6.18]. It is
clear that the actuation of also the bottom layer does not significantly improve the
postbuckling behaviour of the beam since the equilibrium paths in Fig.[6.18b] are
very similar to those of Fig.[6.17b] for the case F.
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(a) Deformed shape due to the actuation. (b) Equilibrium paths for x=160 mm.

Figure 6.18: Nonlinear analysis of the beam: (a) deformed shape due to the actu-
ation (case G) and for N0 = 0, (b) nonlinear response increasing N0.

Case H

The best performances are obtained in case H (Fig.[6.19]), where the voltage is
distributed along the beam as in case G but the values are linearly increased from
V̄

G

max
= ≠200 V and V̄

G

max
= ≠400 V to V̄

G

max
= ≠350 V and V̄

G

max
= ≠450 V,

respectively (these are the maximum values of the distributions), while increasing
the value of N0 for the postbuckling analysis.

In Fig.[6.19a], the deformed shape of the beam for N0 = 0.95Ncr is shown for
both case G and case H, indicating case G with Vconst and case H with Vvar. It
can be seen that the beam deflection is considerably lower in case H and, more
important, that the two sublaminates are much closer than case G even if the
applied load N0 has almost the critical buckling value. Moreover, the equilibrium
paths of the two sublaminates in Fig.[6.19b] are almost the same which indicates a
behaviour corresponding to a global buckling.

(a) Deformed shape due to the actuation. (b) Equilibrium paths for x=160 mm.

Figure 6.19: Nonlinear analysis of the beam: (a) comparison between the deformed
shapes of case G and case H for N0 = 0.95Ncr, (b) nonlinear response increasing
N0.
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6.6 Conclusion
The new RZT-FE model has been extended to the analysis of a pre-debonded

sandwich beam subjected to axial-compressive loads.
A separation between the core and the top facesheet has been considered and

the buckling loads and mode shapes have been calculated. The comparison with a
highly-detailed two-dimensional finite element model realised in Nastran has proven
the accuracy and efficiency of the RZT method. Indeed, both the buckling loads
and mode shapes have been accurately predicted by RZT, despite the simplicity
of the finite element model which employs one-dimensional beam finite elements.
In addition, the analysed structure is a foam core sandwich beam with CFRP
facesheets, which means a highly heterogeneous material lamination.

As conclusive application, the model has been employed for studying the pos-
sibility of controlling the local buckling using piezoelectric actuators. To this pur-
pose, two continuous layers of piezoelectric material have been considered on the
top and bottom surfaces of the beam. An initial geometric imperfection has also
been considered to perform nonlinear postbuckling analyses.

Firstly, the entire top layer has been activated with a uniform negative volt-
age along the beam length. Then, different voltages along the beam length have
been considered applying higher voltages where the initial imperfection is higher.
The deformed shapes of the beam obtained applying the voltage to the actuator
have been shown for each case, but the effect on the local buckling control has
been investigated by analysing the load-displacement equilibrium paths of the two
nodes at the centre of the beam of each sublaminates. The best results have been
obtained for a continuous distribution of the voltage proportional to the geometric
imperfection of the beam. In this case, the two equilibrium paths are closer than
the other cases considered.

Subsequently, the bottom layer has been activated too, and excellent results have
been obtained by linearly increasing the voltage during the postbuckling analysis.
Activating both the top and bottom piezoelectric layers with a continuous voltage
distribution proportional to the geometric imperfection and increasing the values
in the way that the maximum voltage varies linearly from -200 V and -400 V to
-350 V and -450 V, respectively, on the top and bottom layer, the two equilibrium
paths almost coincide even for values of compressive load N0 close to the critical
buckling.

As a result, the new RZT model has been successfully employed for the buckling
and postbuckling analyses of debonded sandwich beams. It has been numerically
assessed for the buckling load calculation, proving its accuracy compared to highly-
detailed two-dimensional finite element models. In addition, it has been shown how
to use this tool for efficiently studying the local buckling control using piezoelectric
actuators and the results show that it is possible to control the local buckling apply-
ing voltages that do not exceed the range of the maximum allowed negative voltages
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of conventional piezoelectric actuators [125]. This study has also highlighted the
possibility of successfully using piezoelectric actuators on relatively thick beams for
static applications.
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Chapter 7

Summary and conclusions

7.1 Summary of major findings
The aim of this work was to create a new method, as accurate as highly-detailed

finite element commercial code models but more efficient, for performing buck-
ling and postbuckling analyses of composite laminated and sandwich beams with
piezoelectric actuators, with the possibility to use the piezoelectric actuators for
controlling the global and local postbuckling response of the beams.

A detailed literature review identified the Refined Zigzag Theory (RZT) as
suitable theory to use for the development of a finite element formulation highly
accurate and efficient for the buckling and the nonlinear postbuckling analyses
of both composite laminated and sandwich beams with piezoelectric actuators. A
general formulation based on C

0 RZT-beam finite elements was created for studying
both the global and the local buckling and postbuckling of composite beams with
geometric imperfections and piezoelectric actuator layers or patches. The numerical
and experimental assessments shown in the previous chapters demonstrated the
successful achievement of the main objective of this work.

The outcomes have already been discussed in detail at the end of each chapter,
but they are also summarised below.

The literature review about the most used technique for the analyses of com-
posite beams pointed out the inaccuracy of both the classical Bernoulli-Euler and
the Timoshenko beam theories and identified more suitable analytical methods
for composites: the High-order Shear Deformation Theories, the Layer-Wise theo-
ries and the Zigzag theories. The Refined Zigzag Theory resulted very attractive
because of its superior capabilities for the analyses of both composite laminated
and highly heterogeneous sandwich structures, in terms of both high accuracy and
computational effort. On the other hand, the finite element commercial codes had
beam finite elements based on TBT, thus accurate FE model of composite beams
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could be obtained only with two- or three-dimensional models, with a consequently
higher computational cost.

The RZT was then chosen as analytical method for the creation of a new finite
element model for the buckling and postbuckling analyses of composite beams with
geometric imperfections and piezoelectric actuators.

A general analytical formulation for the buckling and postbuckling analyses of
composite beams with geometric imperfections and piezoelectric actuators was cre-
ated introducing the geometric imperfections and nonlinearities, and the inverse
piezoelectric effect in the RZT beam formulation. The nonlinear equilibrium equa-
tions based on the RZT for imperfect composite beams with piezoelctric actuators
were obtained and their solution could provide the nonlinear equilibrium configu-
ration of the beam.

A finite element formulation was generated to solve the equilibrium problem
for general beams (any lamination, boundary and loading condition) and the ma-
trix nonlinear FE equation was solved employing the Newton-Raphson method.
In addition, a strategy based on the Lagrange multipliers approach was used to
extend the method to the analysis of beams with geometric discontinuities, like
the presence of piezoelectric patches bonded to the beam external surfaces or pre-
debondings/delaminations in the beams.

The new RZT-FE method was implemented in a Matlab routine and numerically
assessed through a comparison with highly-detailed two-dimensional finite element
models realised in Nastran and Abaqus.

The buckling and postbuckling analyses of imperfect sandwich beams proved
the superiority of RZT with respect to TBT finite element models for highly het-
erogeneous and relatively thick sandwich beams. In addition, the comparison with
the results of FE commercial codes demonstrated both the excellent accuracy of
the RZT and also the greater efficiency, since the same analyses were performed in
less time.

The excellent performances of the RZT method were demonstrated also for the
analysis of composite multilayer beams with piezoelectric actuator patches. The
reference solution was obtained in Abaqus, and the FE model was realised with
three-dimensional finite element to include the piezoelectricity. The RZT predic-
tions for the buckling and postbuckling response were extremely accurate and the
time required to perform the analyses was considerably less than Abaqus. More-
over, RZT was assessed also for the evaluation of the nonlinear static response to a
piezoelectric actuation and it was demonstrated that the method was as accurate
as the Abaqus three-dimensional model also for very high voltages.

The experimental validation of the new RZT method included the manufactur-
ing of composite beams, both sandwich and monolithic with piezoelectric patches
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bonded to the external surfaces. Ad-hoc supports were created for each beam to
realise the simply-supported boundary conditions.

All the beams were tested in compression for calculating the critical buckling
load employing the Southwell method. The obtained values demonstrated that
RZT accurately predicted the critical buckling loads of both highly heterogeneous
sandwich beams and also monolithic beams with geometric interfaces due to piezo-
electric actuator patches.

The experiments with the monolithic beams proved that the RZT method cor-
rectly evaluated the nonlinear static response to the piezoelectric actuation and
also excellently predicted the nonlinear postbuckling response.

The conclusive application of the method was the buckling and postbuckling
analyses of a sandwich beam with a pre-debonding between the core and the top
facesheet. The new RZT method was firstly successfully assessed for the calcula-
tion of the buckling loads and mode shapes depending on the debonding length.
The assessment was made comparing the RZT results to a highly-detailed Nastran
model.

Subsequently, the RZT method was used for investigating the possibility of
controlling the local buckling by using piezoelectric actuators. The study identified
the best voltage values and distribution which could control the local buckling of
the top facesheet. The method proved to be an excellent tool, both accurate and
efficient if compared to FE commercial codes, that also allowed the active use of
piezoelectric actuators in the nonlinear postbuckling analyses.

7.2 Further work
Despite the major advances provided in this work for the modelling of composite

beams, further extensions of the new RZT method and experiments could provide
significant improvements to the analysis of composite and sandwich structures.
Below some suggestion for possible future investigations.

Firstly, for completely validating the results presented in this thesis, experi-
ments could be performed evaluating the buckling response of sandwich beams
with debondings of various length between the core and the facesheets.

Experiments could be also performed for validating the predictions of RZT in
terms of local buckling control depending on the voltage value and distribution.

The new RZT model could be extended including the dynamic behaviour of the
beam. Indeed, the piezoelectric elements are widely used for dynamic applications
(vibration control, Structural Health Monitoring, noise reduction, etc...).

The model could be extended including the thermal loads in the formulation.
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Finally, a major extension of the method would be the modelling of two-dimensional
structures employing the Refined Zigzag Theory for plates [49]. Indeed, in the FE
commercial codes the shell elements are based on FSDTs, that were proven to
be not suitable for composites, thus accurate models for composite and sandwich
plates can be obtained, in the FE commercial codes, only by three-dimensional
models. The computational cost is then significantly higher than RZT even for
linear static analyses. Then, a remarkable application of the RZT would be the
nonlinear postbuckling analysis of composite plates.

Although researcher have been working for decades on methods able to predict
the behaviour of composite beams in general conditions, with high accuracy and
low computational costs, the most used approaches remains the use of FE commer-
cial codes. However, they are not optimised to be the most efficient technique in
general. In addition, the increasing usage of highly heterogeneous composites for
primary structural components of the aircraft structure, leads to the need of proper
modelling techniques that are both accurate for heterogeneous structures and also
able to efficiently perform nonlinear analyses, like the study of the postbuckling
behaviour.

This project attempted to fill this gap, in particular in the framework of com-
posite and sandwich beams, and it is hoped that it will significantly contribute to
future works on the modelling of composite structures.
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