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Abstract. Climate change is increasing the number and the magnitude
of wildfires, which become every year more severe. An accurate delin-
eation of burned areas, which is often done through time consuming
and inaccurate manual approaches, is of paramount importance to es-
timate the economic impact of such events. In this paper we introduce
Burned Area Estimation through satellite tiles (BAE), an unsupervised
algorithm that couples image processing techniques and an unsupervised
neural network to automatically delineate the burned areas of wildfires
from satellite imagery. We show its capabilities by performing an evalu-
ation over past wildfires across European and non-European countries.

Keywords: burned area detection, self organizing maps, neural net-
work, image segmentation, Copernicus EMS

1 Introduction

In the last years, we witnessed an increasing impact of natural hazards, such as
wildfires and extreme weather events. In particular, the wildfire risk has increased
also due to climate change, which is driving up temperatures, increasing the dry
season. This trend poses several challenges with respect to the emergency man-
agement cycle, including the impact estimation of the event both in terms of hu-
man and economic losses. For wildfires, the economic impact is estimated starting
from the delineation of the burned areas, which can be measured in several ways
after the fire is completely extinguished. Usually, the burned area assessment is
performed by domain experts working for public authorities, who adopt either
an in-field approach, or manually draw an approximate polygon using satel-
lite observations. Such manual annotations are inserted into local or national
GIS and used for the impact assessment. This process is highly time consuming
and error prone, negatively affecting the accuracy of the burned area definition,
and consequently the impact estimation reliability. In the past, accurate super-
vised classification algorithms have also been proposed to address the burned
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area delineation task (e.g., [6]). However, those techniques need large amount of
precisely labeled/annotated images to train the classification algorithms. Since
labeled data are not available for all areas of the world, which are character-
ized for instance by different vegetation patterns, supervised classifiers cannot
be applied on new areas without an expensive initial manual labeling of several
satellite images. To overcome the limitations of the above-mentioned manual
and supervised approaches, we propose the Burned Area Estimation through
satellite tiles (BAE) approach. BAE is an unsupervised automatic burned area
delineation technique based on the coupled use of satellite imagery, image pro-
cessing and neural networks. It exploits the availability of free high-resolution
imagery provided by the optical satellites of the Sentinel-2 mission (Level 1C),
which has been developed by ESA as part of the Copernicus Programme, to
perform terrestrial observations. We performed a preliminary set of experiments
to evaluate BAE, comparing its results with the official manual burned area an-
notations available in the Copernicus Emergency Management Service (EMS).
Our preliminary experimental results show the ability of BAE to identify burned
areas, excluding not affected land such as roads and rivers, which should not be
considered in the impact assessment of wildfires. BAE is less accurate than su-
pervised algorithms. However, it is independent of the area under observation
and can be applied also to new areas for which labeled data are not available.
The rest of the paper is organized as follows. Section 2 introduces the related
work, while Section 3 describes BAE. Section 4 reports the preliminary exper-
imental results and Section 5 draws conclusions and presents possible future
works.

2 Related Work

Different techniques have been proposed and exploited for addressing the burned
area assessment problem [6, 11, 12, 3, 2, 1, 5, 8–10]. They can be classified in two
main categories: (i) active fire mapping [11, 12, 3, 2] and (ii) post-wildfire map-
ping [6, 1, 5, 8–10]. Active fire techniques use the extension of active fires as a
proxy for burned area estimation. However, those approaches overestimate the
actual burned areas including also sub-areas that are covered by smoke but are
not burned. On the other hand, the same approaches underestimate the burned
area extension because the estimation is based on a subset of satellite images
collected during the time period of the wildfires, the number of which could
be limited either due to the satellite revisit time or to cloud obstruction. Post-
wildfire techniques are usually more effective. They are supervised approaches
that aim at building classification models able to label each image pixel as burned
or not. The main limitation of those approaches is given by the need of a large
training set of images containing samples of burned and unburned pixels. The
manual annotation of training images is usually done by domain experts and it is
time consuming. Hence, a limited amount of annotations is available. Moreover,
the quality of the manually labeled images can be low due to human approxima-
tions. The low quality of the training data set has a significant negative impact
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on the accuracy of supervised classification models. Another limitation of super-
vised approaches lies in their worldwide applicability, because the training of an
accurate model requires the labeled set to contain all possible conditions, e.g.,
land type, vegetation intensity, which is impractical. For this reason, the super-
vised approaches proposed so far are usually focused on specific subareas of the
world (e.g., Mithal et al. proposed a supervised approach specifically designed
for burned areas in tropical forests [6]). We aim to overcome the mentioned lim-
itations with BAE, an unsupervised post-wildfire approach based on satellite
imagery, neural networks and image processing. The proposed approach does
not need labeled data and can be applied worldwide, independently of the land
type.

3 The BAE Framework

BAE is triggered after a wildfire event and works under the assumption to have
an initial geo-graphical bounding box of interest and the dates at which the fire
was ignited and extinguished. First, BAE uses the data services of the Satellite
data provider to fetch two cloud free Red Green Blue (R, G, B) images having
cloud coverage < 5%. The choice to use the RGB bands is due to their availabil-
ity in any satellite optical sensor and their derivability from other bands (such
as Sentinel-2 B04, B03 and B02 bands, respectively). The first image must be
dated before the fire ignition, while the second one after the fire was extinguished.
Once the two images have been downloaded, BAE (represented in Figure 1) is
applied to generate a binary mask (1-bit per pixel image) of the burned area,
where White (W) and Black (B) pixels represent burned and unburned areas,
respectively.
The BAE algorithm works as follows. First, the two gathered images are pre-
processed separately by the Normalization & HSV Preprocessing module, which
performs a Z-Score Normalization and a lossless conversion from RGB to Hue
Saturation lightness Value model (HSV). Then it applies a transformation keep-
ing the same H and setting both S and V to a constant value. We chose to select
their maximum value (Smax, Vmax) because this allows increasing the distance
between color values in the RGB domain and hence the values can be clustered
more easily in the following steps. This step is key to make the color component
comparable between the two images while removing the differences that can re-
sult from images taken at different conditions (e.g. time of the day). The HSV
Preprocessing model outputs the isolated H component, which is sent to the
Hue Difference Segmentation Strategy module, and the (H,Smax, Vmax), which
is the input of the Color-based segmentation strategy module. Both strategies
are detailed in the next subsections.

3.1 Hue Difference Segmentation Strategy (HDSS)

This strategy is based on the assumption that in an area affected by a wildfire
the greatest changes in terms of pure colors (H) between the before image and
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Fig. 1. Diagram of the BAE algorithm for segmenting burned areas. The rectangular
boxes indicate the main algorithm steps, while the arrows describe the input/output
types. The dotted-colored-boxes enclose the two different segmentation strategies.

the after image are due to the burned areas. However, not only wildfires produce
significant changes of hue during a short period of time, but at this stage, this
module aims to detect every area that has been subjected to a modification
during the two times in which the before and after wildfire pictures were taken.
Hence, the Windowed “H” difference module computes the difference between
the “H” components of the two images. To reduce errors due to objects e.g.,
metallic surfaces, that change color when exposed to different kinds of sunlight,
we take a 5x5 matrix of pixels in the before image and compute the minimum
pixel wise difference with the pixel corresponding to the center of the matrix
in the after image. We select 5x5 pixel matrix because this is the average size
used in most image preprocessors. Let HAi,j be the “H” component of a pixel
in position (i, j) in the pre-processed after-event image. Then, consider Wi,j as a
squared Window of odd size (w, w) centered in position (i, j) in the pre-processed
before-event acquisition. This module generates a Hue Difference matrix HD
having the same size of the input images, in which each pixel HDi,j represents
the minimum distance between HAi,j and the pixel values p in Wi,j , which is
computed as follows:

HDi,j = minp∈Wi,jangdist(HAi,j , p), (1)

where angdist(x, y) is the angular distance between x and y. The angular dis-
tance is necessary because the H component is expressed in degrees, from 0 to
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360. In HD, 0 values mean that there is no difference in that location with re-
spect to the before-event situation, while positive values indicate the variation
magnitude. Finally, the Filtering and Binarization #1 module applies a Gaussian
Filter of dimensions (5,5), blurring the image and facilitating the computation
for an automatic thresholding to binarize the image, performed by means of the
standard Otsu’s algorithm [7].

3.2 Color-based Segmentation Strategy (CSS)

This second strategy is based on the assumption that burned areas in the same
image are characterized by similar colors. The first step of this strategy, named
Image Color Compression, works solely on the regions identified by the white
color of the binary mask generated in the previous step. Accordingly to that
mask, this module selects the colors of the HSV processed after wildfire image
to reduce the color space and clusterize similar areas. Then, the second step,
named Red-Green Channels subtraction, isolates the burned regions performing
a subtraction between the Red and Green channels of the image. Finally, a second
filtering and binarization step fine-tunes the segmentation. The mentioned steps
are detailed in the following.
After converting the HSV after-event input image back to RGB, which we name
Pre-processed Image (PI), the Image Color Compression module selects only
the regions affected to a significant change, by selecting the colors in the regions
resulted white in the binary image returned by the HDSS strategy. Then, it
reduces the number of colors to “force” similar regions to be represented by the
same RGB triple, i.e., we aim to “cluster” similar regions associating them to
the same RGB triple. To accomplish this task, we adopt a Self-Organizing Map
(SOM) [4], which is an unsupervised Artificial Neural Network (ANN) that maps
the input image while preserving its neighborhood relations. The ANN neurons
can be represented as a lattice of dimensions (n, m), in which each neuron is a
multidimensional value (RGB in our case). First, the neurons are initialized in
the multidimensional space. Then, the neuron that minimizes its average distance
with the input image is selected as the BAE Matching Unit is (BMU), which
will receive the maximum importance (weight in the ANN) and from which
the training epochs (steps) will start. A neighborhood function modulates the
weight update for the neurons of the whole network, keeping the weight updates
inversely proportional to the distance from the BMU (see Figure 2). As explained
before, the HSV Preprocessing module increases the pixels distance in the RGB
space, facilitating the SOM training process in producing more representative
neurons (see Figure 3).

The Image Color Compression module normalizes the input image by using
the min-max normalization, which maps the RGB components from the range
[0, 255] ∈ ℵ to [0, 1] ∈ < and feed that to the SOM, which should be carefully
sized and initialized to be effective. We empirically set the network size to (3, 3),
while we uniformly initialize the network weights in normalized RGB space. The
network is trained for each image in an adaptive way with an increasing number
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Fig. 2. Self-Organizing Map training process. The violet region represents the dataset,
the grid represents the SOM of dimensions (5, 5) (having a neuron at each intersection).
a) First step of the process, the BMU is the neuron surrounded by the yellow circle, its
radius represents the neighborhood function which affects the other neurons weights
update. b) Weights update result, after the previous epoch. c) The SOM after the
training.

(a) (b)

Fig. 3. RGB representation for (a) the original and (b) preprocessed RGB after wildfire
image. In (b), the initialized SOM neurons are represented in blue.

of epochs, until convergence. We show in Figure 3 the RGB representation of
the after-wildfire image before and after the HSV Preprocessing, as well as the
initialized SOM neurons. We select the Euclidean distance as the metric to per-
form the SOM training, after which each network neuron represents a color that
summarizes a portion (pixel cluster) of the input space. We define TN as the set
of Trained Neurons of the SOM and CC as the Color Compressed image that
the SOM outputs. Every CC pixel CCi,j is assigned to the color of the neuron
n ∈ TN that minimizes the Euclidean distance from the corresponding PIi,j
pixel:

CCi,j = argminn∈TN ||PIi,j − n||2 (2)

Therefore, in the white-colored regions of the HDSS output, CC is an RGB image
having a reduced number of distinct colors equal to the number of the network
neurons. While, in the remaining regions, it is colored in black.
The clusterization performed by the Image Color Compression module made
similar colors closer to each other and, at the same time, it increased the dis-
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tance respect to different colors. At this point, a module that allows highlighting
common characteristics of burned regions is needed. In an unsupervised manner,
this implies that no previous knowledge about the data can be exploited, but just
a generic intuition is allowed. The idea behind the Red-Green Channels subtrac-
tion module is that, considering the hue of burned regions, they are prominent
to red/violet colors and, at the same time, they present a near-to-zero level of
green. Therefore, that module subtracts the green component from the red one.
We do not consider the blue channel because, even if it is highly relevant in blue
or light-blue areas like rivers or lakes, it is also relevant in violet regions, which
can characterize burned areas. Finally, the Filtering & Binarization #2 module
is equivalent to the one adopted in the HDSS, with the addition in the end of a
median filter, which remove possible noise generated by the binarization phase.

4 Preliminary Experimental Results

We performed a preliminary set of experiments to evaluate the quality of the
burned areas identified by BAE with respect to the manual EMS annotations
and the differences between the two approaches.

4.1 Evaluation Dataset

To carry out the experimental comparison between BAE and EMS manual an-
notations, the EMS annotations and the related satellite images were collected
on the basis of a two-step process.
The first step is based on the retrieval of metadata information describing the
historical summary of wildfire events from 2016 to 2018 thanks to the Emergency
Management System service of the Copernicus Program (emergency.copernicus.eu).
EMS provides several information for each single wildfire event, describing,
through a manual annotation based on a polygon represented in EPSG:4326
coordinates, the area hit by the fire. This information was used for creating a
wider bounding box, surrounding the burned area, obtained by doubling, respec-
tively, the differences between the lower and upper latitudes and the leftmost and
rightmost longitudes of the given polygon. The approach used for defining the
bounding box allows including also burned areas that are erroneously outside of
the manual annotation. Finally, the dates representing the start and the end of
the wildfire event are also collected. The second step fetches the satellite images
associated with the wildfires of interest, exploiting the previously collected event
metadata. The number of analyzed wildfire events is 50, covering 10 countries
representative of different land types. The processed satellite images cover areas
of the following countries: Cyprus, Georgia, Greece, Italy, Macedonia, Morocco,
Portugal, Spain, Sweden, and Tunisia. For each of the 50 available wildfire events,
we applied BAE and then we compared the EMS manual annotated burned ar-
eas with those identified by BAE. We initially performed a subjective analysis
by manually comparing the two annotations and then an objective one based on
recall and precision by considering the EMS annotations as ground-truth.
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Fig. 4. Comparison between BAE and EMS annotations for two representative wild-
fires. (a,f) Before wildfire event. (b,g) After wildfire event. (c,h) EMS annotations:
white pixels indicate burned areas. (d,i) BAE. (e,k) Burned areas identified by BAE:
green areas represent the intersection with the EMS annotations, while the red ones
represent areas identified by BAE, but excluded by EMS.

4.2 Comparison between BAE and EMS annotations

We report the images and annotations associated with two representative wild-
fire events to show the differences between the burned areas identified by BAE
and the manual EMS annotations (see Figures 4.a-4.e for the first example and
Figures 4.f-4.k for the second one). Let us consider the first example (see Fig-
ures 4.a-4.e). We can notice that the manual annotation (Figure 4.c) is one
single completely filled polygon with a smoothed shape, whereas BAE is more
precise and identifies a set of highly detailed irregular shapes representing several
burned subareas (Figure 4.d). Specifically, the manual EMS-based annotation la-
bels as burned areas also some inner spots of the burned area polygon, which
are clearly unburned, whereas BAE correctly label those pixels as unburned.
Moreover, BAE correctly labels as unburned pixels also some border regions,
which are erroneously labeled as burned in EMS. Figures 4.f-4.k show a second
representing example that highlights another difference between BAE automatic
delineations and EMS annotations. In this specific case, BAE identifies also some
small-burned areas that are not reported in the human generated annotation
(e.g., a small white pixel in the bottom-right corner of Figure 4.k). To highlight
differences between the two approaches, the intersection of the EMS annotation
and the BAE annotation is marked as green, while burned pixels annotated by
BAE that are not present in the manual one are marked as red (see Figure 4.e
for the first wildfire event example and Figure 4.k for the second one). For the
50 analyzed wildfires, we computed also a set of objective statistics to evaluate
similarities and differences between the burned areas identified by BAE and the
manually labeled ones available in EMS. Specifically, we considered the EMS
annotations as our ground-truth and we computed the standard recall, precision
and F-score measures for the annotations generated by BAE. Given an arbitrary
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wildfire event, and the associated after wildfire image, we consider two sets of
pixels: BBAE and BEMS , which are the sets of pixels labeled as burned by BAE
and EMS, respectively. Based on those two sets, recall, precision and F-score
of the burned class have been computed. The average precision computed over
the considered 50 acquisitions is 81%. Hence, on the average, 81% of the pixels
labeled as burned by BAE are also considered burned areas by EMS. In some
cases, BAE correctly identifies some small subareas that are not included in the
manual annotations, like we discussed above (i.e., the erroneous information is
in the EMS annotation in that case). In some other cases, BAE erroneously la-
beled as burned some pixels that have not been affected by a wildfire. The error
is related to a significant difference between the before and after images that
is not related to a wildfire. In terms of recall, BAE achieves an average recall
value equal to 66%. Hence, only 66% of the pixels manually annotated in EMS
as burned areas are labeled as burned also by BAE. Also in this case, in some
cases the error is given by not precise manual annotations (for instance because
small unburned subareas of a large burned region are not properly annotated as
unburned in EMS). In some other cases, the error is due to BAE. Finally, the
average F-score is 70%. Moreover, we evaluated the contribution introduced by
the color compression performed by the SOM in the Image Color Compression
module, compared to a simpler version in which the Red-Green subtraction mod-
ule operates directly on the colors identified by the output of HDSS. As a result,
without the color compression, the average F-Score lowers to 67%, loosing 5-6%
on average recall. To assess the impact of the two approaches on the estimation
of the burned areas in km2, we finally computed, for the considered 50 wildfire
events, the total number of pixels labeled as burned by BAE and EMS, respec-
tively. The number of pixels labeled as burned by BAE is 4’193’548, while EMS
labels 5’351’961 pixels as burned. Since each pixel corresponds approximately to
100 m2, the estimation of the amount of burned areas based on the manual EMS
annotations is approximately 535 km2, where as the one obtained by means of
BAE is only 419 km2 (i.e., the estimation based on the EMS annotations is
1.3 times larger than the BAEs one). Moreover, the area labeled as burned by
both solutions is only 326 km2. These results highlight the significant difference
between the two approaches and hence the correct evaluation of wildfire impacts.

5 Conclusions and Future Work

In this paper, an unsupervised burned area detection framework, based on the
combination of a hue difference segmentation strategy and a color-based segmen-
tation strategy, has been proposed. The proposed approach is less accurate than
manual annotations. However, it allows automating the burned area identifica-
tion task without the human intervention. As future work, we plan to exploit
the additional bands provided by Sentinel-2 to further improve the quality of
BAE. Moreover, the exploitation of supervised deep neural network techniques,
without the need of before-event images, represents a natural continuation of
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this work, exploiting the annotations achieved through the BAE framework as
training data.
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