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Abstract Many real systems can be described through

time-varying networks of interactions that encapsulate

information sharing between individual units over time.

These interactions can be classified as being either re-

ducible or irreducible: reducible interactions pertain to

node-specific properties, while irreducible interactions

reflect dyadic relationships between nodes that form

the network backbone. The process of filtering reducible

links to detect the backbone network could allow for

identifying family members and friends in social net-

works or social structures from contact patterns of in-

dividuals. A pervasive hypothesis in existing methods

of backbone discovery is that the specific properties

of the nodes are constant in time, such that reducible

links have the same statistical features at any time dur-

ing the observation. In this work, we release this as-

sumption toward a new method for detecting network

backbones against time-variations in node properties.

Through analytical insight and numerical evidence on
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synthetic and real datasets, we demonstrate the viabil-

ity of the proposed approach to aid in the discovery of

network backbones from time series. By critically com-

paring our approach with existing methods in the tech-

nical literature, we show that neglecting time variations

in node-specific properties may beget false positives in

the inference of the network backbone.

Keywords Activity-driven · backbone network ·
statistical filtering · time-varying network

1 Introduction

Dealing with real, temporal datasets brings forward

several challenges. One of the most ambitious goals is to

elucidate the role of temporal interactions in complex

systems [1–5]. The presence of temporal interactions

questions the very basis of a network approach to com-

plex systems. As articulated in [6], temporal links could

be related to intrinsic node properties that do not re-

quire the truly dyadic nature of a network. Such tempo-

ral links are reducible, whereby they are fully explained

by node-specific features. Devising robust methodolo-

gies to filter out reducible links for the inference of the

irreducible backbone of temporal interactions is an open

research topic.

A fruitful approach entails the formulation of null

models to explain the reducible part of the temporal

interactions and guide the process of filtering, as il-

lustrated in Fig. 1. Filtering is carried out within a

statistically-principled approach, where one seeks to de-

tect links that are incompatible with the null hypothesis

of links being produced by the null model [7–14]. More

concretely, the approach assigns a “strength” to link

candidates and filters out weak links, which are statis-

tically unlikely to pertain to the backbone network.
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Fig. 1: Top: Time evolution of a complex system, showing node-specific, reducible interactions (solid red links), and

the irreducible backbone (dashed blue links). Bottom: empirical observations of temporal interactions between
any node pair are used by a filtering algorithm to reconstruct the backbone. The resulting backbone network
is composed of a set of aggregated, static links. Retaining a link in the backbone is informed by a statistical
comparison that tests the hypothesis of the link being explained by the null model.

Despite significant progress, most research studies

assume that nodes have time invariant properties, such
that the empirical time series are realizations of a sta-
tionary stochastic processes. However, time-varying con-

nections might be affected by several factors, such as
individual propensity to generate links over time and
physical constraints on the network evolution. In ad-
dition, connections may vary non-uniformly in time,

exhibiting highly dynamic patterns that could challenge
the possibility of network reconstruction. The chief ob-
jective of our work is to explore the feasibility of infer-

ring the backbone network, in the presence of richer
time-varying connections.

1.1 Background and related studies

A key step toward the inference of the backbone net-
work is the formulation of reliable and comprehensive
null models. A recent promising modeling paradigm is

offered by activity-driven networks (ADNs) [15]. Within
the ADN paradigm, individual propensity of generating
links over time is encapsulated by a single, heteroge-
neously distributed parameter, called activity. In its

original formulation, the activities of all the nodes are
assumed to be constant in time and the process of net-
work assembly is carried out in a discrete-time setting.

A similar approach can be undertaken in continuous
time [16].

Because of its analytical tractability, activity-driven

models have been extended to comprehend features
of real networks, such as memory effects in the link
wiring [17], self-exciting mechanisms in individual activ-

ities [18], presence of communities [19], and spreading
over multiple layers [20,21]. For example, recent studies
have examined adaption of individual activities based
on the node’s health status [22, 23]. Building on this

promising line of research, a predictive model of the 2014
Ebola spreading in Liberia has been established [24]. Fi-
nally, circadian and weekly patterns have been included

in the ADN paradigm in [25].

Upon formulating a valid null model, the next step
to backbone inference entails a statistical test to iden-
tify irreducible links. The simplest approach is to set a
threshold that filters out links with lower strength [26].

However, such an approach could fail to capture the in-
herent heterogeneity of many complex systems where the
formation of reducible links drastically vary in time and

throughout the network. The disparity filter [9], which
has been recently extended to consider self-exciting
mechanisms [14], could address inference of heteroge-

neous networks. A more established approach is the
statistically validated network (SVN) [10], first intro-
duced to study bipartite networks, and then applied to
temporal networks [11,27–29].

The SVN works on an aggregated version of the

temporal network, that is, a static weighted network
formed by retaining all the links occurring at any time

Fig. 1 Top: Time evolution of a complex system, showing node-specific, reducible interactions (solid red links), and the
irreducible backbone (dashed blue links). Bottom: empirical observations of temporal interactions between any node pair are
used by a filtering algorithm to reconstruct the backbone. The resulting backbone network is composed of a set of aggregated,
static links. Retaining a link in the backbone is informed by a statistical comparison that tests the hypothesis of the link being
explained by the null model.

Despite significant progress, most research studies

assume that nodes have time invariant properties, such

that the empirical time series are realizations of a sta-

tionary stochastic processes. However, time-varying con-

nections might be affected by several factors, such as

individual propensity to generate links over time and

physical constraints on the network evolution. In addi-

tion, connections may vary non-uniformly in time, ex-

hibiting highly dynamic patterns that could challenge

the possibility of network reconstruction. The chief ob-

jective of our work is to explore the feasibility of in-
ferring the backbone network, in the presence of richer

time-varying connections.

1.1 Background and related studies

A key step toward the inference of the backbone net-

work is the formulation of reliable and comprehensive

null models. A recent promising modeling paradigm is

offered by activity-driven networks (ADNs) [15]. Within

the ADN paradigm, individual propensity of generat-

ing links over time is encapsulated by a single, hetero-

geneously distributed parameter, called activity. In its

original formulation, the activities of all the nodes are

assumed to be constant in time and the process of net-

work assembly is carried out in a discrete-time setting.

A similar approach can be undertaken in continuous

time [16].

Because of its analytical tractability, activity-driven

models have been extended to comprehend features of

real networks, such as memory effects in the link wiring [17],

self-exciting mechanisms in individual activities [18],

presence of communities [19], and spreading over mul-

tiple layers [20, 21]. For example, recent studies have

examined adaption of individual activities based on the

node’s health status [22,23]. Building on this promising

line of research, a predictive model of the 2014 Ebola

spreading in Liberia has been established [24]. Finally,

circadian and weekly patterns have been included in

the ADN paradigm in [25].

Upon formulating a valid null model, the next step

to backbone inference entails a statistical test to iden-

tify irreducible links. The simplest approach is to set a

threshold that filters out links with lower strength [26].

However, such an approach could fail to capture the

inherent heterogeneity of many complex systems where

the formation of reducible links drastically vary in time

and throughout the network. The disparity filter [9],

which has been recently extended to consider self-exciting

mechanisms [14], could address inference of heteroge-

neous networks. A more established approach is the

statistically validated network (SVN) [10], first intro-

duced to study bipartite networks, and then applied to

temporal networks [11,27–29].

The SVN works on an aggregated version of the tem-

poral network, that is, a static weighted network formed

by retaining all the links occurring at any time instant.

Each link has a weight equal to the total number of tem-

poral connections formed over time between two nodes.

The SVN approach has helped to elucidate many as-
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pects of real systems, such as connections between the

backbone network and the network’s community struc-

ture [30], the influence of time correlations [28,29], and

the time evolution of the backbone network [27].

A further improvement on the SVN approach is con-

stituted by the temporal fitness model (TFM) [7]. The

TFM utilizes an ADN as a null model, in which indi-

vidual activities are considered to be constant in time.

Their values are identified through maximum likelihood

estimation. The approach can be extended to study

daily patterns and circadian rhythms, within the so-

called TFMrhythm [7], which utilizes a common func-

tion to modulate the overall network evolution. The

SVN, TFM, and TFMrhythm are summarized in the Ap-

pendix.

Overall, these approaches assume that individual

properties of the nodes are constant in time. As a re-

sult, they cannot be utilized to infer backbone networks

in the presence of changes in individual behavior.

1.2 Our contribution

Here, we seek to propose a new methodology to improve

the detection of a backbone network in the presence of

complex temporal variations of activity patterns. To

this end, we introduce an extended version of ADNs,

where individual activities are piece-wise constant in

time and heterogeneously distributed throughout the

network. The null model assumes that all connections

are formed uniformly at random, that is, the probability

of creating a link at a specific time instant between two

nodes is the product of the individual activities of the

nodes at that time. In this vein, a very active node

is more likely to form connections with another high

active node than with a low active node.

Accounting for time-varying activities in the null

model calls for two main steps to find irreducible links.

First, it is necessary to estimate activity values as piece-

wise constant functions of time. Then, links are in-

cluded in the backbone network if their overall weight is

significantly higher than what would be expected from

the null model.

While the latter step can be tackled through a sta-

tistical test similar to [7,10], dealing with estimation of

activity values requires a novel scheme. Specifically, we

divide the total observation window of network evolu-

tion in independent intervals, containing a uniform to-

tal number of connections. Activities are then estimated

according to the weighted configuration model [31, 32],

which has been shown to offer reliable estimates for

large networks.

Partitioning the observation window into indepen-

dent intervals is a crucial step that can be carried out

in three ways, depending on the available information

of the network evolution. If these intervals are known

a priori, they can be used as inputs for the estimation

of activity values. If only the number of these intervals

is known, then a supervised method is necessary, which

takes the number of intervals as an input, and returns

an interval partition. Finally, if no information is avail-

able, an unsupervised method is necessary to identify

the partition from the available time series.

The simplest supervised method entails choosing

the length of the intervals at random, such that their

sum equals the length of the total observation window.

This näıve approach should set a lower bound for the

performance of our approach to the backbone inference.

Other effective supervised methods include the parsi-

monious temporal aggregation [33], piece-wise constant

approximation [34], and V-optimal histograms [35]. A

freeware software that implements these methods is avail-

able in [36].

A convenient unsupervised method is the Bayesian

blocks (BB) representation [37]. The BB method em-

ploys maximum likelihood and marginal posterior func-

tions to separate statistically significant features from

random observational errors. In this way, it relaxes com-

mon assumptions regarding the smoothness or shape

of the overall temporal evolution, without constrain-

ing the process of partitioning the observation window.

We refer to our methodology toward backbone inference

as evolving activity-driven model (EADM), encompass-

ing the null model formulation, the identification of the

time-varying activities, and the statistical test.

We acknowledge that partition into intervals is not

always necessary. For instance, if a system is station-

ary, then the number of connections generated at each

time step is constant. In this case, the total observation

window is contained in only one interval. To investi-

gate such a scenario, we examine a simplified version of

the EADM, where only one interval is present so that

the EADM reduces to a classical ADN (referred to as

EADMI=1).

Beyond comparing our approach with its simplest

incarnation that utilizes a single time interval, we fur-

ther consider three different methods: SVN, TFM, and

TFMrhythm. We consider both an artificial, synthetic

network (benchmark) and seven real-world networks

(datasets). For each network (artificial or real), we set

the maximum computational time of 24 hours, thereby

dismissing longer processes.

The synthetic network is useful for validating our

model in a controlled setting. In fact, it considers activ-

ity values as piece-wise constant functions in time with

a ground-truth on the backbone network. We consider

three different scenarios. First, we assume knowledge
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about the interval partition, thereby fully exploiting the

capabilities of our method. Then, we consider the case

in which limited information is available about the in-

terval partition. When only the number of intervals is

available, we use the näıve supervised method and es-

timate the length of the intervals at random. When no

information about the interval partition is accessible,

we utilize the unsupervised BB method. Afterwards,

when tackling backbone detection of real systems, we

focus on the BB method, as we have no prior knowledge

about the interval partition.

1.3 Main results

A critical result of our study is the analytical charac-

terization of the conditions in which one must account

for time-varying individual properties to accurately in-

fer backbone networks. Our analysis suggests that con-

sidering time-varying properties is necessary when the

system is not stationary or when the activation pattern

of a node is correlated with the activation pattern of

another node.

Further, from the analysis of synthetic networks, we

conclude that our methodology outperforms the SVN,

TFM, and TFMrhythm, whereby it leads to more reli-

able inference of backbone networks in synthetic data,

where a ground-truth backbone is known. Interestingly,

in both synthetic and real networks, we find that our

method reconstructs a backbone with a subset of links

found by other methods, thereby diminishing the num-

ber false positive links (links wrongly identified as part

of the backbone network). Overall, the three methods

available in the literature result in equivalent inferences,

similar to the special case of EADMI=1, in which we

execute our approach without partitioning the observa-

tion window.

Assuming that individual activities are constant in

time could lead to incorrect classification of irreducible

links and parts of the backbone network. Considering

individual activities as piece-wise constant functions of

time offers improved estimates and more reliable re-

sults.

1.4 Paper organization

The paper is organized as follows. In Section 2, we in-

troduce the null model and articulate our procedure

to detect significant interactions in time-varying net-

works. In Section 3, we describe our main findings by

comparing the performance of our approach with other

methods on synthetic networks, in which the backbone

network is known, and on real datasets where differ-

ent claims can be formulated depending on the method

that is pursued. Finally, in Section 4, we draw our main

conclusions and outline potential directions for further

inquiry.

2 Significant links

In this Section, we articulate the EADM, our approach

to the detection of the irreducible backbone from the

time series of each individual link. First, we present

our null model, which defines the process of generating

temporal interactions from node-specific and piece-wise

constant properties. Then, we elucidate the inference

procedure of the nodes’ activities within the null model

from available time series, assuming to be able to access

the switching events. Further, we present the statisti-

cal test from which we filter reducible links and retain

irreducible ones, thus finding the backbone network. Fi-

nally, we discuss the computational complexity of our

methodology.

2.1 Null model

We consider a time-varying network of N nodes evolv-

ing in a observation window of T � 1 time steps, la-

beled by time index t = 1, ..., T , with a unitary res-

olution. The same modeling framework is valid for a

continuous time evolution.

At each time step t, nodes are connected through a

binary, possibly disconnected, undirected network whose

adjacency matrix, A(t), stochastically varies in time.

Each temporal connection is the realization of a Bernoulli

variable, whereby the probability that two distinct nodes

i and j are connected at time t is equal to

pij(t) = ai(t)aj(t), (1)

where ai(t) and aj(t) are the activities of nodes i and

j at time t, respectively.

Activities vary according to a switching rule, whereby

they are kept constant over I disjoint time intervals in-

dexed by ∆ = 1, . . . , I. The generic ∆th time interval

starts at time tin(∆) and has a duration τ(∆), such

that
∑I
∆=1 τ(∆) = T . The interval partition might be

a priori known or it should be determined from the time

series as explained below.

When only the number of intervals I is known, a

supervised method should be used to determine the in-

terval partition. A crude possibility is to assume a ran-

dom partition in I intervals, which strains the use of

the null model and sets a lower bound for the EADM

performance. On the contrary, if I is unknown, then,
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an unsupervised method should be used. Specifically,

we use the BB representation [37]. In this case, we ana-

lyze the total number of temporal links created at time

t

Ω(t) =

N∑

i,j=1;i<j

Aij(t), (2)

where Aij(t) is the ijth entry of the network adjacency

matrix at time t. This method returns a set of inde-

pendent intervals containing a uniform total number of

connections.

To characterize the network evolution at the inter-

mediate scale of the switching rule, that is, over suc-

cessive intervals, we define a weight matrix for each

interval, summing the number of occurrences of links

between any two nodes. Specifically, in the ∆th inter-

val we define the random variable

wij(∆) =

tin(∆)+τ(∆)−1∑

t=tin(∆)

Aij(t). (3)

To count the overall number of temporal connections

between nodes i and j forming a link ij along the obser-

vation window, it is sufficient to sum the corresponding

weights, resulting into the following aggregated random

variable:

wij =

I∑

∆=1

wij(∆) =

T∑

t=1

Aij(t). (4)

By construction, the weight wij(∆) is a binomial

variable and wij the sum of non-identical binomial ran-

dom variables, described through a Poisson binomial

distribution. Since no closed-form expression is avail-

able for the Poisson binomial distribution, this is usu-

ally approximated by the Poisson distribution [38–40],

with expected value

E [wij ] =

T∑

t=1

pij(t). (5)

From the weight matrix, we define the strength of

the ith node in the ∆th interval as

si (∆) =

N∑

j=1

wij(∆). (6)

This quantity encapsulates the total number of tempo-

ral links generated by the ith node within an interval.

The total number of temporal links generated in the

whole network in the ∆th interval is therefore

W (∆) =
1

2

N∑

i=1

si(∆). (7)

Both si (∆) and W (∆) can be approximated by Pois-

son random variables, being linear combinations of in-

dependent non-identical binomial random variables.

2.2 Estimation of the activities from time series

In order to compute the probability that two distinct

nodes i and j are connected at time t, as given in

Eq. (1), we must estimate the time-varying activities

ai(t) and aj(t), assumed to be piece-wise constant over

known successive intervals. A possible line of approach

entails the use of the weighted configuration model [31,

32], which implies that the activity of node i in the ∆th

time interval tin(∆), . . . , tin(∆) + τ(∆)− 1 can be esti-

mated from the time series of the temporal connections

Ats
ij(t), where we utilize a superscript “ts” to identify

that the realizations from the corresponding random

variables are experimental or numerical time series.

Hence, we obtain

ai (t) =
stsi (∆) /τ(∆)√

(2W ts(∆)− 1) /τ(∆)
=

=
stsi (∆)√

(2W ts(∆)− 1) τ(∆)
,

(8)

where stsi (∆) and W ts(∆) are estimated from the time

series, and τ(∆) is derived from the interval partition.

In Eq. (8), the activity ai(t) in the ∆th interval is esti-

mated as the ratio between the average number of tem-

poral links created per time step by node i, stsi (∆) /τ(∆),

over a measure of the same quantity for the entire net-

work,
√

(2W ts(∆)− 1) /τ(∆). We note that the use of

a square root in the denominator is consistency with the

weighted configuration model [31]. Further, when only

one link is created in the ∆th interval, W ts(∆) = 1,

such that, the factor 2W ts(∆) − 1 = 1, in agreement

with the static configuration model [32]. The accuracy

of the estimate relies on the assumption that W ts(∆)�
1 and the network is large, that is, a large number of

events is occurring in each interval and a large number

of nodes is participating in the system’s evolution. In

the Appendix, we examine the accuracy of Eq. (8) as a

function of the network size.

By replacing Eq. (8) in Eq. (1), we obtain the prob-

ability1 of observing a link ij in the ∆th time interval

tin(∆), . . . , tin(∆) + τ(∆)− 1

pij(t) =
stsi (∆) stsj (∆)

(2W ts(∆)− 1) τ(∆)
. (9)

1 According to the weighted configuration model [31, 32],
Eq. (9) represents the expected number of links formed be-
tween node i and j in the τ(∆) snapshots in the ∆th interval.
Since most temporal networks are sparse, we can assume that
pij(t) ∈ [0, 1) and refer to it as a probability.
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2.3 Statistical analysis

To determine whether a link is a node-specific temporal

connection or part of the irreducible backbone, we com-

pute a p-value αij for each link observed at least once

in the evolving network and compare it with a proper

significance threshold. If the p-value is below the signif-

icance threshold, then the corresponding link appears

more often than what the null model would predict and

should therefore be associated with the backbone.

Thus, we examine the probability distribution of the

generic weight of the ijth link over the entire observa-

tion window. As previously stated, the distribution is

conveniently described by a Poisson distribution as

P (x; E [wij ]) =
1

x!
E [wij ]

x
e−E[wij ], (10)

where x is the realization of the random variable. The

distribution in Eq. (10) can be explicitly computed from

empirical data, using Eq. (5) and the estimation of

pij(t) in Eq. (9), as

P (x; E [wij ]) =
1

x!

[
I∑

∆=1

stsi (∆) stsj (∆)

2W ts(∆)− 1

]x
exp

[
−

I∑

∆=1

stsi (∆) stsj (∆)

2W ts(∆)− 1

]
. (11)

The p-value αij of the link ij in the overall network

evolution is then computed according to the cumulative

function of the Poisson distribution

αij ≡ 1−
wts

ij−1∑

x=0

P (x; E [wij ]) . (12)

Upon computing a p-value for every pair of nodes

in the network, one should perform a statistical test

on all the links observed at least once in the evolving

network. Given that multiple hypotheses are tested, a

multiple hypothesis test correction is required [41]. We

use the Bonferroni correction which modifies the sig-

nificance threshold to β∗ = β/NE = 0.01/NE , where

NE is the number of links observed at least once in the

evolving network [42]. This correction ensures that no

false positives will be included with probability 1−β. A

possible, less restrictive alternative may be a procedure

that controls the false discovery rate [43]. Specifically

such a procedure ensures that the fraction of false pos-

itive is less than β.

2.4 Computational complexity

Here, we examine in detail the computational complex-

ity of our method to detect significant links. For clarity,

we discuss separately the three required steps: (i) find-

ing the interval partition; (ii) estimating the individual

activities ai and probability pij in Eqs. (8) and (9); and

(iii) computing the p-values αij in Eq. (12).

To find the interval partition, we use the BB rep-

resentation [37]. Given a time series composed of T

successive time steps, the total number of links Ω(t)

is computed according to Eq. (2) and used as an in-

put for the BB representation. This method determines

whether Ω(t) 6= Ω(t+ 1), ∀t = 1, 2, . . . , T − 1, to iden-

tify the number of change points Tcp (when the time

series changes value). From the knowledge of Tcp, the

maximum number of possible intervals is computed as

Imax = Tcp+1. The interval partition is calculated with

a computational time that scales as O(I2max), which is

affordable even for Imax ∼ 106 [37].

The next step is to estimate the individual activities

ai and probability pij in Eqs. (8) and (9). These em-

pirical estimations depend on the number of intervals I

and the amount of temporal links in each interval. The

latter might substantially affect the algorithm’s com-

plexity, which ranges from O(NI) for sparse networks,

to O(N2I) for dense networks.

Finally, the p-values are computed according with

Eq. (12), which has a computational complexity ofO(NE),

where NE is the number of links observed at least once

in the evolving network. For sparse networks, this re-

duces to O(N).

The above three steps are independent and their

computational costs add up, such that for sparse net-

works, the bottleneck of our approach is either the de-

tection of the interval partition or the computation of

the p-values. If the time series is larger than the number

of links observed at least once in the evolving network,

then the complexity is O(I2max). In the opposite sce-

nario, our method has a computational cost of O(N).
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3 Results

In this Section, we assess the performance of the EADM

in detecting the backbone of temporal networks and we

compare such a performance with four models that as-

sume time-invariant activities. We specify our study to

the SVN, TFM, TFMrhythm, and EADMI=1 (a simpli-

fied version of our model that uses time-invariant activ-

ities). We limit the computational time for each method

to 24 hours, on an Intel(R) Xeon(R) CPU E5-2697 v3

@ 2.60GHz, which we consider a reasonable computa-

tional burden for the backbone inference.

First, we analytically determine conditions for which

the EADM yields equivalent results to the EADMI=1,

which allows for speculating when time-varying activ-

ities could play a salient role in the backbone detec-

tion. This corresponds to cases where the system is not

stationary or the activation patterns of the nodes are

correlated.

Then, we numerically assess the performance of the

EADM, EADMI=1, TFM, and SVN in detecting the

backbone of temporal networks generated via an arti-

ficial network. Given that the TFMrhythm requires the

solution of N + T − 1 equations, its implementation

on synthetic data exceeds the computational time limit

of 24 hours per simulation. Therefore, its performance

is not assessed on synthetic datasets. The key findings

of our comparisons are: (i) the EADM offers improved

performance with respect to the other methods, thereby

reducing the number of false positives in the backbone

network; (ii) the EADMI=1, TFM, and SVN have com-

parable performance for all situations under scrutiny;

and (iii) the EADM performs better when using the

BB method for time interval partitioning, rather than

a näıve interval partition.

Finally, we compare the irreducible backbone ex-

tracted from all models under study on several real

datasets: Primary school, High school, and Museum

contact patterns are from the SocioPatterns project [44];

Message, Email, and Stack overflow datasets are from

the SNAP database [45]; and Enron email dataset [46].

For the Primary school, High school, and Museum datasets,

we remove the time intervals when no links are recorded.

Some simulations of the TFM (which solves N equa-

tions) and TFMrhythm exceed our computational time

limit. In all the seven datasets, the EADM finds less

links than other methods, which perform very similar

to each other. This observation is in agreement with

numerical computations on the synthetic networks, sug-

gesting that assuming individual activities as constant

in time leads to an overestimation in the number of

links of the backbone network.

3.1 Analytical derivation

We start by estimating the probability of having the

occurence of link ij in the EADMI=1, that is, when

individual activities are constant in time. In this case,

Eq. (9) reads as

pij =
stsi s

ts
j(

2W
ts − 1

)
T
, (13)

where we define the total strength in the overall obser-

vation window stsi =
∑I
∆=1 s

ts
i (∆), and the total num-

ber of temporal links in the overall observation window

W
ts

=
∑I
∆=1W

ts(∆). Thus, the expected number of

links in the EADMI=1 is

EI=1 [wij ] = Tpij =
stsi s

ts
j

2W
ts − 1

, (14)

which is equivalent to predictions of the weighted con-

figuration model [31].

In general, EI=1 [wij ] in Eq. (14) is different from

E [wij ] in Eq. (5), thereby begetting different statistical

inferences of the backbone. Under the following condi-

tions, we show that the two inferences are similar:

(i) if the system is stationary, W ts(∆) ≈W ts
/T , and

(ii) if, for any link ij, the activation pattern of node i

is independent of the one of node j.

To prove this claim, we compute E [wij ] and demon-

strate that it converges to EI=1 [wij ] forW
ts
> W ts(∆)�

1 and large networks. By replacing Eq. (9) into Eq. (5)

for W
ts
> W ts(∆)� 1, we obtain

E [wij ] '
I∑

∆=1

stsi (∆) stsj (∆)

2W ts(∆)
. (15)

First, we assume the system as stationary, as in condi-

tion (i), so that

E [wij ] '
T 2

2W
ts

1

T

I∑

∆=1

stsi (∆) stsj (∆) . (16)

Then, we apply condition (ii), which for large networks

implies the mean-field approximation 〈stsi (∆)〉〈stsj (∆)〉 '
〈stsi (∆) stsj (∆)〉, obtaining

E [wij ] '
T 2

2W
ts

[
1

T

I∑

∆=1

stsi (∆)

][
1

T

I∑

∆′=1

stsj (∆′)

]
,

(17)
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and, from the time series of stsi and stsj in Eqs. (6), we

establish

E [wij ] '
stsi s

ts
j

2W
ts . (18)

Finally, we observe that Eq. (18) corresponds to EI=1 [wij ]

in Eq. (14) under the assumption that W
ts � 1, which

concludes our proof.

If the system is not stationary or the activation pat-

terns of nodes are correlated, one might expect that the

EADM will yield different predictions than the EADMI=1,

supporting the need for properly partitioning the obser-

vation window toward the successful detection of the

backbone network.

3.2 Performance comparison on synthetic data

The considered synthetic data begets a temporal net-

work where reducible links, generated by the EADM,

coexist with the irreducible backbone. Reducible links

evolve over a observation window T , partitioned into

I successive intervals. Nodes have interval-dependent

(piece-wise constant) activities a(t) drawn from a power

law distribution F (a) ∼ a−2.1, with a ∈ [amin, 1]. The

value amin represents the minimum possible value for

the individual activity in the system and it is chosen to

be greater than zero to avoid divergence in the distri-

bution [15,24,47].

Between two consecutive intervals, t1 ∈ [tin(∆ −
1), tin(∆− 1) + τ(∆− 1)− 1] and t2 ∈ [tin(∆), tin(∆) +

τ(∆)− 1], the activity values vary according to

ai(t2) = ai(t1)p+ y(1− p), (19)

where p is an autocorrelation parameter and y a random

number extracted from F (a). For p = 1, individual ac-

tivities are time-invariant, while for p < 1, they exhibit

temporal correlations.

A small fraction δ of all the links observed at least

once in the network is arbitrarily assigned to the back-

bone network. An additional parameter λ is used to

measure the preponderance of the backbone during the

observation window, such that if λ = 1, these links are

always present, and if λ < 1, they could not be present

at all times. Details about the algorithm to construct

synthetic data are presented in the Appendix.

We numerically assess the improvement provided by

the EADM in the backbone detection with respect to

the TFM, SVN, and EADMI=1. Performing our nu-

merical experiments using the TFMrhythm exceeds our

allotted computational time, such that its performance

could not be tested against this artificial network. Per-

formance is otherwise scored using two well-known met-

rics, precision and recall [48]. The former is computed as

the ratio between the number of links detected, which

belong to the irreducible backbone (true positives), di-

vided by the total number of detected links (sum of true

and false positives). The latter metric is the ratio be-

tween the true positives divided by the total number of

links in the irreducible backbone (sum of true positives

and false negatives).

First, we assume that the partition into intervals is

known and we estimate the activity values according to

Eq. (8), thereby applying the EADM. Then, we release

this assumption toward choosing the length of the in-

tervals at random or we employ the unsupervised BB

method to estimate such a partition.

3.2.1 The EADM improves backbone detection

In our comparison, we assess the role of two important

parameters: (i) the autocorrelation parameter p, which

regulates the variation of individual activities over time,

from p = 0 (completely uncorrelated individual activ-

ities) to p = 1 (time-invariant activities), and (ii) the

ratio between the average interval length and the to-

tal length of the observation window 〈τ(∆)〉/T , which

quantifies the fraction of switches in activity patterns.

For 〈τ(∆)〉/T = 1, individual activities are constant in

time, while as 〈τ(∆)〉/T approaches zero, individual ac-

tivities rapidly change over time. We select two values

of λ, which lead to different scenarios: a larger value of

λ that begets an easily detectable backbone where all

irreducible links can be discovered, examined in Fig. 2;

and a smaller value of λ that results into a partially

hidden backbone where some irreducible links cannot

be discovered, considered in Fig. 3.

Figures 2 (a) and (c) support the claim that the

EADM is a valuable approach to infer the backbone

networks for any choice of the autocorrelation param-

eter, since precision and recall are always close to one.

Figures 3 (a) and (c) confirms that no false positive

are detected by the EADM even if the backbone is not

preponderant; however, some irreducible links cannot

be discovered and the recall is lower than one. On the

contrary, the TFM, SVN, and EADMI=1 are successful

only when the value of the autocorrelation parameter

approaches 1, such that individual activities are prac-

tically time-invariant. In this case, we register values of

the precision close to 1.

Figures 2 (b) and (d), and Figs. 3 (b) and (d), sug-

gest that the EADM outperforms the other methods for

intermediate values of the number of switching inter-

vals in terms of precision. Performance is, on the other
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Fig. 2: Performance comparison against the synthetic
network, assuming a priori knowledge of the interval

partition for the EADM implementation. We assess
precision and recall as a function of the autocorrelation
parameter p and ratio between the average interval

length and the total observation window 〈τ(∆)〉/T . The
horizontal axis in panels (b) and (d) is obtained by
fixing T = 5, 000 and varying I to span different values

of 〈τ(∆)〉 = T/I. In (a) and (c), we hold 〈τ(∆)〉 and I,
fixed to 500 and 10, while in (b) and (d) we set p = 0.4.
Other parameter values are: N = 100, δ = 0.01, λ =
0.025, and amin = [

√
〈τ(∆)〉]−1. Markers indicate the

average of 102 independent simulations, 95% confidence
interval is displayed in gray.

ing one or zero. While the comparable predictions that
we register for the former case 〈τ(∆)/T 〉 ' 1 can be
anticipated due to the limited variability of the activity

patterns, the similar performance registered for the lat-
ter case 〈τ(∆)/T 〉 ' 0 deserves some comments. Under
fast switching conditions, none of the algorithms leads to
large values of the recall, such that only a small fraction

of the backbone can be reconstructed, although with
high accuracy. Under fast switching conditions, the SVN,
TFM, and EADMI=1 would practically capture an an-

nealed version of the network that is not representative
of the backbone. On the other hand, an algorithm like
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Fig. 3: Performance comparison against the synthetic
network, assuming a priori knowledge of the interval

partition for the EADM implementation. We assess
precision and recall as a function of the autocorrelation
parameter p and ratio between the average interval

length and the total observation window 〈τ(∆)〉/T . The
horizontal axis in panels (b) and (d) is obtained by
fixing T = 5, 000 and varying I to span different values

of 〈τ(∆)〉 = T/I. In (a) and (c), we hold 〈τ(∆)〉 and I,
fixed to 500 and 10, while in (b) and (d) we set p = 0.4.
Other parameter values are: N = 100, δ = 0.01, λ =
0.010, and amin = [

√
〈τ(∆)〉]−1. Markers indicate the

average of 102 independent simulations, 95% confidence
interval is displayed in gray.

ours that tracks time-variations requires a large number

of realizations for performing the statistical test, which
become unfeasible for time series of limited length with
several switches. The similar performance registered

for the TFM, SVN, and EADMI=1 is discussed in the
Appendix.

Taken together, the higher precision of the EADM
and its comparable recall to other methods, suggest that
the EADM is successful in reducing the number of false

positives. These advantages will be explored and further
detailed when we examine real networks.

Fig. 2 Performance comparison against the synthetic net-
work, assuming a priori knowledge of the interval partition
for the EADM implementation. We assess precision and re-
call as a function of the autocorrelation parameter p and ratio
between the average interval length and the total observation
window 〈τ(∆)〉/T . The horizontal axis in panels (b) and (d) is
obtained by fixing T = 5, 000 and varying I to span different
values of 〈τ(∆)〉 = T/I. In (a) and (c), we hold 〈τ(∆)〉 and
I, fixed to 500 and 10, while in (b) and (d) we set p = 0.4.
Other parameter values are: N = 100, δ = 0.01, λ = 0.025,
and amin = [

√
〈τ(∆)〉]−1. Markers indicate the average of 102

independent simulations, 95% confidence interval is displayed
in gray.

hand, comparable for the extreme cases of 〈τ(∆)/T 〉
approaching one or zero. While the comparable predic-

tions that we register for the former case 〈τ(∆)/T 〉 ' 1

can be anticipated due to the limited variability of the

activity patterns, the similar performance registered for

the latter case 〈τ(∆)/T 〉 ' 0 deserves some comments.

Under fast switching conditions, none of the algorithms

leads to large values of the recall, such that only a small

fraction of the backbone can be reconstructed, although

with high accuracy. Under fast switching conditions, the

SVN, TFM, and EADMI=1 would practically capture

an annealed version of the network that is not repre-

sentative of the backbone. On the other hand, an al-
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partition for the EADM implementation. We assess
precision and recall as a function of the autocorrelation
parameter p and ratio between the average interval

length and the total observation window 〈τ(∆)〉/T . The
horizontal axis in panels (b) and (d) is obtained by
fixing T = 5, 000 and varying I to span different values

of 〈τ(∆)〉 = T/I. In (a) and (c), we hold 〈τ(∆)〉 and I,
fixed to 500 and 10, while in (b) and (d) we set p = 0.4.
Other parameter values are: N = 100, δ = 0.01, λ =
0.025, and amin = [

√
〈τ(∆)〉]−1. Markers indicate the

average of 102 independent simulations, 95% confidence
interval is displayed in gray.

ing one or zero. While the comparable predictions that
we register for the former case 〈τ(∆)/T 〉 ' 1 can be
anticipated due to the limited variability of the activity

patterns, the similar performance registered for the lat-
ter case 〈τ(∆)/T 〉 ' 0 deserves some comments. Under
fast switching conditions, none of the algorithms leads to
large values of the recall, such that only a small fraction

of the backbone can be reconstructed, although with
high accuracy. Under fast switching conditions, the SVN,
TFM, and EADMI=1 would practically capture an an-

nealed version of the network that is not representative
of the backbone. On the other hand, an algorithm like
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precision and recall as a function of the autocorrelation
parameter p and ratio between the average interval

length and the total observation window 〈τ(∆)〉/T . The
horizontal axis in panels (b) and (d) is obtained by
fixing T = 5, 000 and varying I to span different values

of 〈τ(∆)〉 = T/I. In (a) and (c), we hold 〈τ(∆)〉 and I,
fixed to 500 and 10, while in (b) and (d) we set p = 0.4.
Other parameter values are: N = 100, δ = 0.01, λ =
0.010, and amin = [
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〈τ(∆)〉]−1. Markers indicate the

average of 102 independent simulations, 95% confidence
interval is displayed in gray.

ours that tracks time-variations requires a large number

of realizations for performing the statistical test, which
become unfeasible for time series of limited length with
several switches. The similar performance registered

for the TFM, SVN, and EADMI=1 is discussed in the
Appendix.

Taken together, the higher precision of the EADM
and its comparable recall to other methods, suggest that
the EADM is successful in reducing the number of false

positives. These advantages will be explored and further
detailed when we examine real networks.
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network, assuming a priori knowledge of the interval

partition for the EADM implementation. We assess

precision and recall as a function of the autocorrelation

parameter p and ratio between the average interval

length and the total observation window 〈τ(∆)〉/T . The

horizontal axis in panels (b) and (d) is obtained by

fixing T = 5, 000 and varying I to span different values

of 〈τ(∆)〉 = T/I. In (a) and (c), we hold 〈τ(∆)〉 and I,

fixed to 500 and 10, while in (b) and (d) we set p = 0.4.

Other parameter values are: N = 100, δ = 0.01, λ =

0.025, and amin = [
√
〈τ(∆)〉]−1. Markers indicate the

average of 102 independent simulations, 95% confidence

interval is displayed in gray.

ing one or zero. While the comparable predictions that

we register for the former case 〈τ(∆)/T 〉 ' 1 can be

anticipated due to the limited variability of the activity

patterns, the similar performance registered for the lat-

ter case 〈τ(∆)/T 〉 ' 0 deserves some comments. Under

fast switching conditions, none of the algorithms leads to

large values of the recall, such that only a small fraction

of the backbone can be reconstructed, although with

high accuracy. Under fast switching conditions, the SVN,
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precision and recall as a function of the autocorrelation

parameter p and ratio between the average interval

length and the total observation window 〈τ(∆)〉/T . The
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TFM, and EADMI=1 would practically capture an an-

nealed version of the network that is not representative

of the backbone. On the other hand, an algorithm like

ours that tracks time-variations requires a large number

of realizations for performing the statistical test, which

become unfeasible for time series of limited length with

several switches. The similar performance registered

for the TFM, SVN, and EADMI=1 is discussed in the

Appendix.

Taken together, the higher precision of the EADM

and its comparable recall to other methods, suggest that

the EADM is successful in reducing the number of false

Fig. 3 Performance comparison against the synthetic net-
work, assuming a priori knowledge of the interval partition
for the EADM implementation. We assess precision and re-
call as a function of the autocorrelation parameter p and ratio
between the average interval length and the total observation
window 〈τ(∆)〉/T . The horizontal axis in panels (b) and (d) is
obtained by fixing T = 5, 000 and varying I to span different
values of 〈τ(∆)〉 = T/I. In (a) and (c), we hold 〈τ(∆)〉 and
I, fixed to 500 and 10, while in (b) and (d) we set p = 0.4.
Other parameter values are: N = 100, δ = 0.01, λ = 0.010,
and amin = [

√
〈τ(∆)〉]−1. Markers indicate the average of 102

independent simulations, 95% confidence interval is displayed
in gray.

gorithm like ours that tracks time-variations requires

a large number of realizations for performing the sta-

tistical test, which become unfeasible for time series of

limited length with several switches. The similar per-

formance registered for the TFM, SVN, and EADMI=1

is discussed in the Appendix.

Taken together, the higher precision of the EADM

and its comparable recall to other methods, suggest

that the EADM is successful in reducing the number of

false positives. These advantages will be explored and

further detailed when we examine real networks.
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SVN TFM EADMI=1 EADM+R EADM+BB

Precision

λ = 0.025 0.483 (0.461, 0.504) 0.510 (0.488, 0.532) 0.490 (0.468,0.511) 0.995 (0.992, 0.998) 0.991 (0.985, 0.996)
λ = 0.010 0.365 (0.345, 0.385) 0.379 (0.355, 0.403) 0.361 (0.339, 0.384) 0.992 (0.988, 0.996) 0.987 (0.980, 0.995)

Recall

λ = 0.025 0.991 (0.988, 0.994) 0.984 (0.980, 0.988) 0.986 (0.983, 0.990) 0.999 (0.999, 1.000) 0.999 (0.998, 1.000)
λ = 0.010 0.617 (0.603, 0.631) 0.584 (0.569, 0.599) 0.594 (0.580, 0.609) 0.593 (0.577, 0.609) 0.602 (0.587, 0.616)

Table 1 Performance comparison in the synthetic network, assuming limited information of the interval partition for the
EADM implementation. For the EADM+R, the number of intervals I is known. For the EADM+BB, no a priori information
of the interval partition is assumed. We study two values of λ, which exemplify two levels of preponderance of the backbone.
Parameter values are: N = 100, T = 5, 000, I = 10, 〈τ(∆)〉 = 500, δ = 0.01, and amin = [

√
〈τ(∆)〉]−1. Tabulated values are the

average of 102 independent simulations, the 95% confidence interval is displayed in brackets.

3.2.2 The backbone inference does not require

knowledge about activity patterns

Thus far, we have assumed complete knowledge about

the interval partition, which is used as an input pa-

rameter in the EADM. However, this situation is rarely

met in reality, where only limited information about

the interval partition may be available. To improve the

degree of realism of the analysis, we consider two dif-

ferent scenarios. In the first one, we assume knowledge

about the number of intervals and choose their length

at random. This näıve approach sets a lower bound

for the EADM performance. We identify this setting as

EADM+R, where “R” stands for random. In the sec-

ond scenario, we assume no a priori knowledge about

the interval partition, and we resort to the unsupervised

BB method. We identify this situation as EADM+BB.

In Table 1, we study precision and recall of the five

methods for two choices of the parameter values, con-

sidered in Figs. 2 and 3. The two cases pertain to two

different choices of λ, where we were fully successful in

reconstructing the backbone or registered a recall less

than one with full knowledge about the interval parti-

tions.

Results in Table 1 indicate that all the five meth-

ods lead to a comparable recall, which is equivalent to

results in Figs. 2 and 3. However, we document a re-

markable improvement in precision for the EADM+R

and EADM+BB, when compared to the other three

methods that do not account for time-variations of ac-

tivity patterns. Given that the EADM+BB does not

require any knowledge about the intervals, it should be

the approach of choice in backbone inference. In the

Appendix, we report further insight on the comparison

between the EADM+R and EADM+BB, which indi-

cate that the EADM+R might lead to inadequate in-

ferences if the number of intervals is not exactly known.

This is the case of real networks, which motivates the

systematic use of the EADM+BB in the discovery pro-

cess.

3.3 Application to real networks

Based on our previous assessment on synthetic data, we

turn to real networks where we compare predictions of

the EADM+BB with other existing methods.

The comparison is carried out using three different

metrics: (i) the number of significant links; (ii) the Jac-

card index [49]; and (iii) the overlap coefficient [50].

We denote the set of irreducible links detected by our

method as LEADM+BB, and the others as Lx, where x =

EADMI=1, TFM, TFMrhythm, or SVN. The Jaccard co-

efficient is defined as

J(LEADM+BB, Lx) =
|LEADM+BB ∩ Lx|
|LEADM+BB ∪ Lx|

, (20)

where | · | indicates the set cardinality. The overlap co-

efficient is defined as

O(LEADM+BB, Lx) =
|LEADM+BB ∪ Lx|

min (|LEADM+BB|, |Lx|)
. (21)

The Jaccard coefficient yields the fraction of common

links between the EADM+BB and each of the other

methods, while the overlap coefficient quantifies the ex-

tent of the overlap between the two detected backbones.

Each real dataset is examined at four different time

resolutions obtained by counting, without repetitions,

all the links that occur at the nominal frequency of ac-

quisition of the experimental observation. Table 2 sum-

marizes the seven datasets considered in this work. For

ease of illustration, in this main document, we focus on

the Primary school and the Museum datasets; the Ap-

pendix contains the analysis of all datasets. Similar to

the study of synthetic data, simulations are terminated

after 24 hours of computational time.
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Data # nodes # temporal links # aggregated links Time span Resolution (r1, r2, r3, r4)

Primary school 242 125,773 8,317 2 days (20 sec., 1 min., 5 min., 15 min.)
High school 126 28,561 1,708 4 days (20 sec., 1 min., 5 min., 15 min.)

Enron 182 125,235 2,097 1,313 days (15 min., 1 hour, 1 day, 1 week)
Email 986 329,910 16,025 526 days (15 min., 1 hour, 1 day, 1 week)

Message 1,899 59,835 13,838 194 days (15 min., 1 hour, 1 day, 1 week)
Stack overflow 24,759 506,550 187,986 2,351 days (15 min., 1 hour, 1 day, 1 week)

Museum 10,852 411,490 44,120 81 days (1 min., 5 min., 15 min., 30 min.)

Table 2 Data summary of the seven real datasets under consideration. The “# temporal links” column indicates the total
number of temporal links in the dataset. The “Resolution” column lists four different time resolutions for conducting the
inference. For brevity, in the manuscript we use symbols from r1, . . . , r4 to refer to the different resolutions, ordered from the
smallest to the largest. For the Primary school, High school, and Museum datasets, we remove the time intervals when no
links are recorded.

In Fig. 4, we summarize our comparison. In pan-

els (a) and (d), we show a sample of the time series of

the total number of temporal links, Ωts(t), and the in-

terval partition identified by the BB method. For both

datasets, Ωts(t) is not stationary, reflecting the com-

plexity of the time evolution where each student or

teacher in the Primary school dataset, or museum vis-

itor in the Museum dataset will come irregularly into

contact with others. In panels (b) and (e), we com-

pare the number of significant links detected by the

five methods considered in this work. In agreement with

evidence from Figs. 2 and 3 and Table 1 on synthetic

data, the EADM+BB identifies a smaller number of

links than other methods, whose predictions are equiv-

alent.

We also observe that improving on the resolution

of the data, by lowering the time step, increases the

number of significant links detected by all the meth-

ods. This is related to the decrease of the number of

temporal links W
ts

due to the deletion of the repeated

temporal links (no multiedges are allowed in a single

time step). Such a deletion affects mostly the nodes

with highest activity, which generate many links over

time. In this way, the heterogeneity of the system is re-

duced, reflecting in a lower number of detected signifi-

cant links. Although all the methods are affected by the

time resolution of the dataset, the EADM+BB is the

one that shows the strongest tendency, as it requires

the identification of switches in the activity patterns,

which could be masked by node-specific links in poorly

resolved datasets.

In Fig. 5, we compare the detected backbone net-

works using the Jaccard index and the overlap coeffi-

cient. The Jaccard index suggests a strong similarity in

the case of the Primary school dataset and a weak sim-

ilarity in the case of the Museum dataset. On the other

hand, the overlap coefficient suggests that in both cases

our method identifies a subset of links within those de-

tected by other methods.

Individual activities have different temporal features

in the two datasets. In the Primary school dataset, most

students and teachers are recorded for the entire obser-

vation window, and can recurrently interact with each

other. As a result, the impact of explicitly considering

time-varying activities is limited, and a time-averaged

representation of the phenomenon constitutes an ac-

ceptable approximation. On the other hand, in the Mu-

seum dataset, visitors spend only a few hours in the

museum, which comprises a small fraction of the obser-

vation window of 81 days. In this case, approximating

individual activities with constant quantities along the

whole observation window is an oversimplification of

the problem that could lead to several false positives in

the backbone detection.

In Fig. 6, we assess the accuracy of the methods in

estimating the overall network connectivity, measured

in terms of the total number of links in the observation

window. We compare the expected number of temporal

links, E
[
W
]
, with observations in the time series, W

ts
.

We specifically compute the relative error, |E
[
W
]
−

W
ts|/W ts

, where we use E
[
W
]

=
∑N
i,j=1;i<j

∑T
t=1 pij(t)

for the EADM+BB; EI=1

[
W
]

=
∑N
i,j=1;i<j Tpij for

the EADMI=1; Eq. (25) in the Appendix for the TFM;

and Eq. (29) in the Appendix for the TFMrhythm. The

SVN is excluded from this analysis as it takes W
ts

as an

input parameter. For all the considered datasets and all

backbone detection methods, relative error is at most

5%, thereby indicating that all the methods are accu-

rate in capturing the evolution of the network connec-

tivity. In agreement with our expectation, the relative

error for the TFM and the TFMrhythm (when avail-

able) is lower than those for the EADMI=1 and the

EADM+BB. In fact, as previously discussed, the TFM

and TFMrhythm refine the estimation of individual ac-

tivities through a maximum likelihood approach.

While all the methods work with approximately the

same number of links throughout the temporal evolu-
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Fig. 4: Influence of temporal patterns on backbone detection. In panels (a) and (d), we show the total number of
temporal links created over time, Ωts(t), for one chosen resolution (indicated in square brackets) of the Primary

school and Museum datasets, respectively. For visualization purposes, we select the first 60 time steps. Partition
into intervals is performed by applying the Bayesian blocks (BB) method to the time series. Horizontal red segments
represent the average number of temporal links in a specific interval. In panels (b) and (e), we compare the

number of significant links found by the methods under scrutiny for the same two datasets. Inferences not reported
correspond to simulations that exceed our time limit of 24 hours. In panels (c) and (f), we display the number of

temporal links, W
ts

, as a function of the resolution for the same two datasets. The exact values of the resolution
are found in Table 2.

refine the estimation of individual activities through a
maximum likelihood approach.

While all the methods work with approximately the
same number of links throughout the temporal evolution,
as shown in Fig. 6, they yield different predictions for the

underlying backbone network as shown in Figs. 4 and 5.
The most remarkable difference depends on whether one
is accounting or not for time-varying activities.

Based on the study of the synthetic datasets in
Figs. 2 and 3, we propose that the discovery process of

the backbone network should be formulated by assum-
ing, in general, that activity patterns are time-varying.

4 Discussion

In this paper, we have introduced the evolving activity-
driven model, a novel approach to detect the backbone
network against time variations of node-specific proper-

ties, encapsulated by the activity. The activity of a node
represents its propensity to generate links over time,
which, in real systems, is seldom constant [51]. Should

one look at temporal networks formed by humans, the
individual activity might be low during sleeping hours
and breaks, while it should be high during working hours.
Whether differences in individual behavior modify the

backbone network is the topic of our study.

To this end, we analytically identify conditions in
which temporal patterns of the activity will have a sec-

Fig. 4 Influence of temporal patterns on backbone detection. In panels (a) and (d), we show the total number of temporal links
created over time, Ωts(t), for one chosen resolution (indicated in square brackets) of the Primary school and Museum datasets,
respectively. For visualization purposes, we select the first 60 time steps. Partition into intervals is performed by applying the
Bayesian blocks (BB) method to the time series. Horizontal red segments represent the average number of temporal links in a
specific interval. In panels (b) and (e), we compare the number of significant links found by the methods under scrutiny for
the same two datasets. Inferences not reported correspond to simulations that exceed our time limit of 24 hours. In panels (c)

and (f), we display the number of temporal links, W
ts

, as a function of the resolution for the same two datasets. The exact
values of the resolution are found in Table 2.

tion, as shown in Fig. 6, they yield different predic-

tions for the underlying backbone network as shown in

Figs. 4 and 5. The most remarkable difference depends

on whether one is accounting or not for time-varying

activities.

Based on the study of the synthetic datasets in Figs. 2

and 3, we propose that the discovery process of the

backbone network should be formulated by assuming,

in general, that activity patterns are time-varying.

4 Discussion

In this paper, we have introduced the evolving activity-

driven model, a novel approach to detect the backbone

network against time variations of node-specific prop-

erties, encapsulated by the activity. The activity of a

node represents its propensity to generate links over

time, which, in real systems, is seldom constant [51].

Should one look at temporal networks formed by hu-

mans, the individual activity might be low during sleep-

ing hours and breaks, while it should be high during

working hours. Whether differences in individual be-

havior modify the backbone network is the topic of our

study.

To this end, we analytically identify conditions in

which temporal patterns of the activity will have a sec-

ondary role on the detection of the backbone. These

conditions correspond to the system being stationary

and the activation patterns of the nodes not correlated.

Based on these claims, we speculate that straining ei-

ther of these conditions will lead to a salient role of

temporal variations of the activity patterns on the back-

bone detection. Afterwards, we compare the backbone

networks detected by our methodology with inferences
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Fig. 5: Differences and similarities in the backbone net-
works detected by the EADM+BB and the other meth-
ods (indicated in the legends). In panels (a) and (c),

we show the Jaccard index for the Primary school and
Museum datasets, respectively. In panels (b) and (d), we
display the overlap coefficient for the same two datasets.

Inferences not reported correspond to simulations that
exceed our time limit of 24 hours.

ondary role on the detection of the backbone. These

conditions correspond to the system being stationary
and the activation patterns of the nodes not correlated.
Based on these claims, we speculate that straining either

of these conditions will lead to a salient role of temporal
variations of the activity patterns on the backbone de-
tection. Afterwards, we compare the backbone networks

detected by our methodology with inferences supported
by four other approaches all of which assume that in-
dividual activities are constant in time. Specifically, we
focus on a modification of the evolving activity-driven

model with constant activities; the statistically validated
network [10]; and two versions of the temporal fitness
model [7]. In the first version of the temporal fitness

model, activities are kept constant in time and their
estimates are refined through a maximum likelihood
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Fig. 6: Relative error between the total number of tempo-

ral links found in the time series, W
ts

, and the number
of total temporal links estimated from the backbone
detection algorithms under consideration. The SVN is

discarded from this analysis since it uses W
ts

as an in-
put for filtering reducible links. Inferences not reported
correspond to simulations that exceed our time limit of
24 hours.

approach; whilst, in the second one, a time-varying pa-
rameter is utilized to encapsulate circadian and weekly

patterns.

For both synthetic and real datasets, our model
identifies a subset of the links determined by the other
methods. By utilizing a ground-truth backbone network

from the synthetic data, we conclude that our approach
reduces the number of links that are incorrectly classified
as part of the backbone network (false positives) and
improves the precision of the detection process. These

results suggest that accounting for temporal variations
in the activity plays an important role in backbone de-
tection, potentially leading to the discovery of a different

backbone network. The most remarkable differences are
noted when nodes display activity patterns that inten-
sively vary in time, without a recurrent behavior. For

instance, in the Museum dataset, visitors spend only
a few hours in the museum, which is a small fraction
of the total observation window of 81 days. In contrast
with other methods that all yield equivalent predictions,

our approach discovers a small backbone network, rep-
resentative of people visiting museums in small groups
that constitute a backbone network. We expect a similar

behavior when analyzing airports, restaurants, hotels,
websites, and chat rooms, where people access alone or
in small groups and only for a limited time.

The size of the backbone network discovered by

our approach is influenced by the time resolution of
the dataset. Working with poorly resolved data will

Fig. 5 Differences and similarities in the backbone networks
detected by the EADM+BB and the other methods (indi-
cated in the legends). In panels (a) and (c), we show the
Jaccard index for the Primary school and Museum datasets,
respectively. In panels (b) and (d), we display the overlap co-
efficient for the same two datasets. Inferences not reported
correspond to simulations that exceed our time limit of 24
hours.

supported by four other approaches all of which as-

sume that individual activities are constant in time.

Specifically, we focus on a modification of the evolv-

ing activity-driven model with constant activities; the

statistically validated network [10]; and two versions of

the temporal fitness model [7]. In the first version of the

temporal fitness model, activities are kept constant in

time and their estimates are refined through a maxi-

mum likelihood approach; whilst, in the second one, a

time-varying parameter is utilized to encapsulate circa-

dian and weekly patterns.

For both synthetic and real datasets, our model

identifies a subset of the links determined by the other

methods. By utilizing a ground-truth backbone net-

work from the synthetic data, we conclude that our

approach reduces the number of links that are incor-

rectly classified as part of the backbone network (false
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variations of the activity patterns on the backbone de-
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detected by our methodology with inferences supported
by four other approaches all of which assume that in-
dividual activities are constant in time. Specifically, we
focus on a modification of the evolving activity-driven

model with constant activities; the statistically validated
network [10]; and two versions of the temporal fitness
model [7]. In the first version of the temporal fitness

model, activities are kept constant in time and their
estimates are refined through a maximum likelihood

Primary school

(a)

r1 r2 r3 r4
10−9

10−7

10−5

10−3

10−1

Resolution

R
el

a
ti

v
e

er
ro

r

TFM

TFMrhythm

EADMI=1

EADM+BB

Museum

(b)

r1 r2 r3 r4

Resolution

EADMI=1

EADM+BB

Fig. 6: Relative error between the total number of tempo-

ral links found in the time series, W
ts

, and the number
of total temporal links estimated from the backbone
detection algorithms under consideration. The SVN is

discarded from this analysis since it uses W
ts

as an in-
put for filtering reducible links. Inferences not reported
correspond to simulations that exceed our time limit of
24 hours.

approach; whilst, in the second one, a time-varying pa-
rameter is utilized to encapsulate circadian and weekly

patterns.

For both synthetic and real datasets, our model
identifies a subset of the links determined by the other
methods. By utilizing a ground-truth backbone network

from the synthetic data, we conclude that our approach
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tection, potentially leading to the discovery of a different

backbone network. The most remarkable differences are
noted when nodes display activity patterns that inten-
sively vary in time, without a recurrent behavior. For

instance, in the Museum dataset, visitors spend only
a few hours in the museum, which is a small fraction
of the total observation window of 81 days. In contrast
with other methods that all yield equivalent predictions,

our approach discovers a small backbone network, rep-
resentative of people visiting museums in small groups
that constitute a backbone network. We expect a similar

behavior when analyzing airports, restaurants, hotels,
websites, and chat rooms, where people access alone or
in small groups and only for a limited time.

The size of the backbone network discovered by

our approach is influenced by the time resolution of
the dataset. Working with poorly resolved data will

Fig. 6 Relative error between the total number of temporal

links found in the time series, W
ts

, and the number of total
temporal links estimated from the backbone detection algo-
rithms under consideration. The SVN is discarded from this
analysis since it uses W

ts
as an input for filtering reducible

links. Inferences not reported correspond to simulations that
exceed our time limit of 24 hours.

positives) and improves the precision of the detection

process. These results suggest that accounting for tem-

poral variations in the activity plays an important role

in backbone detection, potentially leading to the discov-

ery of a different backbone network. The most remark-

able differences are noted when nodes display activity

patterns that intensively vary in time, without a re-

current behavior. For instance, in the Museum dataset,

visitors spend only a few hours in the museum, which

is a small fraction of the total observation window of

81 days. In contrast with other methods that all yield

equivalent predictions, our approach discovers a small

backbone network, representative of people visiting mu-

seums in small groups that constitute a backbone net-

work. We expect a similar behavior when analyzing

airports, restaurants, hotels, websites, and chat rooms,

where people access alone or in small groups and only

for a limited time.

The size of the backbone network discovered by our

approach is influenced by the time resolution of the

dataset. Working with poorly resolved data will chal-

lenge the feasibility of network inference, which is evi-

dent when dealing with visitors in a museum, and calls

for the careful selection of a time resolution, which

could be a confounding factor in detecting the back-

bone network of a system. This claim is in line with [52],

which focused on random walks over temporal networks.

The main advantages of the proposed evolving activity-

driven methodology are three: (i) its limited computa-

tional time, whereby it allows for fast network discov-

ery even when dealing with long time series and large

networks (simulations presented in this paper are only
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a few minutes long); (ii) its ability to cogently model

temporal activity patterns, which cannot be addressed

by the current state-of-the-art approaches; and (iii) its

consistency with the literature, whereby it yields equiv-

alent predictions to existing methods when dealing with

time-invariant activity patterns.

Our approach can find applications across several

domains of science and engineering, beyond the exem-

plary social networks examined herein. For example, it

could be implemented in the study of functional net-

works in the brain, which primarily relies on simple

thresholding [26], or in the analysis of the World wide

web, power grids, chemical reaction networks, where

topology identification methods [53–55] can benefit from

a statistically-principled approach to discard reducible

links.

However, our approach is not free of limitations. We

detect switches in the individual activities over succes-

sive disjoint intervals by considering the overall sys-

tem evolution, rather than the individual time series.

In principle, we cannot exclude the possibility that in-

dividual activities could vary in time in such a way that

the overall system evolution remains stationary. In this

case, our approach would not be able to detect time

variations in individual activities. In principle, we could

attempt at working with individual time series, but this

would challenge the use of the Bayesian block repre-

sentation [37] that relies on nodes to activate multiple

times – a condition that is not satisfied by the sparse

datasets considered in our study. In addition, the over-

all computational cost would depend also on the size of

the system, thereby hindering implementation for large

networks. At the same time, we acknowledge that our

approach is not applicable to small networks, composed

of only a few tens of nodes, because we conduct the

estimates of the individual activities using a weighted

configuration model that requires large networks [31].

Future research will involve the formulation of algo-

rithms for the optimal selection of the resolution which

are needed for enhancing the performance of our method-

ology and the one proposed in [7]. The evolving activity-

driven model might be further extended through the

detection of individual interval partitions, one for each

node in the network, overcoming the assumptions that

the interval partition is unique and that all of the ac-

tivities switch synchronously. More long-term, fruitful

lines of research should aim at unraveling the intricate

interplay between individual features and the formation

of temporal interaction patterns.

Code availability

Python 2.7 codes are freely available here [56].
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5 Appendix

5.1 Backbone detection methods

Here, we succinctly summarize the temporal fitness model

(TFM) [7], the temporal fitness model with rhythm (TFMrhythm) [7],

and the statistically validated network (SVN) [10].

5.1.1 Temporal fitness model

The TFM considers a temporal network formed by N

nodes evolving over T discrete time steps. All multiple

links occurring within the same time step are removed,

so that the total number of temporal links between node

i and j is bounded by T . First, individual activities are

computed according to

ai =
stsi√

2W
ts
T
. (22)

Then, their values are refined through a maximum like-

lihood approach, which requires the solution of N equa-

tions

N∑

j=1;j 6=i

wts
ij − Ta∗i a∗j
1− a∗i a∗j

= 0, i = 1, . . . , N, (23)

where a∗ = (a∗1, . . . , a
∗
N ) contains the optimal values for

the individual activities. Finally, the p-value αij for the

link generated between node i and j is computed from

the cumulative function of the Binomial distribution as

αij ≡ 1−
wts

ij−1∑

x=0

B
(
x;T, a∗i a

∗
j

)
. (24)

All p-values, one for each link in the network, are com-

pared with a threshold value β, properly corrected by

using a multiple hypotheses correction [42,43], and any

value lower than β adds a link to the backbone network.

For our purposes, we also compute the expected to-

tal number of temporal links in the overall temporal

evolution

E
[
W
]

= T

N∑

i,j=1;i<j

a∗i a
∗
j . (25)

5.1.2 Temporal fitness model with rhythm

The TFMrhythm adds to the TFM T time-varying co-

efficients, one for each time step, ξ = (ξ(1), . . . , ξ(T )).

First, every element in the time-varying vector is man-

ually set to 0.999, with the exception of ξ(1) which is

set equal to one. Individual activities are estimated ac-

cording to Eq. (22). To determine the optimal values

(a∗, ξ∗) in the maximum likelihood sense, we solve the

system of N + T − 1 equations

T∑

t=1

N∑

j=1;j 6=i

Ats
ij(t)− a∗i a∗jξ∗(t)
1− a∗i a∗jξ∗(t)

= 0, i = 1, . . . , N,

N∑

i,j=1;j 6=i

Ats
ij(t)− a∗i a∗jξ∗(t)
1− a∗i a∗jξ∗(t)

= 0, t = 2, . . . , T,

(26)

where Ats
ij(t) is the adjacency matrix at time t estimated

from the time series. The expected number of links is

computed as

E [wij ] =

T∑

t=1

a∗i a
∗
jξ
∗(t). (27)

Finally, the p-value αij for the link generated between

node i and j is computed from the cumulative function

of the Poisson distribution as

αij ≡ 1−
wts

ij−1∑

x=0

P (x; E [wij ]) . (28)

All the p-values, one for each link in the network, are

compared to a threshold value β, properly corrected

by using a multiple hypotheses correction [42,43]. Any

value lower than β leads to a link in the backbone net-

work.

For our purposes, we also compute the expected to-

tal number of temporal links in the overall temporal

evolution

E
[
W
]

=

N∑

i,j=1;i<j

T∑

t=1

a∗i a
∗
jξ
∗(t). (29)

5.1.3 Statistically validated network

The SVN considers a temporal network of N nodes

evolving over an observation time window that can be

either discrete or continuous in time. Temporal links

are aggregated to form a weighted static network. The

p-value αij for the link generated between node i and

j is computed from the cumulative function of the Hy-

pergeometric distribution as

αij ≡ 1−
wts

ij−1∑

x=0

H

(
wij

∣∣∣∣2W
ts
, stsi , s

ts
j

)
. (30)

The p-values are compared with a threshold value β,

properly corrected by using a multiple hypotheses cor-

rection [42, 43], and a link is added to the backbone

network of the p-value is less than β.
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Fig. 7: Accuracy of the EADMI=1 and the TFM in

estimating the total number of temporal links in the

overall time series. A perfect identification should yield

a ratio between E
[
W
]

and W
ts

of one (black solid line).

In these simulations, we use our artificial network where

no backbone is present (δ = λ = 0) and activities

are constant in time (T = 5, 000, I = 1, 〈τ(∆)〉 =

T/I = 5000, amin = [
√
〈τ(∆)〉]−1, and p = 0). Markers

indicates the average of 102 independent simulations,

95% confidence interval is displayed in gray.

5.2 On the similarity among the EADMI=1, SVN, and

TFM

Here, we discuss why these three methods yield similar

results for both synthetic and real datasets. First, we

show that the EADMI=1 is a valid approximation of the

TFM for large networks (hundreds of nodes or more).

Then, we analytically examine the convergence of the

SVN to the EADMI=1.

5.2.1 On the similarity between the TFM and

EADMI=1

We consider a long observation window T , for which

the Binomial distribution in Eq. (24) converges to a

Poisson distribution used in our method in Eq. (12).

While in the EADMI=1 activities are estimated from

the dataset using Eq. (8), in the TFM they are identified

in a maximum likelihood sense [7]

In Fig. 7, we assess the ability of the EADMI=1 and

the TFM to estimate the total number of temporal links.

We compute the expected values of the number of links

for the EADMI=1 as E
[
W
]

=
∑N
i,j=1;i<j Tpij , while we

use Eq. (25) for the TFM. These values are compared

with the total number of temporal links observed in

the time series W
ts

. As expected, the TFM works well

for any network size, due to the use of the maximum

likelihood. Nevertheless, the maximum likelihood ap-

proach becomes computational demanding for networks

of around 1,000 nodes and beyond, thereby becoming

useless for very large networks. On the other hand, the

EADMI=1 shows poor performance for small networks,

while reaching the TFM for networks of 100 nodes. This

improvement in performance of the EADMI=1 is ex-

plained in [31], where it is shown that Eq. (14) is in

excellent agreement with numerical simulations for large

networks.

5.2.2 On the similarity between the SVN and

EADMI=1

When W
ts � 1, the Hypergeometric distribution in

Eq. (30) converges to a Poisson distribution and its p-

value becomes equivalent to the p-value for the EADMI=1

αij = 1−
wts

ij−1∑

x=0

P

(
x;
stsi s

ts
j

2W
ts

)
. (31)

In all the synthetic and real data studied herein W
ts

is

very large, so that Eq. (30) converges to Eq. (31).

5.3 Generation of synthetic temporal networks

To examine the precision and recall of irreducible links,

we generate synthetic networks. The procedure of net-

work generation is given as follows.

1. We consider a temporal network evolving in an ob-

servation window of length T , divided into I differ-

ent intervals. We randomly select without replace-

ment I − 1 time steps in {1, ..., T}, which we sort as

tin(2) . . . tin(I), and we set tin(1) = 1. Each interval

∆ has different length τ(∆), so that, in general, the

average length of the interval is 〈τ(∆)〉 = T/I.

2. The N nodes in the network have a time-varying,

piece-wise constant, individual activity. We extract

activity values from a power law distribution, F (a) ∼
a−2.1, with a ∈ [amin, 1]. The time-varying activity

ai(t) is selected according to the following procedure:

– When ∆ = 1, N activity values, one for each

node in the network, are randomly extracted from

F (a), and held constant within [tin(1), tin(1) +

τ(1)− 1].

– When 2 ≤ ∆ ≤ I activities might be correlated

between two successive intervals, t1 ∈ [tin(∆ −
1), tin(∆−1)+τ(∆−1)−1] and t2 ∈ [tin(∆), tin(∆)+

τ(∆)− 1] according to Eq. (19) in the main text.

3. We generate a temporal network in the observation

window [1, T ]. Each pair of nodes ij within an inter-

val ∆ is connected with probability ai(∆)aj(∆). As

a result, we obtain a sequence of T undirected and

Fig. 7 Accuracy of the EADMI=1 and the TFM in estimat-
ing the total number of temporal links in the overall time
series. A perfect identification should yield a ratio between

E
[
W
]

and W
ts

of one (black solid line). In these simulations,
we use our artificial network where no backbone is present
(δ = λ = 0) and activities are constant in time (T = 5, 000,
I = 1, 〈τ(∆)〉 = T/I = 5000, amin = [

√
〈τ(∆)〉]−1, and p = 0).

Markers indicates the average of 102 independent simulations,
95% confidence interval is displayed in gray.

5.2 On the similarity among the EADMI=1, SVN, and

TFM

Here, we discuss why these three methods yield similar

results for both synthetic and real datasets. First, we

show that the EADMI=1 is a valid approximation of the

TFM for large networks (hundreds of nodes or more).

Then, we analytically examine the convergence of the

SVN to the EADMI=1.

5.2.1 On the similarity between the TFM and

EADMI=1

We consider a long observation window T , for which the

Binomial distribution in Eq. (24) converges to a Poisson

distribution used in our method in Eq. (12). While in

the EADMI=1 activities are estimated from the dataset

using Eq. (8), in the TFM they are identified in a max-

imum likelihood sense [7]

In Fig. 7, we assess the ability of the EADMI=1

and the TFM to estimate the total number of temporal

links. We compute the expected values of the number

of links for the EADMI=1 as E
[
W
]

=
∑N
i,j=1;i<j Tpij ,

while we use Eq. (25) for the TFM. These values are

compared with the total number of temporal links ob-

served in the time series W
ts

. As expected, the TFM

works well for any network size, due to the use of the

maximum likelihood. Nevertheless, the maximum likeli-

hood approach becomes computational demanding for

networks of around 1,000 nodes and beyond, thereby

becoming useless for very large networks. On the other

hand, the EADMI=1 shows poor performance for small

networks, while reaching the TFM for networks of 100

nodes. This improvement in performance of the EADMI=1

is explained in [31], where it is shown that Eq. (14) is

in excellent agreement with numerical simulations for

large networks.

5.2.2 On the similarity between the SVN and

EADMI=1

When W
ts � 1, the Hypergeometric distribution in

Eq. (30) converges to a Poisson distribution and its p-

value becomes equivalent to the p-value for the EADMI=1

αij = 1−
wts

ij−1∑

x=0

P

(
x;
stsi s

ts
j

2W
ts

)
. (31)

In all the synthetic and real data studied herein W
ts

is

very large, so that Eq. (30) converges to Eq. (31).

5.3 Generation of synthetic temporal networks

To examine the precision and recall of irreducible links,

we generate synthetic networks. The procedure of net-

work generation is given as follows.

1. We consider a temporal network evolving in an ob-

servation window of length T , divided into I differ-

ent intervals. We randomly select without replace-

ment I− 1 time steps in {1, ..., T}, which we sort as

tin(2) . . . tin(I), and we set tin(1) = 1. Each interval

∆ has different length τ(∆), so that, in general, the

average length of the interval is 〈τ(∆)〉 = T/I.

2. The N nodes in the network have a time-varying,

piece-wise constant, individual activity. We extract

activity values from a power law distribution, F (a) ∼
a−2.1, with a ∈ [amin, 1]. The time-varying activity

ai(t) is selected according to the following proce-

dure:

– When ∆ = 1, N activity values, one for each

node in the network, are randomly extracted from

F (a), and held constant within [tin(1), tin(1) +

τ(1)− 1].

– When 2 ≤ ∆ ≤ I activities might be correlated

between two successive intervals, t1 ∈ [tin(∆ −
1), tin(∆−1)+τ(∆−1)−1] and t2 ∈ [tin(∆), tin(∆)+

τ(∆)−1] according to Eq. (19) in the main text.

3. We generate a temporal network in the observation

window [1, T ]. Each pair of nodes ij within an in-

terval ∆ is connected with probability ai(∆)aj(∆).

As a result, we obtain a sequence of T undirected
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and unweighted networks, with adjacency matrices

Â(1), . . . , Â(T ). These networks are generated only

as a function of the individual activities.

4. Based on the node pairs that are connected at least

once over T time steps of the observation window,

we define the synthetic backbone. Specifically, we

randomly assign a fraction δ of these node pairs to

the backbone.

5. We construct T new networks A(1), A(2), . . . , A(T )

from Â(1), Â(2), . . . , Â(T ) by accounting for the

synthetic backbone above. First, we set Aij(t) =

Âij(t) for t = 1, . . . T for all the pairs that do not

belong to the backbone. Then for the generic link ij

in the backbone, we initialize Aij(1) = Âij(1) and

we iterate the following steps for t = 2, . . . , T :

– if Âij(t) = 1, we maintain Aij(t) = 1;

– if Âij(t) = 0, we set Aij(t) = 1 with probability

λ and Aij(t) = 0 with probability 1− λ.

The parameter λ measures the preponderance of

links associated with the backbone during the ob-

servation window.

5.4 Insights on the interval estimation

The EADM+R requires that the number of intervals

is known a priori. Nevertheless, when dealing with real

networks, our knowledge, Ie, might differ from the true

value, I. This mismatch might diminish the accuracy of

the backbone inference, as examined below for synthetic

data. We focus on two set of parameters, which repre-

sents two possible scenarios. In the first case, amin =

[
√
〈τ(∆)〉]−1 and λ = 0.025, which correspond to a

“dense” ADNs with an easily detectable backbone. In

the second case, amin = [〈τ(∆)〉]−1 and λ = 0.002,

which represent a “sparse” ADNs with a partially hid-

den backbone.

In Fig. 8 (a) and (c), we show that if the number of

estimated intervals, Ie, is greater or equal to the true

value, I, precision and recall are close to one. On the

contrary, in Fig. 8 (b) and (d), we observe a more dra-

matic scenario, in which increasing Ie hinders the per-

formance of the method, leading to filtering out most

of the links, that belong to the backbone network.
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unweighted networks, with adjacency matrices Â(1),
. . . , Â(T ). These networks are generated only as a
function of the individual activities.

4. Based on the node pairs that are connected at least

once over T time steps of the observation window,
we define the synthetic backbone. Specifically, we
randomly assign a fraction δ of these node pairs to

the backbone.
5. We construct T new networks A(1), A(2), . . . , A(T )

from Â(1), Â(2), . . . , Â(T ) by accounting for the

synthetic backbone above. First, we set Aij(t) =
Âij(t) for t = 1, . . . T for all the pairs that do not
belong to the backbone. Then for the generic link ij
in the backbone, we initialize Aij(1) = Âij(1) and

we iterate the following steps for t = 2, . . . , T :
– if Âij(t) = 1, we maintain Aij(t) = 1;
– if Âij(t) = 0, we set Aij(t) = 1 with probability

λ and Aij(t) = 0 with probability 1− λ.
The parameter λ measures the preponderance of
links associated with the backbone during the obser-

vation window.

5.4 Insights on the interval estimation

The EADM+R requires that the number of intervals

is known a priori. Nevertheless, when dealing with real
networks, our knowledge, Ie, might differ from the
true value, I. This mismatch might diminish the ac-

curacy of the backbone inference, as examined below
for synthetic data. We focus on two set of parameters,
which represents two possible scenarios. In the first case,

amin = [
√
〈τ(∆)〉]−1 and λ = 0.025, which correspond

to a “dense” ADNs with an easily detectable backbone.
In the second case, amin = [〈τ(∆)〉]−1 and λ = 0.002,
which represent a “sparse” ADNs with a partially hidden

backbone.
In Fig. 8 (a) and (c), we show that if the number

of estimated intervals, Ie, is greater or equal to the

true value, I, precision and recall are close to one. On
the contrary, in Fig. 8 (b) and (d), we observe a more
dramatic scenario, in which increasing Ie hinders the

performance of the method, leading to filtering out most
of the links, that belong to the backbone network.
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Fig. 8: Sensitivity analysis of the EADM+R to the
number of estimated intervals, Ie, from Ie = 1 to Ie =

T − 1. In panels (a) and (c), we set amin = [
√
〈τ(∆)〉]−1

and λ = 0.025, to attain a dense ADNs and an easy-to-
discover backbone. On the contrary, in panels (b) and

(d), we set amin = [〈τ(∆)〉]−1 and λ = 0.002, to attain
sparse ADNs and a partially hidden backbone. Other
parameter values are: N = 100, T = 5, 000, I = 20,

〈τ(∆)〉 = T/I = 250, δ = 0.01, and p = 0.4. Markers
indicate the average of 102 independent simulations,
95% confidence interval is displayed in gray.

Fig. 8 Sensitivity analysis of the EADM+R to the number
of estimated intervals, Ie, from Ie = 1 to Ie = T −1. In panels
(a) and (c), we set amin = [

√
〈τ(∆)〉]−1 and λ = 0.025, to

attain a dense ADNs and an easy-to-discover backbone. On
the contrary, in panels (b) and (d), we set amin = [〈τ(∆)〉]−1

and λ = 0.002, to attain sparse ADNs and a partially hidden
backbone. Other parameter values are: N = 100, T = 5, 000,
I = 20, 〈τ(∆)〉 = T/I = 250, δ = 0.01, and p = 0.4. Mark-
ers indicate the average of 102 independent simulations, 95%
confidence interval is displayed in gray.
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5.5 Analysis of all available real datasets

5.5.1 Significant links

We compare the backbone networks from seven real-world datasets inferred by the five methods under consideration

in terms of the number of significant links. The EADM+BB always finds less links than any other methods.
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Fig. 9: Number of significant links as a function of the resolution for all real datasets under consideration. Inferences
not reported correspond to simulations that exceed our time limit of 24 hours.

Fig. 9 Number of significant links as a function of the resolution for all real datasets under consideration. Inferences not reported
correspond to simulations that exceed our time limit of 24 hours.
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5.5.2 Jaccard index

In Fig. 10, we assess differences in the backbone networks detected by the EADM+BB and four methods on seven

real-world datasets, in terms of the Jaccard index. We observe that the EADM+BB finds backbones different from

the EADMI=1, SVN, TFM, and TFMrhythm, which are equivalent.
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Fig. 10: Jaccard index between EADM+BB and all the other methods as a function of the resolution for all datasets
under consideration. Inferences not reported correspond to simulations that exceed our time limit of 24 hours.

Fig. 10 Jaccard index between EADM+BB and all the other methods as a function of the resolution for all datasets under consid-
eration. Inferences not reported correspond to simulations that exceed our time limit of 24 hours.
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5.5.3 Overlap coefficient

Similar to Fig. 10, we examine the overlap coefficient of backbone networks determined by our method and the

other four in Fig. 4, confirming that the EADM+BB tends to detect a subset of the links predicted by other

methods – which are thus prone to false positives.
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Fig. 11: Overlap coefficient between EADM+BB and all the other models as a function of the resolution for all
datasets under consideration. Inferences not reported correspond to simulations that exceed our time limit of 24
hours.

Fig. 11 Overlap coefficient between EADM+BB and all the other models as a function of the resolution for all datasets under
consideration. Inferences not reported correspond to simulations that exceed our time limit of 24 hours.
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5.5.4 Temporal links

In Fig. 12, we display the total number of temporal links estimated in the time series, W
ts

, for all the considered

methods on all the seven real-world datasets. We confirm that the number of links decreases as we increase the

time resolution of the dataset.
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Fig. 12: Total number of temporal links estimated in the time series W ts as a function of the resolution for all datasets
under consideration.

Fig. 12 Total number of temporal links estimated in the time series W ts as a function of the resolution for all datasets under
consideration.
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5.5.5 Relative error

We analyze the accuracy of the methods in describing the overall system evolution. We compare the expected

number of the total temporal links generated in, E
[
W
]
, with W

ts
. All methods are accurate for the datasets

studied herein, with a relative error up to 5%.
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Fig. 13: Relative error between the total number of temporal links, W
ts

, and the number of total temporal links
estimated from the backbone detection algorithms under consideration. The SVN is discarded from this analysis

because it uses W
ts

as an input. Inferences not reported correspond to simulations that exceed our time limit of 24
hours.
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