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Abstract— A coupled Bloch-wave approach is employed to
analyze active photonic-crystal (PhC) waveguides and cavities.
Gain couples the otherwise independent counter-propagating
Bloch modes. This coupling is shown to limit the maximum at-
tainable slow-light enhancement of gain itself and to strongly af-
fect the mode selection in PhC lasers.

Keywords—PhC lasers, Coupled-mode theory, Bloch waves,
Slow-light.

INTRODUCTION

The slow-light (SL) enhancement of gain in photonic-crystal
waveguides allows for the fabrication of shorter devices when
realizing active structures. In particular, PhC lasers based on
line-defect waveguides are ideal candidates for energy effi-
cient light sources in high density PhC integrated circuits
[1,2]. Solving Maxwell equations by a finite-difference-time-
domain (FDTD) technique is a rigorous, but extremely time-
and memory-consuming approach to analyze PhC devices [3].
Furthermore, FDTD simulations are not always useful to shed
light on the physics of the investigated structures. Conversely,
coupled-mode theory has been widely used to investigate the
impact of SL effects in both passive [4,5] and active [6] PhC
waveguides. In particular, the complex optical susceptibility
arising by the interaction of the field with the active medium
is treated in [6] as a weak perturbation of the passive structure,
which induces a coupling between the otherwise independent
counter-propagating Bloch modes. The fundamental limita-
tions to the SL gain-enhancement imposed by the gain itself
have been investigated in [7] by a rigorous, non-perturbative
approach. In this work we use the perturbative approach of [6]
to study an active PhC waveguide; we analyze the implica-
tions of the gain perturbation on the group index and then we
study a PhC laser modelled as a cavity consisting of an active
PhC waveguide and two mirrors. Interestingly, it is shown that
our model predicts, consistently with [7], a reduction of the
maximal group index caused by increasing the gain and it can
be used to understand the impact of the gain-induced coupling
on the selection of PhC laser lasing mode.

I.NUMERICAL MODEL

The forward- (+) and backward-propagating (—) guided
electric field of the passive waveguide in the frequency-do-
main are denoted by Eg 1 (1, w) = €, 1 (T, w)eT#*2(®)Z where
z is the propagation direction and eq.(x,y,z)=
e,+(x,¥,z+ a) are the Bloch waves, with k, propagation
constant and a the PhC lattice constant. The electric field of
the active waveguide is expanded as E = ¥, (z,w)E,, +
Y_(z,w)E,_ , where Y, (z,w) are slowly-varying ampli-
tudes. By neglecting nonlinear effects, two coupled differen-
tial equations for Y (z, ) are derived [6]:

0z

W+zw) _ irey1 (z, 0P, (2, w) + iKy, (2, w)e 22 _(z, w)
S0 e, (7, 0)e PO, (2, 0) + s (2, 0D (2, )

The self- and cross-coupling coefficients induced by the active
material gain go(w) are indicated as kjj.1.21(2, ) =
_%90(00) [ng(w)/ns] ny,11;12;21(Z: w), where ng and Ny
are the slab material refractive index and the passive wave-
guide group index. Confinement factors Iy, 11,12,21(2, w) are
given by
a [;egnileo(r, w)|?F(r)ds

fV Eonlz, ()leo(r, w)|2dV
a fs eonZleg - (r,w) - ) . (r, w)|F(r)ds

fV eong(r)|eq(r, w)|2dv

with Iy 51 = Iy 12; V is the volume of a PhC supercell, S the
transverse plane at position z and n,(r) the background re-
fractive index, whereas F(r) = 1 (= 0) in the slab (holes).
Due to the z-periodicity of e, 4 and F (1), the coupling coef-
ficients are periodic with z. If the single unit cell is discretized
with a sufficiently small space step A,, the coupling coeffi-
cients can be assumed constant within it. By defining ¢, =
PretthzZ Eq. (1) is turned, in each A,, into an initial-value
problem, whose solution in matrix form is

[c+(zo + Az)] _ [TAz,ll TAZ,IZ] [c+(zo)

c-(zo + )] " Ta,21 Tagz2lle_(zp)

ny,ll (z,w) =

ny,12 (Z: w) =

2

with
. (zg)+k, .
Tp 1122 = coshly(z)A,] £ l%smh[y(zo)Az],
Ta,1221 = 122 sinh[y (7,)4,], and

v(2o) = \/KIZ(ZO)KZI(ZO) — [K11(20) + k,]%.

By successive application of Eq. (2), the single unit cell trans-
mission matrix T, is obtained and the transmission matrix of
N cascaded cells is given by TY . From Frobenius theorem, TY
can be written as TY = MAVM ™1, where M contains the ei-
genvectors of T, arranged by columns and A is a diagonal ma-
trix with the eigenvalues of T, on the main diagonal. Multi-
plying by M~ both sides of

c+(Na)] _ o wpg—1 [€+(0)
& (e = M )
the Bloch waves of the active waveguide at input and output
are obtained, i.e. cg(Na) = A" ¢y (0). From here, it is appar-
ent that AV is the evolution matrix in the basis of the Bloch
waves of the active waveguide. If the eigenvalues of T, are
denoted by 1, , = e*®, ¢ = cos~[Tr(T,)/2] is the disper-
sion relation of the active waveguide and ng pr¢ (@, go) =
¢ Re{d0¢p(w, go)/0w} the associated group index, with ¢ vac-
uum light speed. Within this approach, a PhC laser consists
in the cascade of an active PhC waveguide and two mirrors,
which, for simplicity, are modelled as standard reflectors. The
complex round-trip-gain (RTG) of the cavity is computed as
the product, at a given reference plane, of the left and right
field reflectivity. Longitudinal resonant modes are those for
which £RTG is an integer multiple of 2r. For each longitudi-
nal mode, threshold gain is found as the smallest g, value
which ensures |RTG| = 1 [8].
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Fig. 1. (a) Magnitude and (b) phase of Iy ;,, at different frequencies, for
the same line-waveguide of PhC lasers in [2]; inset in (b): unit cell refer-
ence planes. Group index with (c) and without (d) gain-induced coupling.

II. SIMULATION RESULTS

The reference structure is the line-defect waveguide on
which the PhC lasers realized in [2] are based. Dispersion re-
lation and Bloch modes of the passive waveguide are com-
puted by the free software package MIT Photonic-Bands
(MPB) [9]. Fig. la and 1b display magnitude and phase of
Iyy,12(z, ) at different frequencies. Since the z-variation of
2Ty 12(2, @) on a unit cell is approximately linear with a
slope equal to 2m/a, the first-order Fourier component of
K12 (2, w), which synchronously couples E,, ;. and E, _, is pro-
portional to go(w) [ng(a))/ns] < |Tyy12(z, w)| >. Since <
[ey11(2, @) > and < [y 1,(2, w)| > have comparable val-
ues, the magnitude of the cross-coupling coefficients is com-
parable with the self-coupling coefficient. This peculiar char-
acteristic of the active PhC waveguides arises from the 2n
phase shift of the non-negligible z-component of e, ;. along
the propagation direction. Fig. 1c reports the group index
Ng pere Of the active waveguide as a function of frequency at
different gqvalues. At small gain values, the dispersion rela-
tion of the active waveguide is not significantly perturbed, and
the group index diverges as the frequency approaches the
band-edge of the passive waveguide, i.e. k,a/2m = 0.5 with
a frequency f = 189.387 THz. On the contrary, at larger gain
values the group index is reduced and it even starts to decrease
in the close proximity of the band-edge. Remarkably, this be-
haviour is consistent with that reported in [7] and obtained
with a non-perturbative treatment. Furthermore, if the gain-
induced coupling is neglected (i.e., k15,7 = 0), the group in-
dex monotonically diverges with the frequency approaching
the band-edge (Fig.1d). This proves the key role played by
cross-coupling in limiting the maximum attainable SL en-
hancement of gain. With this coupled Bloch-wave approach
we have then modelled the PhC lasers presented in [2]. The
mirrors reflectivity is set to 72 = 0.98 [10] and g, is assumed
to be frequency-independent. The inset of Fig. 2b displays a
scheme of principle of the cavity, with the field reflectivity
from the left facet towards the cavity denoted by 7, . Fig. 2a
and 2b focus on a cavity with length L = 5a, showing magni-
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Fig. 2. Magnitude of req g, at different gg, for L = 5a; black line is level
1/r. (b) Phase of reqg; inset: scheme of principle of the cavity (c) Mode

frequencies versus cavity length. M, is the mode at the band-edge. (d)
Threshold gain for the onset of lasing of the various modes.

tude and phase of 7,4 z versus frequency at increasing gqval-
ues. The threshold condition corresponds to the level 1/r, cor-
responding to the horizontal line in Fig. 2a. The red spots track
the longitudinal resonant mode M;, with frequency f =
191 THz, as it approaches the lasing onset at g, = 16.2 cm™?.
The mode located exactly at the band-edge (M,, shown in Fig.
2b) requires higher gain for achieving threshold, because the
maximum attainable |7, z| around the band-edge is limited
by the gain induced cross-coupling. This is a consequence of
the fact that the field backscattered by the waveguide and the
field backscattered by the right mirror facet are out of phase at
the band-edge. Fig. 2c,d report, at each cavity length, all the
longitudinal modes and corresponding threshold gain. The fre-
quency shift of mode M; towards the SL region observed by
increasing cavity length (Fig. 2c) well reproduces the experi-
mental [2] and numerical [3] trends. Conversely, without the
gain-induced distributed feedback, the group index and the ef-
fective gain resulting from SL enhancement would monoton-
ically increase towards the band-edge; consequently, the cav-
ity would behave as a SL enhanced FP laser and, inde-
pendently of the cavity length, the mode My would be the sole
lasing one.

III. CONCLUSIONS

In conclusion, the gain-induced coupling between counter-
propagating Bloch modes has been found to be responsible for
the degradation of the SL enhancement of gain discussed in
[7]. Moreover, this coupling strongly affects the lasing mode
threshold gain properties of PhC lasers.
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