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A Simple Coupled-Bloch-Mode Approach To Study
Active Photonic Crystal Waveguides and Lasers

Marco Saldutti, Paolo Bardella, Jesper Mørk and Mariangela Gioannini

Abstract—By applying a coupled-Bloch-mode approach, we
have derived a simple expression for the transmission properties
of photonic crystal (PhC) line-defect waveguides with a complex
refractive index perturbation. We have provided physical insights
on the coupling mechanism by analyzing the frequency depen-
dence and relative strength of the coupling coefficients. We have
shown the impact of the perturbation on the waveguide dispersion
relation and how the gain-induced distributed feedback limits the
maximum attainable slow-light enhancement of the gain itself.
We have then applied our approach to analyze the threshold
behaviour of various PhC laser cavities and proved the significant
impact of coherent distributed feedback effects in these lasers.
Importantly, our approach also reveals that a structure simply
consisting of an active region with zero back reflections from
the passive output waveguides can achieve lasing oscillation with
reasonable threshold gain.

Index Terms—Photonic crystal (PhC), photonic crystal waveg-
uides and lasers, coupled-mode theory, Bloch modes, photonic
integrated circuits.

I. INTRODUCTION

PHOTONIC-crystal (PhC) waveguides are made by cre-
ating a line-defect in a PhC slab. The defect introduces

guided modes in the photonic band-gap of the crystal and
allows for an efficient propagation of optical signals. In
particular, a major advantage of PhC line-defect waveguides
(LDWGs), as compared to conventional waveguides, is the
possibility to exploit slow-light (SL) propagation [1]. In the SL
region of the waveguide dispersion relation, the group velocity
is greatly reduced and ideally tends to zero at the band edge.
As a consequence, in the SL region, a Bloch wave propagating
within an active PhC waveguide experiences an effective gain
per unit length which is greatly enhanced with respect to the
modal gain coefficient of a conventional waveguide [2]. This
gain-enhancement allows for the realization of shorter devices
and makes PhC waveguides ideal candidates for high-density
photonic integrated circuits. PhC lasers have attracted large
research as efficient light-sources in on-chip and chip-to-chip
interconnections. They allow for scaling the active volume
while maintaining a high cavity Q-factor, thus exhibiting low
threshold current and operating energy [3]. Different types
of PhC lasers exist. A typical PhC laser consists of a so
called LN cavity [4], that is formed by only omitting N
holes in a PhC slab. Initially, due to heat accumulating in the
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active region, room-temperature continuous-wave (RT-CW)
operation was difficult to achieve in this type of PhC laser.
In the last years, significant progress has been made and RT-
CW operation has been demonstrated under optical pumping
by using ultra-small cavities with embedded quantum dots
(QDs) [5]. A major breakthrough, addressing the issues of
high-speed direct modulation and thermal stability, has been
the introduction of the so called lambda-scale-embedded active
region PhC laser (LEAP laser), working under electrical [6]
pumping conditions. In this laser, the cavity is made of a buried
heterostructure (BH) embedded in a PhC LDWG. Furthermore,
differently from PhC lasers based on LN cavities [7], [8], in
LEAP lasers light can be emitted into in-plane waveguides.
The output waveguide can be either shifted with respect to the
active region [9], [10] or placed in-line with it [11]. Therefore,
LEAP lasers are promising sources for photonic integrated
circuits [3].

Rigorous approaches to analyze PhC devices, such as FDTD
[4], [12] or RCWA [13], [14], [15], are time- and memory-
consuming and cannot always provide an intuitive under-
standing of the physical phenomena into play. The aim of
this paper is to present an alternative and simple approach
for analyzing active PhC LDWGs and lasers based on this
type of waveguides. Our approach is based on coupled-mode
theory (CMT) [16], [17], which has proved to be an effective
tool to study and design lasers with periodic gain and/or
refractive index perturbation, such as edge-emitting DFB lasers
[18]. More recently, CMT has also been used to analyze
both passive [19], [20] and active [21] PhC waveguides. By
following a simple CMT approach, we show that a weak
perturbation of the gain and/or refractive index of a PhC
waveguide causes a strong coupling between the forward-
and backward-propagating Bloch modes of the unperturbed
waveguide, with coupling coefficients strongly increasing as
we move towards the band edge. We start from the formu-
lation already presented in [21], where the Bloch modes of
a passive, reference waveguide were used as a basis for the
field expansion in a finite-length, active section; the presence
of gain in this section was treated as a weak perturbation to the
passive structure, coupling the otherwise independent, counter-
propagating Bloch modes. However, the system of coupled
propagation equations was solved numerically in [21], thus
not providing important insight on the coupling mechanism. In
this work, we push further the formulation of [21] to generally
take into account both a real and imaginary refractive index
perturbation. Avoiding the numerical solution, we derive a
simple, closed-form expression for the unit cell transmission
matrix of an active PhC waveguide. Therefore, consistently
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with the rigorous, non-perturbative approach of [22], we show
that, in the presence of gain, the group index does not diverge
at the band edge and that the maximum attainable SL gain-
enhancement is limited by the gain itself.

In this work, our coupled-Bloch-mode approach is then
applied to analyze the threshold condition of various types
of PhC lasers. As a first example, we analyze a laser cavity
made up of different sections of both passive and active
PhC LDWGs. This laser is conceptually similar to the one
characterized in [11]. Consistenly with [11], we show that
three different operating regimes can be identified, which
can be explained on the basis of the interplay between the
distributed feedback in the active region and the passive
mirrors. This reveals the great impact of coherent distributed
feedback effects in these PhC lasers. As a second example,
we analyze a typical PhC laser based on a LN cavity, such
as that of [8]. In this case, the laser cavity is an active PhC
LDWG bounded on either side by classical PhC mirrors. As a
last example, we examine a structure simply consisting of an
active section, with zero back reflections from the interfaces
with the passive output waveguides. Interestingly, in this type
of structure the distributed feedback, caused entirely by the
gain perturbation in the active region, is enough to allow lasing
with reasonable threshold gain.

The paper is organized as follows: in Section II, we present
our model and discuss the peculiar characteristics of the self-
and cross-coupling coefficients of an active PhC LDWG. In
Section III, we present the numerical results applied to both
active PhC waveguides and lasers. In Section IV, we finally
draw the conclusions.

II. NUMERICAL MODEL

Fig. 1: Reference PhC waveguide supercell (a). Cross section
of the reference waveguide supercell at either the input or
output plane. The black lines represent QWs or QDs layers (b).
Finite-length, perturbed section in red and reference waveguide
in grey (c).

We consider an active, PhC LDWG of finite length bounded
on either side by semi-infinite, passive PhC waveguides,
as illustrated in Fig. 1(c). The passive sections have the
same lattice constant and membrane thickness as the active
section. In this context, for membrane we simply mean a

Fig. 2: Projected band structure of the reference PhC
waveguide TE-like modes. The membrane refractive index is
ns = 3.171, the lattice constant a = 438nm and the thickness
h = 250nm; the other parameters are those of the PhC LDWG
on which the lasers in [8] are based. The membrane is assumed
to be suspended in air. The fundamental guided mode is even
with respect to x (red, solid line), the other mode is odd
(red, dashed line). The blue lines represent a subset of the
continuum of photonic crystal slab modes found by MPB.

thin layer of semiconductor, suspended in a low refractive
index medium and periodically patterned with holes [23], as
shown in cross-section in Fig. 1(b). The material gain g in
the active section may be provided by layers of quantum
wells (QWs) or QDs embedded within the PhC membrane,
shown as black lines in Fig. 1(b). For simplicity, the entire
membrane is assumed to contain active material, as in the
case of optically pumped waveguides [2] and lasers based
on LN cavities [7], [8], which lack a structure for lateral
carrier confinement. However, we note that the coupled-
Bloch-mode approach is also applicable to structures with a
buried active region, such as LEAP lasers. We consider the
gain of the active section and the variation of its refractive
index with respect to that of the passive sections as a weak
perturbation. The forward- (+) and backward-propagating (-)
Bloch modes of the reference waveguide in the frequency-
domain are denoted by E0,±(r,ω) = e0,±(r,ω)e±ikz(ω)z, where
e0,±(x,y,z,ω) = e0,±(x,y,z+ a,ω), with kz being the Bloch
wave number along the length of the waveguide (z) and a
the PhC lattice constant. In the active section, the complex
refractive index variation compared to the reference waveg-
uide is ∆ns + i∆ni, where ∆ns is the variation of refractive
index and ∆ni reflects the modal gain coefficient g0, with
∆ni = −(c/ω)g0/2. Here, g0 is given by Γyg, where Γy is
the optical confinement factor of the considered electric field
guided mode along the y-direction and within the QWs or QDs
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(a) (b) (c)

Fig. 3: Spatial dependence of Γ11 and Γ12 of the reference waveguide at various kz values. The membrane refractive index is
ns = 3.171; the other parameters are those of the PhC LDWG on which the lasers in [8] are based. (3a) Γ11. (3b) Magnitude
of Γ12. (3c) Phase of Γ12.

layers. This polarization perturbation couples to each other in
the active waveguide the otherwise independent Bloch modes
of the reference waveguide. Therefore, in the limit of a weak
perturbation, the electric field in the active section can be
expanded in the basis of the Bloch modes of the reference
waveguide, with slowly-varying amplitudes ψ±(z,ω) caused
by the coupling. The electric field in the active section thus
reads as E(r,ω) = ψ+(z,ω)E0,+(r,ω)+ψ−(z,ω)E0,−(r,ω).
At a given ω , by neglecting nonlinear effects, two coupled
differential equations in ψ± are derived [21]:

∂zψ+(z) = iκ11(z)ψ+(z)+ iκ12(z)e−2ikzz
ψ−(z)

−∂zψ−(z) = iκ21(z)e+2ikzz
ψ+(z)+ iκ11(z)ψ−(z)

(1)

The self- and cross-coupling coefficients
are written as κ11;12;21(z,ω) ' [∆ns(ω) +
i∆ni(ω)](ω/c)[ng,0(ω)/ns]Γ11;12;21(z,ω), where ng,0 and
ns are the group index and the membrane material refractive
index of the reference waveguide. Γ11;12;21(z,ω) are given by

Γ11(z,ω) =
a
∫

S ε0n2
s |e0(r,ω)|2F(r)dS∫

V
[
ε0n2

b(r)|e0(r,ω)|2
]

dV

Γ12(z,ω) =
a
∫

S ε0n2
s

[
e0,−(r,ω) · e∗0,+(r,ω)

]
F(r)dS∫

V
[
ε0n2

b(r)|e0(r,ω)|2
]

dV

(2)

with Γ21 = Γ∗12. Here, V is the volume of the supercell
(see Fig. 1(a)), S the transverse section at position z and
nb(r) = ns(= nholes) in the membrane (holes) is the reference
waveguide background refractive index. The spatial distribu-
tion of the complex perturbation is taken into account by
F(r), which is equal to 1 (0) in the membrane (holes) of
the active section. Γ11 is the ratio between the electric field
energy in the gain region of a supercell and that stored in
the whole supercell, by assuming the modal gain g0 to be
uniform through the semiconductor slab. We note that the self-
coupling coefficient is caused by the fact that the modes used
as a basis for the electric field see, in the perturbed waveguide,
an average complex refractive index profile which is different
from that of the reference waveguide where the modes are
defined. Due to the z−periodicity of e0,± and F(r), Γ11
and Γ12 and, therefore, the coupling coefficients are periodic

Fig. 4: Magnitude of the Fourier components of the self-
coupling κ11(z) (a) and cross-coupling coefficient κ12(z) (b)
at various kz values.

with z. As an example, we consider a reference waveguide
with refractive index ns = 3.171; the other parameters are
those of the PhC waveguide on which the lasers in [8] are
based, with a = 438nm, nholes = 1 and membrane thickness
h = 250nm. The membrane is assumed to be suspended in
air, consistently, for instance, with [7], [8] or [9], [10], which
investigate air-bridge structures. Band structure and TE-like
Bloch modes of the reference waveguide are computed by
the plane wave eigensolver MIT Photonic-Bands (MPB) [24]
(Fig. 2). The blue lines represent a subset of the continuum
of photonic crystal slab modes found by MPB [25]. These
modes are confined to the slab along the y-direction, but are
delocalized in the x- and z-direction. We apply the coupled-
Bloch-mode approach to the fundamental guided mode (red,
solid line), which is confined both along the x- and y-
direction. The magnitude and phase of Γ11 and Γ12 over a
unit cell are displayed in Fig. 3 at various kz values. Given
the spatial distribution of the perturbation (that is F(r)), they
only depend on the reference waveguide geometry and Bloch



4

modes and not on the magnitude of the perturbation. For
uniformly pumped membranes, Γ11 and Γ12 are intrinsic
parameters of the reference waveguide and they determine
how strong the cross-coupling is with respect to self-coupling.
The coupling coefficients are indeed proportional to Γ11 and
Γ12 through ng,0 and the complex refractive index perturbation
. Therefore, they can be expanded in a Fourier series as
κ11;12(z,ω) = ∑q κ11,q;12,q(ω)exp(+iq2πz/a). Since the phase
of Γ12 is approximately linear with z with a slope equal to
2π/a, κ12,q=1 is proportional to 〈|κ12(z)|〉, which is compa-
rable with κ11,q=0. This is illustrated in Fig. 4, showing the
Fourier components of κ11(z) and κ12(z) in arbitrary units
at various kz values. Interestingly, we find that the complex
refractive index perturbation not only produces a self-coupling
coefficient proportional to the average of the perturbation
(i.e. the average of Γ11(z) in Fig. 3(a)), but also a strong
cross-coupling, whose magnitude is close to that of the self-
coupling. This strong cross-coupling is possible thanks to the
linear phase of Γ12(z); if this linear phase component were not
present, the cross-coupling would be negligible. By analyzing
the contribution of the various field components (x̂, ŷ and ẑ
component) to Γ12(z), we have found that the linear phase
variation is caused by a significant ẑ component of the TE-
like guided mode, which is typically negligible in standard
waveguides. Here the non-negligible ẑ component is due to
the strong lateral ( x−direction) confinement obtained by the
PhC.

Having now more insight into the main properties of the
coupling coefficients, we derive an analytical expression for
the transmission matrix describing the field propagation over
a unit cell. As illustrated in Fig. 4, all harmonics in the
self-coupling coefficient, other than q = 0, are negligible;
similarly, the harmonic with q = 1(=−1) is the dominant one
in the cross-coupling coefficient κ12 (κ21). This is true over a
wide frequency range and especially close to the band edge.
Therefore, by only retaining the dominant harmonics, Eqs. (1)
are turned into

∂zψ+ ' iκ11,q=0(ω)ψ++ iκ12,q=1(ω)e+2iδ (ω)z
ψ−

−∂zψ− ' iκ21,q=−1(ω)e−2iδ (ω)z
ψ++ iκ11,q=0(ω)ψ−

(3)

where δ (ω) = π/a− kz(ω) is the detuning from the band
edge. By defining b±(z,ω) = ψ±(z,ω)exp{∓iδ (ω)z}, the
system of Eqs. (3) is turned into a pair of partial differ-
ential equations with z-independent coefficients. This allows
to analytically solve it over a unit cell as an initial value
problem. That is, b±(z0 + a,ω) are computed by assuming
b±(z0,ω) to be known, with the input coordinate z0 of
the unit cell conveniently chosen to be zero. Therefore, the
unit cell transmission matrix in terms of b± is obtained.
However, we need the transmission matrix for c±(z,ω),
with c±(z,ω) = ψ±(z,ω)exp{±ikz(ω)z}. Since b±(z,ω) =
c±(z,ω)exp{∓i(π/a)z}, the unit cell transmission matrix
in terms of c± is obtained through the change of vari-
ables b±(z0+a,ω) = c±(z0+a,ω)exp{∓iπ} and b±(z0,ω) =
c±(z0,ω). Therefore, , we can relate c± at the input (N− 1)

and output (N) of the generic Nth cell by[
c+N (ω)

c−N (ω)

]
= Ta(ω)

[
c+N−1(ω)

c−N−1(ω)

]
(4)

where Ta is the unit cell transmission matrix in terms of c± .
The elements of Ta are given by

Ta,11;a,22 =−cosh(γa)∓ i
(

δ̃/γ

)
sinh(γa)

Ta,12;a,21 =∓i
(
κ12,q=1;21,q=−1/γ

)
sinh(γa)

(5)

with δ̃ (ω) = κ11,q=0(ω) − δ (ω) and γ(ω) =√
κ12,q=1(ω)κ21,q=−1(ω)− δ̃ 2(ω). This approach

allows to directly relate the eigenvalues of Ta
to the coupling coefficients and the detuning. In
fact, the eigenvalues λ1,2 are readily obtained as
λ1,2 = exp{±Re{γa}}exp{±i[Im{γa} + π]}. From here,
we define ±geff = ±2Re{γ} as the effective gain per unit
length, representing the gain experienced by the forward (+)
and backward (−) Bloch modes of the active section while
propagating in a unit cell. Similarly, ±βeffa =±[Im{γa}+π]
is the phase shift per cell of these Bloch modes. From this
phase shift, we can then calculate the group index of the
Bloch modes of the active waveguide as ng(ω) = c dβeff/dω .
By applying Frobenius theorem [26], the transmission matrix
of an active waveguide of N unit cells is computed as

TN
a = Mλa

NM−1 (6)

where M and λa are given by

M =

[
u11 u12

u21 u22

]
, λa =

[
λ1 0
0 λ2

]
(7)

with u1 = [u11 u21]
T and u2 = [u12 u22]

T being the eigen-
vectors of Ta and T denoting the transpose operator. As well as
being numerically efficient, this approach for computing TN

a
allows for a useful physical interpretation: λa

N can be seen
as the transmission matrix describing the propagation of the
Bloch modes of the active section over the N unit cells. M−1

and M can be interpreted as the transmission matrices of the
interfaces between the active section and, respectively, the left
and right passive waveguides; they physically account for the
mismatch between the Bloch modes of the active and passive
sections. By applying the relationships between a transmission
and a scattering matrix [27], the transmission matrix TN

a can be
turned into the corresponding scattering matrix. The scattering
parameters are given by

S11 =

(
λ N

1 −λ N
2

)
Ta,21(

λ N
1 −λ N

2

)
Ta,11 +

(
λ

N+1
2 −λ

N+1
1

)
S12;21 =

(λ2−λ1)(
λ N

1 −λ N
2

)
Ta,11 +

(
λ

N+1
2 −λ

N+1
1

)
S22 =

(
λ N

2 −λ N
1

)
Ta,12(

λ N
1 −λ N

2

)
Ta,11 +

(
λ

N+1
2 −λ

N+1
1

)
(8)

As outlined in [21], the coupled-Bloch-mode approach
breaks down at large values of g0. Specifically, the larger ng,0
becomes, the smaller is the value of the gain coefficient at
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Fig. 5: Magnitude of self- (κ11,q=0) and cross-coupling coef-
ficient (κ12,q=1) for g0 = 0 (blue) and g0 = 50cm−1 (red). In
both cases, ∆ns =−0.001.

which the model starts to fail. As a further limitation, here
we also point out that the model is actually not applicable
at the band edge of the reference waveguide, independently
of the value of g0. This is because the group velocity of the
Bloch modes used as a basis for the field expansion is ideally
equal to zero at the band edge of the reference waveguide.
These considerations imply that, in principle, we could not
analyze active PhC waveguides in the frequency range close
to the critical point kz = π/a. However, this limitation can
be overcome with the following trick: to analyze an active
PhC waveguide including the frequency range of the band
edge and some frequencies in the stop-band, we start from a
reference waveguide with index ns slightly larger than that of
the waveguide to be studied. The waveguide of interest is then
seen as having a real refractive index perturbation ∆ns < 0 with
respect to the reference one; therefore, its dispersion relation
is shifted to higher frequencies with respect to the band edge
of reference waveguide, where the model is not applicable.
This approach will be applied in section IIIA.

III. SIMULATION RESULTS

A. Line-defect active waveguide

Fig. 5 shows the magnitude of the self- (κ11,q=0) and
cross- coupling coefficient (κ12,q=1) for g0 = 0 (blue) and
g0 = 50cm−1 (red). In both cases, ∆ns =−0.001. This figure
proves that the cross-coupling coefficient is always comparable
to the self-coupling coefficient. This is consistent with results
also shown in [20]. However, as compared to [20], we have
clarified here the physical origin of this peculiar behaviour.
We also observe that the coupling coefficients depend on the
intensity of the perturbation, as expected, but also on frequency
and they significantly increase as the frequency approaches
the band edge as consequence of the SL effect. Therefore,
Bloch modes at smaller frequency and/or with higher gain
of the active section experience stronger distributed feedback
as compared to higher frequency Bloch modes and/or lower
active section gain.

Fig. 6: Dispersion curve computed by MPB for ns = 3.171
(black) and ns = 3.170 (pink). Phase shift per cell of the
Bloch modes of the perturbed waveguide with (light-blue,
dotted) and without (light-blue, solid) cross-coupling; the
reference waveguide has ns = 3.171 and the real refractive
index perturbation is ∆ns = −0.001, with g0 = 0. The dark-
blue, dotted curve is for ∆ns =−0.002, g0 = 0.

Fig. 7: Phase shift per cell of the Bloch modes of the active
waveguide (a) and corresponding group index (b) at various
gain values. The reference waveguide has ns = 3.171 and the
real refractive index perturbation is ∆ns =−0.001.

In this section, we analyze how a generally complex re-
fractive index perturbation impacts the dispersion relation of
a PhC waveguide. To validate our model, we first study the
case of a purely real refractive index perturbation, because the
results obtained by our approach can be compared with MPB
simulations. We consider a reference passive waveguide with
ns = 3.171 and we report in black in Fig. 6 the corresponding
dispersion relation computed by MPB. We then consider a
small, real refractive index perturbation ∆ns < 0 and we
compare the dispersion relation calculated with our model
(i.e. βeff(ω)a) with that calculated by MPB for a passive
waveguide with refractive index ns + ∆ns. As ns decreases,
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Fig. 8: Effective gain as a function of frequency at various
gain values (a). Gain enhancement factor at f ' 189.388THz
(b). The reference waveguide has ns = 3.171 and the real
refractive index perturbation is ∆ns =−0.001.

the dispersion curve shifts to higher frequencies, meaning that
the Bloch modes become evanescent at lower frequencies.
The formation of this stopband for Bloch modes is correctly
reproduced by our approach: the light-blue, dotted curve in
Fig. 6 is the dispersion relation calculated by our approach for
∆ns =−0.001 and it perfectly overlaps with that obtained by
MBP for ns = 3.170. If the contribution of the cross-coupling
coefficients in Eqs. (3) is neglected, we find the dispersion
relation shown by the light-blue, solid curve in Fig. 6; in
this case, the Bloch modes of the perturbed waveguide are
not evanescent in the stop-band and the dispersion relation
disagrees with the MPB prediction. These results validate the
correctness of our approach and emphasize the role of the
cross-coupling terms. Furthermore, the possibility to analyze
the propagation of the Bloch-modes in a portion of the stop-
band of the perturbed, passive waveguide will be exploited in
the next section to study laser configurations similar to the
LEAP lasers of [6], [28].

As a second example, we consider the impact of a gain per-
turbation, assuming now ∆ns =−0.001 and g0 > 0. Fig. 7(a)
shows how the dispersion relation of the Bloch modes of
the active waveguide is modified by the gain perturbation
and Fig. 7(b) reports the corresponding group index at var-
ious gain values. For g0 = 0, the group index diverges at
f ' 189.388THz, because this frequency corresponds to the
band edge of the perturbed waveguide. At lower frequencies,
the Bloch modes are evanescent and the group index is zero,
because evanescent waves do not carry any active power.
As g0 increases, the group index is gradually reduced in
the passband, thus limiting the SL effect; on the contrary, it
gradually increases in the stopband, where βeff is now different
from zero. This is consistent with results reported in [22],
which were obtained through a non-perturbative approach. The
corresponding geff versus frequency is shown in Fig. 8(a) at
various values of g0; we also report in Fig. 8(b) the gain
enhancement factor geff/g0 at f ' 189.388THz obtained by

Fig. 9: Laser cavity made up of three sections, perturbed
in refractive index (passive mirrors) and gain (active section)
with respect to a reference, passive waveguide with ns = 3.171.
The section to the left of the active region (broad-band mirror)
is passive, with ∆ns = −0.002 and length fixed to L = 30a;
the active section has ∆ns = −0.001, g0 > 0 and L = 10a.
The section to the right of the active region is also passive
and acts as a buffer mirror, with ∆ns = −0.001 (Type A),
∆ns = −0.0005 (Type B) or ∆ns = −0.002 (Type C) and
variable length Lbuffer. The output waveguide coincides with
the reference waveguide. The position of the reference plane
to compute the complex loop-gain is denoted by zref.

our approach. Since cross-coupling is not negligible, the gain-
induced distributed feedback becomes more and more impor-
tant as the gain increases, thus causing the decrease of the
group index; as a consequence, the gain enhancement factor,
which is based on the SL effect, is reduced by increasing the
pumping of the active region. This result is consistent with [22]
and confirms that a fundamental limitation to the achievable
SL enhancement of the gain is imposed by the gain itself.

B. PhC Lasers

In this section, we apply the coupled-Bloch-mode approach
to model the threshold characteristics of various types of PhC
laser cavities. The threshold condition is found by calculating
the complex loop-gain (LG) of the cavity.

As a first example, we analyze the cavity shown in Fig. 9.
The cavity is made up of three sections, perturbed in refractive
index (passive mirrors) and gain (active section) with respect
to a reference, passive waveguide with ns = 3.171. Referring
to Fig. 9, the section to the left of the active region (rear broad-
band mirror) is passive, with ∆ns =−0.002 and length fixed to
L = 30a; the active section has ∆ns =−0.001, g0 > 0 and L =
10a. The section to the right of the active region (front mirror)
is also passive and acts as a buffer mirror, coupling the active
section with the reference, output waveguide. Depending on
the refractive index perturbation of this buffer region, the band
edge of its dispersion relation shifts with respect to that of
the active region; on the basis of the buffer refractive index
perturbation, we have identified three different types of buffer,
thus providing different back reflections to the active region.
These will be denoted as Type A (moderate back reflection),
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Fig. 10: Broad-band mirror reflectivity; ∆ns = −0.002 and
L = 30a (green). Buffer mirror reflectivity for Lbuffer = 15a
and ∆ns = −0.002 (type C, black), ∆ns = −0.001 (type A,
red) and ∆ns = −0.0005 (type B, blue). The bullets indicate
the position of the lasing mode, in the three different operating
regimes, both on the broad-band and buffer mirror reflection
spectrum.

Type B (low back reflection) and Type C (high back reflection).
These laser cavities are conceptually similar to those in [11],
where the relative shift of the dispersion relation of the passive
sections with respect to the active section was obtained by
changing the width of the corresponding waveguides [29]. For
this laser cavity, the LG is computed as the product between
the left (req,L) and right (req,R) field reflectivity at the interface
between the active section and the rear mirror (see Fig. 9).
Specifically, req,L is readily obtained by Eqs. (8) as the S22
parameter of the broad-band mirror; req,R corresponds to the
field reflectivity resulting from the cascade of the active section
and buffer mirror scattering matrices, i.e.

req,R = S11,active + req,2

req,2 =
S12,activeS11,bufferS21,active

1−S11,bufferS22,active

(9)

with Si j,buffer and Si j,active denoting the buffer and active section
scattering parameters computed by Eqs. (8). The longitudinal
resonant modes are those satisfying ∠LG= 2mπ; the threshold
gain g0,th is the smallest g0 value ensuring |LG| = 1 at the
frequency of the longitudinal modes. . Fig. 10 shows the
reflectivity of the broad-band mirror (green) and that of the
buffer mirror in the three different operating conditions: Type
A (red), Type B (blue) and Type C (black). In all three
cases, the buffer length is fixed to Lbuffer = 15a. The bullets
denote the position of the lasing mode (calculated in the
following) in the three cases, with respect to both the broad-
band and buffer mirror reflection spectrum. In Type C (black),
the buffer refractive index perturbation coincides with that
of the broad-band mirror. Therefore, at the lasing frequency,
the reflectivity of both mirrors is high (because the lasing
mode lies in the stop-band of the buffer mirror) and the
laser threshold behaviour is mainly dominated by the mirrors

Fig. 11: Threshold gain (solid line) and lasing frequency
(dashed line) as a function of the buffer mirror length (a)
for type A (red), B (blue) and C (black). Output coupling
efficiency (b). The active section has ∆ns = −0.001 and
Lactive = 10a.

Fig. 12: Scattering terms of Eq. (9) for Type B configuration
of Fig. 9 evaluated at the lasing frequency and threshold gain.
Magnitude of S11,active (blue, solid line), req,2 (blue, dashed
line) and S11,buffer (blue, dotted line); threshold gain (pink line)
(a). Phase of S11,active (blue, solid line) and req,2 (blue, dashed
line) (b).

feedback. In Type A, the buffer refractive index perturbation
is ∆ns =−0.001; the lasing frequency is slightly shifted with
respect to Type C, but the buffer reflectivity is smaller. In Type
B, the buffer refractive index perturbation is ∆ns =−0.0005;
as a result, the band edge of the buffer dispersion relation is
in the stopband of the active section. The lasing frequency is
practically the same as for type A, but the buffer reflectivity is
even smaller. In Type A and B, we can expect the interplay of
the feedback in both the active section and the mirrors to play
a role in determining the laser threshold. Fig. 11(a) shows
threshold gain (solid curve) and lasing frequency (dashed
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Fig. 13: Type B buffer mirror reflectivity for different buffer
lengths; the bullets denote, for each length, the lasing mode
position.

curve); Fig. 11(b) reports the output coupling efficiency ηout,
calculated as power transmission through the buffer, as a
function of the buffer mirror length. Type C configuration has
the smallest threshold gain, which monotonically decreases
with increasing buffer length. In this case, the lasing mode
is in the stop-band of the buffer mirror, whose reflectivity
rapidly increases with increasing number of unit cells; as
a result, the power transmission through the buffer rapidly
deteriorates with increasing buffer length. This situation is
similar to the operating condition of typical LEAP lasers
[9], [10]. In Type A configuration, the distributed feedback
in the active section provides a back reflection comparable
with that of the buffer mirror. In this case, the threshold gain
is larger than in type C, but the output coupling efficiency
is high and does not significantly deteriorate with increasing
buffer length. In Type B configuration, the lasing mode lies
outside the stop-band of the buffer mirror; consequently, this
configuration exhibits the largest threshold gain, but also the
largest ηout. In this case, the buffer mirror reflectivity is very
low and lasing is mainly possible thanks to the active section
distributed feedback. Nevertheless, the buffer also slightly
contributes to the laser threshold behaviour. The interplay
between buffer back reflection and distributed feedback in the
active region can be understood by analyzing, with reference
to Fig. 9, the expression for req,R given by Eqs. (9). . Fig. 12
shows in blue for Type B the magnitude (a) and phase (b)
of the scattering terms, evaluated at the lasing frequency and
threshold gain, which contribute to req,R; it also reports the
corresponding threshold gain (pink line, (a)). Fig. 13 shows the
buffer reflectivity for various buffer lengths; the bullets denote
the position of the corresponding lasing mode. For Lbuffer = 5a,
the threshold gain is g0,th ' 70cm−1 and the lasing frequency
f ' 189.434THz; at Lbuffer = 21a, the lasing frequency is
practically the same, but the threshold gain is much larger.
This is because the mode is close to the zero of the buffer
reflection spectrum for Lbuffer = 21a; as a result, although the
LG phase condition is satisfied at the same frequency for these

Fig. 14: Typical PhC laser based on a LN cavity (a). PhC laser
cavity consisting of an active section with zero back reflections
for Bloch modes at the interfaces with the passive output
waveguides (b). In both cases, the reference waveguide has
ns = 3.171 and the active section ∆ns =−0.001. The position
of the reference plane to compute the complex loop-gain is
denoted by zref.

two different buffer lengths, |req,R| is smaller in the second
case, thus requiring a larger gain for achieving threshold. For
Lbuffer = 28a, the lasing frequency is the same again, but the
threshold gain practically coincides with that of the structure
with Lbuffer = 5a. This is because the mode is now close to
the top of the buffer reflection spectrum side-lobe, rather than
to the zero (see Fig. 13); furthermore, as for Lbuffer = 5a,
S11,active and req,2 are nearly in-phase (see Fig. 12). For the case
of Lbuffer = 17a, although |req,2| is maximum, the threshold
gain is not minimum, but rather close to its maximum value.
The reason is that S11,active and req,2 are now nearly out-of-
phase. We note that S11,active and req,2 are also nearly out-of-
phase for the case Lbuffer = 21a; in this case, however, the
magnitude of req,2 is too small to significantly affect req,R. As
a result of this complex interaction between the active section
distributed feedback and the buffer back reflection, the Type
B configuration exhibits an optimum number of buffer cells
minimizing the threshold gain. These examples prove the great
impact of coherent distributed feedback effects in PhC cavities
like that in Fig. 9, which is similar to a LEAP laser with an
in-line coupled waveguide.

As a second example, we analyze the PhC lasers shown
in Fig. 14(a). This configuration is similar to the optically
pumped PhC laser of [8], where the cavity mirrors are classical
PhC mirrors. Referring to Fig. 14(a), rm,R is the reflectivity that
the forward-propagating Bloch mode of the reference, passive
waveguide (whose perturbation is accounted for, in the active
section, by the coupled-Bloch-mode equations) undergoes
when impinging on the right mirror; this mode is reflected back
to the active section because it becomes evanescent within the
mirror. A similar interpretation holds for rm,L. This reflectivity
cannot be computed by our approach, because the classical
PhC mirror cannot be viewed as a weak perturbation to a
reference waveguide (due to the high refractive index contrast
between slab and air holes). However, it has been computed
in [30] by modelling the cavity as an effective Fabry-Perot
(FP) resonator and by fitting the Q-factor with that obtained
through a RCWA approach [14]. For the sake of simplicity
and neglecting the impact of disorder, we assume a high,
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Fig. 15: Numerically computed resonant frequencies (a) and
threshold gain ((b), solid curve) for the laser in Fig. 14(a).
The threshold gain estimated by the SL-enhanced FP formula
is also shown ((b), dotted curve). Each colour corresponds to
a different longitudinal resonant mode.

Fig. 16: . Resonant mode condition for the laser in Fig. 14(a).
Each colour corresponds to a different longitudinal resonant
mode. βeff is evaluated at the numerically computed resonant
frequencies and corresponding threshold gain.

frequency-independent reflectivity rm,L = rm,R = 0.98, which
represents a reasonable approximation [8], [30], [31]. To
compute the LG, we choose the reference plane at the interface
between the active section and the left mirror (see Fig. 14(a)).
As a result, req,L is equal to rm,L and req,R is obtained from
Eq. (9) by replacing S11,buffer with rm,R. The laser threshold
behaviour is summarized in Fig. 15, showing the numerically
computed resonant frequencies (a) and threshold gain ((b),
solid curve); each colour corresponds to a different longitu-
dinal resonant mode. In the existing literature, similar cavities
have been studied in [4] through FDTD simulations. In [4],
it has been shown that the resonant modes of a passive LN

Fig. 17: Threshold gain and corresponding resonant frequency
for the laser in Fig. 14(a) (a) and Fig. 14(b) (b) as a function
of cavity length. Each colour corresponds to a different longi-
tudinal resonant mode. The cavity length ranges from 10a to
20a.

cavity correspond to the fullfillment of the condition

(0.5− kza/2π) = m/2N (10)

with N = L/a being the number of unit cells, m the mode order
and kz the dispersion relation of the passive PhC LDWG of
the cavity. For this reason, we have evaluated the quantity
0.5−βeffa/2π at the numerically computed resonant frequen-
cies and corresponding threshold gain of Fig. 15; it is shown
as the solid curve in Fig. 16. We also note that the quantity
0.5−βeffa/2π practically coincides, at a given cavity length,
with m/2N (dashed curve in Fig. 16). Since the required
threshold gain is low, the gain-induced distributed feedback
is negligible. As a consequence, the gain does not impact
on the position of the resonant modes. As the cavity length
increases, the modes move towards the SL region along the
dispersion relation of the umpumped waveguide. This effect is
consistent with experimental [8] and numerical [32] trends and
is independent of the perturbation-induced distributed feed-
back. In fact, by setting ∆ns = 0 and κ12,q=1 = κ21,q=−1 = 0
in Eqs. (5), Eq. 10 can be easily obtained. The threshold
gain reported in Fig. 15(b) is compared with the expression
[1/(S Lactive)] ln [1/(rm,Lrm,R)] (dotted curve in Fig. 15(b))
[8], with S = ng/ns being the slow-down factor, evaluated at
the resonant frequencies, and Lactive the cavity length; again,
the group index is that of the umpumped waveguide. This
expression resembles that of a standard FP laser, but the
threshold gain is scaled down by the slow-down factor. Since
the gain is low, ng is not reduced and the SL enhancement of
the gain is not limited. On the basis of these considerations,
we conclude that the laser with classical PhC mirrors modelled
as high-reflectivity, frequency-independent reflectors behaves
as a SL-enhanced FP laser for Bloch modes.

As a last example, we focus on the structure in Fig. 14(b),
which consists of an active section with zero back reflections
for Bloch modes at the interfaces with the passive output
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Fig. 18: Difference between M2 and M1 threshold gain for
the laser in Fig. 14(a) (red) and (b) (green) as a function of
the cavity length.

waveguides. . The practical implementation of this matching
condition is outside the scope of this paper; various promising
solutions are reported in the existing literature [33], [34]. We
show for the first time, to the best of our knowledge, that
this type of structure can ideed achieve lasing with reasonable
threshold gain. The reference waveguide has ns = 3.171,
while the active section has ∆ns = −0.001 and g0 > 0.
Similarly to the second example, here a given ∆ns is only
considered in order to shift away the active section dispersion
relation from the critical point kz = π/a and investigate the
laser operation also at frequencies near the band edge (as
explained in the end of section II). To compute the LG,
we choose a reference plane within the active region, at the
interface between any two unit cells; NR unit cells are located
on the right of the reference plane and NL on the left, with
N = NL +NR being the total number of unit cells in the whole
active region. Therefore, req,R is given by the S11 parameter of
Eqs. (8) with N = NR; similarly, req,L is computed as the S22
parameter of Eqs. (8) with N = NL. The threshold gain and
corresponding resonant frequencies of this laser are shown
in Fig. 17(b) and compared with those of the laser with
classical PhC mirrors (Fig. 17(a)). The cavity length ranges
from 10a to 20a and each colour corresponds to a different
longitudinal resonant mode. As a first remark, we note that
the threshold gain is considerably larger for the laser with
zero back reflections; however, the threshold gain of the lasing
mode (M1) turns out to be reasonable, being of the same
order of magnitude as observed for the Type B configuration
in Fig. 9. Secondly, the lasing mode frequency is essentially
independent of the cavity length and it is located close to
the band edge of the active section dispersion relation with
g0 = 0. On the contrary, the higher-order modes shift towards
the SL region as the cavity length increases. This is somehow
similar to what occurs in purely gain-coupled DFB lasers,
whose lasing frequency is independent of the cavity length
and exactly located at the Bragg frequency [18]. Finally, we
note that the laser in Fig. 14(b) exhibits a much better spectral

selectivity as compared to a laser with classical PhC mirrors.
This is illustrated in Fig. 18, comparing the gain margin
(defined as the difference between M2 and M1 threshold gain)
for the lasers in Fig. 14 as a function of cavity length.

IV. CONCLUSIONS

By starting from a set of two coupled-Bloch-mode equations
[21], we have derived a simple, closed-form expression for
the unit cell transmission matrix of a PhC LDWG with a
generally complex refractive index perturbation as compared
to a reference waveguide. This allows for a simple and
numerically efficient analysis of active PhC LDWGs and lasers
based on this type of waveguide, such as LEAP lasers.

In particular, we have derived the expression of the coupling
coefficients and explained that the magnitude of the cross-
coupling is always comparable to that of self-coupling; this
is due to the non-negligible longitudinal component of TE-
like Bloch modes in PhC LDWGs. We have shown that our
approach can correctly reproduce the formation of a stop-band
for Bloch modes as a consequence of a purely real refractive
index perturbation. We have further validated it by computing
the group index and gain enhancement factor of an active PhC
waveguide; consistently with the rigorous, non-perturbative
approach of [22], we have shown that the maximum attainable
SL gain enhancement is limited by the gain itself.

We have then applied our coupled-Bloch-mode approach
to analyze the threshold condition of three types of PhC
laser cavities. The first cavity is conceptually similar to that
characterized in [11]. Depending on the buffer refractive index
perturbation, we have identified, consistently with [11], three
different operating regimes, thus proving the great impact
of coherent distributed feedback effects in this type of PhC
cavity. The second cavity is the one characterized in [8]. By
neglecting the impact of fabrication disorder and modelling
the classical PhC mirrors as standard reflectors with a high,
frequency-independent reflectivity, we have shown that the
gain-induced distributed feedback is negligible in this type
of cavity, which simply behaves as a SL-enhanced FP laser
for Bloch modes. As a last example, we have analyzed a
structure consisting of an active section bounded on either side
by passive waveguides, which are assumed to be matched
for the reference waveguide Bloch modes. This means that
this configuration is different from the typical LEAP laser
implementation. Interestingly, we have shown that this cavity
can lase with reasonable threshold gain, with lasing only
sustained by the active region distributed feedback.

In conclusion, we have presented an effective approach that
will be useful to provide insights on the characteristics of PhC
lasers and might be also extended to study the laser dynamics
of these structures.
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