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LENTA: Longitudinal Exploration
for Network Traffic Analysis from Passive Data

Andrea Morichetta Student Member, IEEE, Marco Mellia, Senior Member, IEEE

Abstract—In this work, we present LENTA (Longitudinal
Exploration for Network Traffic Analysis), a system that supports
the network analysts in the identification of traffic generated
by services and applications running on the web. In the case
of URLs observed in operative network, LENTA simplifies the
analyst’s job by letting her observe few hundreds of clusters
instead of the original hundred thousands of single URLs. We
implement a self-learning methodology, where the system grows
its knowledge, which is used in turn to automatically associate
traffic to previously observed services, and identify new traffic
generated by possibly suspicious applications. This approach lets
the analysts easily observe changes in network traffic, identify
new services, and unexpected activities.

We follow a data-driven approach and run LENTA on traces
collected both in ISP networks and directly on hosts via proxies.
We analyze traffic in batches of 24-hours worth of traffic. Big
data solutions are used to enable horizontal scalability and meet
performance requirements. We show that LENTA allows the
analyst to clearly understand which services are running on
their network, possibly highlighting malicious traffic and changes
over time, greatly simplifying the view and understanding of the
network traffic.

Index Terms—Big data, Clustering, Edit Distance, Machine
Learning, Security, Traffic Monitoring

I. INTRODUCTION

In the recent years, we witnessed the consolidation of
internet services toward the usage of HTTP at the application
layers, making this protocol the de-facto new “narrow waist”
of the internet [36]. Video streaming, music, VoIP, chat, and
web services today run on the top of HTTP or HTTPS. Even
malware prefers HTTP to let infected clients communicate
with Command and Control (C&C) servers [2].

While this has simplified the structure of the protocol stack,
the complexity of current developments raveled the analysis
of web traffic, so that it is tough to understand which services
are running on the network. Fig. 1 gives the intuition of the
variety of traffic today, reporting the growth in the number
of unique URLs, we measured them observing the Internet
activity of hundreds of users in a real network. Data refers to
March 2016, where still more than 40% of traffic was carried
by HTTP [23], [42]. As the Figure shows, the users access
every hour several tens of thousands unique URLs (solid curve
- left y-axis) via HTTP, with the total number of unique URLs
(dotted curve - right y-axis) that grows to more than 430 000
URLs after one week. In a corporate scenario, the network
security analyst is interested in periodically processing traffic
to observe which services are accessed by terminals, to then

The research leading to these results has been funded by the Vienna Science
and Technology Fund (WWTF) through project ICT15-129, "BigDAMA"
and with the SmartData@PoliTO center for data science and big data. A
preliminary version of this work has been presented to ITC 30 [33].
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Figure 1: Evolution of unique URLs observed on the ISP
network.

take informed actions in case some anomaly is present. This
task requires to process a consistent amount of traffic so to
guarantee the correlation and comparison between events that
a too coarse analysis would miss. This scenario calls for the
support of automatic tools to process, analyze, and extract
useful information from the raw data, i.e., a big data solution.

In this context, other big data approaches started to emerge
to scale the analysis of traces [5], [6], [17], [26], [40]. They
offer the ability to process massive data [26], and run machine
learning methodologies for traffic classification [17], [40],
traffic monitoring analytics [6], or in general to support the so-
called data science process, i.e., the extraction of insights from
massive data [5]. For the latter case, unsupervised machine
learning, i.e., clustering algorithms [1], allows one to reduce
the size of the problem from a hundred thousand single objects
– the unique URLs – to few hundreds of clusters, containing
“similar” URLs. Notice that most URLs carried by a network
do not derive from an intentional user action (e.g., the click of
a link on a page), but are instead due to applications fetching
objects (e.g., elements in a web page, or system component
for a web-app) [43]. These latter groups often have a regular
syntax, which makes them strictly different, but similar in
the format. Designing a clustering solution for URLs requires
ingenuity, given URLs are strings, for which the notion of
similarity is not trivial to define.

Our proposed solution LENTA leverages a novel clustering
algorithm that enhances classic clustering algorithms by sim-
plifying the parameter choice, an often cumbersome process.
We call it Iterative DBSCAN, or IDBSCAN for short. When
clustering URLs, it outperforms other off-the-shelf clustering
algorithms in grouping URLs with a similar structure. The
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analyst can then examine URLs in each cluster to identify the
service that generated them, i.e., giving them a possible label.

Next, we design a self-learning approach that lets the system
build system knowledge. LENTA compares newly found clus-
ters to those found in the past, so to automatically re-assign the
same label if already known. In this way, LENTA offers the
analyst only previously unseen clusters, while known traffic is
automatically labeled. This process lets the analyst highlight
changes and the birth of previously unseen traffic, building a
longitudinal view.

We test LENTA on two real use cases. In the first, a passive
probe observes thousands of users in an ISP network, for three
weeks. In the second case, we use a Man In The Middle
(MITM) proxy to collect and process all traffic coming from
single hosts. Results show LENTA (i) ability in aggregating
thousands of URLs into few clusters, which are easy to
investigate and associate to services or malicious activities;
and (ii) the capability of identifying new traffic generated by
previously unknown applications.

This paper extends our prior works. In [32], we first
proposed to use clustering for highlighting and standing out
groups of URLs; in [33], we introduced IDBSCAN and the
self-learning methodology; finally, in [13] we addressed the
scalability of the clustering step in Spark platform. Compared
to our previous works, we offer in this paper a systematic eval-
uation of all LENTA components by comparing IDBSCAN
results versus other clustering algorithms. We introduce the
concept of eviction in the self-learning stage and offer an
analysis of trade-off between completeness and performance.
Furthermore, we discuss and optimize the system implemen-
tation by using a tree structure to reduce the lookup time
and allow horizontal scalability. Considering experiments, we
broaden the analysis of the HTTP trace to three weeks to have
a more clear view on the evolution of the system over time.
We consider a second use case, with a novel dataset of HTTPS
traces where we analyze the evolution of web usage of single
users.

The rest of the paper is organized as follows. Section II
position our work in the context of previous research. Sec-
tion III gives an overview of the rationale of our work and
examines, from a broad perspective, the general structure of
LENTA. Section IV describes the steps of the methodology.
Sections V and VI explain and justify the choices of our
solution, and detail results considering real case scenarios.
Section VII provides an insight into the implementation of
LENTA and Section VIII concludes the paper.

II. RELATED WORK

Thanks to the complexity and richness of network traffic, the
last decade has witnessed several research studies concerning
the use of machine learning techniques to automatically extract
information. The critical applications are traffic classification
and anomaly detection. In both cases, the application of
clustering technique is of great interest.

Authors of [18], [19] addressed the task of botnets detec-
tion. The former uses a two-step clustering of communication
flows, first coarsely grouping them considering a contraction

of the feature space, and then, for each group, computing a
more refined cluster, considering all the features. The latter
uses a hierarchical clustering technique to merge similar bags
of bi-grams, extracted from messages collected from Internet
Relay Chat monitoring. Conversely to our solution, they focus
uniquely on a specific target, i.e., botnets, and they use
different features and techniques for clustering.

Considering traffic classification, Erman et al. [11] use
transport layer statistics and test clustering algorithms (namely,
k-Means, DBSCAN, and AutoClass) over different labeled
datasets. Authors of [27] use labeled traffic flows and k-
Means clustering for classification of TCP flows. Wright et
al. in [45] leveraged k-Means over Hidden Markov Models
of Client-Server and Server-Client communications as an
intermediate step toward the detection of applications behavior
over encrypted traffic. The goal is, again, traffic classification.
In this paper, we focus on HTTP traffic and extract clusters
looking at the structure of the URLs.

Some studies focused on text and string mining techniques,
with the goal of clustering network traffic. In the field of
network security, authors of [35] use a two-level clustering
process, leveraging the single-linkage hierarchical algorithm
to disclose similarities between malicious URL; Levenshtein
distance, together with Jaccard Index, is used in the second
clustering stage. They target malware signature building ex-
plicitly. In [24], semantic features of the URLs are used to
target the same problem, using DBSCAN and Jaro-Wrinkler
distance. Authors of [30] use the Levenshtein distance aiming
at detecting phishing sites, whose names are built using typical
spelling mistakes. Gao et al. [15] use clustering techniques to
detect spam campaigns on Facebook, looking at similarities
in destination URLs. Other works target YouTube traffic [16],
or P2P traffic [5], and use features extracted from TCP flows
like round trip time, data exchanged, and other domain-specific
metrics.

All these works focus on a specific class of traffic, with a
specific goal. Here we aim at broadly exploring HTTP traffic,
in general. We focus on URLs, which are strings, for which
defining a distance and a clustering requires ingenuity. LENTA
is a general methodology that examines URLs from HTTP
traffic to group elements that look similar. This approach
allows the analyst to quickly identify patterns, anomalies, and
novelties in traffic, services, and users behaviors. The system
we propose consider all HTTP traffic, and not just malicious
URL or URL generated by malware during their activity.

From a system point of view, we address the engineering
and deployment of scalable clustering algorithms, in particular
for density-based algorithms. We adopt big data approaches
for which ingenuity is required to parallelize the execution.
In the system community several authors are working on
scalable clustering solutions [10], [20], [29], [22]. They mostly
take advantage of feature space partition, leveraging Spark,
and MapReduce paradigm. These approaches, however, are
confined to the class of problems where Euclidean distance
metrics can be used and provide approximated clustering.
Recently, Lulli et al. in their work NG-DBSCAN [28], propose
a methodology to overcome those limitations that consist in
an approximated version of DBSCAN, based on a vertex-
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centring programming paradigm, built on the concept of
graphs. It provides an increase in terms of performance and
scalability at the cost of lower accuracy. Other works realize
parallel optimizations of density based algorithms, focusing
on GPU computing capabilities [44], or the multiprocessing
API OpenMP in conjunction to graph techniques [34].

Our approach follows a different angle and targets the par-
allelization of the distance matrix computation. This strategy
stems from the fact that the computation of string similarity is
per se a resource-demanding job. Being URLs possibly very
long strings, this poses severe scalability issues that we solve
by providing a map-reduce solution. Once LENTA extracts
the distance matrix, we run DBSCAN in a centralized manner,
thus not facing any approximation.

III. MOTIVATION AND SYSTEM OVERVIEW

In this paper, we target the analysis of passively collected
HTTP traffic, which still today amounts to more than 40% of
web traffic [23], [42]. While the majority of malicious traffic
still runs on top of HTTP [2], services are moving on HTTPS.
In order to observe HTTPS traffic too, several solutions are
at the disposal of network and security analysts, like MITM
solutions, also known as SSL forward proxies, suitable for
corporate scenarios.1, 2

A. Motivation

Our goal is to group URLs based on their similarity. We
choose to leverage string distance to generate homogeneous
groups of URLs instead of just merging those elements that
have, e.g., a common domain name. In principle, we strive for
grouping together all those URLs that refer to the same service
while separating URLs of different services. We present some
real cases to give the reader the intuition (and the complexity)
of doing this. Tab. I shows examples of URLs. A1, A2, and
A3 belong to the same malware called TidServ – that we
spotted in our dataset through a professional IDS provided
to us by a leading cybersecurity company. All URLs share
substrings in the object path, but with strictly different domain
names and URLs. This is a common behavior in malicious
applications which apply approaches to change the domain
name rapidly, with the goal of evading static blacklist-based
controls, the so-called DGA (Domain Generation Algorithm)
technique, successfully used by several malware programs
like Conficker [37] and Torpig [39], and addressed in various
research works [4], [7]. B1 and B2 illustrate two URLs
generated by Sony connected Smart-TVs which access the
same service, but with different URLs. This characteristic is
representative of services that employ the same web platform,
and that can be interesting to point out. In both the above
examples, we would like the algorithm to form two groups,
one for the malware, one for Smart-TV traffic.

We remark that grouping by domain name is not enough.
Indeed, certain domains host logically very different services.

1https://www.paloaltonetworks.com/documentation/71/pan-os/pan-os/
decryption/ssl-forward-proxy

2https://www.juniper.net/documentation/en_US/junos-space15.2/topics/
concept/junos-space-ssl-forward-proxy-overview.html

Table I: Examples of similar URLs

swltcho81.com/[...]VyPTQuMCZiaWQ9[...] A1
rammyjuke.com/[...]VyPTQuMCZiaWQ9[...] A2
iau71nag001.com/[...]VyPTQuMiZiaWQ9[...] A3

bravia.dl.playstation.net/bravia/WidgetBundles/[...]/info.xml B1
applicast.ga.sony.net/WidgetBundles/SNY_RSSReader/icon.png B2

google.com/flights/#search;f=TRN,ITT,TPY;t=LAX;d=2018-01-22
;r=2018-01-26 C1
google.com/mail/u/0/#inbox/160c745d9e5f6684 C2

This is the case of the third example, C1 and C2, where Google
Flights and Gmail URLs are shown. In this case, we would
like to identify two groups, one for each service. To reach this
goal, we use clustering approaches.

B. System Overview

Fig.2 sketches the overall process. We process URLs in
batches, each one marked as UG(i), where we insert all unique
URLs seen during the i-th time interval of duration ∆T .
In our analysis, we solely consider unique URLs, since our
goal is to understand which resources are fetched by clients,
independently of their popularity. At the end of a period,
collected URLs are clustered in C(i). Several challenges arise
here, from the computation of the similarity between two
URLs to the proper choice of the clustering algorithm, from
the parameter settings to a scalable design.

Once we obtain clusters, we reduce the dimensionality by
applying a sampling process, i.e., by extracting a summary
of URLs found in each cluster, obtaining the sampled cluster
Ĉ(i). This operation has the benefit to reduce the footprint of
the data and to limit the computational complexity of the next
steps.

At last, we compare clusters found in the current batch
with those found in the past, which we collect in a structure
that we name System Knowledge and for which we use the
notation Ẑ(i− 1). If there is no match, then the current cluster
is considered new and added to the System Knowledge after
eventually the analyst’s inspection, to provide a meaningful
label. As we will show, the availability of several URLs of
the same type substantially simplifies the labeling process.

IV. METHODOLOGY

Here we detail our methodology, defining the techniques
adopted at each step. We start describing the process of
data collection. Then we analyze how to compute distance
measures from data. Subsequently, we describe the clustering
algorithm and illustrate the sampling technique. Finally, we
detail operations correlated to the update and support of the
System Knowledge.

A. URL Extraction

The extraction of URLs from web traffic is the first step of
the process. Visibility in live traffic can be obtained using a
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Figure 2: LENTA overview. From the bottom, URLs are grouped in batches to then extract clusters. The clusters are sampled
and used to update the System Knowledge.

passive sniffer, or a proxy, which, in case of a MITM proxy,
would allow the processing of HTTPS traffic too. In this work,
we rely on both approaches: Tstat [41], a scalable passive
sniffer to monitor high-speed links; and ERMES proxy3, a
MITM solution we engineered to observe also HTTPS traffic.

Tstat implements an efficient Deep Packet Inspection (DPI)
architecture that logs HTTP requests observed in packets. We
have been running it in collaboration with an ISP for more
than five years [42]. For the experiment in this paper, we
use a three-week-long HTTP trace collected in March 2016
in the ISP network, where traffic from more than 20 000
customers was visible. To protect users privacy, we removed
all parameters in the URL, and only saved unique URLs.4 As
shown in Fig. 1, we observe more than 430 000 unique URLs
during a week, more than 60 000 per day.

ERMES proxy is a software module that runs on end
hosts. By installing a trusted key, and configuring a system-
wide proxy, it gains visibility on all HTTP and HTTPS
requests. ERMES proxy logs all entries and uploads them to a
centralized repository in our campus. We asked volunteers to
install the ERMES proxy for at least one month. We recruited
participants on social networks, specialized forum, and among
students in our University. We provided monetary incentives
and involved them in an experiment aiming at showing them
the pervasiveness and danger of web tracking. The volunteers
have explicitly approved our data collection program, and the
project was also subject to a privacy impact assessment that
we redacted together with the data protection officer of our
institution.

Given a log of URLs, we form and analyze, after every pe-
riod of duration ∆T , a URL group UG(i). In our experiments,

3https://www.ermes.polito.it
4The usage of this data set has been discussed and approved by our

institution’s ethics committee, and by the ISP security group.

we choose ∆T = 24h. The daily periodicity of traffic - which
reflects the typical daily activity of users - justifies this (see
Fig. 1).

When using Tstat, we consider all unique URLs generated
by hosts in the monitored network, mimicking the case of
the network analyst that is interested in observing what the
network carries. Instead, traces collected by ERMES-proxy
are processed considering all URLs generated by every single
device, mimicking the case of the security analyst that has
access to HTTPS traffic and is interested in each single device
tracing.

B. Distance Definition

Clustering is the task of grouping a set of objects in such a
way that the ones in the same group are more similar to each
other than to those in other groups.

In our case, objects are URLs, i.e., strings, for which
there is no well-accepted notion of distance. We focus on a
particular class of similarity metric, the edit-distance [9]. The
distance between two given strings s1 and s2 is intended as
the minimum number of steps required to convert the string s1
into s2. For this purpose, we propose a custom modification
of the Levenshtein distance, dLV S [25]. In detail, we count
the total number of insertions and deletions and weight each
replacement by two. The rationale is that a replacement cor-
responds to one combined operation of deletion and insertion.
Given the peculiarity of URLs, whose length may vary widely,
we normalize the results in a [0, 1] range by dividing by the
sum of string lengths,

dURL(s1, s2) =
dLV S(s1, s2)

(|s1|+ |s2|)
(1)

This leads to a bounded distance metric, where dURL = 0 if
s1 = s2, while dURL = 1 if the two strings are completely
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different. In [32] we demonstrated that this distance definition
performs better than other off-the-shelf solutions.

C. Clustering

In the field of unsupervised methods, clustering is one of
the most popular. The three main categories of clustering are
partitional, hierarchical, and density-based. Describing all of
them is beyond the scope of this work. However, it is important
to highlight the main features that influenced the decision
of picking the density-based category as our choice. First of
all, they generally work with wide types of distance metrics,
included not Euclidean ones. Secondly, they do not require to
specify a priori the desired number of clusters. Lastly, they
allow the presence of noisy points, i.e., points left out from
the final clusters; this is a particularly interesting feature, since
those points may be useful for anomaly detection.

1) DBSCAN: We built upon and improved the well-known
DBSCAN algorithm [1]. DBSCAN identifies a cluster as the
concatenation of successive dense areas in the data space.
Given an object o, it is possible to measure its density by
considering the number of elements close to it. DBSCAN
finds the core points, i.e., those objects that have dense
neighborhoods; then it connects these core points and their
neighbors to form the dense regions, i.e., the clusters. The
ε parameter defines the neighborhood area. This parameter
represents the radius of the sphere that has o as the center. A
neighborhood is dense if there are at least MinPoints in the
sphere of radius ε.

2) Iterative DBSCAN (IDBSCAN): The setting of the Min-
Points and ε parameters is in general difficult. In particular,
MinPoints can be reasonably set using domain knowledge
since it represents the minimum number of elements of a
cluster. ε is instead hard to set, especially if the used distance
is not well known. In the first version of our work, CLUE [32],
we had to set ε by manually tuning it, a cumbersome and error-
prone task. Here we propose a new approach to automatically
compute ε, while also improving the final clustering. The intu-
ition is to iteratively run DBSCAN, each time using a different
value for ε, and each time accepting only those clusters that are
well-shaped. Objects in bad-shaped clusters are eventually re-
clustered in the next iteration, with a different choice of ε. This
approach produces a remarkable improvement of LENTA’s
clustering stage, by further splitting/merging clusters at each
iteration, until they eventually form a well-shaped cluster.
After a maximum number of iterations, or in case of a dead
loop, the algorithm stops and labels all the remaining elements
as noise points (i.e., not assigning them to any cluster). Those
are outliers that the system would ignore.

We define ε by using an a priori rule, i.e., we want the
algorithm to cluster a given percentage η of objects at each
iteration. To choose the proper ε that would guarantee this, we
rely on the k-Distance graph rule [1]. Let k = MinPoints. For
each object i = 1, . . . , N in the current batch, the k-th nearest
point is found, whose distance is di. We next sort {di} from
the lowest to the highest distance, and look for the minimum
threshold dth for which di < dth for η = 75% of points. We
set ε = dth. With this choice, 75% of objects have at least k =

MinPoints objects at a distance smaller than ε. Those would
become core points, and form a cluster.

To identify well-shaped clusters, we rely on the silhouette
analysis, an unsupervised cluster evaluation methodology to
find how well each object lies within its cluster [38]. The
silhouette coefficient s(i) measures how close the point i ∈ C
is to other points in C, and how far it is from points in other
clusters. Let a(i) be the average distance of point i with all
points in its cluster. Let b(i) be the minimum among average
distance of point i to points in other clusters. In formulas, we
have:

a(i) =
1

‖C‖
∑

j∈C 6=i

dURL(i, j) (2)

b(i) = min
C′ 6=C

 1

‖C ′‖
∑
j∈C′

dURL(i, j)

 (3)

s(i) =
b(i)− a(i)

max(a(i), b(i))
(4)

It results s(i) ∈ [−1, 1]. Values close to 1 indicate that
the sample is far away from the other clusters, and very
close to all other points in its cluster, i.e., cluster C is very
compact. Instead, values close to 0 indicate that i is on or very
close to the decision boundary between two clusters. Finally,
negative values of S(C) indicate that the clustering process
might have assigned i to the wrong cluster. The average
S(C) = E[s(i), i ∈ C] overall points in cluster C is a measure
of how tightly grouped all the elements in C are.

Given a cluster C, we say it is well-shaped if S(C) > Smin.
If C is well-shaped, we insert C in the set of clusters found so
far. Otherwise, we put back all points in C in the set of points
that we would consider for the next iteration. By setting a
maximum number of possible iterations, we avoid dead loops.
If the IDBSCAN process is not able to rearrange a cluster, the
algorithm labels the contained elements as noise.

At the end of iterations, we are guaranteed to have all well-
shaped clusters, with the final clustering C being

C =
⋃
j

{Cj |S(Cj) > Smin} (5)

We ran several experiments to check the quality of clus-
tering for different values of Smin and η. In a nutshell, the
algorithm is robust to the choice of η, while any value of Smin

> 0 gives good results. For the sake of brevity, we do not report
outcomes here. Our choice of η = 75% and Smin = 0.3 is
conservative and produces very well-shaped clusters.

D. Sampling for Data Reduction

Once we obtain the final clusters, we sample a subset of
elements from each of them. The rationale is twofold: to ease
the comparison between clusters by reducing computational
complexity while maintaining their information quality; and
to keep in the System Knowledge a digest of the collected
traffic, thus reducing its footprint.

We sample each cluster Cj ∈ C keeping either a ratio r ∈
[0, 1] of the cluster population, or a fixed specimen. At the
end of the process, a set of sampled clusters Ĉ =

⋃
j Ĉj is
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obtained. Let m be the number of elements to extract. In case
of fixed ratio r, we set m = dr||Cj ||e, and then pick Ĉj =
sample(Cj ,m). In case of a fixed sampling, we choose m a
priori, and we select elements as Ĉj = sample(Cj ,m).5

sample(Cj ,m) is a function that extracts m samples from
Cj . We consider two samplings:
• Random sampling: selecting m objects at random from

the elements of Cj , i.e., sample(Cj ,m) = rand(Cj ,m);
• Percentile sampling: selecting the elements that best

represents the different kind of URLs present in a cluster,
i.e., sample(Cj ,m) = percentile(Cj ,m).

percentile(Cj ,m) extracts m representatives by looking at
the distribution of mean distances for each URL si ∈ Cj{

Esk∈Cj
[dURL(si, sk)],∀si ∈ Cj

}
(6)

The selected elements are the ones that correspond to values
that divide in equally sized sets the cluster, i.e., that correspond
to the m percentiles. The idea behind percentile selection is
to have a set of cluster’s samples that includes both elements
that are in the center area of a cluster and the ones at its
border. Note that in case of m = 1, percentile(Cj ,m) would
select the so-called medoid, i.e., the element whose average
dissimilarity to all the objects in the cluster is minimal.6

The medoid is generally an appropriate choice to describe a
group of elements, but it is more appropriate for spherical and
homogeneous clusters. Since a cluster in IDBSCAN consists
of a chain of interconnected smaller spherical dense areas,
the choice of only one point would exclude other possibly
distinguishing instances. In this sense, the percentile sampling
produces a sampling that better represents the population of
the cluster.

E. System Knowledge Enhancement Intuition
LENTA maintains the set of clusters found in the past in the

System Knowledge Ẑ(t). At the beginning Ẑ(0) = ∅. Given
a sampled cluster Ĉi we want to identify the closest cluster
found in the past. Let

dmin(Ĉ, Ẑ) = min
Ẑ∈Ẑ

(
d
(
Ĉ, Ẑ

))
where d(Ĉ, Ẑ) = min

c∈Ĉ
z∈Ẑ

dURL(c, z) (7)

Let Ĉ(t) be the result of the clustering of the current batch.
We need to check if a cluster Ĉj(t) ∈ Ĉ(t) contains the similar
content of an already registered one, or if it represents new
traffic. For the cluster Ĉj(t), the most similar cluster Ẑl(t −
1) ∈ Ẑ(t− 1) is

Ẑl(t− 1) = arg min
(
dmin

(
Ĉj(t), Ẑ(t− 1)

))
(8)

A cluster is then considered as new if the minimum distance is
larger than the threshold α. The System Knowledge is updated
as follows:
Ẑ(t) = Ẑ(t−1)∪

{
Ĉj(t) ∈ C(t) | dmin

(
Ĉj(t), Ẑ(t− 1)

)
≥ α

}
(9)

5In case |Cj | ≤ m, all elements are selected.
6The medoid is different from the centroid since the first consists in

selecting an element among the ones of the cluster, while the second does not
have this restriction.

That is, we add a new cluster found at time t if its distance
to the closest cluster is higher than α.

F. Ageing

When dmin(Ĉj(t),Z(t − 1)) < α, two clusters are con-
sidered similar, so they contain the same kind of information.
The new cluster is associated with the old one and may contain
new knowledge, e.g., some important changes in the particular
service or differences in the structure or information carried
by URLs. It is vital to register, if possible, those updates.

We apply a random replacement policy. That is, we substi-
tute each element zi ∈ Ẑl(t− 1) with the element ci ∈ Ĉj(t)
with a certain probability p. So,
zi := ci ← p ∀i ∈ [1,m], zi ∈ Ẑl(t− 1), ci ∈ Ĉj(t) (10)

In doing so, we update the System Knowledge representatives,
ageing and replacing “old” ones with fresher information.

G. Pruning based on Inactivity

The System Knowledge keeps information on clusters since
the first time we had seen them. Let tinit be the time in which
we added it to Ẑ, and tlast be the last time we encountered
it, textiti.e., when the system associates a new cluster to it.

We implement a pruning mechanism to remove those in-
active clusters, that contain content that users did not visit
in the recent past. We use tlast to remove old and inactive
clusters. Given Ẑ, we define ∆Tinactive = t − tlast. If
∆Tinactive ≥ ∆Ithresh, with ∆Ithresh defined as Inactivity
Threshold, then Ẑinactive is removed from Ẑ . We discuss the
impact of ∆Ithresh in Section VI.

V. RESULTS

In this section, we report the results obtained by applying
LENTA. Our objective is to analyze the different components
of the system in order to verify the satisfaction of the main
goals of LENTA.

In order to achieve that, we first compare IDBSCAN with
other off-the-shelf density-based solutions. For this, we run
a set of experiments over the unique URLs extracted in the
first 24 hours of data collection, and we analyze the resulting
clusters.

A. Clustering Algorithm Analysis

1) Other Density-Based Algorithms: To have a broader per-
spective on density based algorithms and on solutions which
claim to overcome the complex tuning of the ε parameter, we
consider the following well-known density-based clustering
algorithms.

a) OPTICS (Ordering Points To Identify the Clustering
Structure) [3]: Ankerst et al. addressed the difficulty of
setting DBSCAN parameters and, in particular, the choice of
ε. OPTICS stems from the basic idea that, given a fixed value
for MinPoints, the clusters at higher density are contained in
the ones that have lower densities. So, the contribution is to
compute core points for high-density areas first, finding in
that way the denser clusters. OPTICS order points according
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to their density and provides that list in written or graphical
form. Clusters can be identified graphically or automatically
from that structure, and so different local densities, i.e., ε, may
be defined in order to extract clusters in different areas of the
data space.

b) HDBSCAN (Hierarchical DBSCAN) [8], [31]: A lim-
itation of DBSCAN is that it is not able to identify clusters
made of points that lay at different densities. HDBSCAN aims
at solving this problem. It first creates a tree representation of
all the possible clusters for different ε. The algorithm then
solves the problem of finding the best clusters as an optimiza-
tion problem, where the overall stability of the clusters, defined
following the Hartigan’s definition of density-contour clusters
[21], is maximized. Thanks to this approach, there is no need
to tune the ε parameter.

c) CANF (Clustering and Anomaly detection method
using Nearest and Farthest neighbor) [12]: This method finds
the nearest and furthest neighbors to define subgroups of data.
In creating the subgroups, it does not need to consider global
parameters like ε. It computes the radius of subgroups based
on the variance of data points, and the number of points in
each subgroup and its volume are adaptive to data distribution.
So it can identify clusters with different shape and densities.
Since CANF uses subsampling, the time complexity is reduced
compared to the methods that use the aggregate data set.
However, being iterative, worst case complexity entails the
comparison of all distance pair again.

2) Performance Comparison: We compute the quality of
clustering considering the first day of traffic collected by Tstat,
containing 59 543 unique URLs. We test all algorithms setting
the value of MinPoints = 20; ε, used by DBSCAN and
OPTICS, is set at the value ε = 0.4, as suggested in [33].
Off the shelf Scikit-Learn implementations of DBSCAN and
HDBSCAN are used, OPTICS is executed using the pyclus-
tering version, IDBSCAN uses Scikit-Learn DBSCAN as the
building block, while CANF uses authors’ developed code.

To evaluate the performance of the algorithms, we report
statistics about the clustering results in terms of clusters qual-
ity, measured using the silhouette coefficient. Fig. 3 depicts the
silhouette distribution among all clusters, for each algorithm.
Recall that silhouette smaller than 0 is an indication of lousy
clustering. Inspecting the boxplots, IDBSCAN shows the best
distribution of silhouette, HDBSCAN the worst. This behavior
is thanks to the fact that IDBSCAN rejects by construction all
clusters whose silhouette is smaller than Smin. Moreover, the
IDBSCAN iterative process splits re-clusters poorly shaped
clusters with variable ε. By contrast, the other algorithms
produce considerably more variability in silhouette values,
since they do not discard poorly shaped clusters.

Tab. II provides more details, complementing the silhouette
coefficient metric. The results confirm that IDBSCAN appears
to be the best algorithm in term of percentage of URLs
clustered, with CANF being the worst. Comparable results
are obtainable with HDBSCAN, which, however, generates
more clusters, thus increasing the analyst work during the
inspection phase. The other algorithms generate large clusters
of more than 15 000 elements (more than 25% of the data
set size), which are difficult to analyze and usually aggregate
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Figure 3: Boxplot representing the mean silhouette values for
the clusters obtained by each different algorithm on the first
day of traffic.

diverse URL types (as also seen by the low silhouette values).
The comparison between clusters’ statistics and the silhouette
coefficient results in Fig. 3 helps to shed light on clustering
performances. Specifically, the first, second (median) and third
quartile of cluster size they provide clear information on
clusters structures. Even if CANF and DBSCAN have a good
median silhouette value, they form a large number of small
clusters, with the first quartile equal to five. Small clusters are
usually denser, influencing thus the silhouette statistics.

Considering execution time, IDBSCAN is slower than DB-
SCAN and HDBSCAN because of the iterations. Still, the
clustering is completed in less than 850 s. In Sec.VII we
provide more details on scalability.

B. Malware Detection - TidServ Use Case

We now test the clustering stage over a dataset including one
day of HTTP traffic from 34 hosts, 14 of which are flagged
by the IDS as infected by the TidServ malware previously
described. We randomly select the other 20 hosts from the
population. Overall, we obtained 78421 unique URLs, from
which only 228 represent, according to the IDS, TidServ
traffic.

We run IDBSCAN over all URLs and check those clusters
which contain at least one TidServ URL. In total, IDBSCAN
identifies 7 clusters according to the distribution reported in
Tab.III. Each cluster contains URLs not originally flagged
by the IDS. By manually checking those, we confirm that
IDBSCAN correctly assigns those to TidServ clusters, being
those very likely to be false negatives for the IDS (i.e., the IDS
did not flag those despite being malicious). Table IV details
cluster 7. In this case, only the first (in bold) URL out of
37 is flagged as malicious by the IDS. The similarity within
all URLs is however clear, letting us conclude that those are
false negatives for the IDS. This clear example explicates how
LENTA could be used to support the generation and update
process for IDS signatures.

C. Clustering Analysis and Labeling

In this section, we provide experimental results. We choose
∆T = 24 h, η = 0.75, Smin = 0.3, p = 0.2 and
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Table II: Clustering results obtained applying different density-based algorithms over one day of traffic.

Percentage clustered N. clusters Size S(C) Size S(C) Mean 25% 50% 75% Computational
Algorithm (S(C) ≥ Smin) largest cluster largest cluster smallest cluster smallest cluster cluster size cluster size cluster size cluster size Time (s)

DBSCAN 45.14 238 15246 -0.15 16 0.41 148.28 5.0 16.5 57.75 113.70
HDBSCAN 53.16 563 4360 0.52 20 -0.17 82.34 28.0 41.0 65.0 218.43
OPTICS 44.65 227 15214 -0.15 2 0.44 205.45 27.0 44.0 89.0 8175.82
CANF 29.67 233 15946 -0.09 2 0.84 148.28 5.0 16.5 57.75 1500.73
IDBSCAN 55.55 283 4359 0.52 12 0.41 147.87 27.0 44.0 83.0 843.63

Table III: TidServ clusters identified by IDBSCAN.

ID Tot. URLs TidServ URLs Hostnames Most common hostname

1 192 118 14 81hja01aala.com
2 79 75 1 wuptywcj.cn
3 32 18 2 clickpixelabn.com
4 6 6 1 biiwf3iidpkxiwzqmj.com
5 6 5 1 zl091kha644.com
6 5 5 1 zhakazth.cn
7 37 1 3 lkckclckl1i1i.com

Table IV: URLs in cluster 7. The IDS flagged only the first.
gnu4oke0r.com/4...PTQuMCZiaWQ9NWJjNWFiMjE1Yj...5pdCZxPWxvdWlzIGNydWlzZXM=16h
lkckclcklii1i.com/...PTIuNCZiaWQ9NWJjNWFiMjE1Yj...jE1YyZhaWQ9MzAwMDEmc2lkPTAmcmQ9MA==27g
lkckclckl1i1i.com/...PTIuNCZiaWQ9NWJjNWFiMjE1Yj...jE1YyZhaWQ9MzAwMDEmc2lkPTAmcmQ9MA==27g
lkckclcklii1i.com/...PTIuNCZiaWQ9NWJjNWFiMjE1Yj...jE1YyZhaWQ9MzAwMDEmc2lkPTAmcmQ9MA==26g
lkckclckl1i1i.com/...PTIuNCZiaWQ9NWJjNWFiMjE1Yj...jE1YyZhaWQ9MzAwMDEmc2lkPTAmcmQ9MA==26g
lkckclcklii1i.com/...PTIuNCZiaWQ9NWJjNWFiMjE1Yj...jE1YyZhaWQ9MzAwMDEmc2lkPTAmcmQ9MA==18x
lkckclckl1i1i.com/...PTIuNCZiaWQ9NWJjNWFiMjE1Yj...jE1YyZhaWQ9MzAwMDEmc2lkPTAmcmQ9MA==18x
etc.

MinPoints = 20 to look for well-shaped and big enough
clusters. We tested different parameters, observing little
changes. Experiments are not reported here for the sake of
brevity.

We start to analyze the first day of traffic. As seen from
Tab. II, LENTA obtains 283 clusters from the set of 59 543
original unique URLs. The Silhouette coefficient S(C) has a
value of 0.5 or more for 183 clusters, with 55 of them with
S(C) > 0.75. That is, clusters result very well shaped.

The top part of Tab. V shows the most massive clusters,
while the bottom part displays those with the highest silhou-
ette. The table reports the silhouette S(C), the most common
hostname in the cluster (in brackets the total number of distinct
hostnames), the number of unique URLs, and the type of
the service. Although the majority of clusters are relatively
small, some contain a considerable number of distinct URLs
and different hostnames. That behavior is not to be taken for
granted, as often the complexity of URLs structure tend to
increment the distance also for actually similar elements.

After this stage is already possible to identify some
suspicious clusters, for instance, 30 unique URLs form
a cluster where URLs have all the same IP address
219.129.216.161 – but random paths. After further anal-
ysis7, this cluster is indeed found to be malicious. Other
suspicious clusters emerge as well. At last, it is essential
to mention that the same service, i.e., the same hostname,
may be broken apart in multiple clusters, each one containing
specific content. For example, the Chinese messaging system
msg.71.am finds its representation into two clusters, one
serving images (.GIF), and the other exchanging control in-
formation like devices reports.

7Google results: https://goo.gl/q3DgT8; VirusTotal results:
https://goo.gl/fqrNkG
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Figure 4: Curves of distances when new traffic is injected in
the controlled experiment. Top 20% clusters are reported.

These results clearly show that LENTA let the services that
commonly characterize the traffic emerge. The security analyst
can then analyze clusters and easily label them.

D. In vitro Experiment

To evaluate the reaction of LENTA concerning the appear-
ance of anomalous elements, we design a controlled experi-
ment in multiple stages. We start from an initial group UG(0)
of almost 33 000 unique URLs extracted at random from
the previous dataset. We then artificially create new groups
UG(1), UG(2) and UG(3) where we progressively inject
URLs belonging to different applications. We first add a block
of 200 torrent URLs, i.e., UG1 = UG0 ∪ {TorrentURLs}.
Next, we add 228 malicious URLs generated by hosts infected
by TidServ, i.e., UG(2) = UG(1)∪{TidservURLs}. Finally,
we inject 549 URLs generated by a popular streaming service,
i.e., UG(3) = UG(2) ∪ {StreamingURLs}.

After each stage, we run LENTA and check if it can identify
the new traffic. Results are reported in Fig. 4, which shows
the minimum distance dmin(Ĉ(t),Z(t− 1)) between clusters
found in UG(t) and those in the System Knowledge build
on the previous step t = 0. We report only the last 20% of
clusters, ordered by dmin(Ĉ, Ẑ). As clearly shown, LENTA
is able to recognize old traffic (dmin = 0 for those clusters in
UG(t) that were already present in UG(t−1). The new traffic
is clustered separately, with dmin > 0. Tab. VI details the
results of the experiment. First, new clusters contain only new
URLs injected in each step of the process. Second, LENTA
identifies multiple new clusters for each stage. This behavior
is welcome since each cluster corresponds to a semantically
different service. For instance, for the video streaming case,
each cluster corresponds to videos served for different plat-
forms (iOS, Android, and PC). Torrent clusters correspond
to different swarms and trackers. Third, dmin > 0.3 for all
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Table V: Insight of the clustered HTTP traffic from the first day of analysis. On the top, the largest clusters. On the bottom,
the top well-shaped clusters.

S(C) Main hostname (unique hostnames) Elements Activity
0.52 scontent-mxp1-1.cdninstagram.com (4) 4359 Instagram CDN
0.92 se-rm3-18.se.live3.msf.ticdn.it (6) 3504 Entertainment - Streaming CDN
0.36 skyianywhere2-i.akamaihd.net (9) 2087 Entertainment - Streaming CDN
0.30 www.google-analytics.com (29) 1940 Tracking
0.95 rtinfinityh2-a.akamaihd.net:80 (1) 1227 Entertainment - Streaming CDN
0.76 videoassets.pornototale.com (1) 751 Adult content
0.57 tracking.autoscout24.com (2) 592 Tracking
0.37 ec2.images-amazon.com (10) 575 Image CDN
0.56 thumbs-wbz-cdn.alljapanesepass.com (1) 393 Adult Content
0.66 video-edge-8fd1c8.cdg01.hls.ttvnw.net (4) 359 Entertainment - Streaming
0.98 iframe.ad (1) 27 Advertising
0.97 news.biella.it (1) 23 News
0.95 rtinfinityh2-a.akamaihd.net:80 (1) 1227 Entertainment - Video Streaming CDN
0.93 motoitalia01.wt-eu02.net (1) 45 Tracking
0.92 skygo.sky.it (1) 45 Entertainment - Video Streaming
0.92 se-rm3-18.se.live3.msf.ticdn.it.msf.ticdn.it (6) 3504 Entertainment - Video Streaming CDN
0.92 219.129.216.161 (1) 30 Malware
0.92 a.applovin.com (1) 20 Analytics
0.92 rum-dytrc.gazzetta.it (1) 47 Entertainment - Analytics

Table VI: New clusters highlighted during the comparison with the System Knowledge.

Experiment
stage dmin Main hostname(s)

UG1 Torrent
0.75
0.57
0.23

i-1006.b-0.ad.bench.utorrent.com, i-1005.b-0.ad.bench.utorrent.com
b.scorecardresearch.com, pixel.quantserve.com
tracker.aletorrenty.pl:2710, torrent.gresille.org

UG2 Malware
0.76
0.76
0.76

wuptywcj.cn
rlyg0-6nbcv.com,riygo-6nbcv.com, riyg0-6nbcv.com,iau71nag001.com

bangl24nj14.com,switcho81.com, rammyjuke.com,skolewcho.com

UG3 Streaming

0.75
0.74
0.74
0.73
0.72

198.38.116.148
23.246.50.136, 198.38.116.148

198.38.116.148
23.246.50.136, 198.38.116.148

198.38.116.148

clusters but one in the Torrent data, for which dmin = 0.23.
This cluster would associate with a previously seen cluster.
The association is correct, and URLs have a very similar
syntax to the one already found and related to a different
tracker service, tntvillage.

E. System Knowledge Parameter Tuning

Once clusters are identified, we extract a digest via sam-
pling. This stage is one of the most critical since it is essential
to balance the representativeness and the complexity of the
System Knowledge. Here we discuss the impact of the param-
eters related to this step, namely, the sampling methodology
sample(Cj ,m), the number of samples m to keep, and the
threshold α to associate a new cluster with an old one.

We propose several methods for sample selection
sample(Cj ,m): fixed size m, or proportional to the cluster
dimension, with r ratio, and random or percentile sampling.

To choose which strategy works best, we run an experiment
in which we split the clusters in C(0) into two sets: the
first set builds the System Knowledge Z(0) and contains
half clusters selected at random from C(0). The second set
C(1) = C(0) contains all clusters. We apply sampling and

compare Ĉ(1) is compared to Ẑ(0). We expect the System
Knowledge algorithm to identify half of the clusters as already
known, and the other half as new.

Results are depicted in the plots of Fig. 5 which show
dmin(Ĉj(1), Ẑ(0)), in increasing order, respectively compar-
ing results for m = {4, 8, 16} (Fig. 5a - fixed sampling),
r = 0.1, 0.2, 0.3 (Fig. 5b - proportional sampling) and for
m = {4, 8, 16} (Fig. 5c - percentile sampling).

We would expect to see an approximation of a step curve,
where the first half of the distances are equal to 0 because the
comparison entails the same clusters; the second half of the
distances should have a value larger than 0 – the higher, the
better. Fig. 5 clearly shows that, in case of random sampling,
the higher the number of samples, the more visible is the ideal
step-curve-behavior. The approximation is excellent, picking a
fixed m equal to 16, and very similar to the step curve with
proportional r of 20% or 30%.

The situation improves when using percentiles, whose smart
sampling guarantees the best results. Indeed, when we consider
the percentile, we always obtain a perfect distance of 0 for
the clusters that contain the same elements. That is happening
because two sets are equal and we deterministically select the
representatives.
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(a) Fixed sampling approach.
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(b) Proportional sampling approach.
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(c) Percentile sampling approach.

Figure 5: dmin when 50% of traffic is the same and 50% is new. Different choices of sampling approaches.
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Figure 6: Computation time for different sampling strategies.

To consider the content of a cluster as belonging to a
previously detected entity, its minimum distance with all
clusters in the System Knowledge has to be smaller than the
threshold α. Fig. 5a, Fig. 5b and Fig. 5c clearly show that the
new clusters tend to be very dissimilar from the old ones. Any
α ∈ [0.2, 0.4] is a proper choice. To not discard potentially new
and interesting clusters, in the following we choose a value of
α = 0.3.

As a drawback, increasing m increases the computation
complexity, due to the need to compute O(m2) dURL(.).
Fig. 6 shows the experimental computational time using lin/log
scales. For variable fraction r, we report results using as x
value the average number of elements in the clusters. As
expected, the curve grows quadratically for m (logarithmically
in log scale), with m = 32 and r = 20% or 30% that already
have an execution time larger than 3 000 s. Considering the
System Knowledge would have thousands of clusters, the best
trade-off between cluster similarity identification and compu-
tational time is obtained using a fixed m = 8. This choice
allows System Knowledge to retain enough samples and,
simultaneously, it enables accurate matching (see Fig. 5c).

VI. EVOLUTION OVER TIME

In this section, we show the results of running LENTA in
a real scenario. We first consider a controlled experiment, and
then we apply LENTA over 21 days of traffic collected from
the ISP network. We then test LENTA over two weeks of
HTTPS traffic.
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Figure 7: Daily enhancement of system knowledge for HTTP
data.

A. Real Case Scenario

Figure 7 reports the process of System Knowledge evolution
over the 21 days under analysis. In the first day all the
clusters are added, thus being all labeled as new (in green).
From the second day, we can notice different operations: (i)
some new clusters join the System Knowledge, (ii) the system
operates updates on others when finds similar clusters (blue),
and (iii) the remaining group (gray) is in idle. The growth of
Ẑ continues up to the beginning of the second week when
the pruning action - based on inactivity - starts evicting some
old, inactive clusters (yellow). The red bar details how many
discarded clusters reappear in the future steps.

The values obtained for the last two features depend on the
size of ∆Ithresh. To check the impact of this choice, Fig. 8
reports the number of clusters that would be evicted from
and eventually re-inserted into system knowledge. As expected
the number of both deleted and reappearing clusters decreases
enlarging ∆Ithresh. This behavior indicates a not negligible
periodicity, especially in consecutive days, that may suggest a
natural stabilization of the system knowledge size over long
periods. For extended analysis, a higher ∆Ithresh may be more
suitable, following memory and storage limitations, to let to
the system have time to level off.

Compare Fig. 7 with the growth with Fig 1. The number
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Table VII: Most interesting clusters obtained by the daily comparison with the system knowledge in the controlled experiment.

Day Main hostname (unique hostnames) Activity Day Main hostname (unique hostnames) Activity

Mar-
02

adnxs.com (3)
www.bing.com (1)

amazon.it (3)
doubleverify.com (9)
mp.weixin.qq.com (1)

Advertising
Search Engine
E-commerce
Advertising

Chinese Website

Mar-
03

ams1.mobile.adnxs.com (1)
ads1-adnow.com (3)
uk-ads.openx.net (1)

c.3g.163.com
googleapis.com (1)

Advertising
Advertising
Advertising

Chinese Website
Cloud Storage

Mar-
04

banzai-d.openx.net (1)
dt.adsafeprotected.com (1)

gvt1.com (3)
windowsphone.com (1)
ocsp.digicert.com (1)

Advertising
Hijacker
Hijacker

CDN Marketplace
Certificate inspection

Mar-
05

engine.bitmedianetwork.com (1)
62.210.188.202:8777 (1)

adaptv.advertising.com (1)
pubnub.com (16)

irs01.com (1)

uTorrent Adv
Suspicious Port
Suspicious Adv

Messaging
Suspicious Tracking

Mar-
06

23.246.50.130 (5)
198.38.116.148 (3)
23.246.50.136 (3)
23.246.51.136 (2)

178.18.31.55:8081 (7)

Netflix Italy
Netflix Germany

Netflix Italy
Netflix Italy

Suspicious Streaming

Mar-
07

aww.com.au (2)
*.liverail.com (1)

spaces.slimspots.com (1)
googleusercontent.com (2)

s8.algovid.com (1)

News
Advertising

Adware attack
Page Translation
Malicious Adv
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Figure 8: Number of evicted and reappearing clusters given
different ∆Ithresh.

of unique URLs tops to more than 420 000 after seven days,
with on average 72 000 unique URL per day. The number of
clusters instead solely reaches 1 600, with less than 200 newly
found clusters per day. In a nutshell, LENTA can decrease the
amount of information the security analysts have to process
by three orders of magnitudes so that they have to inspect less
than 200 clusters per day instead of managing several tens of
thousands of unique URLs.

The variability of URLs grouped in the same cluster also
simplifies the investigation of the involved services. For in-
stance, we checked some clusters that came into sight after
each System Knowledge enhancement phase. We report, for
each day of the first week of observation, the five new most
different clusters for the previously collected traffic, i.e., those
for which dmin(Cj(t), Ẑ(t− 1)) is highest.

Tab. VII details the results. In this case, as well, the services
are related to streaming, advertising, e-commerce services.
Some unexpected traffic emerges as well; for instance, on
March 3rd, the c.3g.163.com cluster emerges. It is re-
lated to the Chinese web portal www.163.com, a service
not reported in the previous days. URLs are related to a
newsfeed specific service. March 4th and 5th, we register
some suspicious or malicious traffic. Clusters are related to
hijacking services and aggressive advertisement. March 6th
is distinctively captivating. Eight out of ten most different
clusters contain URLs characterized by IP addresses which
resolve Netflix Italy or Netflix Germany CDNs. These were

not found in the previous days, highlighting a change in the
Netflix load balancing policies. The other cluster contains traf-
fic from 178.18.31.55:8081, connected to liverepeater,
a keyword related to illegal streaming content. Finally, in the
last day, some suspicious traffic is visible: a rare service like
aww.com.au, an Australian news website, and webpages
translated using the Google Translate online service (curiously
translating an adult-content website, possibly to evade content
filtering policies).

B. HTTPS Use Case

Here we report on our second experiment with HTTPS
traffic collected via the ERMES proxy.

Differently from the previous analysis, we consider individ-
ual users (albeit after anonymization). Starting from the traffic
generated each day by each volunteer, we run LENTA first
to characterize the usage patterns of each user, and second to
observe how it changes over time.
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Figure 9: Daily enhancement of system knowledge in HTTPS
traces.

Fig. 9 shows the behavior of the System Knowledge for the
current investigation. The functioning of LENTA is compara-
ble to the precedent experiment, reported in Fig. 7. However, in
this use case, LENTA produces information about the behavior
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of users, showing the flexibility of the system in supporting
data exploration. For instance, we report the analysis of the
most common categories of services accessed by users. We
focus on 171 clusters that resulted in being common for at
least two users. The categories extraction derives from manual
inspection of clusters. This step results greatly simplified
thanks to the similarity and expressiveness of URLs contained
in each cluster. Overall, we identified 20 coarse categories of
services.

Fig. 10 reports the fraction of clusters that fall into the same
category. Almost a quarter of the groups are related to third-
party services, which include advertisement, web tracking, and
analytics; their pervasiveness affects the results of the system.
Not surprisingly, social networks occupy the second position.
In the third place, we can find cloud services belonging to
Google and some CDN used for image storage. Overall, we
can map URLs to categories easily. The system dramatically
simplifies manual labeling, thanks to the rich information
offered by URLs in each cluster.8
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Figure 10: Most popular categories extracted from the clusters
visited by at least two users.

VII. SYSTEM ENGINEERING

In this section, we present our engineering effort to pro-
vide a scalable implementation of the LENTA system. The
challenge is to complete the whole processing before the
next period starts, i.e., within ∆T . Recall that each iteration
of DBSCAN has a complexity of O(N2) [14]. It requires
the computation of all N2 distances for all pairs of URLs,
which is based on the Levenshtein distance, whose complexity
is O(|s1|, |s2|), being N the number of URLs and si the
length of the ith URL. Notice that density-based clustering
algorithms like DBSCAN need to access the pairwise distance
between all nodes, and are, as such, intrinsically centralized.
Our design focuses on the parallelization of computation of the
distance matrix while keeping the clustering step centralized.
For this, we take advantage of the Apache Spark environment,
version 2.3.0, which runs on a medium-sized Hadoop cluster
composed of 25 worker nodes with a total of 564 cores and
2TB of RAM. All the algorithms that need a centralized
execution run on a high-end server equipped with two Intel R©

8To let the reader verify this, we made the results publicly available at
https://smartdata.polito.it/lenta-dataset

Xeon R© E5-2640 processors providing 40 cores in total and
128 GB of RAM. All the code used in the experiments is
written in Python, to guarantee consistency and uniformity.

A. Distance Matrix Computation

LENTA is built on the top of DBSCAN and uses the
silhouette to check cluster quality. Both require to access the
distance matrix, i.e., the matrix containing all the pairwise
distances among all URLs.

To mitigate these limitations, we investigate paralleliza-
tion techniques [13] considering both vertical and horizon-
tal solutions. For vertical solution, we consider the stan-
dard centralized solution offered by Scikit-Learn function
pairwise_distances which computes the distance ma-
trix dividing the workload on multiple threads, each running
on a separate CPU core on the same node. For horizontal
scalability, we consider our implementation that leverages
Apache Spark, where we distribute the computation of each
distance pair among executors, which run on different nodes.9

We run a set of experiments to gather the execution time
spent in completing the distance matrix calculation and the
subsequent IDBSCAN execution afterward. We consider dif-
ferent datasets of an increasing number of URLs. We compare
the two approaches in Fig. 11, with, respectively, 40 threads
and 500 executors. Notice the log scale on the y-axis. The
results depict the gain obtained by using the distributed ap-
proach (blue, dashed line) instead of the centralized one (red,
solid line). For large datasets, we obtain a speed of about nine
times. The distributed solution is, however, impacted by the
initial startup time of the Spark job due to operations needed
to initialize the environment and allocate the executors. This
phase slows down the execution for small datasets. Figure 12
illustrates this behavior, reporting the speedup factor obtained
dividing the execution time of the centralized implementation
by the distributed one, considering a different number of
executors. The red area highlights the limits for small datasets.
For datasets with more than 10,000 URLs, the distributed
implementation starts offering gains, scaling almost linearly
with the number of executors. This analysis shows how it
is possible to use a distributed approach for our problem,
especially when the system has to deal with a considerable
amount of data, taking advantage of the flexibility offered
by horizontally scalable solutions. We, however, showed how,
especially for smaller datasets, a centralized approach with a
well/equipped machine is still preferable.

B. System Knowledge Implementation

The second CPU intensive operation LENTA has to face is
the comparison of each newly found cluster Ĉ(i) with those
present in the System Knowledge Ẑ(i). Also, this involves
the computation of edit distances between many URL strings.
For this, we develop the System Knowledge module in the
Spark environment to guarantee scalability, both in terms of
storage and performance. The idea again is to first compare in

9The code is public and available at: https://github.com/marty90/
spark-distance-matrix
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Figure 11: Overall time needed to execute the whole clustering
for different dataset sizes.
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Figure 12: Speedup factor of Spark distributed approach
varying the number of executors w.r.t. centralized algorithm
with 40 threads.

parallel the clusters Ĉj ∈ Ĉ(t) with Ẑj ∈ Ẑ(t−1), ∀j, l . In a
second step, perform the insert and update operations on the
System Knowledge representatives. Using a tree organization
- through the implementation of the VP-tree [46] - for the
representatives in Ẑ , we improve in the look-up of the most
similar cluster in the System Knowledge (eq. (8)). The VP-
Tree structure is replicated in each executor and used to
compute the k-NN (with k = 1) for each representative of each
cluster Ci(t). In the end, the algorithm updates Ẑ , and build
and redistributes the newly updated VP-tree. This technique
speeds up the process and improves its scalability.

Computing and maintaining the System Knowledge for the
two weeks of HTTPS traffic requires 34 minutes, while, for
the three weeks of HTTP data, the whole process takes less
than five hours.

VIII. CONCLUSIONS

We designed a recursive version of a clustering algorithm
over daily HTTP/HTTPS traffic generated by hosts in a
network. We showed how LENTA reduces the amount of
traffic that needs a manual check and eases the observation
of changes in the network traffic. LENTA exposes well-
formed clusters of URLs which significantly simplifies the
identification of possibly malicious and undesired traffic.

This work goes in the direction of reducing the complexity
of network traffic inspection, supporting the analysts in ana-
lyzing a few hundreds of clusters instead of several hundred
of thousands of URLs. In general, LENTA simplifies the
analysis of the traffic transported by a network. Our results
show that the methodology, applied in a long-term observation,
can identify anomalies in the traffic and changes in users’
behavior.
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