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Summary  

The recent developments in automotive diesel engine subsystems, like injection 
systems and air management systems, allow for a much greater control and 
flexibility over the combustion process, thus resulting in significant reductions in 
emissions and fuel consumption. However, these developments also increase the 
complexity of the complete system leading to a much higher number of control 
parameters. This increase in number of control parameters makes the task of diesel 
engine calibration more complicated, as it requires a solution to an optimization 
problem of high dimensionality. The traditional optimization methods such as 
simple gradient method or steepest descent method are not suited for high 
dimensional optimization problems such as common rail diesel engine since they 
have a tendency of getting trapped in local optima.  To complicate the matter 
further, the optimized calibration, stored in the form of maps inside the engine 
control unit, must fulfill stringent requirements in terms of smoothness, ensuring a 
subtle transition of control parameters between neighbor operating points. This 
additional requirement of smoothness often means moving away from the optimum 
calibration, thus resulting in penalties in terms of emissions and fuel consumption. 
Moreover, traditional calibration methods are often slow and dependent on the 
experience of the calibration team, which can lead to an increase in the development 
time and cost for a newly designed engine.  

It is therefore necessary to develop a methodology that can reduce this loss of 
optima and carry out the engine calibration task in a quick and automatic way. With 
this aim, in this work, a one-click methodology has been developed that uses 
Genetic Algorithm (GA) to generate multiple optimum calibrations for each engine 
operating point. These multiple optimum calibrations form a Pareto front, thus 
providing a solution to classical multi objective optimization problem of diesel 
engine. Using these multiple optimum calibrations, a large number of calibration 



maps are generated. These maps are evaluated on the basis of smoothness and 
performance over a driving cycle. Following the evaluation, some calibrations are 
shortlisted automatically based on a tradeoff between the required level of 
smoothness and minimization of emissions. These shortlisted calibrations can be 
finally reviewed by the calibration team to select the final calibration. 

The multiple optimum calibrations generated using GA were compared with an 
existing calibration optimized using traditional methods for a C segment vehicle 
with a curb mass of 1650 kg for a Euro 6d application. Firstly, using the in house 
developed code for GA optimization, significantly better calibrations were obtained 
for all the engine operating points. Using these better calibrations and an integrated 
approach that reduces the loss of optima due to smoothening, a simultaneous 
reduction of 1% BSFC, 10 % NOX and 5% Soot was achieved over WLTC in 
comparison to the existing calibration. These reductions were obtained while 
achieving the same level of smoothness of the calibration maps of the existing 
calibration. Most importantly, using the described methodology the time required 
for calibration can be reduced drastically. The activity that typically takes couple 
of weeks can be carried out in couple of days. Moreover, using a reduced version 
of the described methodology an existing calibration was modified within minutes 
to provide significant reductions in one of the emissions (15% NOX) without 
deteriorating any of the other emissions, fuel consumption, combustion noise and 
exhaust temperature. 
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Chapter 1 

Introduction 

For more than a century diesel engines have been an integral part of the 
transportation industry. Four stroke diesel engines are quite commonly used in 
passenger cars, light-duty vehicles, and heavy-duty vehicles. Diesel engines have 
always been popular because of their high efficiency and high torque. Furthermore, 
since their emergence in the late 19th century, diesel engines have been through a 
constant innovative change, thus continuously improving and maintaining their 
dominance in the transportation industry. These constant developments have led to 
very complex modern day diesel engines with much higher number of control 
parameters than their previous counterparts. This rising number of control 
parameters increase the cost and effort required for optimizing the diesel engine 
calibration. Moreover, with stringing emission regulations and test procedures for 
automotive diesel engines, it is necessary to optimize the engine in the complete 
operating range.  

Before going into the details of engine calibration and optimization, in first 
section of this chapter, a short overview of the recent advancements that have taken 
place in various subsystems of diesel engines is provided along with the control 
parameters associated with these subsystems. In the second section, a brief 
introduction to the recent changes in diesel engine emissions regulations and testing 
methods is mentioned.  

1.1 Advancements in diesel engine subsystems 

The constant innovative development in different diesel engine subsystems 
have resulted in a drastic reduction in fuel consumption and pollutant emissions [1]. 
The different subsystems of a modern diesel engine, that can be broadly categorized 
in air management, injection and aftertreatment systems, have been described in 
brief in this section. 
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1.1.1 Air Management System 

The amount of fuel that can be injected in an Internal Combustion Engine (ICE) 
is limited by the amount of air entering the cylinder. Furthermore, the emissions 
from ICE are very strongly linked to the amount of air and turbulence inside the 
cylinder. In diesel engine combustion, as there is no prior mixture formation, the 
air management systems play an even more important role. Due to their importance, 
the air management systems have gone through a tremendous technological 
development. Some of the components of this systems are outlined below. 

Turbocharging System 

For a long time, turbocharging has been used as a method for increasing the 
torque and power of the diesel engines. The remaining enthalpy in the exhaust gases 
from the engine is used to drive a turbine which in turn drives a compressor. This 
compressor is used to raise the intake air to a higher pressure, typically known as 
boost pressure, to increase the density of the air entering the cylinder, thereby 
increasing the mass of air trapped. Thus, more fuel can be injected into the cylinder 
producing more torque and power. In the last couple of decades, turbocharging has 
also been used as a successful method to downsize diesel engines, meaning that 
same torque can be generated using smaller engines. This has resulted into a 
significant reduction in CO2 from the diesel engines. Furthermore, turbocharging is 
a very useful method to extract the enthalpy from the exhaust gases there by 
reducing the energy wastage.  

To further exploit the potential of turbocharging, two stage turbochargers are 
commonly used in diesel engines now a days. A sketch of a dual stage turbocharger 
is shown in Figure 1-1. The layout shown in Figure 1-1 shows a fixed geometry 
high pressure turbine with a waste gate valve. Due to its fixed geometry, this kind 
of turbine has a limited operating area which has to be matched to the engine. 
Therefore, a waste gate valve is used to limit the torque generated by the turbine at 
very high loads to avoid the problem of over speeding of the turbocharger.  

Instead of fixed geometry turbines with waste gate valves, Variable Geometry 
Turbines (VGT) are being increasingly used in modern turbocharging systems. 
Dual stage turbocharging systems use a complex control strategy to achieve a 
desired intake manifold pressure or boost pressure. The use of VGT increases the 
level of complexity even further. 
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Figure 1-1 A layout sketch of dual stage turbocharger with a waste gate at high pressure 
stage [2] 

Finally, not only turbocharging can result in lower CO2 emissions, but an 
increased boost pressure can allow a higher quantity of Exhaust Gas Recirculation 
(EGR), that is a very efficient method of NOX control[3]. 

Exhaust Gas Recirculation System 

As the name suggest, EGR is the recirculation of the exhaust gas inside the 
cylinder along with the fresh air. Ladommatos et. al. showed that EGR reduces the 
NOX by reducing the temperature of the combustion flame by dilution, chemical 
and thermal effects, dilution effect being the most prominent of the three [4]. In 
fact, several research works have been carried out showing the effectiveness of 
EGR to control NOX [5,6]. Typically, EGR systems can be a short route, long route 
or a dual loop comprising of both short and long route. An example of such a dual 
loop EGR system is shown in Figure 1-2. 
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Figure 1-2 A typical layout of dual loop EGR system [7] 

Long route EGR is more effective in controlling the NOX due to lower 
temperatures of the exhaust gases. Furthermore, long route results typically shows 
more favorable trade-offs for both BSFC-NOX and Soot-NOX. However, long route 
EGR suffers from poor transient response. Transient response is the time required 
to achieve the desired value of any control parameter. Due to the higher volume to 
be filled or emptied in case of long route EGR transient response is poor. Short 
route EGR does not have this drawback, but it is less effective in controlling NOX. 
Therefore, the best solution is a dual loop EGR, that can improve the response of 
the system during transients and at the same time provide advantages of lower 
emissions during steady state behavior [7]. 

However, in case of a dual loop EGR architecture is adopted, the complexity 
of the control is further increased, since two different paths for exhaust recirculation 
have to be managed. Furthermore, the control problem is made even more 
complicated by the need of coordinating the EGR control with the boost control, 
since for example, actions taken on the VGT to control the boost level will affect 
the pressure gradient between exhaust and intake systems, thus leading to changes 
in the EGR rate. 

Variable Value Actuation System 

Variable Valve Actuation (VVA) system works by modifying the valve timing 
or the valve lift or both. By modifying the timing of the valves, VVA systems can 
for instance allow the late closing of Exhaust Valve (EV) that can result in reduction 
of pumping work and internal EGR.  
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VVA systems are quite commonly used in gasoline engines because of their 
effectiveness in reducing the pumping losses due to throttling at part load.  
However, as there is no throttling in diesel engines, until recently the use of VVA 
was very limited for diesel applications. However, due to the requirement of faster 
warm up of the Exhaust After-Treatment System (EATS), there is a growing 
interest in VVA technology for diesel engines. Several research works have 
highlighted the potential of VVA in achieving a higher exhaust gas temperature 
with a marginal fuel penalty [8,9]. More recently, the potential of VVA for CO2 
reduction in light duty diesel engines has also been investigated [10]. Finally, VVA 
systems can also be used to generate swirl motion using an asymmetric valve lifts, 
thus eliminating the need for swirl control flaps in the intake ports to adapt the swirl 
level to different engine loads and speeds.  

1.1.2 Injection System 

The fuel injection has a major impact on mixture formation and thereby on 
emissions and combustion efficiency. Several researchers have studied the effect of 
optimized injection strategies for reducing the emissions [11,12]. In fact, being such 
a powerful method, injection parameter optimization has been used for reducing 
emissions from bio-diesel fed engines also [13]. Moreover, optimized injection 
strategy can be useful for reduction of combustion noise [14]. 

Being of such high importance, a short description of the injection parameters 
associated with a modern diesel common rail fuel injection system is provided here. 
The mass of the fuel injected into the cylinder of a last generation automotive diesel 
engine can be divided into multiple injection events using the common rail fuel 
injection system. Figure 1-3 shows a typical injection strategy used in modern diesel 
engines which consists of two pilot injections, one main injection, followed by one 
after and one post injection. It should also be added here that the injection strategy 
might and does change depending on the engine operating conditions, in terms of 
injection timing, injection events and injected mass for each event.  

The mass of the fuel injected in each injection event is controlled by the 
Energizing Time (ET), which is the time duration for which the electrical command 
is applied to the injector to keep it open. The time interval between electrical 
commands of two subsequent injection events is known as Dwell Time (DT). These 
two parameters are associated with each injection event. Apart from these, injection 
pressure and Start of Injection (SOI) have to be considered to define the complete 
injection strategy. In this way, a modern common rail diesel engine can easily have 
up to a dozen of parameters just for injection system control. 
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Figure 1-3 A typical injection strategy used for modern automotive diesel engines 

1.1.3 Exhaust After-Treatment System 

Although the recent advancements in the above described air management and 
fuel injection systems contributes to significantly reduced engine out emissions, the 
current stringent legislation requirements can be fulfilled only by means of exhaust 
aftertreatment systems.  

Modern diesel engine EATS system typically consists of at least three 
components, one responsible for HC and CO control, one responsible for PM 
control and one for NOX control. Furthermore, with some modern EATS 
architecture it is also possible to combine, for example, the functionality of PM and 
NOX control in just one component. Since the present work aims at reducing the 
engine out emissions by optimizing the engine calibration, no further description 
will be provided here concerning the EATS.  The references in this introduction 
section will therefore be limited to the need of adopting different calibration modes 
(e.g. normal operating mode, particulate filter regeneration mode, catalyst warm up 
mode etc.) to fulfill the needs of the EATS in terms of regeneration, temperature 
management etc. [8]. Although the optimization methodology proposed in this 
work has been developed, applied and assessed for the minimization of engine-out 
pollutant emissions in normal operating mode, the same approach could be adopted 
also for other calibration modes. . 

1.2 Driving Cycles and Emission Regulations 

The emissions from the automotive diesel engine in Europe have been 
controlled by European Union (EU) legislation for more than two decades now but 
these limits are becoming more and more strict. This can be seen from Table 1-1 
that shows the legislative limits for light duty diesel vehicles in Europe. 
Furthermore, in the last decade (Euro 5/6), a limit has also been introduced for 
Particulate Number (PN) under Particulate Measurement Programme (PMP) 
developed by the UN/ECE.  
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Table 1-1 European Emission Standards for Light Duty Diesel Vehicles  

Stage Date CO HC HC+NOX NOX PM PN 
g/km #/km 

Euro 1 1992.07 2.72 - 0.97 - 0.140 - 
Euro 2, IDI 1996.01 1.00 - 0.70 - 0.080 - 
Euro2, DI 1996.01 1.00 - 0.90 - 0.100 - 

Euro 3 2000.01 0.64 - 0.56 0.50 0.050 - 
Euro 4 2005.01 0.50 - 0.30 0.25 0.025 - 
Euro 5a 2009.09 0.50 - 0.23 0.18 0.005 - 
Euro 5b 2011.09 0.50 - 0.23 0.18 0.005 6.0x1011 

Euro 6 2014.09 0.50 - 0.17 0.08 0.005 6.0x1011 

 
 
However, as the emissions from the vehicles are largely dependent on the 

operating conditions of the engine, they are certified using standard driving cycles 
and procedures. These standard driving cycles and testing protocols are known as 
type approval procedures. New European Driving Cycle (NEDC) has been used for 
Type Approval (TA) procedure for light duty vehicles in Europe until September 
2017. NEDC, being far from a realistic driving scenario, was replaced by World 
harmonized Light duty Test Cycle (WLTC) [15,16], aiming to close the gap 
between TA and real world driving conditions. The speed profile for NEDC and 
WLTC is shown in Figure 1-4. It can be seen from Figure 1-4 that WLTC has higher 
maximum speed and higher acceleration than NEDC. WLTC also has reduced 
stationary time and increased transient phases, thus making it more realistic and 
much closer to the real driving conditions than NEDC. 

 

Figure 1-4 Speed profiles for NEDC and WLTC 

However, even though the operating conditions over WLTC are closer to real 
driving conditions in comparison with NEDC, several studies demonstrated that 
emissions recorded on the road during the normal operation of the vehicles are 
typically significantly higher than those measured in during TA tests [17]. 
Moreover, even without violating the legislation by using so called “defeat devices” 

[18] (i.e. devices capable to detect the execution of a TA test and to activate specific 



 

8 
 

emission control strategies in these conditions), the definition of a given driving 
schedule such as the WLTC or the NEDC paves the way for the development of 
technologies and control strategies “tailored” to the TA procedure. These 

technologies and these strategies can on the contrary be only partially effective in 
controlling vehicle emissions on the road, in typical driving conditions, thus making 
the tightening of the legislation limits only partially effective in controlling the 
environmental impact of the new vehicles. For these reasons vehicles sold after 
September 2017 also need to comply with the Real Driving Emissions (RDE) type 
approval procedure.  In RDE test procedure the emissions from the vehicles are 
measured on the road during normal vehicle operation using a Portable Emission 
Measurement System (PEMS), and emissions recorded on the road should not 
exceed values recorded in the lab during TA procedure by a so called “conformity 

factor” which should ideally be as close as possible to unity. 
According to the legislations, an RDE cycle must last between 90 to 120 

minutes and the route has to include one segment each of urban (<60 km/h), rural 
(60 to 90 km/h) and motorway (>90km/h) driving conditions. Furthermore, each 
segment must cover a minimum distance of 16 km [19]. 

Due to the introduction of the WLTC and RDE, Euro 6 emission standard for 
light duty diesel vehicles was introduced in multiple phases. This is shown 
schematically in Figure 1-5. The different phases for Euro 6 are described here 
briefly [20]. 

 Euro 6a: This phase excluded the PMP measurement procedure for PM and 
PN. Furthermore, this stage was only applicable to vehicles that meet Euro 
6 standards ahead of regulatory deadlines and therefore it is not shown in 
Figure 1-5. 

 Euro 6b: This phase enforced the Euro 6 emission requirements including 
PMP measurement procedure for PM and PN.  

 Euro 6c: For this phase, Euro 6 emission requirements were enforced but 
with a different type approval cycle (WLTC). 

 Euro 6d-TEMP: Compliance of Euro 6c emission standard along with RDE 
testing with temporary conformity factor. A conformity factor of 2.1 was 
used for initially which was reduced to 1.5 during the later stages of RDE.  
(A RDE test with conformity factor of 2.1 or 1.5 means that the emission 
measurement obtained during the RDE test trip cannot be higher 2.1 or 1.5 
times the legislation limit.)  

 Euro 6d: Full Euro 6 emission requirements, i.e., Euro 6c emission standard 
and RDE testing against final conformity factors. 
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Figure 1-5 Phasing of different European emission standards for light duty vehicles along 
with the different type approval cycles 

Due to the introduction of RDE, the engine calibration has to be optimized for 
the complete operating range. This is clear by looking at the engine operating points 
for a C segment vehicle typically encountered on the WLTC and one RDE cycle 
shown in Figure 1-6.The red line in the Figure 1-6 represents the full load curve. It 
is quite evident from the Figure 1-6 that RDE cycle is more demanding and covers 
almost the complete engine operating region. 
 

 

Figure 1-6 Engine operating points for a C segment car on the WLTC and a RDE cycle 
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Chapter 2 

State of the Art Engine Calibration 
Methods 

With such advancements in various components of diesel engine the number of 
control parameters have increased a lot. The increased number of control 
parameters while provide more flexibility and better control over the combustion 
process, make the task of engine calibration more difficult. In this chapter a brief 
introduction of engine calibration has been provided before explaining the problems 
associated with the traditional methods and motivations behind this research work.  

2.1 What is Engine Calibration 

For understanding the basics of engine calibration, it is essential first to explain 
the functioning of the engine control. When the accelerator pedal of the vehicle is 
pressed, the change in position of the pedal is translated by the Engine Control Unit 
(ECU) in terms of torque request at a given speed. Inside the ECU there are maps 
of different control parameters mentioned in the previous chapter. These maps are 
a function of speed and load. The ECU reads the maps for different control 
parameters for the given speed and load and controls the engine to provide the 
desired torque while minimizing the fuel consumption and engine emissions. This 
process is shown in Figure 2-1. 

 

 

Figure 2-1 Engine control using the lookup tables stored in ECU 
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These maps for different control parameters stored in the ECU for optimum 
performance of the engine are known as the engine calibration maps. Besides the 
optimization of the engine performance, the engine calibration maps must fulfill 
additional constraints in terms of smooth drivability, low engine vibrations, and 
noise. These constraints depend on the mission profile of the vehicle. Furthermore, 
the engine calibration maps should be smooth enough. The smoothness of 
calibration maps essentially means the absence of any sudden variations in the 
values of the control parameters for the adjacent operating points. The smoothness 
of the calibration maps has to be ensured to avoid problems in drivability especially 
during transients. For certain control parameters, like EGR and boost pressure that 
have low dynamics this becomes even more important. Some time is required for 
the control parameters with low dynamics to achieve the requested target value 
[21,22]. For this reason, during the transient, when the requested target values 
change quickly, smooth maps are required to achieve the steady behavior as soon 
as possible. 

Of course, the engine needs to be controlled in the complete operating range, 
and therefore, the engine calibration must be optimized for the complete operating 
range. However, the reference cycles mentioned in Chapter 1 are used as targets for 
the engine calibration task as they provide targets in terms of emissions and fuel 
consumption for homologation. Furthermore, with the introduction of RDE the 
optimization of engine calibration in the complete operating range has to be 
ensured. 

This task of optimization of engine control parameters for the complete engine 
operating range and storing them in the form of maps in the ECU is known as the 
engine calibration task. This chapter will now go in deeper detail of how engine 
models are used to aid in engine calibration task. This will be followed by the 
different calibration methods that are commonly used for diesel engine calibration. 

2.2 Model Based Calibration 

Diesel engine combustion is a very complex phenomenon which is difficult to 
fathom and even more difficult to optimize. Furthermore, as mentioned earlier, with 
increasing the number of control parameters, it is possible to better manage the 
combustion process, but it also increases the complexity of the system. As for many 
other complex systems, modeling and simulation tools are employed to reduce the 
development time and cost of the diesel engines. In the context of engine 
calibration, these models are used to predict emissions and other engine quantities 
like temperature and pressure for any change in control parameters. Different kinds 
of models are available and can be used to simulate the combustion in diesel 
engines. These models can be broadly classified in physical and experimental 
models. Both of these model categories will now be described in detail along with 
their advantages and disadvantages. 
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2.2.1 Physical Models 

A physical model uses physical and mathematical concepts and equations to 
describe a system. These equations can be solved to predict the outcome of any 
change in the input of the system. Depending on the type of phenomenon being 
described, these models can vary in complexity. Based on the discretization of the 
control volume, these models can be classified into Three Dimensional (3D), Two 
Dimensional (2D), and One Dimensional (1D) models. For simulating different 
processes in diesel engines, they are quite common. A brief description for each of 
these kinds of models is provided here. 

3D Models 

As combustion in diesel engines is a 3-dimensional phenomenon, 3D 
Computational Fluid Dynamics (CFD) models are quite good in terms of predictive 
capabilities. This is especially true for prediction of emissions like Soot and NOX. 
However, these models have a massive drawback in terms of time. These models 
are not only computationally costly to solve but also requires an enormous effort 
for creating the models. Due to this shortcoming, use of these models is limited to 
concept validation and enhancing the knowledge of combustion inside the diesel 
engine [23,24]. As an example, if a new injector or a combustion chamber concept 
has to be tested, 3D CFD simulations would be the best choice to evaluate the design 
[25,26]. However, the use of these kinds of models for engine calibration is not 
possible because of too large computational time and cost. 

2D Models 

These models discretize the control volume in two directions. A very 
commonly used example of this type of model is Direct Injection Diesel Jet Model 
by Gamma Technologies that discretizes the jet of the injected fuel in radial and 
axial direction [27]. These kinds of models have lower computational time than 3D 
models, but still considerably high for calibration activity. Furthermore, this savings 
in computational time comes at the cost of accuracy in terms of predicting 
emissions. 2D models can predict the trend of emissions accurately for change in 
control parameters but are not very accurate in providing the exact values 
(especially soot). 

1D Models 

1D CFD models can be effectively used for simulating the phenomena or 
systems in which the flow is predominant in just one direction. A typical example 
of this would be simulating gas exchange in diesel engine. Even though these 
models are very fast to compute and solve, they cannot be used for prediction of 
emissions. For this reason, experimental models, described in detail in the next 
section, are preferred for carrying out the engine calibration task.  
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2.2.2 Experimental Models 

These models or methods are based on experiments performed on the engine 
test bench. During the early development of diesel engines, when the number of 
control parameters were very limited, these parameters could be optimized 
experimentally at the test bench by changing one parameter at a time and evaluating 
the effect of this variation. This method is simple if there is no interaction between 
different parameters. However, in diesel engines the different control parameters 
interact with each other. For example, higher boost pressures allow higher EGR to 
be used for NOX control. In order to exploit this relationship, it is important to vary 
both boost pressure and EGR simultaneously. This simultaneous variation of the 
control parameters is carried out using full factorial experiments. If we consider a 
full factorial experiment for two control parameters each having 10 different 
discrete levels or values of variation, then this would give 100 experiments to be 
carried out. This is shown in Figure 2-2. 

 

 

Figure 2-2 Full factorial experimental design for two parameters each having 10 levels 

In fact, as the number of control parameters increase, the number of 
experiments increase exponentially with a relation mentioned in Equation (1). 

𝑁𝑜. 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠 =  𝑁𝑜. 𝑜𝑓 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑁𝑜.𝑜𝑓 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠   (1) 
Using this relation, Figure 2-3 shows that for a system with eight control 

parameters, each having three discrete levels, we will need almost 6500 
experiments for a full factorial analysis. As mentioned before, a modern diesel 
engine can easily have up to 15 control parameters. It is therefore infeasible to 
perform a full factorial experimental analysis for such a complex system.  
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Figure 2-3 Number of experiments required for a full factorial design as a function of 
number of control parameters and levels of each control parameter 

For this reason, Design of Experiment (DoE) techniques are used to reduce the 
number of experiments required [28]. Using DoE, a shorter experimental test 
campaign is generated that can be performed at the test bench in a shorter time than 
full factorial design. The size of the experimental campaign still depends a lot on 
the required model type and complexity. To reduce the experimentation time and 
cost even further, a lot of research have been performed in the area of experimental 
modelling of the diesel engines [28–30]. The commonly used experimental engine 
models can be broadly classified into two categories, Polynomial and black-box 
models, both of which will be now described in brief. 

Polynomial Models 

An experimental model defines the relationship between the inputs and the 
outputs. In polynomial models, this relationship is defined using polynomial 
equations.  A typical example for a quadratic polynomial model with two inputs is 
shown in Equation (2). If the relationship between the two inputs is not linear, then 
this degree of polynomial has to be used to model the relationship. 

�̂� =  𝑎1 + 𝛼2𝑥1 + 𝛼3𝑥2 + 𝛼4𝑥1
2 + 𝛼5𝑥2

2 + 𝛼6𝑥1𝑥2            (2) 

As it can be seen from the equation, at least 6 experiments are required as there 
are 6 unknown variables. The number of experiments increases as the degree of the 
polynomial increases. These higher degree polynomials are required to model 
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complex relationships like the ones between different control parameters of a diesel 
engine. However, even with the higher degree polynomial functions, the number of 
experiments required to be performed, in order to model the engine behavior 
correctly, is still much less than required in a full factorial experiment. Due to this 
benefit of reduced experiments, DoE along with polynomial models are quite often 
used for modeling and optimization of diesel engine performance [29–31]. Even if 
these models are quite popular because of their simplicity, they are not suitable to 
model higher dimensional space problems with a large number of inputs. Due to 
the increased number of control parameters in diesel engines, black box models are 
also gaining popularity for the engine optimization problem. 

Black Box Models 

These are a category of models in which the input is provided to the model, and 
the output is obtained without having any information or knowledge about the 
internal functioning of the model. In this way, the model itself behaves like a black 
box inside which the inputs are processed but cannot be observed. This is shown in 
Figure 2-4. 

 

Figure 2-4 Output response estimation using a black box model 

Typical examples of black box models include Neural Network (NN) models 
and Gaussian Process (GP) models. Even though Black Box models are difficult to 
comprehend and interpret, they are quite useful in modelling system with high 
dimensional space such as diesel engines. For this reason, such models are being 
increasingly used for modelling and optimization of diesel engines [22,32,33].  

2.3 Different Approaches for Engine Calibration 

Once the models have been created using the above-described methods, the 
next step is to use these models to optimize the engine in the complete operating 
range and creating the calibration maps. For carrying out this task, different 
approaches can be adopted. Some of the popular calibration approaches along with 
their pros and cons are discussed in brief in this section. 

2.3.1 Local Approach for Calibration 

Local approach for engine calibration is one of the most commonly used 
approaches. In the local approach, the operating points of the driving cycles are first 
grouped into a reduced number of points which are commonly referred to as Key 
Points (KPs). This definition of KPs is carried out using certain clustering 
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algorithms such as the nearest neighbor algorithm. This is shown in Figure 2-5, 
where the operating points on WLTC are associated to the nearest KPs. The 
operating points are shown on normalized axes so that load and engine speed have 
the same scale for the clustering algorithm to work. The engine load and speed have 
been normalized using the respective maximum and minimum values encountered 
on WLTC. In Figure 2-5 the operating points are shown by the same symbols 
(smaller) and the same color as of the KP they are associated with. 

 

 

Figure 2-5 Key point definition for WLTC using a clustering algorithm 

It can be seen in Figure 2-5 that about 80% of the operating points of WLTC 
could be represented by just 7 to 8 KPs. However, higher number of KPs are used 
as at different engine speed and load conditions different control parameters are 
active. For example, at low loads two pilot injections are used to control the engine 
combustion noise but at high loads the second pilot is not used as it is not very 
effective. Similarly, at low loads boost is not a controllable parameter, as the 
exhaust gases entering the turbine at low loads do not have enough enthalpy to 
produce sufficient power to drive the compressor. Therefore, the desired boost 
pressure cannot be achieved at low loads. In this way, each KP may have different 
number of active control parameters associated with them. Furthermore, to avoid 
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extrapolating the control parameters or engine calibration maps, a higher number 
of KPs are selected. For a driving cycle as the WLTC, to adequately model the 
engine behavior the number of KPs can be anywhere between 18 and 25. For RDE, 
the number of KPs are typically between 25 and 30.  

Once the KPs are defined, they can be considered as the statistical 
representation of the engine operation over the given driving cycle. The 
experimental models are therefore created for only these points. These experimental 
models are called local models. Using the local models, each KP is optimized for 
some objective subjected to some constraints. It should be mentioned here that each 
KP is modelled and optimized independently of the other KPs. This means that 
value of the control parameter or emission at different KPs do not influence each 
other in any way. Thus, both the modelling and optimization is carried out locally 
for each KP. This is the reason that the approach is known as local approach for 
calibration. 

Once the optimum value of the control parameters for all the KPs are found, 
the calibration maps are generated using interpolation and extrapolation. The 
calibration map generation from the optimal values at different KPs for one such 
parameter, SOI is shown in Figure 2-6 

 

 

Figure 2-6 Start of Injection map creation from the optimum values at different Key Points 

Since all the KPs are optimized locally, the value of the control parameters for 
the neighboring KPs can be very different. This can result in rough calibration 
maps, for example Figure 2-6, which is not acceptable due to the violation of the 
smoothness requirement. Therefore, the final step is to smoothen the calibration 
map manually. As a consequence, the values of the control parameters can be 
moved away from their optimal value to smoothen the map as shown in Figure 2-7. 
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Figure 2-7 Manual smoothening of Start of Injection map 

At each KP, the local models are highly accurate in predicting emissions for 
changes in control parameters. However, due to their local nature, there is no 
information available between different KPs. Furthermore, one of the major 
drawbacks of the local models is the loss of optimality due to manual smoothening 
procedure. However, local approach is still widely used in the industry for 
calibration due to the accuracy of the local models. Moreover, the local approach is 
much simpler than its counterparts, which are described next. 

2.3.2 Global Approach for Calibration 

In the global approach, the engine models are constructed for an operating 
region instead of a point. Therefore, the engine speed and load are also inputs to the 
global models. This means that the global models can predict the result of variation 
in engine speed and engine load in addition to the variation in control parameters.  
Typically, more than one DoE is defined to cover the entire operating range of the 
engine. The reason is same as mentioned before; a different number of control 
parameters are active in different areas of engine operation. The areas of engine 
operation having similar control parameters are combined together, thus resulting 
in 3 or 4 global DoEs. This is shown in Figure 2-8. 
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Figure 2-8 Modelling of the complete engine operating range using global Design of 
Experiment 

Once the global models are constructed for each region, these models are then 
used to optimize the engine calibration. The difference with respect to the local 
method is that there instead of local optimization of KPs, here the complete set of 
engine calibration maps are optimized globally. This essentially means that using 
different techniques like Local Linear Model Tree (LoLiMoT), polynomial models, 
splines etc., the calibration maps can be built by optimization of global models 
while imposing smoothening constraints directly on the maps. In this way, in global 
approach, both modelling and optimization processes are global. 

Global approach eliminates the manual smoothening procedure that is present 
in the local approach. Due to the removal of the manual smoothening procedure, 
this approach has become quite popular for engine calibration [34,35]. In addition, 
due to the use of global models, information is available in the complete engine 
operating range and not just at some KPs as in the case of local approach. However, 
global models are not as accurate as the local models. Furthermore, in order to build 
global models, very large DoE campaigns are required (typically 6-8 times larger 
than local ones). These large campaigns require a long testing time and therefore 
are prone to instrument drift during the testing [36]. This drift can further reduce 
the accuracy of the models. Due to these shortcomings, local models are still 
preferred over global models. 

2.3.3 Mixed Approach for Calibration 

As the name suggests, mixed approach is intermediate between local and 
global. Mixed approach uses local models to maintain the accuracy and global 
optimization to avoid loss of optima due to smoothening of the maps. In this way, 
mixed approach combines some of the advantages of the two approaches. However, 
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as local models are used in mixed approach also, the information between different 
KPs is still missing. Furthermore, the mixed approach involves a lot of step and is 
more complex than both local and global approach [37]. That is why this approach 
is sometimes used in the industry, but it is not very popular [38]. 

2.4 Motivations for Improving Calibration Methodology 

The above-mentioned approaches are state of the art for diesel engine 
calibration. However, they are slow, time consuming and most importantly, 
dependent on the skill of the calibrators. In all the three approaches, the calibrators 
give the constraints required for optimization. These constraints may not always 
result in the optimum solution of the problem and can further slowdown the 
calibration process.  

With the aim of reducing the effort for diesel engine calibration, a faster and 
automated calibration methodology for last generation of automotive diesel engines 
has been developed in this work. Furthermore, it cannot be argued that when using 
models to carry out the calibration task, accuracy of the models is most important 
parameter to be considered. Local models are certainly at an advantage in terms of 
accuracy. If the loss of optima associated with the local approach can be tackled, 
then this can bring the local approach at par with the other methods of calibration, 
if not make it better. For this reason, local models have been selected to carry out 
the work further. In order to remove the loss of optima occurring in local models, 
smoothness and optimization steps have been integrated in this methodology. 
Moreover, a Multi Objective Optimization (MOO) method based on Genetic 
Algorithm (GA) have been developed in this work to find the optimum values for 
the control parameters for different KPs. 

In Chapter 3, a description of the local models used for carrying out the 
calibration task is provided. This is followed by the description of optimization 
methodology in Chapter 4. The results from the optimization are used in Chapter 5 
to describe the smooth calibration map generation methodology.  In Chapter 6, the 
results for the calibration map generation methodology have been shown and 
discussed. This is followed by concluding remarks in Chapter 7. 
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Chapter 3 

Engine Emission Models 

Some parts of this chapter have already been published in the following journal 
article: 

 Millo F, Arya P, Mallamo F. Optimization of automotive diesel engine 
calibration using genetic algorithm techniques. Energy 2018. 
doi:10.1016/j.energy.2018.06.044. 

The experimental models used in the research activity were provided by FEV 
Italy. The engine used in the experimental activity is equipping a C segment vehicle 
in European market, and it features a two-stage turbocharger and a short route EGR, 
without any VVA system. For calibrating the engine for the European market, 25 
KPs were selected. However, 5 of these KPs were at high loads and high speed that 
are not encountered during WLTC and therefore have not been considered in this 
study. However, this does not mean that the methodology has been defined only for 
WLTC. It can be extended to any type of driving cycle and to any number of KPs. 

In the first section of the chapter, the main engine control parameters have been 
highlighted along with the modelling domain. Following this short introduction, the 
modelling process has been described. In the last section of the chapter, the quality 
of the models used has been assessed and reported. 

3.1 Model Domain and Process 

The following parameters were used as inputs for the empirical models. 
1. Start of Injection (SOI) 
2. Air Quantity 
3. Rail Pressure or Injection Pressure 
4. Swirl level 
5. 1st Pilot Quantity 
6. 1st Pilot Dwell Time (DT) 
7. Boost Requested 
8. 2nd Pilot Quantity 
9. 2nd Pilot DT 
The number of inputs for all the KPs were not that same as some of the control 

parameters (last three) mentioned above were only partially active.  Boost requested 
was not an active control parameter at lower loads because the exhaust gases 
arriving at the turbine cannot generate enough power to drive the compressor. 



 

22 
 

Furthermore, 2nd pilot injection, which is quite effective in reducing the CN at low 
loads, was not used at high loads as this can affect the combustion stability.  

As mentioned earlier, DoE was used to create empirical models, which were 
then used to reduce the calibration effort. For creation of local models for each KP, 
the experiment was carried out in such a way that all the control parameters were 
varied in some range. This range is typically known as the model domain. While 
using the models for predictions, the quality or the predictability of the models is 
valid only in the model domain. Of course, the exact value of model domain for 
each control parameter changes according to the KP, but the range of variation in 
the value is usually constant. As, it is not possible to show the model domain for 
each KP, therefore the range of variation is shown in Table 3-1. This range of 
variation, as mentioned earlier, is typically constant, but might be subjected to small 
changes depending on the feasibility of the values that the control parameters take. 

Table 3-1 Range of variation of each control parameter for the experiments to generate 
empirical models [39] 

Parameter 
Number 

Input Quantity Unit Range of Variation 
for Domain 

1 SOI °bTDC ±4 
2 Air Quantity mm3/stroke ±40 
3 Rail Pressure MPa ±30 
4 Swirl level % ±30 
5 1st Pilot Quantity mm3/stroke ±0.8 
6 1st Pilot DT µs ±500 
7 Boost Pressure kPa ±25 
8 2nd Pilot Quantity mm3/stroke ±0.8 
9 2nd Pilot DT µs ±500 

 
Once the experiments were carried out for each KP, the results from the 

experiments were used to construct the empirical models using a Gaussian Process 
(GP) regression. GP regression uses the concept of maximum likelihood to train the 
models. As it is a vast topic and has been extensively covered in literature, it has 
not been explained here [40–42]. The experiments were designed in such a way that 
for each KP, there were 140 design points, 16 repetition points and 20 validation 
points. Design points were used for generating the empirical models, whereas 
repetition points were used to correct any drift in the instruments used for testing. 
Instrument drift is typically common while performing long test campaigns at the 
engine test bench.  However, most importantly, the validation points were used to 
validate the models and check the predictive capability of each model. As these 
points are not used for training of the model, they can provide useful information 
about the models overfitting the training data. To add another check for the quality 
of the models, Leave One Out (LOO), a cross validation technique, was also used 
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[43]. With LOO technique, the model is trained on all the design points but one and 
the model prediction is then carried out for this particular point. This process is 
repeated until all the design points have been left out once. Together, these three 
parameters, 𝑅2, 𝑅𝑉𝑎𝑙

2  and 𝑅𝐿𝑂𝑂
2  were used to assess the quality of the models 

generated. If the value of any of these correlation coefficients was less than 0.95, 
the models were rejected and the experimental activity was performed again for that 
KP. The next section shows the quality of the models generated for one of the KPs.  

3.2 Model Quality 

The following engine outputs were modelled as a function of the control 
parameters: 

 Brake Specific Fuel Consumption (BSFC) 
 Brake specific emissions (NOX, Soot, HC, CO) 
 Combustion Noise (CN) 
 Exhaust Temperature 
In this way, 7 models were created for each KP. As an example, the model 

quality using the correlation coefficients for one of the KPs (2000 rpm x 5 bar) has 
been reported in Table 3-2. Following this, the model response plots for each of the 
empirical model for the same KP are shown from Figure 3-1 to Figure 3-7. 

Table 3-2 Different correlation coefficients used for evaluating the model quality [39] 

Model 𝑹𝟐 𝑹𝑽𝒂𝒍
𝟐  𝑹𝑳𝑶𝑶

𝟐  

BSFC 0.966 0.956 0.953 

NOX 0.996 0.990 0.988 

Soot 0.996 0.960 0.972 

CO 0.993 0.976 0.971 

HC 0.956 0.954 0.950 

CN 0.987 0.967 0.967 

Exhaust Temperature 0.988 0.969 0.973 

 
As it can be seen from the Figures and the table, all the models showed very 

high predictive capabilities. These models are used to optimize the engine 
calibration in a computer environment, thus reducing the cost and development 
time. However, as mentioned earlier, traditional optimization techniques are not 
well suited for such a complicated task. Therefore, in the next chapter, a novel 
optimization methodology using these empirical models have been described.  
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Figure 3-1 BSFC model response [39] 

 

Figure 3-2 NOX model response [39] 

 

Figure 3-3 Soot model response [39] 
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Figure 3-4 CO model response 

 

Figure 3-5 HC model response 

 

Figure 3-6 CN model response [39] 
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Figure 3-7 Exhaust temperature model response 
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Chapter 4 

Optimization 

Some parts of this chapter have already been published in the following journal 
article: 

 Millo F, Arya P, Mallamo F. Optimization of automotive diesel engine 
calibration using genetic algorithm techniques. Energy 2018. 
doi:10.1016/j.energy.2018.06.044. 

 
Optimization of a diesel engine is a multi-objective optimization (MOO) 

problem since many objectives like fuel consumption; emissions, combustion noise 
etc. have to be optimized. Moreover, because of the trade-off relationship between 
the different objectives like Soot and NOX this optimization task is further 
complicated. Traditionally, the solution to a MOO problem is found by breaking 
down the problem into multiple Single Objective Optimization (SOO) problems. 
Out of these multiple problems, the optimization problem with the most significant 
objective is then considered and solved.  The choice of the most significant 
objective is dependent on the calibration target. In these single objective problems, 
the optimization is carried out for one objective while the rest of the objectives act 
as constraints. This is also known as bounded objective function method [44]. 
Furthermore, the solution to the optimization problem is typically found using 
classical optimization techniques such as steepest descent or simple gradient 
method. Mathematically, this type of optimization can be described by the Equation 
(3) to Equation (7): 

 
𝑇𝑎𝑟𝑔𝑒𝑡 = min(𝐹𝐶)            (3) 
𝑁𝑂𝑋 ≤ 𝑎             (4) 
𝑃𝑀 ≤ 𝑏            (5) 
𝐶𝑁 ≤ 𝑐            (6) 
𝐸𝑥ℎ 𝑇𝑒𝑚𝑝.  ≥ 𝑑…           (7) 

 
Although, the calibration activity can be carried out using the conventional 

methods, there are some significant drawbacks associated with these methods. 
Firstly, the traditional optimization methods are not suitable for such a kind of 
optimization. Traditional optimization methods like gradient descent are not very 
useful for solving the higher dimensional optimization problems such as diesel 
engines, which can easily have up to 15 control parameters. These methods worked 
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well with convex functions and trivial non-convex functions [45]. Moreover, the 
application of such optimization methods is confined to continuous differentiable 
functions. Furthermore, the solutions from these methods depend on the 
initialization as these methods suffer from a possibility of being trapped in local 
minima.  

A single objective optimization is not the ideal scenario, especially for local 
models, since this limits the possibility of selecting a solution that can give better 
result in tradeoff between emissions and fuel consumption. For example, with a 
MOO solution that generates a Pareto front between different objectives, it might 
be possible to select a solution that gives much lower NOX for a very small penalty 
in fuel consumption. Pareto front with multiple optimized calibrations also provides 
more flexibility in selecting the calibration that can provide smoother calibration 
maps.  

Furthermore, the constraint definition coupled with traditional optimization 
methods pose even a bigger problem. Typically, these constraints come from the 
experience of the calibration team. This is not always the best choice for defining 
the constraints as it is dependent on human judgement and might be prone to errors. 
In addition, in some particular cases, such as a newly designed engine, it is 
impossible to determine the adequate value of these constraints.  Moreover, since 
the aim of this work is to develop a methodology that is automatic, definition of 
constraints coming as human input proves to be a roadblock towards achieving the 
aim.  

In the direction of improving the calibration methodology for diesel engines, 
an optimization methodology has been described in this chapter, the code for which 
was developed in house using MATLAB v2016b. In the described optimization 
method, a similar bounded optimization has been followed. However, the 
constraints have been defined dynamically and systematically in such a way that a 
Pareto front is obtained. Furthermore, the optimization is carried out using Genetic 
Algorithm (GA) that have become quite popular due to their stochastic nature and 
capability to avoid local minima. 

In the first part of the chapter, a MOO methodology has been described. For 
illustration purpose, the methodology has been described using one KP (2000 rpm 
and 5 bar BMEP). The starting point of this methodology are the local empirical 
models described in the previous chapter. Following the description of the 
methodology, some results achieved have been shown. In the second part of the 
chapter, a specific case of the optimization problem has been considered. This is a 
case when a calibration is already present for the engine, but a reduction is required 
for one of the emissions, while preserving the smoothness of the calibration maps. 

4.1 Multi Objective Optimization 

As mentioned earlier, traditionally the MOO problem is broken down into 
multiple SOO problems and then solved for the most significant objective. 
However, in the described methodology, instead of solving for just one objective, 
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the multiple SOO problems have been solved in a systematic way to obtain a Pareto 
front.  

Before going on with the description of how the Pareto front is obtained, it is 
necessary to first introduce the optimization method used to solve a one SOO 
problem, which has been described using a flow chart shown in Figure 4-1. 

 

 

Figure 4-1 Flow chart describing the methodology to solve one optimization problem [39] 

As a first step of the optimization, a large number of random calibrations 
(100,000) are generated using the random number generator of the MATLAB. This 
large number of calibrations are created by varying the value of each control 
parameter randomly within the model domain. The various emissions, FC, exhaust 
temperature and CN are then calculated using the empirical models/DoE models. 
Once the values of the different model outputs have been calculated, dynamic 
constraints are used to reduce the size of the population. This is done using an 
objective function check. In this component, all the calibrations that result in the 
model outputs lower than the constraints (and higher in case of exhaust temperature, 
since minimum value of exhaust temperature is required) are stored and are passed 
on to the GA optimizer as an initial population. In addition, the information 
regarding the objective to be optimized is also passed on to the GA optimizer. The 
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GA optimizer uses this initial population and the objective information to converge 
to one optimum calibration for a given set of dynamic constraint. This optimum 
calibration and set of constraint are saved in the hard disk and the workspace of 
MATLAB is cleared to be initialized for another optimization with different 
constraints and different optimization objective.  

The process shown in Figure 4-1 is carried out multiple times with different set 
of dynamic constraints and different set of optimization objectives to achieve the 
final Pareto front solution. However, the two most important components of the 
methodology for solving a SOO problem are dynamic constraint definition and GA. 
Therefore, before moving on to the Pareto front generation, these two modules have 
been described in detail. 

4.1.1 Dynamic Constraint Definition 

The final solution obtained for a SOO optimization is predominantly dependent 
on the constraints provided as an input. Therefore, the dependency on human input 
for the constraints can sometimes result in not so optimum solution. Furthermore, 
for the sake of keeping the methodology of calibration automated, these constraint 
values cannot be provided as an input and therefore needs to be defined in a self-
executing way. In this section, the logical approach to define these constraints in an 
automatic manner has been described. 

Firstly, it is important to differentiate between the two types of constrains used 
in this approach. As mentioned earlier, for each iteration, the optimization 
objectives and constraints are varied systematically. However, not all the 
constraints need to be varied for each iteration and depending on this variation, two 
types of constraints identified are: 

 
 Static/Fixed:  These constraints are fixed for all the iterations of the 

optimization process for one particular KP. The value for these types of 
constraints is typically coming from hardware limits, early heating of 
EATS, targeted comfort level and so on. The value of fixed constraints is 
typically known or set for each KP before the starting of the calibration 
activity. Exhaust temperature, CN, HC and CO1 are considered as fixed 
constraints parameters in this activity. 

 Dynamic: These constraints need to have different value for each iteration. 
Therefore, they are defined dynamically before each GA optimization. 
NOX, Soot and BSFC are chosen as dynamic constraints parameters. 

Once the constraints that are to be varied dynamically are selected, the 
following steps are used to define their value: 

 

                                                 
1 The emission models used for the activity are for warmed up EATS condition. In this 

condition, the efficiency of DOC is high and almost constant. However, CO and HC can be used as 
dynamic constraints with an additional computational cost. 
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STEP 1 Generation of Scatter Plots: The 100,000 random calibrations, 
which are generated as a first step of optimization iteration, are evaluated 
using empirical models. Once the value of different emissions has been 
obtained, the normalized2 scatter plots for soot-BSFC and NOX – BSFC are 
created. It should be added here that every point in these scatter plots 
represents emission values coming from a distinct calibration. These 
normalized scatter plots are shown in Figure 4-2 and Figure 4-3. 

STEP 2 Gridding of Scatter Plots: The normalized scatter plots are then 
divided into 400 small squares by using a grid (20x20). The number of 
points included in each square are counted. 

STEP 3 Grouping: The small squares are clustered in a manner that they 
form a rectangular shape. Furthermore, it is ensured that a minimum number 
of points (5000 in this work) are enclosed in this rectangle. One of the 
vertices of this rectangle is always at the origin point. The idea behind this 
choice is to capture the lower left corner of the plot where the values of both 
the emissions would be low and a sufficiently large number of points (i.e. 
possible calibrations) are enclosed in the constraint boundaries. This is 
shown by the red rectangle in the Figure 4-2. 

STEP 4 Value Definition of Constraints: The borders of the selected 
rectangle are used as the constraints. As an example, again using Figure 4-2, 
the value of the soot cannot be higher than 35% of the maximum value of 
soot achieved during the random calibration generation. Similarly, the value 
of BSFC cannot be higher than 25% of the maximum BSFC. However, as 
two sets of constraints (Soot-BSFC and NOX-BSFC) are obtained, two 
different values for BSFC constraint is available. Therefore, out of these two 
sets, the higher value of BSFC is adopted as the final constraint for BSFC. 
This is because the two sets are evaluated independently, if the lower value 
is selected, then for one of the sets inclusion of minimum number of points 
might not be ensured.  It should be added here that if HC and CO are also 
considered as dynamic constraint parameters, then 10 such sets of 
constraints would be obtained (𝐶2

5), out of which the higher value for each 
parameter can be adopted as the final constraint value. 

                                                 
2 The BSFC, Soot and NOX are normalized in a range of 0 to 1 by using the maximum and 

minimum values obtained by evaluation of the random calibrations.  
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Figure 4-2 BSFC-Soot normalized scatter plot calculated from randomly generated 

calibrations [39] 

 
Figure 4-3 BSFC-NOX normalized scatter plot calculated from randomly generated 

calibrations [39] 

In Figure 4-3 two constraint rectangles (black and red) are presented as an 
example. As it might be expected, a huge number of such rectangles and thereby 
value of constraints can be obtained by using combinations of different width and 
height. The rationale of the approach is to use these different combinations and 
change the value of constraints in a systematic way to obtain a Pareto front. 
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However, before the complete optimization process can be described, following key 
terms need to be defined: 

 Constraint Biasing: Constraint biasing is described as the bias a 
rectangle has, due to its inherent shape, towards a constraint parameter. 
The red rectangle in Figure 4-3 for example is biased towards NOX thus 
giving a lower value of NOx constraint and a higher value of BSFC 
constraint. The bias is decided by the orientation of the rectangle. There 
are only two possible orientations for each set of constraint, horizontal 
or vertical. Moreover, as the two sets are evaluated independently, four 
possible combinations of orientations from the two sets of constraints 
(Soot-BSFC and NOX-BSFC) can be obtained. These possible 
combinations along with some explanation are highlighted in Table 4-1. 

 Bias Quantification: This term is introduced to quantify the bias that 
exist towards a constraint parameter. This can be considered as the 
absolute difference between the height and width of the rectangle 
mentioned above. For a normalized constraint value, this can be written 
mathematically as: 

𝐵𝑖𝑎𝑠 = |1𝑠𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 −  2𝑛𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑉𝑎𝑙𝑢𝑒|       (8) 
Three distinct possibilities are considered: 
- Mild Bias: For mild bias, the absolute difference between width 

and height of the rectangle is equivalent to two squares (𝐵𝑖𝑎𝑠 =
0.10). Going back to Figure 4-3, red rectangle is shown as an 
example of mild biasing. 

- Soft Bias: If the absolute difference between height and width is 
increased to three squares, then this is considered as soft 
bias (𝐵𝑖𝑎𝑠 = 0.15). 

- Hard: For hard bias, the absolute difference is further enlarged to 
four squares (𝐵𝑖𝑎𝑠 = 0.20). Black rectangle in Figure 4-3 is an 
example of Hard Bias. 

 
Table 4-1 Different combinations for biasing of constraints [39] 

CASE 
(jk) 

BIAS 
(1st Set) 

BIAS 
(2nd Set) Comments 

11 BSFC BSFC Limits the value of BSFC 
constraint. 

12 BSFC Soot Limits the value of Soot constraint 
but not of the BSFC constraint 

21 NOX BSFC Limits the value of NOx constraint 
but not of the BSFC constraint 

22 NOX Soot Limits the value of both Soot and 
NOx constraints 

 
As mentioned earlier, value of the BSFC constraint is evaluated for both the 

sets of constraints, the higher of which is finally adopted as the final value for the 
BSFC constraint in order to ensure that a minimum number of points are included 
in the constraint boundaries. It is because of this that cases 12 and 21 do not limit 
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the value of the BSFC constraint, even if one of the set in both the cases is biased 
towards BSFC. 

Figure 4-4 and Figure 4-5 show the zoomed in version of the Figure 4-2 and 
Figure 4-3 with the focus on the points inside the constraint boundaries (Red 
rectangle in both Figure 4-2 and Figure 4-3). This is an example of case 21 (Table 
4-1), as the 1st set of constraint is biased towards NOX and the 2nd set is biased 
towards BSFC. It can be noticed from Figure 4-4 and Figure 4-5 that the value of 
the BSFC constraint is set to 35% of the maximum value obtained using random 
calibrations. This is because the higher value of the BSFC constraint is coming from 
the 1st set. Furthermore, it should be pointed out here that the algorithm only ensures 
minimum number of points enclosed in the constraint boundaries and the actual 
number of points can be above this threshold.  

 

 

Figure 4-4 BSFC-Soot scatter points included inside the constraint boundary [39] 
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Figure 4-5 BSFC-NOX scatter points included inside the constraint boundary [39] 

Once the value of dynamic and static constraints is decided, these values are 
passed on to the objective function check (Figure 4-1). The calibrations that result 
in the emission values below these constraints are stored and passed on to the GA 
optimizer that is described in the next section. To highlight the effect of this 
objective function check, the Soot-BSFC and NOX-BSFC scatter of the stored 
calibrations is shown in Figure 4-6 and Figure 4-7. On comparison of Figure 4-4 
Figure 4-6, it can be seen that more than 5000 calibrations have been reduced to a 
much smaller numbers because of application of other constraints (static and NOX). 
A similar comparison can be carried out for Figure 4-5 and Figure 4-7. 

Furthermore, it is ensured that the number of calibrations provided as an input 
to the GA optimizer is not too high, as this will slow down the convergence and 
performance of the optimizer. Therefore, the maximum number of stored 
calibrations is limited to 500. If the number of calibrations passing the constraint 
check is higher than this number, then 500 calibrations are selected out of this larger 
group. This selection is carried out in a way to ensure that the calibrations are well 
distributed throughout the input model domain. This means that if two calibrations, 
that are close to each other in the model input domain (similarity in values of SOI, 
Air….), pass the constraint check then the one resulting in lower emissions will be 
selected and the other one will be discarded.  
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Figure 4-6 BSFC-Soot scatter for stored calibrations, i.e. calibration passing the objective 
function test [39] 

 

Figure 4-7 BSFC-NOX scatter for stored calibrations, i.e. calibration passing the objective 
function test [39] 

These stored calibrations shown in Figs. are provided as an input to the GA 
optimizer, along with the dynamic constraints and the objective function 
information, which then converges to a final solution for each SOO problem. This 
convergence process is described in the next section. 
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4.1.2 Genetic Algorithm Optimizer 

GA works on the theory of natural selection to achieve the optimal solution 
over a large number of generations. However, this large number of generations 
differs from problem to problem. GA is a well-known optimization technique and 
well defined in the literature [46]. However, since the optimization code was 
developed in house, it has been described here in detail. Moreover, it is important 
to describe the exact procedure used to convert the control parameters of each 
calibration into a suitable data input for the GA. 

Each calibration that passed the objective function check is converted to a form 
of a string or a row vector. To define the terminology of GA more clearly, this row 
vector is known as a chromosome. Each element of this chromosome or row vector 
is called a gene and the value that is stored in a gene is known as allele. It should 
be pointed out here that the location of each gene is fixed in the chromosome and 
cannot be exchanged with position of another gene. Thus, in reference to the 
specific case under discussion, each calibration is considered as a chromosome. The 
set of control parameters is considered as a gene and the value that control 
parameters take is known as allele. This representation of engine calibration as a 
chromosome is shown in Figure 4-8.  In Figure 4-8 depending on the number of 
control parameters active for the KP in discussion only 9 genes have been shown, 
but the methodology can be easily extended to a larger number of control 
parameters. 

 

 

Figure 4-8 Engine control parameters represented in a form of chromosome [39] 

Once the calibrations are converted into chromosomes, a fitness value is 
assigned to each chromosome using Equation (9): 

 
𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = (𝑂𝑏𝑗𝑥,𝐵𝑎𝑠𝑒 − 𝑂𝑏𝑗𝑥,𝑖)/𝑂𝑏𝑗𝑥,𝐵𝑎𝑠𝑒          (9) 

 
where, 𝑂𝑏𝑗𝑥,𝐵𝑎𝑠𝑒 is the quantity obtained for the optimization objective from 

Dynamic constraints and 𝑂𝑏𝑗𝑥,𝑖 is the value of the optimization objective in the 𝑖𝑡ℎ 
generation of the optimization. 

The GA optimization tries to achieve the highest fitness values. Therefore, this 
equation is only valid for the objectives where reduction is desirable such as FC and 
emissions. In case of exhaust temperature that needs to be increased as much as 
possible, 1 −  𝐹𝑖𝑡𝑛𝑒𝑠𝑠 values can be used. 
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Figure 4-9 shows the different steps of GA optimization that will be described 
in further detail now.  

 

 

Figure 4-9 Sequence of steps for optimization using genetic algorithm [39] 

Initialization 

Commonly GA is initialized using a population generated randomly over the 
complete search domain. However, if the search domain is big, then GA can take 
long time to converge. In such cases, some intuitive measures, such as the described 
method of using dynamic constraints, are required to reduce the computational 
effort and time.  

Selection 

50 calibrations are selected as parents out of the stored calibrations using a 
roulette wheel selection method. Roulette wheel method is a standard method for 
selection and there for it has not been explained here [47]. 

Recombination 

During the recombination stage, some random genes of the parent 
chromosomes are exchanged, and children chromosomes are generated that usually 
have a higher fitness value than the parent chromosomes.  Various techniques are 
available for carrying out the recombination operation. In the described optimizer, 
a uniform crossover technique has been used. In uniform crossover, the swapping 
probability of each gene is considered separately and is equal to 0.5. Thus, each 
gene has a 50% chance of being swapped irrespective of what happens to the other 
genes. In order to carry out recombination operation in a fast manner, a row of 
random bits is generated that has the same length as that of the chromosome. The 
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genes are swapped between parents P1 and P2, if the bit corresponds to 0. Otherwise 
if the bit is 1 the genes are copied as it is to the children chromosomes C1 and C2. 
An example of recombination using uniform crossover is shown in Figure 4-10. 

 

 

Figure 4-10 Uniform crossover-based recombination technique [39] 

Mutation 

In order to introduce further randomization in the GA optimization, after every 
certain number of generations, 10 for the specific case, one of the genes is selected 
at random and the allele of this gene is replaced with a random value generated 
across the valid domain. 

Evaluation and Replacement 

Each chromosome of the new population created using mutation and 
recombination functions is evaluated for fitness. If there is an increase in fitness 
without violation of the constraints coming from dynamic constraints definition, the 
child chromosome is passed on to the next generation. If any of the constraint is 
violated or if there is no increase in fitness, parent chromosome is copied as it is to 
the next generation. In this way, an increase of fitness, over a sufficiently large 
number of generations is ensured, while adhering to the constraints.  

As an example, assuming NOX is the target objective and the rest of the 
emissions are constraints. If there is a reduction in NOX without any decrease in 
exhaust temperature and without any increase in emissions and FC, only then the 
child chromosome, or calibration, is passed on to the next generation. In this way, 
NOX value is lowered after some generations, while the value of other emissions 
remains the same.  

Stopping Criteria 

Stopping criteria can be based on a number of generations or convergence to a 
final solution. For the purpose of this work, in order to achieve a good trade-off 
between computational time and performance, the GA optimization is run for 200 
generations, thus adopting a fixed number of generation criterion. For the 
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application in discussion, typically GA optimization converges to a single solution 
within 200 generations. It this does not happen, then the chromosome with the 
highest fitness is considered as the final solution. In this way, one KP is optimized 
for a given target objective and constraints. In the next section, the systematic 
variation of the objectives and constraints in order to obtain the Pareto front is 
described. 

4.1.3 Pareto Front Generation 

By systematically varying the dynamic constraints and the optimization 
objectives during multiple iterations of the SOO optimization, multiple optimized 
calibrations can be obtained. These multiple optimum calibrations together form a 
Pareto front. Figure 4-11 shows the flow chart (nested loop structure) for the 
methodology for carrying out these multiple iterations.  

 

Figure 4-11 Generation of Pareto front using systematic variation of dynamic constraints 
and optimization objective [39] 

In Figure 4-11 , 𝑖 is the variable that determines the optimization objective. As 
in the work described three optimization objectives are considered, NOX, Soot and 
BSFC, 𝑖 can take values from 1 to 3 representing these objectives respectively. 
Similarly, variables 𝑗 and 𝑘 are responsible for selecting the constraint biasing for 
BSFC-NOX (1st set of constraint) and BSFC-soot (2nd set of constraint) respectively. 
Thus, both 𝑗 and 𝑘 can take value of either 1 or 2. For example, if 𝑗 is equal to 1, 
then the 1st set of constraint is biased towards BSFC. Variables 𝑗 and 𝑘 along with 
the two sets of constraints have also been described before in Table 4-1. At the same 
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time, the two variables 𝑙 and 𝑚 are used to quantify the bias (Mild, Soft, and Hard) 
present in the two constraints sets. Thus both 𝑙 and 𝑚 can take 3 values. In this way, 
optimizing all the SOO problems obtained by varying the optimization objectives 
and constraints according to this nested loop structure, a Pareto front can be 
obtained. 

It should be mentioned here that with the levels of variations in each of the 5 
variables, it is possible to obtain 108 different SOO problems (3 x 2 x 2 x 3 x 3). 
However, it is possible that not all of these optimization problems will result into a 
solution. In some of the cases, it is possible that the dynamic constrains are too tight 
and therefore the number of stored calibrations passed on as input to the GA are 
really less (less than 10). In these cases, the GA optimization is likely to fail. In this 
work, this problem was repeatedly observed for the case 22. In this case, as both 
the NOX and Soot constraints were limited, it was difficult to achieve a sufficiently 
large initial population. This happened as it is very unlikely to obtain 
simultaneously low Soot and low NOX even with a high BSFC. Of course, it was 
possible to relax the BSFC constraint even further to obtain a higher number of 
stored calibrations, but it was not considered as practical to increase the constraint 
more than 50% of the normalized constraint. Considering the feasibility of the 
constraints, the non-converged SOO problems were ignored. As a result, the 
number of multiple optimized calibrations obtained for each KP varied in the range 
of 75 to 100. There is a large variation because the constraints and the possibility 
to achieve simultaneously low Soot and low NOX is very much dependent on the 
operating conditions. 

It should also be mentioned here that a single optimization iteration took less 
than a minute to converge and all the iterations for one KP were finished in about 
one hour a machine with 8 GB RAM and Intel i5 2.3 GHz processor. 

4.1.4 Results 

For the KP (2000 rpm and 5 bar BMEP) in discussion, 75 different calibrations 
obtained using the iterative procedure described are shown in the form of scatter 
plots for BSFC-soot and BSFC-NOX in Figure 4-12 and Figure 4-13 respectively. 
The calibrations with BSFC as the optimization target are shown in black. The ones 
optimized for NOX and soot are shown in blue and pink respectively. 
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Figure 4-12 BSFC-Soot scatter for optimized calibrations [39] 

 

Figure 4-13 BSFC-NOX scatter for optimized calibrations [39] 

In the two figures, the emissions from the optimized calibrations are plotted 
along with the scatter of the emissions obtained from the random calibrations. This 
has been done to display the distance between the border of the scatter plots and the 
optimized calibrations. The border of the scatter plot indicates the most superior 
Pareto front that can be obtained if the optimization is carried out in absence of any 
constraints. However, due to application of the constraints, both dynamic and fixed, 
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a small gap appears between the border and the optimized calibrations, but due to 
the efficiency of the GA optimization, this gap is minimized. In fact, to show the 
efficiency of the optimization method, the results achieved have been compared 
with a calibration carried out using traditional optimization techniques. This 
optimization is referred as BaseCal in this work. 

Before carrying out the comparison, a short description of the method used to 
generate these calibration maps has been provided here. The empirical models 
mentioned in the previous chapter were used to optimize the different KPs of 
BaseCal using a gradient descent method. After the optimization, the calibration 
maps were generated using interpolation and extrapolation. For the map generation 
from the KPs, CAGE a quite popular tool (part of Model Based Calibration 
Toolbox) in MATLAB was used. Following the map generation, manual 
smoothening procedure was carried out to achieve the desired smoothness level. It 
should be mentioned here that these calibration maps generated using the traditional 
methods were already satisfying Euro 6d emissions standards for a C segment car 
with an approximate curb mass of 1650 kg. 

 

Figure 4-14 BSFC-Soot scatter for optimized calibrations in comparison with a base 
calibration [39] 
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Figure 4-15 BSFC-NOX scatter for optimized calibrations in comparison with a base 
calibration [39] 

 
Figure 4-14 and Figure 4-15 shows the comparison between the emissions from 

the optimized calibrations and the BaseCal. Looking at Figure 4-14, it can be 
observed that the BaseCal has been optimized for low Soot.  It can also be clearly 
seen from Figure 4-15 that a low NOX  is achieved for all the optimized calibrations 
even for the cases where the NOX optimization is not the objective. Furthermore, it 
can also be clearly noticed that there are multiple calibrations with lower Soot, 
lower NOX and lower BSFC than the BaseCal. Moreover, to have a fair comparison, 
the fixed constraints for the MOO are the taken from the BaseCal. This means that 
all the calibrations shown in the two figures also have lower CO, HC, CN and higher 
exhaust temperature than the BaseCal. 
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Figure 4-16 SOI-Air scatter of the optimized calibrations [39] 

 

Figure 4-17 Rail pressure-Boost pressure scatter of the optimized calibrations [39] 

Figure 4-16 and Figure 4-17 show the distribution of 4 of the 9 control 
parameters in the model domain. This distribution is shown on normalized scatter 
plots with 0 referring to the minimum permitted value for the control parameter and 
1 referring to the maximum. From these two figures it can be seen that the control 
parameters are somewhat well distributed in the model domain. Due to this 
distribution, it is possible to select a calibration with a same or different 
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optimization target with significantly different input parameters. Therefore, if by 
selecting one of the optimized calibrations, the resulting calibration maps are not 
smooth enough, then it is always possible to select another good calibration that can 
provide better results in terms of smoothness. 

The main aim of this work is to develop a one-click methodology that is capable 
of carrying out an automatic diesel engine calibration optimization while generating 
sufficiently smooth calibration maps. The first step towards this aim is to have 
multiple optimum calibrations that are distributed throughout the model domain. 
Using these multiple optimum calibrations for each KP, an algorithm has been 
defined that is capable of automatically generating smooth calibration maps using 
the trade-off between smoothness and performance of the maps. This methodology 
is defined in chapter 5. However, before going into the details of map generation, a 
special case of optimization has been considered and explained in the next section. 

4.2 Single Objective Optimization with Existing 
Calibration 

It is a quite common scenario in the industry that an existing engine calibration 
has to be modified slightly to suit a different purpose. This calibration change can 
be due to the use of same engine with a different EATS architecture or due to the 
change in homologation cycle or legislation limits (introduction of the same engine 
in different market). For such cases, it would be a waste of time and money to 
recalibrate the engine from scratch.  

With such scenarios in mind, a small modification of above-mentioned 
methodology has been proposed in this section to quickly able to generate the new 
calibration maps capable of achieving the desired target. In the next subsection, the 
changes with respect to the previously defined method will be highlighted. This will 
be followed by the results achieved for a typically scenario of reducing NOX. 

4.2.1 Methodology 

It should be mentioned here that the existing calibration used for this study is 
the same as mentioned earlier. Again, calling the existing calibration as BaseCal, 
the two main premise for developing this method are: 

 The BaseCal maps are sufficiently smooth and this smoothness should 
be preserved at all costs. 

 The BaseCal is already optimized. Therefore, the achievement of the 
desired objective should happen without any deterioration in any 
emissions, CN and exhaust temperature. 

Starting with these two points, a similar method that make use of random 
calibration generation and GA optimization is described here. The flow chart for 
the methodology is shown in Figure 4-18. On a closer look, Figure 4-18 looks a 
reduced form of the workflow given in Figure 4-1. The main difference is, the 
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dynamic constraint definition module is no longer required as the values of 
constraints are coming from the BaseCal. Furthermore, there is no module for 
saving and clearing the workspace, as the case in discussion does not require 
multiple optimum calibration. Therefore, the iterative approach described in section 
4.1.3 is not used here. The remaining methodology is same. 

To quickly go through it again, random calibrations are generated in a given 
domain. These calibrations are then evaluated using the DoE models to give the 
value of emissions (also CN and exhaust temperature) for each of these generated 
calibrations. The objective function check stores the calibrations that result in lower 
target quantity without violating any constraint. These stored calibration serves as 
an initial population to GA based optimizer that works exactly in the same way as 
described in section 4.1.2. 

 

 

Figure 4-18 Reduced work flow for the single objective optimization methodology with an 
existing calibration present [39] 

However, for preserving the smoothness of the calibration maps, a method 
needs to be defined. For this purpose, a simple yet novel method is adopted. Since 
the calibration maps are already smooth, the variation allowed in the control 
parameter for the purpose of optimization is restricted to a very small value. The 
range of variation to generate random calibrations from empirical models is reduced 
to about 10-20% of the original domain. In this way, the empirical models are used 
to explore only a narrow domain centered around the BaseCal. This reduced domain 
is shown in the last column of Table 4-2. 
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Table 4-2 Reduced range of variation for generation of random calibrations in order to 
preserve the smoothness of the existing calibrations [39] 

Parameter 
Number 

Input Quantity Unit Range of Variation 
for Domain 

Reduced range 
of variation 

1 SOI °bTDC ±4 ±0.4 
2 Air Quantity mm3/stroke ±40 ±10 
3 Rail Pressure MPa ±30 ±5 
4 Swirl level % ±30 ±5 
5 1st Pilot Quantity mm3/stroke ±0.8 ±0.2 
6 1st Pilot DT µs ±500 ±100 
7 Boost Pressure kPa ±25 ±5 
8 2nd Pilot Quantity mm3/stroke ±0.8 ±0.2 
9 2nd Pilot DT µs ±500 ±100 

 
To explain this reduced range of variation more clearly with an example, a SOI 

map from the BaseCal is shown in Figure 4-19. 
 

 

Figure 4-19 SOI map from the base calibration [39] 

The reduced range of variation essentially means that there are two surfaces 
parallel to this SOI map and the value of SOI for the purpose of generation of 
random calibration and optimization can only exist between these two surfaces. 
These two surfaces are shown in Figure 4-20. As it can be observed from the Figure 
4-20, the two surfaces are quite close to the actual SOI map. Therefore, no matter 
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how much the SOI values changes during the optimization, the final map generated 
after the optimization would always retain the smoothness.  

 

 

Figure 4-20 Parallel surfaces around the SOI map to preserve the smoothness [39] 

It should also be added here that since a much narrow domain is being used in 
comparison to MOO, the number of random calibrations generated are reduced to 
10,000 from 100,000 to increase the speed of optimization. 

The advantage of using this methodology is that is very efficient and fast. For 
one KP, the optimization takes less than a minute using a machine with 8 GB RAM 
and Intel i5 2.3 GHz processor. Thus, a significant reduction can be achieved in any 
target quantity for any driving cycle in less than a quarter of an hour. The results 
from one such optimization to reduce the NOX from the same engine mentioned 
earlier have been shown in the next subsection. 

4.2.2 Results 

In this section, the normalized results achieved for the NOX reduction for one 
KP (2000 rpm x 5 bar), when using BaseCal as an existing calibration, have been 
shown. Figure 4-21 shows the reduction in NOX over the complete optimization 
process i.e. 200 generations. It can be clear observed from Figure 4-21 that the 
optimizer is able to converge to a single optimum solution within the stopping 
criterion. Also, it can be observed that the GA optimizer NOX plot is starting from 
88% of the calibrated NOX value. This is because a significant 12% reduction is 
coming from the initial population generated using random number method as the 
first step of optimization. The further 7% reduction is achieved due to GA 
optimizer. 
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Figure 4-21 NOX variation in comparison to the base calibration during the complete 
optimization process [39] 

A similar plot highlighting the fitness over the number of generations can be 
seen in Figure 4-22. It should be pointed out that the Figure 4-21 and Figure 4-22 
give the same information but in a different manner. The fitness function is defined 
in the same manner as mentioned in Equation (9). Therefore, fitness is a direct 
measure of reduction in NOX value but presented as a fraction and not as a 
percentage. Following this, in Figure 4-23 and Figure 4-24, CO and HC variation 
during the optimization are highlighted. It can be seen from these figures that the 
constraints are not violated at any point during the optimization. Furthermore, even 
though CO and HC are not the optimization target, yet an approximate 5% reduction 
is achieved for these two quantities also. Similarly, in Figure 4-25, Figure 4-26 and 
Figure 4-27, CN, Soot and BSFC variations have been shown and as expected the 
values of these quantities are always lower than the constraints.  
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Figure 4-22 Increase of fitness over the complete optimization process [39] 

 

Figure 4-23 CO variation in comparison to the base calibration during the complete 
optimization process [39] 
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Figure 4-24 HC variation in comparison to the base calibration during the complete 
optimization process [39] 

 

Figure 4-25 CN variation in comparison to the base calibration during the complete 
optimization process [39] 
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Figure 4-26 Soot variation in comparison to the base calibration during the complete 
optimization process [39] 

 

Figure 4-27 BSFC variation in comparison to the base calibration during the complete 
optimization process [39] 

As mentioned earlier, the results shown here are just for one KP. However, to 
give an idea of the true potential of this methodology, the NOX reduction achieved 
for all the KPs is shown in Figure 4-28. It can be clearly observed that over all the 
KPs an average of roughly 17% reduction is obtained. This reduction is obtained 
without deteriorating any other emissions and without any loss of smoothness of 
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existing calibration maps. It should also be added here that a similar reduction can 
be achieved in other emissions by simply changing the target.  

 

 

Figure 4-28 Percentage NOX reduction possible for all the selected key points using the 
described optimization methodology 

For single objective optimization case, it is easy to maintain the smoothness of 
the existing calibration maps while achieving significant reductions in the target. 
However since for MOO, the calibration maps are being generated from scratch a 
dedicated methodology needed to be defined, which has been described in the next 
chapter.  
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Chapter 5 

Smooth Map Generation 

Some parts of this chapter have already been published in the following journal 
article: 

 Arya P, Millo F, Mallamo F. A fully automated smooth calibration 
generation methodology for optimization of latest generation of 
automotive diesel engines. Energy 2019. 
doi:10.1016/j.energy.2019.04.122. 

As mentioned in the previous chapters, beside the achievement of emission and 
fuel consumption targets, the smoothness of the calibration maps generated is also 
very important. The smoothness of the calibration maps affects not only drivability 
and engine operation, but it also influences the experimental costs and time required 
for calibration, especially when using local models. Not only manual smoothening 
can result in loss of optima, but each iteration of manual smoothening may require 
testing the newly generated maps to check compliance with emissions, thus 
increasing the experimental time and cost. 

Thus, with the aim of reducing the loss of optima associated with the local 
method and making the calibration procedure automatic and more robust, a 
methodology to generate smooth calibration maps have been defined in this chapter. 
This methodology uses the multiple optimum calibrations for each KP, generated 
as illustrated in the previous chapter, to produce a large number of calibration maps 
out of which the maps resulting in the desired smoothness and low emissions can 
be selected. 

In the first part of the chapter, a quick introduction of time-based weight 
calculation has been provided. This time based weighting factor is used to select 
the three most prominent KPs, using which firstly a single calibration map 
generation has been described in section 5.2. These large number of calibration 
maps are generated for different cases according to the smoothness requirement of 
each control parameter map.  These different cases are mentioned in section 5.3, 
following which an iterative method to generate a large number of calibration maps 
is described in section 5.4. In the end, a method to evaluate the smoothness and 
performance of each calibration map is described in section 5.5. 

5.1 Time-Based Weight Calculation 

Time based weight for each KP is calculated using the exact same approach 
described in Chapter 2. Clustering algorithms like nearest neighbor algorithm is 
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used to associate each operating point to the nearest KP. This is shown again in 
Figure 5-1 which is the same figure as shown in Chapter 2. The ratio of number of 
associated operating points with each KP to the total number of operating points 
(1800 for WTLC) gives the weight of each KP. The weights of 20 different KPs in 
decreasing order are given in Table 5-1. 

 

Figure 5-1 Time based weight evaluation of each point using a clustering algorithm [48] 

 
Table 5-1 Time based weight of each key point in a decreasing order 

KP # RPM BMEP Weight Normalized 
Engine Speed 

Normalized 
Load 

4 1000 2 22.90 0.12 0.12 
1 2000 2 19.22 0.71 0.12 
2 1500 2 15.95 0.41 0.12 
3 2250 5 12.10 0.85 0.31 
5 2000 5 6.89 0.71 0.31 
6 2000 8 4.61 0.71 0.49 
7 1500 5 3.83 0.41 0.31 
8 2500 8 3.11 1.00 0.49 
9 2500 2 1.89 1.00 0.12 
10 2250 10 1.76 0.85 0.61 
11 2500 5 1.61 1.00 0.31 
12 2000 12 1.32 0.71 0.71 
13 2500 12 1.21 1.00 0.71 
14 2250 15 1.15 0.85 0.92 
15 1750 10 0.93 0.56 0.61 
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16 1500 8 0.92 0.41 0.49 
17 1000 5 0.38 0.12 0.31 
18 2000 16 0.11 0.71 0.98 
19 1250 8 0.06 0.26 0.49 
20 2500 16 0.05 1.00 0.98 

 
Out of these multiple KPs, three most weighted KPs are selected and a plane is 

generated for each control parameter. Using these planes, the maps for each control 
parameter are then further calculated. This plane generation and map creation is 
described in the next section 5.2. 

It should be pointed out here that the three selected KPs are 2000 rpm x 2 bar 
(KP1), 1500 rpm x 2bar (KP2), and 2250 rpm x 5 bar (KP3). The first KP in the 
table, 1000 rpm x 2 bar, is not selected because of two reasons. Firstly, as the idea 
is to generate a plane, a minimum of three non-collinear points are required for this. 
If the first three KPs are selected, then there is no variation in the engine load and 
all the three KPs lie in a straight line. Thus, a plane cannot be generated using the 
first three KPs. Secondly and more importantly, 13% of the weightage of 1000 rpm 
x 2 bar KP is due to the stop phase of the vehicle, which for the simplification of 
the KP weighting strategy have been considered as 800 rpm and 0 bar load (idle 
condition). So there are over 230 points overlapping at (0,0) positon in the Figure. 
This reduces the effective weight of this KP to less than 10% and therefore less than 
all the three selected KPs. It is for this reason also that the 1000 rpm x 2 bar KP is 
labelled as #4 in Table 5-1. 

In addition, other strategies like start and stop and fuel cut off have not been 
considered while calculating the effective weight of the KPs, but it can be taken 
into account. In that case, the weights of KPs will change and some other KPs than 
the chosen 3 will be selected. 

5.2 Calibration Map Generation 

The three most weighted KPs are selected as a minimum of three non-collinear 
points are required to generate a plane and a plane is the smoothest calibration map 
that can be obtained. Thus, for a moment, if we forget about the rest of the 20 KPs 
and use these planes for different control parameters as the calibrations maps, then 
the loss of optima is already minimized to some extent. As the planes are generated 
using the optimum calibrations for the three most weighted KPs, together which 
have a combined weight of roughly 50%, these planes can provide quite good 
results. Of course, this is a very rough estimation and may not be entirely correct, 
but the main takeaway is that these planes are already a good starting point to 
generate the calibration maps. Furthermore, this level of smoothness of maps is not 
required and therefore is useless. Therefore, now considering the remaining 17 KPs, 
an intuitive and simple methodology will be defined to create a calibration map 
from these planes. 

Considering that out of the large number of multiple optimum calibrations for 
each KP, the first one is selected for the three most prominent KP and a plane is 
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generated for each control parameter. These generated planes are a function of 
engine load (𝐵𝑀𝐸𝑃) and engine speed (𝑛). Mathematically these can be described 
as: 

          𝑧𝑖 = 𝑎 ∗ 𝑛 + 𝑏 ∗ 𝐵𝑀𝐸𝑃 + 𝑐   ;    𝑖 = 1: 𝑚              (10) 
Where 𝑧𝑖 represents the value for 𝑖𝑡ℎ control parameter (in the same order as 

mentioned in chapter 3 and chapter 4), 𝑎, 𝑏, 𝑐 are constants and 𝑚 represents the 
number of control parameters (9 in this case). 

One such plane for SOI (𝑧1) is displayed as an example in Figure 5-2. 

 
Figure 5-2 SOI plane shown as an example of the map generation method [48] 

It should be reminded here that for each of the KPs, there are large number of 
optimum calibrations present generated using the methodology defined in the 
previous chapter.  Out of these large number of calibrations, it is possible to choose 
any value for SOI for the remaining KPs. However, in order to minimize the 
distortion of the above shown surface, the value of SOI closest to the plane is 
selected for the remaining 17 KPs. Mathematically, for 𝑖𝑡ℎ control parameter, the 
distance of each of the optimum value from the generated plane can be calculated 
using Equation (11): 

  𝛿𝑧𝑖
𝐾𝑃 = |𝑧𝑖,𝑒𝑞

𝐾𝑃 − 𝑧𝑖,𝑜𝑝𝑡 𝑐𝑎𝑙
𝐾𝑃 |  ;      𝑧𝑖,𝑜𝑝𝑡 𝑐𝑎𝑙

𝐾𝑃 ∈ 𝑂𝑝𝑡 𝑐𝑎𝑙𝐾𝑃  ;    𝐾𝑃 = 1: 20         (11) 

Where 𝛿𝑧𝑖
𝐾𝑃 is a distance vector for 𝑖𝑡ℎ control parameter one particular KP. 

Thus 𝛿𝑧1
4 is a vector contains the distance of each of the SOI value (from 

multiple optimum calibrations) from  𝑧1 plane for the KP 1000 rpm x 2 bar. 
Therefore, for each KP, the minimum value from the vector 𝛿𝑧1

𝐾𝑃can be selected to 
generate a really smooth map. The closest value selected to the SOI plane for the 
remaining 17 KPs is shown in Figure 5-3 and the consequent map generated using 
these values is shown in Figure 5-4. 
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Figure 5-3 SOI value closest to the generated plane for the remaining 17 key points [48] 

 

Figure 5-4 SOI map generated using multiple optimum calibrations and SOI plane [48] 

However, a calibration is a set of values for different control parameters and 
these values are only valid when used together as a set. Therefore, if a calibration 
is selected in such a way that it gives smooth SOI maps, then it is a possibility that 
for rest of the control parameters the maps may not be smooth. In order to avoid 
this, the smoothness of different control parameters is considered simultaneously 
using Equation (12): 

                   𝑇𝑎𝑟𝑔𝑒𝑡 =  𝑚𝑖𝑛(∑ 𝑤𝑖 × 𝑛𝑜𝑟𝑚(𝛿𝑧𝑖
𝐾𝑃)𝑚

𝑖=1  )         (12) 

where 𝑤𝑖 represents the smoothness weight of the 𝑖𝑡ℎ control parameter. 
Equation (12) means that the weighted sum of the deformations for the different 

control parameter surfaces is to be minimized. Parameter weights have been 
introduced here as some control parameter maps need to be smoother than others. 
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As it can be understood from Equation (12), a higher control parameter weight will 
result in a smoother map. Moreover, it can also be seen in equation that the 
normalized values have been used for the distance vectors. This is because the range 
of values that each control parameter takes is quite different. For example, recalling 
from the Chapter 3, the variation in SOI for each KP is ±4°, whereas for Airflow 
this variation is of the order ±40 mm3/stroke. This means that the distance vector 
for SOI (𝛿𝑧1

𝐾𝑃) would be quite lower in magnitude in comparison to distance vector 
of Airflow (𝛿𝑧2

𝐾𝑃). To avoid this, the distance vectors are normalized in the range 
of 0-1.  

Equation (12) should result in sufficiently smooth maps for all the control 
parameters. However, it requires the information regarding the smoothness weight 
for each control parameter(𝑤𝑖), the selection for which is defined in the next 
section. 

5.3 Smoothness Weight Settings 

As mentioned before, not all the control parameters map require the same level 
of smoothness, and therefore, these weights should be selected carefully. Moreover, 
not every control parameter is active in the complete engine operating range. Out 
of the 9 control parameters mentioned previously, only 6 are active for the complete 
engine operating range. The three partially active control parameters are Boost 
Pressure, 2nd Pilot Quantity and Dwell Time. Due to this partially active behavior 
of these control parameters, a different smoothness requirement is imposed on these 
parameters. In fact, the maps generated for these control parameters are required to 
be smooth in only a limited area of engine operation. 

Furthermore, it is quite common in the automotive industry to utilize the same 
engine in a variety of vehicles to cut down on the development cost and time of the 
new vehicles. To put it simply, one engine can be readily equipped, with some 
minor changes, in a family car, in a sporty vehicle or in a pick van. It is quite often 
that the minor changes that permits such a diversified usage of the same engine are 
related to the modification of the engine calibration. Depending on the calibration, 
an engine with a same displacement is able to provide different peak torque and 
peak power. These calibration changes are necessary because of different mission 
profiles for different vehicles. As an example, in a sports vehicle there is an 
immediate response to a very small change in accelerator pedal position, on the 
other hand for a family car, the response is milder. Moreover, the calibration 
changes because of different mission profiles means different calibration maps need 
to fulfill different smoothness requirements. In addition, this difference in 
calibration can also result in tightening of the desired smoothness for a particular 
control parameter and slackening for another one. Therefore, the smoothness 
weight for each control parameter(𝑤𝑖), can change a lot depending on the mission 
profile and application of the engine.  

However, the more difficult part is to anticipate the smoothness weights for 
different control parameters. Depending on the variation of control parameters 
throughout the engine map, some control parameter maps might be inherently 
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smooth. Due to this difficulty in anticipating the smoothness weight setting for the 
control parameters, a small number of different weight settings are evaluated. Table 
5-2 shows the five different weights settings (or referred to as cases from now on) 
used for the 6 different control parameters. As it is clear from Table 5-2, only the 6 
parameters that are active for the complete engine operation are considered. 
Moreover, the weights for three parameters, swirl, 1st pilot quantity and 1st pilot DT, 
are kept low in all the 5 different cases. This is because for the application in 
consideration in this study, these maps of these parameters are not very critical from 
the smoothness point of view. 

 
Table 5-2 Different cases for smoothness weight settings of different control parameters [48] 

 

Pa
ra

m
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 SOI 
Weight 

Injection 
Pressure 
Weight 

Air 
Flow 

Weight 

1st Pilot 
Quantity 
Weight 

1st Pilot 
Dwell 
Time 

Weight 

Swirl 
Weight ∑ 𝑤𝑖

𝑚

𝑖=1

 
Weight 
Setting 

Case 1 0.5 0.2 0.1 0.067 0.067 0.067 1 

Case 2 0.3 0.2 0.2 0.1 0.1 0.1 1 

Case 3 0.2 0.2 0.3 0.1 0.1 0.1 1 

Case 4 0.077 0.154 0.538 0.077 0.077 0.077 1 

Case 5 0.167 0.167 0.167 0.167 0.167 0.167 1 

 
Up to this point, the method for generating calibration maps using the 

calibration from three most prominent KPs and parameter smoothness weight have 
been defined. However, as it has been mentioned earlier, there are large number of 
optimum calibrations for each KP. For each of the three selected KPs (referred to 
as KP1, KP2 and KP3), there are more than 80 optimum calibrations. In the section 
5.2, the calibration map generation was illustrated using the first calibration of each 
of these three KPs. However, if a different calibration for any of these KPs is 
selected then the shape of the maps, the smoothness, the emissions, everything will 
change. Using this idea, an iterative approach for generation of large number of 
calibration maps is defined in the next section.  

5.4 Multiple Calibration Maps Generation 

The advantage of generating a calibration map by selecting the nearest optimum 
calibration from the plane for each KP is that the smoothness and performance are 
already ensured to some extent. However, this approach along is not sufficient to 
achieve the required targets for performance and smoothness. Therefore, the before 
mentioned approach is combined with an iterative method to optimize the 
performance while maintaining the smoothness. Each combination of the optimum 
calibration from three most weighted KP gives a different set of calibration maps, 
as it results in a different set of planes for each control parameter. If there are more 
than 80 optimum calibrations for each of the three KPs, that gives more than half a 
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million combination ( 80 ∗ 80 ∗ 80 ).  Furthermore, there are 5 cases of smoothness 
weight settings that can increase the number of combinations to over 2.5 million. 
Now the intention is to generate more than 2.5 million sets of calibration maps (each 
set has 6 control parameter maps mentioned in Table 5-2) using the systematic 
variation of the selected calibration for the three KPs and the smoothness weight 
settings. Out of these large number of calibration maps, the ones optimizing the 
performance and providing a sufficient level of smoothness can be selected. This is 
more clearly explained with the help of a flow chart (nested loop structure) shown 
in Figure 5-5. 

 
Figure 5-5 Iterative methodology using nested loop structure to generate a large number of 

calibration maps [48] 

In Figure 5-5, 𝑖 represents the different cases of smoothness weight settings and 
therefore can take the value from 1 to 5, representing the 1st to 5th case shown in 
Table 5-2 respectively. The selected optimum calibration for KP1 is represented by 
𝑗. In a similar manner, 𝑘 and 𝑙 represents the selected optimum calibration for KP2 
and KP3 respectively. In this way, more than 2.5 million sets of calibrations maps 
are generated and stored in the memory. These maps are evaluated using suitable 
and fast criteria for smoothness and performance that is defined in the next section 
5.5. The benefit of having such a large number of calibration maps is that a trade-
off can be obtained between smoothness and performance. In this way, for every 
desired level of smoothness, the calibration map resulting in minimum emissions 
can be selected. 
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5.5 Calibration Evaluation 

In order to select the best calibration maps out of these large number of maps, 
it is necessary to evaluate the smoothness and performance of each map. Therefore, 
some criteria need to be defined according to which these generated maps can be 
assessed. In addition, since the number of maps generated is quite large, the 
evaluation criteria has to be fast to evaluate. In this section, a smoothness evaluation 
criterion has been described that is followed by a description of performance 
evaluation criterion. 

5.5.1 Smoothness Evaluation 

The idea of surface smoothness is quite commonly used in Computer Aided 
Design (CAD). In the literature many methods can be found for evaluating the 
smoothness of any given surface. If the calibration maps can be considered as 
regular surfaces, then their smoothness can be calculated in a similar way. Building 
on this idea, in this work one such method that utilizes Gaussian curvature to 
quantify the smoothness of any given surface has been used [49]. 

The value of Gaussian curvature 𝐾 for a point (𝑎, 𝑏) on any given surface is 
calculated as: 

 

     𝐾 =
𝑓𝑥𝑥(𝑎, 𝑏) × 𝑓𝑦𝑦(𝑎, 𝑏) − 𝑓𝑥𝑦(𝑎, 𝑏)2

(𝑓𝑥(𝑎, 𝑏)2 + 𝑓𝑦(𝑎, 𝑏)2 + 1)
2                                     (13)  

 
It is understandable from the Equation (13) that Gaussian curvature method 

utilizes the first order and second order differential to calculate the smoothness at 
any given point. An overall measure of the smoothness for a complete map can be 
calculated by summing up the square of Gaussian curvature obtained at each point 
of the map. This is shown in Equation (14): 

        𝐸𝐾 = ∑ ∑ 𝐾𝑥,𝑦
2   ;    𝑋𝑌 = 𝑔𝑟𝑖𝑑 𝑜𝑓 𝑀𝑎𝑝(𝑛, 𝐵𝑀𝐸𝑃)

𝑌

𝑦=1

                    (14)

𝑋

𝑥=1

 

In the literature 𝐸𝐾 is defined as the normalized curvature energy [50]. The 
normalized curvature energy gets smaller and smaller as the map becomes 
smoother. In fact, for a plane, the value of Gaussian curvature is zero at all the 
points (second order differentials at all the points are zero). Therefore, as mentioned 
earlier and now proved mathematically, a plane is the smoothest map that can be 
obtained with a normalized curvature energy corresponding to zero. It should be 
added here that as the different control parameters are varied in different range of 
values, it is better to perform the energy calculation for normalized maps (0-1). This 
normalization of maps makes it possible to have a comparison of smoothness 
between the different control parameters maps. 



 

64 
 

5.5.2 Performance Evaluation 

The performance evaluation of the set of calibration maps is carried out using 
the cumulative NOX and soot emissions and fuel consumption over the driving 
cycle. Since performance of many calibration maps need to be evaluated, a fast 
method is required. Therefore, the engine out NOX and Soot emissions are used for 
comparison and in this way EATS simulation is avoided.  
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Chapter 6 

Results and discussion 

Some parts of this chapter have already been published in the following journal 
article: 

 Arya P, Millo F, Mallamo F. A fully automated smooth calibration 
generation methodology for optimization of latest generation of 
automotive diesel engines. Energy 2019. 
doi:10.1016/j.energy.2019.04.122. 

 
In this chapter, the results of the smoothness and performance evaluation for 

the generated calibration map sets are shown and discussed. Of course, it is not 
possible to show the 2.5 million sets. Therefore, in the first section of the chapter, 
the smoothness and performance for each case of smoothness weight setting, 
averaged over half a million calibration sets included in each case, have been 
shown. Furthermore, due to the large number of calibration maps in each case, there 
is a high variance in results. This high variance signifies that some calibration maps 
lead to really low emissions but can be really bad from the perspective of 
smoothness and vice a versa. Due to this high variance, it is better to highlight the 
averaged results. However, it is also important to present and compare some of the 
individual sets of calibration maps to provide a better overview of the achieved 
results. Therefore, in section 6.2, performance and smoothness of some shortlisted 
calibrations have been shown and compared with the existing calibration, referred 
to as BaseCal in the earlier chapters. It should be mentioned here again that even 
though the BaseCal have been optimized using traditional methods, it is capable of 
meeting Euro 6d emission target and therefore serves as a fair point of comparison.  

6.1 Case Wise Comparison of Average Smoothness and 
Performance 

As the smoothness, calculated using normalized curvature energy 𝐸𝐾, have 
been averaged over half a million calibration sets present in each case, each of the 
6 control parameter mentioned in Table has one averaged value for 𝐸𝐾 for each 
case. This averaged 𝐸𝐾 value for two of the control parameters, SOI and air flow, 
along with the smoothness weight value of each case for these parameters are shown 
in Figure 6-1 and Figure 6-2. Also, as a point for comparison, the 𝐸𝐾value for the 
BaseCal SOI and air flow map have been shown in these figures. Only 2 of the 6 
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parameters are shown here as these two are the most crucial from the smoothness 
point of view for the case in discussion.  

As it is expected and can be observed from Figure 6-1 and Figure 6-2, the 
average values for 𝐸𝐾 increases as the values of the weight decreases. Again, the 
lower the 𝐸𝐾, smoother are the maps. Also, in all the results shown in this chapter, 
log10(𝐸𝐾) has been used as the y-axis. This means, the bigger is the bar in a plot, 
lower is the 𝐸𝐾 and therefore smoother is the map.  

 

Figure 6-1 Average SOI map smoothness for the five different parameter weight settings [48] 

 

Figure 6-2 Average air flow map smoothness for the five different parameter weight   
settings [48] 

Interestingly, on comparing the 1st Case in Figure 6-1 and Figure 6-2, even 
though the SOI weight of 0.5 is much higher than air flow weight of 0.1, the average 
smoothness of the air flow map is still higher. This behavior is consistent with the 
statement mentioned earlier that the smoothness of the different calibration 
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parameter maps depends a lot on how the parameters are varied during the engine 
operation. Due to this, some calibration parameter maps may be inherently 
smoother and therefore will not require a high smoothness weight, as is the case for 
air flow. However, this is very difficult to judge in advance. In fact, using BaseCal 
as an example, the air flow map is smoother than the SOI map and if a similar 
behavior is required by the new calibration maps then that would typically mean 
assigning higher smoothness weight to air flow map. However as explained earlier 
using results in Figure 6-1 and Figure 6-2, this high smoothness weight for air is 
definitely not required.  Therefore, it is difficult to decide the smoothness weights 
of the different calibration parameters in advance and it justifies the rationale of 
adopting different cases of smoothness weight settings.  

More interestingly in Figure 6-3 the average reduction in NOX, soot and BSFC 
in comparison with BaseCal over WLTC are shown for each case.  As it can be 
quite clearly seen from Figure 6-3, for all the cases there is roughly a 0.5% reduction 
in BSFC and a 10% reduction in NOX. Also for soot there is a significant reduction 
in the first two cases, and a marginal penalty in the last two cases. 

 

 

Figure 6-3 Average reduction in emissions over WLTC for the five different parameter 
weight settings [48] 

Looking at Figure 6-1, Figure 6-2, and Figure 6-3, it is quite evident that the 1st 
case provides a considerably lower emissions along with satisfactory smoothness 
level. Nonetheless, it should be reminded here that the values shown in these figures 
are the average values over half a million sets of calibration maps which are just 
highlighting the trend. Therefore, out of these half a million calibrations for the 1st 
case it is necessary to select some calibrations based on satisfaction of thresholds 
on performance and smoothness. Moreover, these sets of maps also have to satisfy 
the upper and lower bounds for each control parameter. Many of the calibration 
maps are therefore rejected as they do not satisfy the performance requirement or 
the smoothness requirement or a portion of a map lies outside the acceptable range. 
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Only the calibration maps that satisfy the thresholds are finally selected and stored 
to be reviewed by the calibration team. These performance and smoothness of these 
shortlisted calibration maps is shown in the next section. 

6.2 Smoothness and Performance of Shortlisted 
Calibrations 

It is necessary to be recalled here that the performance and smoothness are in a 
trade-off relationship. The described approach makes it very easy utilize this trade-
off relationship as it enables to select the calibrations (from the large number of 
stored calibrations) that result in much lower emissions at the expense of 
smoothness and vice a versa. In order to show the potential of the developed 
methodology and to make the comparison easy, the threshold for the smoothness 
criteria was kept close to the value of smoothness of BaseCal that was achieved by 
manual smoothening. In this manner while keeping one component of the tradeoff 
same, the possible reduction in the other one was highlighted. 

Having mentioned the comparison method, 6 sets of the calibration maps from 
the 1st Case satisfied the decided criteria for smoothness and performance. The log 
of normalized curvature energy for three of the control parameters (injection 
pressure, SOI and air flow) of these 6 sets of maps are shown in Figure 6-4. On the 
extreme left in the Figure 6-4, the smoothness for the same three control parameters 
from BaseCal have also been shown as a reference for comparison. It can be clearly 
seen in the Figure 6-4 that the smoothness level of the selected calibrations is quite 
close to the one of the BaseCal. It should also be added here that even if the 
smoothness of the other three control parameters (1st Pilot Quantity, 1st Pilot DT 
and Swirl) are not shown in Figure 6-4, the calibration sets were selected only if the 
smoothness of all the 6 maps were above threshold.  

 

 

Figure 6-4 Smoothness of injection pressure, SOI and air flow maps for shortlisted 
calibration sets in comparison with BaseCal [48] 
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Figure 6-5 Simultaneous reductions in NOX, Soot and BSFC for the shortlisted calibration in 
comparison to BaseCal over WLTC [48] 

In Figure 6-5 the reductions in NOX, Soot and BSFC in comparison to BaseCal 
over WLTC have been show. The significant reduction in emissions in Figure 6-5 
clearly highlights the loss of optima occurring in BaseCal due to the manual 
smoothening procedure. Furthermore, looking at both Figure 6-4 and Figure 6-5 it 
is quite evident that calibration set no.3 provides the maximum reduction in 
emissions while achieving the closest smoothness for all the control parameters 
maps.  To show the achieved level of smoothness, the maps for injection pressure, 
SOI and air flow from calibration set no.3 have been shown in Figure 6-6, Figure 
6-7 and Figure 6-8 respectively. 

 

 

Figure 6-6 Injection pressure map from 3rd shortlisted calibration set [48] 
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Figure 6-7 SOI map from 3rd shortlisted calibration set [48] 

 

Figure 6-8 Air flow map from 3rd shortlisted calibration set [48] 

Figure 6-6, Figure 6-7 and Figure 6-8 corroborates the data shown in Figure 
6-4. Injection pressure map has the highest curvature, followed by SOI map and air 
flow map is the smoothest. 

Finally, it should be mentioned here that this research work exploited the 
computational ability of the modern-day computers to rapidly compute and evaluate 
a huge number of calibrations generated using different combinations of the three 
most weighted KPs. The evaluation in terms of smoothness and performance for 
one such case (half a million calibrations) requires about 8 CPU hours on a machine 
with 8GB ram and an Intel i5 2.3 GHz processor. Moreover, with the GA 
optimization taking less than an hour for each KP, smooth calibration generation 
can be carried out in couple of days if the DoE or empirical models are available. 



 

71 
 

6.3 Discussion 

The approach described in this work generates a large number of calibration 
maps using multiple optimum calibrations available for all the KPs. The approach 
is able to achieve significant results because of availability of multiple optimum 
calibrations that are scattered throughout the model domain.  Table 6-1 shows 3 
such optimized calibrations for KP1. It can be seen clearly that all the 3 calibrations 
are very different from each other is terms of the value of control parameters. Each 
of these calibrations have been picked from a group with different optimization 
objective. In fact, this is also clearly shown in Table 6-1  using the first two column. 
At the same time Table 6-2 shows the emissions obtained from these three optimum 
calibrations relative to the BaseCal. It can be seen from the Table 6-2 that, 
irrespective of the optimization objective, low emissions have been achieved for all 
the three calibrations.  

Table 6-1 Values of different control parameters for three diverse calibrations each 
optimized with a different objective [48] 

Cal. 
Identifier 

Optim. 
Obj. SOI Air 

Flow 
1st Pil. 
Quant. Swirl 

1st 
Pil. 
DT 

2nd Pil. 
Quant. 

2nd 
Pil. 
DT 

Inj. 
Pres. 

  °bTDC mm3/str mm3/str % µs mm3/str µs MPa 

#22 NOx -1.0 200 1.3 37.0 1490 2.0 1500 77 

#30 Soot 3.6 221 1.8 61.6 1500 1.3 1500 65 

#55 BSFC 4.9 213 2.0 31.1 660 1.4 1340 63 

 

Table 6-2 Value of different emissions relative to BaseCal for three diverse calibrations each 
optimized with a different objective [48] 

Calibration 
Identifier 

Optimization 
Objective 

NOX relative 
to BaseCal 

Soot relative 
to BaseCal 

BSFC relative 
to BaseCal 

  % % % 
#22 NOx 33.8 97.4 99.9 

#30 Soot 72.3 19.7 98.3 

#55 BSFC 69.0 111.1 96.1 

 
This availability of having low emissions for multiple calibrations gives the 

flexibility of selecting a calibration that can provide the required smoothness for 
the calibration maps and still managing to meet the emission targets. Furthermore, 
this methodology utilizes the idea that if, to obtain smooth calibration maps, a price 
in terms of one of the emissions must be given at a certain operating point, then that 
price can be recuperated at another operating point. For example, for smooth map 
generation if calibration #55 is selected from the Table 6-2 that result in a small 
penalty in terms of soot, then at another KP a calibration minimizing soot can be 
selected to compensate for this penalty. With the described methodology, all such 
possible mathematical combinations are explored, and the best once are selected to 
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be finally reviewed by the calibration team. Moreover, the modules and the codes 
for the methods have been set up in a way that the optimization does not require a 
need to be monitored and can be evaluated directly the complete process is finished. 
In this way, the described approach is truly a one-click methodology. 

When compared to other popular approaches of calibration such as global and 
local methods, one of the advantages of the defined methodology is that no 
information, such as value of constraints, is required a priori to the optimization. 
The local approach requires constraints for optimization for each KP and the global 
approach (also mixed local approach) requires constraints in terms of emissions and 
smoothness over the cycle. These values of constraint are largely dependent on the 
experience of the calibration team and might now always lead to the best results. 
Furthermore, many times the emission and the smoothness constraints change 
depending on the mission profile. As mentioned earlier, depending on what the 
engine is meant for, some control parameters may need smooth maps while some 
may not.  Moreover, change in EATS calibration or addition or replacement of an 
EATS component will result in different emission constraints at the engine out 
level. These changes in constraints will lead to a completely new optimization 
process in the conventional approaches for calibration. However, with the defined 
approach, as all the possible combinations of different calibration maps with 
varying smoothness settings have already been evaluated and stored, no new 
optimization process is required. Any changes in the emission or smoothness 
constraint will just move the selection to another point in the established trade-off. 

Although, in comparison with the global approach for calibration, the defined 
methodology being dependent on the local KP models, lacks the information about 
the emission and combustion processes between different KPs. However, as 
described earlier, the global models are not accurate enough yet, and that is why 
local models still remain the preferred choice for the calibration in the industry. 
Furthermore, the defined approach tackles the biggest problem associated with the 
local approach i.e. loss of optima which is clearly highlighted by the results shown.  
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Chapter 7 

Conclusions 

In this research work, keeping in mind the increased number of modern diesel 
engine control parameters and their impact on the calibration effort, an automated 
methodology for the optimization of last generation of automotive diesel engines 
have been described.  

The review of the different state of the art engine calibration methodologies 
clearly highlights the need for a better optimization approach. The traditional 
methods for optimization are no longer sufficient to carry out a high dimensional 
optimization task such as a modern-day automotive diesel engine. The review also 
highlights the issues associated with the different calibration approaches. The local 
approach while is the most accurate from the modelling point of view, suffers from 
a loss of optima due to the smoothness requirement of the calibration maps. At the 
same time, global approach lacks in the accuracy of the model. Mixed approach, 
which uses local models, but global optimization, involves numerous steps and is 
slow. Moreover, all of these calibration methods require constraints, global or local, 
for carrying out the optimization task. These constraints are coming from the 
experience of the calibration team and sometimes are difficult to be defined for a 
newly designed engine. 

With the aim of reducing the above-mentioned research gaps, starting from a 
local approach for calibration, firstly a Genetic Algorithm (GA)-based optimizer 
has been developed in house using MATLAB v2016b. The GA being a stochastic 
optimization method tackles the problem of entrapment in local minima that is 
associated with the traditional optimization methods. Moreover, the described 
optimization methodology generates multiple optimum calibration for several Key 
Points (KPs). All of these multiple optimum calibrations have shown to be 
significantly better than the optimization achieved using the traditional methods. 
For some KPs, a simultaneous reduction in 20% NOX and 1% BSFC is achieved 
without deteriorating any other emissions, Combustion Noise (CN) or exhaust 
temperature. Furthermore, these multiple optimum calibrations form a Pareto front 
from which the calibrations providing the best tradeoffs in terms of different 
emissions can be easily picked.  

Using this Pareto front, in the later part of this work, an approach has been 
defined to generate smooth calibration maps. Using the defined approach, a large 
number of calibration maps are generated and evaluated for performance and 
smoothness. These evaluations are stored in the memory and some calibrations can 
be quickly shortlisted based on a threshold criterion for smoothness and 
performance. The calibrations generated using the described methodology, when 
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compared with an existing calibration optimized for Euro 6d purposes using 
traditional methods, clearly show a remarkable reduction in all the emissions over 
WLTC. In fact, the selected calibration that has been highlighted finally in this 
work, shows a simultaneous reduction in NOX (10%), Soot (5%) and BSFC (1.1%). 

The most promising advantage of these stored evaluations is that since 
smoothness and performance of the calibrations are in a trade-off relationship, at 
any point it is possible to revert back to these evaluations and quickly choose a 
different point in this trade-off. In this way, if the application of engine is changed 
to suit a different mission profile, or if the calibration of EATS is changed or in any 
other combination of such scenarios, a calibration with the desired level of 
smoothness providing minimum emissions can always be easily selected without 
having to go through the calibration generation phase again. Therefore, this 
methodology has a potential to drastically reduce the development time and cost of 
modern day diesel engines. In fact, if the calibration generation is being done the 
first time, the task that would typically require couple of weeks can be carried out 
in couple of days only. Moreover, once generated and having stored the different 
calibration evaluations, it a matter of seconds to move to a different point in the 
trade-off between smoothness and performance. 
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