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Figure S1 Top view FESEM images of the (a) as-grown SnO2,(b) as-prepared electrode SnO2-anod, 

(c) SnO2-anod electrode reduced for 20min and (d) tested SnO2-anod electrode, (e) commercial 

SnO2, (f) as-prepared electrode SnO2-comm, (g) SnO2-comm electrode reduced for 20min and (h) 

tested SnO2-comm electrode. All images are shown at the same magnification. 

 

 

Figure S2 N2 adsorption/desorption isotherms for SnO2 prepared via anodic oxidation and 

commercial. 
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Figure S3 TEM image at two different magnification of the commercial SnO2. In the inset the FFT 

of picture (b) is also reported. 

 

 

Figure S4 XRD patterns of (a) SnO2-anod and (b) SnO2-comm electrodes (as-prepared, reduced for 

20min and tested).   

 

 
Figure S5 Raman spectrum of as-prepared SnO2-anod electrode. 
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Figure S6 TEM study of the crystals evolution of the SnO2-anod, including the as-prepared, reduced 

for 20 minutes and long term tested material. In the rows the following images are shown: HRTEM 

with FFT (of the shown area) in the inset, low magnification HAADF-STEM image, high 

magnification BF-STEM and HAADF-STEM. 
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The double-layer capacitance (Cdl) values of the SnO2-comm, SnO2-anod and Sn foil electrodes are 

evaluated by cyclic voltammetry (CV) at various scan rates in a potential range between -0.29 V 

and -0.39 V. The geometric current densities are plotted against the scan rates, and the slope of the 

linear fitting quantifies the double-layer capacitance Cdl.  

 

Figure S7 Determination of double-layer capacitance for various electrodes in CO2-saturated 0.1 M 

KHCO3: (a) representing CVs on SnO2-anod electrode; (b) Capacitance values calculated from the 

slopes of current densities vs. scan rate. 

 

 

 

Figure S8 Comparison of the voltammograms of SnO2-comm and SnO2-anod in the CO2-saturated 

electrolyte.  
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Figure S9 EIS analysis on a Sn foil electrode: (a) Nyquist plots obtained in N2-saturated electrolyte 

(the points are experimental data, the clines are the curves calculated through fitting. In the inset, 

the two spectra acquired at -0.5 V in N2- and CO2-saturated solutions are shown. (b) Charge 

transfer resistances reported as a function of the potential. 

 

 

 

 

Figure S10 Equivalent circuit used for fitting of EIS data. 
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Figure S11 CA measurements carried out in CO2-saturated 0.1 M KHCO3 aqueous solution at 

different potentials: (a) SnO2-comm; (b) SnO2-anod; (c) Comparison of total current densities on 

SnO2-comm and SnO2-anod electrodes at various potentials. 

 

 

 

 

Figure S12 Comparison of charge transfer resistance obtained from EIS on SnO2-comm and SnO2-

anod electrodes at various potentials. 
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Figure S13 Tafel plot analysis for HCOOH production on SnO2-comm and SnO2-anod electrodes. 

 

 
Figure S14 Raman spectrum of tested SnO2-anod electrode. 

 

 

 
Figure S15 STEM image of the cross-section lamella of tested SnO2-anod electrode (a) and EDX 

measurement performed locally in the particle and out of the particle (b). 
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Table S1 Comparison of electrocatalytic performance for reducing CO2 to formic acid / formate on 

tin-based catalysts. 

Electrode Electrolyte Maximum Faradic Efficiency [%] Total current (mA cm-2) Ref 

Sn/SnO2 porous hollow fiber 0.1 M KHCO3  82% @-1.,6 V (vs. SCE) 28,6 1 

SnO2 nanosheets/Carbon cloth 0.5 M NaHCO3 87% @ −1.6 V (vs. Ag/AgCl) 48,6 2 

SnOx NPs 0.5 M KHCO3 87% @ −1.6 V (vs. SHE) 14,0 3 

Electro deposited Sn  0.1 M KHCO3  91% @ −1.4 V (vs. SCE) 15,0 4 

Sn particles 0.5 M KHCO3  73% @ −1.8 V (vs. Ag/AgCl) 13,5 5 

SnO2 nanopowder  0.5 M NaOH  68% @-0.6 V (vs. RHE)  3,5 6 

SnO2/graphene  0.1 M NaHCO3  94% @-1.8 V (vs. SCE) 10,2 7 

SnO2/carbon black 0.1 M NaHCO3  86% @-1.8 V (vs. SCE) 5,4 7 

Sn dendrite  0.1 M KHCO3  72% @-1.36 V (vs. RHE)  17,1 8 

Sn - Nafion 0.5 M NaHCO3  70% @-1.6 V (vs. NHE) 27,0 9 

SnO2/carbon aerogel 1.0 M KHCO3  76% @ −0.96 V (vs. RHE)  23,5* 10 

SnO2 Porous NWs  0.1 M KHCO3  80% @ -0.8 V (vs. RHE) 6,0 11 

SnO2 NPs  0.1 M KHCO3  58% @ -0.8 V (vs. RHE) 2,4 11 

SnO2 at N-rGO 0.5 M NaHCO3 78% @ -0.8 V (vs. RHE) 21,3 12 

SnO2 nanospheres 0.5 M KHCO3 56% @ -1.1 V (vs. RHE) 6,0* 13 

Mmesoporous SnO2 0.1 M KHCO3 40% @ -0.8 V (vs. RHE) 

40% @ -1.4 V (vs. RHE) 

5.0 

21.3 

14 

14 

Chain-like mesoporous SnO2  0.1 M KHCO3  82% @ -1.06 V (vs. RHE) 

80% @ -1.15 V (vs. RHE) 

16,3 

19.3 

This work 

This work 

SnO2 nanopowder 0.1 M KHCO3 43% @ -1.15 V (vs. RHE) 

67% @ -0.87 V (vs. RHE) 

16.2 

8.3 

This work 

This work 

*  estimated on the basics of information given in the paper 
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