
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

ToothPic: camera-based image retrieval on large scales / Valsesia, Diego; Coluccia, Giulio; Bianchi, Tiziano; Magli,
Enrico. - In: IEEE MULTIMEDIA. - ISSN 1070-986X. - ELETTRONICO. - 26:2(2019), pp. 33-43.

Original

ToothPic: camera-based image retrieval on large scales

ieee

Publisher:

Published
DOI:10.1109/MMUL.2018.2873845

Terms of use:
openAccess

Publisher copyright

copyright 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating .

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2727340 since: 2020-01-20T15:38:20Z

IEEE Computer Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234927258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

ToothPic:
camera-based image retrieval on large scales

Diego Valsesia, Giulio Coluccia, Tiziano Bianchi, Enrico Magli

In the early years 2000s, digital cameras appeared on the
market for non-professional photographers. Soon, their price
dropped, and more and more people could afford buying
one. Between 2006 and 2007, the most important photo-
centric social network, Facebook, was opened to the masses
giving them the chance to share their pictures with the entire
world. Facebook user count increased from 100 Million people
in 2008 to 2 Billion in 2017. In the following years, the
advent of camera-equipped smartphones, the availability of an
ubiquitous Internet connection, and the multiplicity of diverse
photo-sharing platforms made the number of photos shared
online explode to 2.5 Trillion.

Of course, the vast majority of those pictures portray legal
content and are shared by their owner in a legitimate way.
However, in some cases there may be misuses or abuses related
to the content of a picture, or the way this picture is shared.
For example, a picture taken by a photographer may be stolen
from him/her and used without his/her consent for commercial
purposes. Or even worse, a picture may contain illegal content,
e.g. child pornography or an act of bullying, and may rapidly
spread hopping from a chat group to another one. As a final
example, the shady world of the deep web presents every kind
of illegal material like photos related to international terrorism.
In all these cases, being able to reliably link a picture to
the device that shot it is of paramount importance to give
credit or assign responsibility to the author of the picture itself.
However, this task needs to be performed at the large scales
dictated by the examples above.

Existing methods cannot satisfy those requirements. Photo-
related metadata, like the EXIF data, can be easily tam-
pered with and they are often automatically stripped from
the pictures by the sharing platforms. Other methods, based
on the Photo Response Non-Uniformity (PRNU) of digital
sensors are able to link a photo to the device that shot it (see
box Camera identification with PRNU fingerprints) and have
already been used as proof in the Court of Law. Those methods
are reliable but so far they can be only used for small-scale
forensic tasks involving few cameras and pictures.

A. ToothPic Image Retrieval

ToothPic, an acronym for Who Took This Picture?, is an
image retrieval engine that allows to create a database of
pictures, collected from any source and possibly growing over
time, and a database of cameras, built by having access to
some high-quality photos known to be from a specific device.
Queries can be performed to retrieve all the pictures in the
database shot by a given query camera. ToothPic uses the

PRNU pattern of digital camera sensors, which has been
proven to be a very discriminative fingerprint of the device [1].
The PRNU is compressed with a random projection method [2]
to achieve very compact representations that are also invariant
to image rescaling and enable fast search [3], allowing the
system to work on large scales. In particular, ToothPic is robust
to:

• light post-processing (e.g. color, contrast enhancement,
etc.);

• image rescaling preserving the aspect ratio;
• most common automatic image crops (e.g., 4:3 to 16:9

vertical/horizontal crops, square crops, ...). Those crops
correspond to operations performed by the most popular
social networks and messaging applications (see box
Robustness to automatic image crop and rescaling for
details). For example, the photo acquisition in Instagram
automatically crops the central square area of the sensor,
while WhatsApp automatically crops pictures in 16:9
format when shot from a smartphone with a 4:3 sensor;

• image rotations at multiples of 90 degrees.

I. SYSTEM ARCHITECTURE

An overview of the architecture is shown in Fig.1. The fol-
lowing sections describe the main functional blocks including
the camera registration and photo insertion procedures, the
compressed format of PRNU fingerprints, and the two-stage
search performed when the system is queried with a registered
camera in order to obtain all the photos shot by that device.

ToohPic is built upon some key techniques allowing effec-
tive representations of the PRNU sensor fingerprints: binary-
quantized random projections, two-stage search with adaptive
embeddings, scale-invariant compressed fingerprints and crop-
robust camera registration. We will now discuss how such
techniques are used in the overall system architecture.

A. Scale-invariant fingerprint compression

Uncompressed PRNU fingerprints have huge size since they
have as many real-valued coefficients as the number of pixels
in the camera sensor (see box Camera identification with
PRNU fingerprints). Because of their noise-like nature, they
are not amenable to standard image compression techniques
like JPEG. In [2] we showed that random projections can
be used to reduce the PRNU fingerprint, sizing tens of
megabytes, by three orders of magnitude without significant
loss in detection and false alarm rates. In ToothPic, we use
an improved version of the compression technique which
allows to generate compressed fingerprints that are invariant

2

Camera identification with PRNU fingerprints

Camera identification is concerned with linking a picture with the device that shot it in a reliable and robust manner.
An established technique is to use the Photo Response Non-Uniformity (PRNU) pattern of digital imaging sensors as a
unique fingerprint of the device. Digital imaging sensors use matrices of photo detectors (pixels) to convert photons into
electrons by means of the photoelectric effect. However, not all pixels respond to light in the same manner due varying
quantum efficiency caused by inhomogeneities in the silicon wafer or uncertainties in the physical area of the detector.
This effect can be modeled as a multiplicative pattern superimposed on the intensity of every picture that is taken:

O = Oid +Oid ·K+E , (1)

being O the sensor output, Oid the actual light intensity and K the PRNU pattern pixelwise multiplied to Oid. Being
a multiplicative factor, the PRNU is only weakly observed in dark scenes and it is lost in saturated areas of the image
where the intensity exceeds the dynamic range.
The PRNU pattern can be estimated by one or multiple photos by obtaining an approximation of Oid with a denoising
filter, subtracting it from O and demodulating the resulting “noise residual” again by such approximation. Some post-
processing operations are also typically applied as some artifacts due to the image processing pipeline are present which
may be shared among cameras of the same brand or model [4].

Camera Registration Photo Insertion

Batch of
photos

Uncompressed
fingerprint

FP pool

FP long

Photo

FP long

FP short

locations

SSD

Database

Stage 1

Stage 2

Candidates

Results

RAM

Search

16:9
0° 180°

4:3
0° 180°

3:2
0° 180°

1:1
0° 180°

Fig. 1. System architecture. When a new photo is inserted in the system
(Photo Insertion), a very compact representation of the fingerprint (FP short+
locations) is generated and stored in RAM database, to be used during the
Stage 1 of the search process, and a larger representation (FP long) is also
computed and stored in SSD database, to be used during the Stage 2. When
registering a camera (Camera Registration) the compressed fingerprint is
computed for 4 aspect ratios, corresponding to different sensor crop areas,
and 2 reference rotations. For each of them the representations needed by the
Stage 1 (FP pool) and Stage 2 (FP long) are stored.

to scale transformations of the source images. The procedure
is depicted in Fig. 2.

First, the uncompressed fingerprint is computed using stan-
dard techniques in the camera identification literature and kept
in landscape orientation. Then, the fingerprint is rescaled to
four standard scales corresponding to fixed horizontal resolu-
tions reported in Table I. Such resolutions are chosen among
the most commonly used for each of the supported aspect
ratios. For each resolution, the rescaled fingerprint is circularly

vec

XL

L

M

S

sign

max
8192

sign

sign
Rescaled
Fingerprints

Random
Projections

vec

vec

FP long

FP short

locations

FP pool

values

positions

vec

compr.

Fig. 2. Scale-invariant compression procedure.

convolved in two dimensions with a fixed random pattern of
the same size. Such pattern is composed of realizations of
independent and identically distributed standard Gaussian ran-
dom variables and implements the random projection function-
ality. Notice that this operation can be efficiently performed
using the 2D Fast Fourier Transform:

Yi = IFFT [FFT [φi] · FFT [Xi]] (2)

3

TABLE I
HORIZONTAL RESOLUTIONS FOR EACH ASPECT RATIO

AR S M L XL
3:2 960 1600 2048 5184
4:3 960 1600 2048 3264
16:9 1920 2048 3072 3584
1:1 1080 1280 1600 2048

being Xi the uncompressed fingerprint rescaled at resolution i,
φi the random pattern at resolution i and Yi the corresponding
random projections.

Each matrix Yi is then subsampled by keeping only the
upper right corner of size 320× 410 pixels to obtain Ỹi. The
resulting matrices are then vectorized into ỹi, stacked and
binary-quantized to obtain the final compressed fingerprint,
that we call FP long fingerprint:

y =

sign(ỹS)
sign(ỹM)
sign(ỹL)
sign(ỹXL)

 . (3)

The FP long fingerprint is exactly 65600 bytes long and it
will be stored on disk.

The fingerprint compression procedure also creates the so-
called FP short compressed fingerprint which is smaller and
will be stored in RAM in order to have a fast first stage
during searches. The FP short compressed fingerprint is an
adaptive embedding obtained by selecting from a pool of
random projections the ones with largest magnitude before
quantization. A theoretical analysis of the properties of such
embedding is available in [5]. The procedure to compute FP
short starts from the random projection matrices Yi. Each
Yi is subsampled to a size 630 × 820. This crop forms
the pool of random projections among which the ones with
largest magnitude are selected. When registering a camera,
these pools are binary-quantized and separately saved as the
FP pools to be used at query time. Instead, when a photo is
being inserted, we vectorize and stack all the pools, as in (3),
and select the 8192 entries with largest magnitude, binary-
quantize their values and store in the locations their position
in the vector of pools. The quantized values form the FP short
compressed fingerprint, which is therefore 1024 bytes long,
while the locations are extra information that is also stored
in RAM and used to select the right bits from the FP pool
fingerprint during the first stage of the search. Notice that the
locations are stored in a compressed format [3]. This makes
the locations of variable size. However, we experimentally
verified that the typical size is around 11 KiB.

B. Crop-robust camera registration

The fingerprint compression procedure solved the issue of
the robustness to scale transformations. However, many com-
mon usage scenarios involve photos that have been cropped
with respect to the original sensor size. While managing
arbitrary crops and scale transformations at the same time is
a hard open problem, handling standard non-arbitrary crops
already covers several use cases. The most evident example is

the automatic crop performed to pictures by social networks
or messaging applications. For example, it is common to crop
images to fit the aspect ratio of smartphone displays: e.g. a 4:3
sensor to be cropped to fill a 16:9 screen. Such kind of crop
is predictable as it is applied in fixed positions (typically full-
height centered). The camera registration phase in the ToothPic
system prepares multiple versions of the compressed sensor
fingerprint by applying the most common standard crops (16:9
to 4:3 and vice-versa and 16:9/4:3 to 1:1). When a camera is
used as a query, multiple queries are actually performed to test
all the crop factors.

C. Rotation robustness

Robustness to rotations of multiples of 90 degrees is
achieved by performing two queries, one where the camera
fingerprint is in the reference orientation and one where it is
rotated by 180 degrees. Notice that this covers all the 4 angle
rotations since photos are always rotated to be in a landscape
orientation during insertion, thus only having two states of
rotational ambiguity (apart from the 1:1 aspect ratio, for which
4 rotations are stored).

D. Two-stage search

A query is performed by selecting a camera in order to
retrieve all the photos shot by that device present in the picture
database. The first operation performed by the first stage of
the search is to filter the photos in the database by retaining
only the ones matching the aspect ratio of the query. Then, for
each of the retained entries, the locations are decompressed
and used to select the corresponding entries in the FP pool
compressed fingerprint used as query. Once the binary values
corresponding to the locations have been obtained, the Ham-
ming distance with the FP short compressed fingerprint of
the photo under test is computed. If the Hamming distance is
below a predefined threshold, then the photo is selected for
the second stage. As the computational complexity of the first
stage scales linearly with the number of photos in the database,
the FP short and locations of each photo are stored in RAM,
in order to achieve maximum speed. The FP long compressed
fingerprints of the photos that were selected by the first stage
are loaded from disk and the Hamming distance with the FP
long compressed fingerprint of the query is computed. If the
Hamming distance is below a predefined threshold, then the
photo is declared as being shot by the query camera. This two-
stage procedure is applied for all the crop factors registered for
the query camera and, for each crop factor, the two rotations
are tested (4 in the case of 1:1 aspect ratio).

II. IMPLEMENTATION

The implementation of the system presented in the previous
section strives to be computationally efficient and scalable
to handle a large number of images. In particular, the core
component affecting the system architecture and performance
is the database system. The selection of a suitable database
system hinged on the fulfillment of three main requirements:

• Hybrid memory architecture: the database should be able
to operate in-memory, i.e. storing some of the data

4

directly in RAM, but should also support disk storage.
Also, optimization for SSD drives is desirable since the
second stage of the search procedure is a read intensive
operation.

• Distributed architecture: the database should seamlessly
scale to handle clusters with an arbitrary number of
machines.

• Distributed data processing: queried data should be pro-
cessed in a MapReduce-like [6] fashion with computa-
tions that are localized to the machine storing the data
and results that are aggregated over the network.

In light of such requirements, the Aerospike database [7]
was chosen. Aerospike is a NoSQL database [8] working as a
key-value store and with a storage system that is optimized to
use RAM, Flash and SSD memory. It also supports the cre-
ation of clusters to distribute data and processing operations.
User-Defined Functions (UDFs) support writing application-
dependent code that runs inside the Aerospike database server.
UDFs are typically used to perform computations on the data
records. In particular, we are interested in the Stream UDFs:
they perform distributed stream processing, i.e., processing
a stream of records returned from a query directly on each
node in the cluster and aggregating the results in the client
application. UDFs are written in LUA [9] and can use C code
called from a LUA wrapper. We used this feature writing
Stream UDFs that call C code to perform the matching
operations described below.

In order to implement the ToothPic system with Aerospike,
we first created two namespaces: the first one is used to hold
data in RAM and has a single set of records, the second one is
for SSD storage and has two sets of data. The data set in the
RAM namespace has one record for each photo we inserted,
and the following bins:

• unique identifier
• FP short
• locations
• aspect ratio

To avoid custom aspect ratios due to unsupported crops or
merging of multiple photos, only photos matching one of the
predefined aspect ratios are inserted. A secondary index is
created on the aspect ratio bin in order to query all the records
matching a chosen aspect ratio in a fast way.

The first data set in the SSD namespace matches the one
in RAM, i.e., has one record for each photo we inserted, and
the following bins:

• unique identifier (same as in the RAM data)
• FP long
• validity flag

The validity flag is a binary flag with a secondary index that is
used to mark which photos have passed the first stage during
search.

The second data set in SSD namespace has one record per
camera with the path on the disk where the FP pool and FP
long of the camera are stored for each query aspect ratio.

A query is initiated by selecting a camera from the cameras
data set. The secondary index on the aspect ratio bin of the
data set in the RAM namespace is queried to return a stream of

records matching that aspect ratio. This stream is processed
by a Stream UDF: a LUA wrapper to C code implements
decompression of the locations, selection of the corresponding
bits in the FP pool, Hamming distance computation and
comparison with a user-supplied threshold. These operations
run locally on every machine in the cluster and each machine
produces a list of unique identifiers, i.e., the records that passed
the first stage. The lists are then aggregated by the client
application and the identifiers are used to set the validity flag
to valid on the corresponding records in the SSD namespace.
Notice that this solution is suboptimal since it requires disk
write operations, albeit very limited in size, but we have found
no alternative mechanism since it is not possible to initiate a
second Stream UDF directly on the list of record identifiers.
Instead, the Stream UDF is initiated against the secondary
index corresponding the the validity flag bin. This second
Stream UDF also calls some C code to compute the Hamming
distance between the FP long fingerprint of the camera and of
the photo record. This procedure is repeated for all registered
crop factors and rotations.

III. PERFORMANCE

We tested our implementation of the ToothPic image re-
trieval system on a large-scale scenario in order to assess its
performance in terms of speed, precision and recall metrics.
We also analyzed the robustness of the system to image
rescaling and automatic processing introduced by common
social networks and messaging applications, which perform
automatic crop and/or rescaling operations.

For testing purposes we assembled a database of about 26
million publicly available images downloaded from Flickr. A
list of anonymized Flickr users has been created and for each
user, his/her publicly available photos have been downloaded.
Since Flickr stores different resolutions of the same picture,
only the highest available resolution has been considered.
All the pictures fulfilling the following criteria have been
automatically downloaded in an unsupervised way:

• Size: between 512,000 and 22,000,000 pixels
• Aspect Ratio: one among 16:9, 4:3, 3:2, 1:1

Those requirements have been chosen to automatically discard
thumbnails, panoramic pictures, unconventional crops, etc.
Portrait pictures have been rotated to landscape. EXIF data
have been have not been used. For each downloaded picture,
the compressed fingerprint has been created and inserted in
the database according to the procedure described in the
previous sections. In order to be able to measure the system
performance in terms of accuracy in the retrieval task, we
augmented the database of pictures from Flickr with the well-
known Dresden Image database [10], which includes a set of
natural and flatfield pictures, labelled with the camera that
shot them. We included in our database the natural photos,
while the flatfield photos of the Dresden database were used
to generate the queries to the system. Table II reports the total
number of photos in the database and a breakdown by aspect
ratio: the Dresden database accounts for more than 10,000
natural pictures and 53 cameras.

The database has been installed and runs on a cluster with
two servers, each employing two CPUs with 20 cores each,

5

TABLE II
TEST DATABASE

No. of photos 26,110,823
3:2 14,937,869
4:3 9,707,557

16:9 1,063,088
1:1 402,309

5 10 15 20 25 30 35 40 45 50

Camera index

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

P
re

ci
si

on

Mean
Median

Fig. 3. ToothPic system precision per camera.

384 GB of RAM, 1.6TB of fast PCIe SSD storage. The client
application used to query the database is written in Java using
the Aerospike-Java interface and runs on one of the servers.

We queried the system with each of the 53 cameras of the
Dresden database. For each query, we measured the following
quantities:

• True (False) Positives (TP, FP): the number of retrieved
photos that have (have not) actually been shot by the
selected camera

• True (False) negatives (TN, FN): the number of unre-
trieved photos that have not (have) been shot by the
selected camera

Hence, the system performance has been measured using
the following metrics:

• Precision: TP
/

(TP+FP), i.e., the percentage of retrieved
photos that have actually been shot by the selected
camera;

• Recall: TP
/

(TP+FN), i.e., the percentage of the natural
photos of the selected camera that have been retrieved by
the search engine;

• Execution Time: time spent by the system to complete
a query. It has been measured using the Linux time
command when invoking the query script. We used a
query script that sends a request to the Java client and
waits until the results are ready.

A. Results

The system has been queried using the compressed finger-
prints generated from the flatfield pictures of each of the 53
cameras of the Dresden dataset. The threshold in terms of
Hamming distance for the first stage is equal to 3969 bits,

5 10 15 20 25 30 35 40 45 50

Camera index

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

Mean
Median

Fig. 4. ToothPic system recall per camera.

5 10 15 20 25 30 35 40 45 50

Camera index

01:00

02:00

03:00

04:00

05:00

06:00

07:00

E
xe

cu
tio

n
tim

e,
 m

m
:s

s

Mean
Median

Fig. 5. ToothPic system execution time per camera.

tuned to a probability of about 10−3 of passing the first stage
for a random picture. The default threshold for the second
stage is equal to 260500, as an optimal compromise between
precision and recall.

We first tested the system using the natural photos at their
original resolution. The value of the three different metrics
is shown in Fig. 3 (precision), Fig. 4 (recall), and Fig. 5
(execution time). Those figures also report the mean and
median values of the metrics measured for the 53 tested
cameras.

The system performance in terms of accuracy in the retrieval
task and execution time is summarized in Table III.

The obtained results in terms of precision and recall agree
with the results published in scientific literature, where the
Dresden database was used as reference, see for example [3]
and [11]. Given that the database contains 26,110,823 pictures,
the median execution time corresponds to a throughput (in
terms of processed images per second) equal to more than
175,000 pictures/second.

When evaluating the results, it has to be noted that:
• The Dresden database is known to contain a few cameras

6

Robustness to automatic image crop and rescaling

The rise of smartphone photography has increased the number of photos taken and shared by means of social networks
or messaging applications every day. However, it is not common to find them at their original resolution due to a variety
of reasons. Most pictures will be seen on mobile devices with screens of limited size and therefore rescaling the photo
to a lower resolution does not significantly alter the visual quality, while allowing reduced upload and download latency,
or reduced storage requirements for service providers. Sometimes images are also cropped from the original sensor form
factor in order to match the screen size of a target device or for aesthetic reasons (e.g., square photos). We report the
processing operations performed by some popular services and test how well the ToothPic system handles camera-based
image retrieval in this use case of great practical interest. The tests use a Nexus 5X smartphone with original sensor size
of 4092×3024 pixels.

WhatsApp
When sending a photo shot using the in-app camera, the
image is automatically cropped to a 16:9 aspect ratio by
keeping the central part of the image and resized. The
sent images have resolution 899×1599. Notice that the app
saves on the sender’s phone both the cropped and resized
photo and only the cropped photo, while the recipient only
receives the former. We simulate scenarios where we could
access the file system of the sender or of the recipient.

SENDER RECIPIENT
Recall 20/20 4/20

Precision 20/20 4/4

Facebook
Photo upload resizes the photos to one of the supported hor-
izontal resolutions: 720px, 2048px (“high quality” option).
No crop is performed.

720px 2048px
Recall 9/20 16/20

Precision 9/9 16/16

Google Photos
The free tier (“high quality” option) allows to save unlimited
photos but caps the resolution to 16 megapixels and uses
stronger JPEG compression. No crop is performed.

FREE TIER
Recall 98/100

Precision 98/98

TABLE III
SYSTEM PERFORMANCE (NATIVE RESOLUTION)

Median precision 98.9%
Median recall 93.9%
Median execution time 2 minutes 29 seconds

TABLE IV
SYSTEM PERFORMANCE (RESCALED PHOTOS)

960 px 1600 px 2048 px 3072 px
Median precision 95.2% 98.8% 98.9% 98.9%
Median recall 13.5% 67.9% 84.2% 91.4%

with known artifacts that affect the system recall [11];
This phoenomenon can be easily noticed from Fig. 4.

• The runtime is mostly affected by the features of robust-
ness to crops and rotations and to bottlenecks due to
Aerospike architecture. If desired, a system that avoids
checking automatic crops would be 2x faster for 3:2
cameras and 4x faster for 4:3 or 16:9 cameras, leading
to a throughput of the order of more than 700,000
pictures/second.

Figure 6 shows the system precision and recall as a function
of the threshold for the second stage, so that it can be used to
tweak the precision/recall trade-off. It can be noticed that the
chosen value for the threshold ensures a good trade-off as it
is close to the saturation point the recall curve and it is before
the dropoff in the precision curve.

2.5 2.52 2.54 2.56 2.58 2.6 2.62

Threshold 10 5

0

0.2

0.4

0.6

0.8

1

M
ed

ia
n

P
re

ci
si

on

0

0.2

0.4

0.6

0.8

1

M
ed

ia
n

R
ec

al
l

Default threshold

Fig. 6. ToothPic system median precision and recall vs. threshold

Finally, we also tested the system performance in presence
of rescaled photos. We rescaled all the Dresden natural photos
at four different resolutions corresponding to horizontal reso-
lutions of 960, 1600, 2048, 3072 pixels. Table IV reports the
median precision and recall broken down for each resolution. It
can be noticed that the system performance degrades smoothly
with lowering the resolution due to the lower quality of
the fingerprints caused by the rescaling and double JPEG
compression.

7

IV. CONCLUSIONS

While ToothPic is the first system to perform camera-based
image retrieval on large scales, many problems remain open
for future work. In particular, unsupervised image clustering
by camera on large scales and resilient to image transfor-
mations remains an issue. Camera identification from video
sequences is also interesting but challenging due to the lower
quality of video frames.

REFERENCES

[1] J. Fridrich, “Digital image forensics,” Signal Processing Magazine,
IEEE, vol. 26, no. 2, pp. 26–37, 2009.

[2] D. Valsesia, G. Coluccia, T. Bianchi, and E. Magli, “Compressed
fingerprint matching and camera identification via random projections,”
IEEE Transactions on Information Forensics and Security, vol. 10, no. 7,
pp. 1472–1485, July 2015.

[3] ——, “Large-scale image retrieval based on compressed camera identi-
fication,” IEEE Transactions on Multimedia, vol. 17, no. 9, pp. 1439–
1449, Sept 2015.

[4] M. Chen, J. Fridrich, M. Goljan, and J. Lukas, “Determining image ori-
gin and integrity using sensor noise,” IEEE Transactions on Information
Forensics and Security, vol. 3, no. 1, pp. 74–90, March 2008.

[5] D. Valsesia and E. Magli, “Binary adaptive embeddings from or-
der statistics of random projections,” IEEE Signal Processing Letters,
vol. 24, no. 1, pp. 111–115, Jan 2017.

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, Jan. 2008.

[7] V. Srinivasan, B. Bulkowski, W.-L. Chu, S. Sayyaparaju,
A. Gooding, R. Iyer, A. Shinde, and T. Lopatic, “Aerospike:
Architecture of a real-time operational dbms,” Proc. VLDB Endow.,
vol. 9, no. 13, pp. 1389–1400, Sep. 2016. [Online]. Available:
http://dx.doi.org/10.14778/3007263.3007276

[8] J. Pokorny, “Nosql databases: A step to database scalability in web
environment,” in Proceedings of the 13th International Conference on
Information Integration and Web-based Applications and Services, ser.
iiWAS ’11. New York, NY, USA: ACM, 2011, pp. 278–283. [Online].
Available: http://doi.acm.org/10.1145/2095536.2095583

[9] “The Programming Language LUA,” https://www.lua.org/, accessed:
2017-11-30.

[10] T. Gloe and R. Böhme, “The Dresden Image Database for
benchmarking digital image forensics,” Journal of Digital Forensic
Practice, vol. 3, no. 2-4, pp. 150–159, 2010. [Online]. Available:
http://http://forensics.inf.tu-dresden.de/ddimgdb/

[11] T. Gloe, S. Pfennig, and M. Kirchner, “Unexpected Artefacts in PRNU-
based Camera Identification: A ‘Dresden Image Database’ Case-study,”
in Proceedings of the on Multimedia and Security. ACM, 2012, pp.
109–114.

Diego Valsesia is a Postdoctoral Associate at the Depart-
ment of Electronics and Telecommunications (DET), Politec-
nico di Torino, Torino, Italy. His main research interests
include compression of remote sensing images, compressed
sensing, and deep learning.

Giulio Coluccia is a Postdoctoral Associate at the De-
partment of Electronics and Telecommunications (DET), Po-
litecnico di Torino, Torino, Italy. His research is focused on
Compressed Sensing, with particular interest in its application
to Image Processing and Forensics, Multidimensional Signals
and to Distributed Source Coding and Wireless Sensor Net-
works.

Tiziano Bianchi is an Assistant Professor with the Depart-
ment of Electronics and Telecommunications, Politecnico di
Torino, Torino, Italy. His research interests include multime-
dia security technologies, signal processing in the encrypted
domain, and security aspects of compressed sensing. He has
published more than 100 papers on international journals and
conference proceedings.

Enrico Magli is a Full Professor with Politecnico di
Torino, Torino, Italy, a Fellow of the IEEE and has been
an IEEE Distinguished Lecturer from 2015 to 2016. He is
an Associate Editor of the IEEE Transactions on Multimedia
and the EURASIP Journal on Image and Video Processing.
His research interests include compressive sensing, image and
video coding, and vision.

