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Abstract

The use of drug combinations in clinical trials has emerged during the last years as an
alternative to single agent trials since a more favorable therapeutic response may be obtained
by combining drugs that, for instance, target multiple pathways or inhibit resistance mecha-
nisms. This practice is common in both early phase and late phase clinical trials. However,
depending on the phase of the trial, we may find different challenges that will require novel
methodology. In early phase, where we model the probability of toxicity and efficacy, the
main challenge is to find a suitable multivariate model that works well with a relatively low
sample size. In late phase trials, the main challenge is to propose a design that allows to
perfectly control the the type-I error and the power while allowing for the trial to stop in case
of a lack of efficacy or in case the interim analyses show an efficacy that is big enough so it
would be unethical to continue the trial. Other challenges may involve certain characteristics
of the drug, such us delayed effects. This issue is quite present in nowadays clinical research
because of the use of immuno-therapy against cancer.

In early phase trials, we studied the state of the art methodology and we observed that a
large number of published methods are not appropriate for drug combination settings since
were originally designed for single agents and then adapted to drug combinations. This
statement is not based only on performance, because in fact many of these methods perform
quite well even though they were not designed to be used in a drug combination setting, but
because most of them do not take into account the interaction between drugs.

In late phase trials we focused our attention on the design of clinical trials in the presence
of delayed effects in a drug combination setting. We performed a state of the art methodology
review, and we observed that there is enough published methodology to design efficient
confirmatory trials under this conditions. However, we also observed that most of this
methodology primarily focuses on power recovery rather than type-I error rate control, which
makes it difficult to apply in practice given the nature of confirmatory trials.

Our intention during this thesis was not only to develop novel methodology but to do it in
areas that could be of interest for clinicians. In this thesis we make three contributions to the
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field of clinical trials with drug combinations. In early phase trials, we propose a Bayesian
adaptive phase I trial design that allows the investigator to attribute a DLT to one or both
agents in a unknown fraction of patients, even when the drugs are given concurrently. We also
propose a Bayesian adaptive phase I/II design with drug combinations, a binary endpoint in
stage 1, and a TTP endpoint in stage 2, where we aim to identify the dose combination region
associated with the highest median TTP among doses along the MTD curve. In late phase
trials, we did an assessment of the impact of delayed effects in group sequential and adaptive
group sequential designs, with an empirical evaluation in terms of power and type-I error
rate of the weighted log-rank in a simulated scenario. Our last contribution includes several
practical recommendations regarding which methodology should be used in the presence of
delayed effects depending on certain characteristics of the trial.



Abstract

L’uso di combinazioni di farmaci è aumentato considerevolmente durante gli ultimi anni come
alternativa agli studi clinici con un singolo farmaco. Ciò è dovutto alla possibilità di ottenere
una migliore risposta individuando molteplici pathway oppure inibendo i meccanismi di
resistenza. Questa pratica è comune in tutte le fasi dello sviluppo clinico. Tuttavia, ogni fase
clinica presenta diverse sfide che richiedono lo sviluppo di nuove tecniche metodologiche.
Nella fase iniziale dello sviluppo clinico, dove l’obiettivo è modellare la probabilità di
tossicità ed efficacia, la difficoltà principale è trovare un modello soddisfacente con un
numero ridotto di pazienti. Nella fase avanzata dello sviluppo clinico, l’obiettivo è controllare
l’errore di tipo-I e la potenza statistica, e avere la flessibilità di interrompere lo studio nel
caso di mancanza di efficacia oppure nel caso di risultati intermedi con sufficiente evidenza.
Altre sfide riguardano per esempio sono la presenza di effetti ritardati. Questa situazione è
molto comune nella ricerca clinica per l’uso dell’immuno-terapia.

Nella fase iniziale dello sviluppo clinico abbiamo studiato la metodologia finora presente
in letteratura e abbiamo osservato che molte pubblicazioni non sono appropriate per l’uso di
combinazioni di farmaci, perchè originalmente sono pensate per studi clinici con un singolo
farmaco, e poi adattate alle combinazioni di farmaci. Questa affermazione non è solo basata
sulle performance, ma anche sul fatto che queste metodologie non incorporano l’interazione
di farmaci.

Nella fase avanzata dello sviluppo clinico ci siamo focalizzati sul disegno di studi clinici
con effetti ritardati. Abbiamo studiato la metodologia principale e abbiamo concluso che
esiste un numero sufficiente di techniche per il disegno di studi clinici con effetti retardati.
Tuttavia, tutte le metodologie presenti sono incentrate sul recupero della potenza statistica
trascurando il controllo dell’errore di I tipo, cosa che ne rende difficile l’applicabilità, data la
natura degli studi clinici di conferma.

In questa tesi di dottorato abbiamo sviluppato tre nuovi contributi in aree di interesse
per la ricerca clinica. Abbiamo realizzato tre articoli, due nell’area della fase iniziale e uno
nell’area della fase avanzata. Abbiamo proposto un disegno adattativo Bayesiano per la fase
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I che permette l’attribuzione di tossicità a uno o più farmaci. Abbiamo anche proposto un
disegno adattativo Bayesiano di fase I/II, con endpoint binario nella prima fase e endpoint
di sopravvivenza nella seconda fase dove vogliamo trovare la regione con la mediana di
tempo fino alla progressione (TTP) più alta. Nella fase avanzata, abbiamo fatto un studio
sull’impatto degli effetti ritardati nei disegni adattivi e nei disegni sequenziali adattivi. Questa
valutazione riguarda la potenza statistica e l’errore di I tipo utilizzando il test ponderato dei
ranghi logaritmici. Quest’ultimo lavoro include molte raccomandazioni pratiche da usare nel
disegno di studi clinici con effetti ritardati.
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Chapter 1

Introduction

1.1 Drug development

Drug development is a long and costly process. It may take several years since a molecule is
discovered until it is approved for sale by the regulatory agencies. In general, this process
can be divided in 5 steps:

1. Pre-clinical studies.

2. Phase I studies.

3. Phase II studies.

4. Phase III studies.

5. Phase VI studies.

The goal of pre-clinical studies consists on identifying and studying the structure of new
molecules and the affect they have on cells. This process serves as screening and those
molecules that present activity on cells and then administered to laboratory animals in order
to obtain estimate of the effect.

Pre-clinical studies are particularly useful because they are dose relatively fast and with
low risk, since they are done in animals. They are strongly controlled, given the laboratory
environment in which the are performed, and provide a detailed description of the mechanism
of action for the animal model. Moreover, they allow us to gather safety data in order to
evaluate the tolerability of the molecule. Pharmacokinetics / pharmacodynamics (PK / PD)
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data is also collected to study the behavior of the molecule after its administration in the
body.

Very few molecules make it past this phase of research. The transition from pre-clinical
studies to phase I studies, is not straightforward, even though we already have some safety
and efficacy information from animal studies. However, despite that the collected information
is just a hint of the effect that the molecule may have in humans, the first dose level that will
be used in humans is determined from the observed pre-clinical data.

Phase I studies are the first stage of testing the molecule, or drug, in humans. The goal of
phase I trials is to evaluate the safety of the drug and identify the maximum tolerated dose
(MTD). For non-life-threatening diseases, phase I studies are usually conducted on healthy
human volunteers. However, in life-threatening diseases such as cancer, these studies are
conducted on actual patients. The reason is due to the aggressiveness and potential treatment
side effects, but also due to a high interest in administering the drug to patients for which
there is no other therapeutic alternative.

Once the initial safety of the study drug have been tested and an MTD set has been
identified, phase II trials are performed. The purpose of these studies is to identify therapeutic
areas in which the drug presents promising efficacy results and also confirm the safety results
found in precious phase I trials. If the phase II is successful, a phase III trial is performed.
These trials compare the efficacy of the drug with current “gold standard” treatment or a
placebo, depending on the therapeutic area. They are usually randomized controlled multi-
center trials on large patient groups and are highly regulated by the regulatory agencies
such as the European Medicines Agency (EMA) or the U.S. Food and Drug Administration
(FDA).

Last, phase IV trials involve the safety surveillance and ongoing support of a drug after
it receives permission to be marketed. Their purpose consist of collect, detect and monitor
adverse events (AE) in already marketed drugs. These trials allow to detect rare or late
adverse events in the general population that were not identified in previous clinical trials.

1.2 Dose finding clinical trials with drug combinations

In this section we present a brief review of adaptive phase I and II clinical trials as necessary
tools for dose finding in drug development. Even though some methodology for single agent
trials may be described, the main interest lies on methodology for drug combination trials.
Moreover, because this thesis is focused on adaptive methodology, only model based designs
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where the dose - toxicity and the dose - efficacy relationships are modeled using a statistical
model are reviewed.

In oncology dose finding clinical trials, the main goal is to identify a dose that maximizes
the treatment efficacy. The traditional approach would be to plan two different clinical trials:
first a phase I trial where the goal is to obtain an estimate of the MTD, and then a phase II
trial where among the set of doses recommended from the phase I, we look for the dose with
highest probability of efficacy. An alternative would be to put both phase I and II trials into a
unique phase I/II trial where toxicity and efficacy could be jointly modeled. However, this is
only possible in settings where efficacy is observed relatively fast (e.g. one or two cycles of
therapy). In cases where efficacy is not ascertained in a short period of time, phase I/II trials
can also be employed but it is frequent to make use of two-stage designs where, an MTD is
selected in the first stage of the trial, and then tested for efficacy in the second stage with
possibly a different population than the one used in the first stage.

1.2.1 Phase I

Cancer phase I clinical trials constitute the first step in investigating a potentially promising
drug. Due to safety and ethical concerns, patients have to be sequentially enrolled in the trial,
and the dose combinations assigned to subsequent patients depend on dose combinations
already given to previous patients and their DLT status. The main objective of phase I trials
is to estimate an MTD that will be used in further efficacy evaluation. The MTD is usually
defined as any dose combination (x,y) that will produce DLT in a prespecified proportion θ

of patients,

P(DLT|dose = (x,y)) = θ . (1.1)

The definition of DLT depends on the type of cancer and drugs under study, but it is
usually defined as a grade 3 or 4 non-hematologic toxicity (see the National Cancer Institute
CTCAE v4.03 for the definition of the different grades of toxicity). The pre-specified
proportion of DLTs θ , sometimes referred as target probability of DLT, also depends on the
nature of the toxicity.
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Continuar reassessment method (CRM)

The continual reassessment method is considered one of the first model-based phase I designs
in the history of clinical trials and it is particularly relevant in oncology trials given the
consequences of an inappropriate given dose [1, Chapter 1]. It was developed by [2] as
an alternative to the traditional ruled-based designs. As stated by [3, Chapter 6], the CRM
addresses ineffectiveness of treatment at low doses, severe toxic effects expected at high
doses, poor knowledge of the dose-toxocity relationship at the trial onset, or the need for
efficient designs with small sample sizes.

CRM is considered the first Bayesian adaptive design for dose finding because it uses all
the accumulated data, including the data prior to the trial onset, at the time each dose level is
estimated for new patients.

In this chapter we review the CRM, including the one-stage and two-stage variations.
These single-agent strategies will serve as the basis for the CRM when used for drug
combination.

In its most basic form the CRM characterizes the dose-toxicity relationship by a one-
parameter parametric model, such us the hyperbolic tangent model, the logistic model, or the
power model among others. In a more general expression, let (x,y) be the administered dose
combination. The probability of DLT is given by

P(DLT|x,y) = F(β0 +β1x+β2y+β3xy), (1.2)

where F is a known cumulative distribution function.

In a Bayesian framework, uncertainty over the β parameters is expressed through a prior
probability density function. For instance, [2] proposed to use an exponential prior centered
on 1 and hence, P(β ) = exp−β , where 0 < β < ∞.

Let Tj be the binary toxicity outcome for the j-th patient, where Tj = 1 if a DLT is
observed, and Tj = 0 otherwise. The likelihood function is defined as

L(β |x,y,T ) ∝

n

∏
j=1

[P(DLT|x,y)]Tj × [1−P(DLT|x,y)]1−Tj , (1.3)

and the posterior probability distribution of the model parameters as

P(β0,β1,β2,β3|x,y,T ) ∝ P(β0,β1,β2,β3)×L(β |x,y,T ). (1.4)
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With (1.4) we can easily sample and obtain MCMC samples of the β parameters. The
dose combination that will be recommended to the next patient to enter the trial is calculated
as

(xnew,ynew) = argmin
(x,y)

|P̂(DLT|x,y)−θ |, (1.5)

where θ represents our target probability. We repeat this step until we reach the maximum
sample size. Using the definition of MTD given by equation (1.1) and the dose-toxicity
model defined in equation 1.2, at the end of the trial we estimate the MTD as follows

Ĉ =

{
(x,y) : y =

F−1(θ)− β̂0− β̂1x

β̂2 + β̂3x

}
(1.6)

Even though CRM obtains accurate estimates of β , and hence more patients are treated
at dose levels that are close to the MTD, it was not well accepted in its original form, mainly
due to safety considerations. For this reason, as stated in [4], the original CRM was modified
in order to add safety measures such us treating the first patient at the lowest starting dose
level based on animal toxicology and conventional criteria, increasing the dose by only
pre-specified level at a time, not allowing dose escalation for the immediate next patient
if a patient has experienced DLT, or treating more than one patient at the same dose level,
specially at high dose levels.

This methodology has been extensively studied, for instance, by [5–10].

Escalation with overdose control (EWOC)

As mentioned by [4, 3], the CRM may expose patients to overly toxic doses if either the
model is misspecified or the first patient responses are atypical. Escalation with overdose
control (EWOC) represents the first statistical method that incorporates a safety constraint
into the design of the clinical trial, allowing more patients to be treated with potentially
therapeutic doses [11]. This method is very similar to CRM. However, while CRM always
uses the median of the MTD’s posterior distribution to recommend subsequent doses, EWOC
recommends the dose that is at the α-th percentile of the MTD’s posterior distribution. α is
also knows as a feasibility bound and it usually takes values between 0.25 and 0.5.

EWOC has been extensively studied, for example, by [12–14].



6 Introduction

1.2.2 Phase II

After an MTD has been selected from a phase I trial, we proceed to run a phase II trial to
evaluate if the dose (or doses) selected MTD has enough activity and also we aim to increase
our knowledge about the toxicity of the drug. It is important to distinguish between two
types of phase II trials: phase IIA and phase IIB.

Phase IIA trials are the initial efficacy evaluation and are usually designed as sigle-arm
multi-stage design. They usually have a binary efficacy endpoint, they treat between 40 and
100 patients and they have early stopping rules to stop the trial in case of an obvious lack of
efficacy at interim analyses.

Phase IIB trials are the subsequent efficacy evaluation and are usually multi-arm ran-
domized multi-stage trials with the aim of identifying the most promising dose among those
selected as MTD. In this kind of trials, time to event endpoints are often chosen as primary
endpoints.

Conclusions about phase II trials are made through a hypothesis testing procedure that,
for instance, has the form

H0 : p≤ p0 vs. H1 : p≥ p1, (1.7)

where the type-I error is usually increased from the traditional 5% up to 20% in some
particular cases. However,the type-II error needs to be bounded between 10% and 20%.
The reason is that in phase II trials the main goal is identify active treatments and hence
controlling the type-II error is slightly more important than controlling the type-I error.

Given the randomized nature of phase IIB trials, it is not rare to find trials that use
adaptive randomization. The reason is that with this approach, we can allocate patients to
more promising treatment while still having a randomized setting in the clinical trial.

One the most important articles published so far is the two-stage design proposed by [15].

1.3 Confirmatory clinical trials

In this section we briefly introduce adaptive phase III (or confirmatory) clinical trials. They
are usually randomized, controlled, multi-center, multi-arm and multi-stage trials. They
compare the dose recommended by the phase II against the current gold standard treatment
and enroll a much larger number of patients than the previous stages of the drug development.
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What differentiates a confirmatory trial from an adaptive confirmatory trial is the possibil-
ity of looking at the data several times while the trial is ongoing for interim decision making.
The rationale for this is that a clinical trial should not continue if there is a clear tendency
favoring one of the treatments. Also, patients should not be treated with a drug that does not
show a potential benefit for them.

One of the biggest challenges in adaptive confirmatory trials is the type-I error rate
control as it increases if we repeatedly look at the data. Methods to prevent type-I error
rate inflation are hence necessary in order to obtain valid conclusions from these kind of
clinical trials. These method were introduced by [16–18], amont others, are widely used in
the implementations of group sequential testing for clinical trials.

As described by [19], there are two kind of adaptive confirmatory trials: group sequential
designs, which are characterized by a pre-specified adaptivity, and confirmatory adaptive
designs, which are characterized by unscheduled adaptivity.

In group sequential designs, the number of interim analysis, the sample size of each arm
or the decision boundaries for early stopping need to be fixed before the trial has started to
avoid a type-I error rate inflation. In contrast, confirmatory adaptive trials allow to perform
any adaptivity, such us for example sample size re-assessment, without a pre-specification
of the adaption rules. To prevent type-I error rate inflation in adaptive confirmatory trials,
the design must satisfy the conditional invariance principle (see [20]), where different test
statistics are calculated from the samples at the different stages of the trial and are combined
in a pre-specified way for the final test decisions. This principle allows to react quickly to
unexpected results.



Chapter 2

Cancer Phase I trial design using drug
combinations when a fraction of dose
limiting toxicities is attributable to one or
more agents

2.1 Introduction

Cancer phase I clinical trials constitute the first step in investigating a potentially promising
combination of cytotoxic and biological agents. Due to safety and ethical concerns, patients
are sequentially enrolled in the trial, and the dose combinations assigned to subsequent
patients depend on dose combinations already given to previous patients and their dose
limiting toxicity (DLT) status at the end of the first cycle of therapy. The main objective
of these trials is to estimate a maximum tolerated dose (MTD) that will be used in future
efficacy evaluation in phase II/III trials. The MTD is usually defined as any dose combination
(x,y) that will produce DLT in a prespecified proportion θ of patients,

Prob(DLT| dose = (x,y)) = θ . (2.1)

The definition of DLT depends on the type of cancer and drugs under study, but it is
usually defined as a grade 3 or 4 non-hematologic toxicity (see the National Cancer Institute
CTCAE v4.03 for the definition of the different grades of toxicity). The pre-specified
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proportion of DLTs θ , sometimes referred as target probability of DLT, also depends on the
nature of the toxicity, but it usually take values between 0.2 and 0.4.

In the drug combination dose finding literature, designs that recommend a unique MTD
(see e.g. [6, 7, 5, 8–10, 21, 22]) or multiple MTDs (see e.g. [23–27, 12, 28, 13]) have been
studied extensively. Most of these methods use a parametric model for the dose-toxicity
relationship

Prob(DLT|(x,y)) = F((x,y),ξ ), (2.2)

where (x,y) represents the drug combination of two agents, F(.) is a known link function, e.g.
a power model or a logistic model, and ξ ∈ Rd is a vector of d unknown parameters. Non-
parametric designs have been proposed in the past, both in single agent and drug combination
settings [27, 29, 30]. These designs unique assumption is monotonicity, which is imposed
either through the prior distribution (see [29, 30]), or by choosing only monotonic contours
when escalating (see [27]).

Let S be the set of all dose combinations available in the trial, and C(ξ ) be the set of dose
combinations (x,y) such the probability of DLT equals a target risk of toxicity θ . Hence,

C(ξ ) = {(x,y) ∈ S : F((x,y),ξ ) = θ}. (2.3)

Equation (2.3) is the traditional definition of MTD set. When S is discrete, following
[13], we can define the MTD as the set of dose combinations (x,y) that satisfy

|F((x,y),ξ )−θ |≤ δ , (2.4)

since C(ξ ) may be empty, i.e., when the MTD is not in S. The threshold parameter δ ,0 <

δ < 1, is pre-specified after close collaboration with the clinician.

This work is motivated by a cancer phase I trial a clinician at Cedars-Sinai Medical
Center is planning. The trial involves the combination of Taxotere, a known cytotoxic agent,
and Metformin, a diabetes drug, in advanced or metastatic breast cancer patients. According
to the clinician, some DLTs can be attributable to either agent or both. For example, a grade
3 or 4 neutropenia can only be attributable to Taxotere and not Metformin. Furthermore,
for ethical reasons, if a patient has a DLT attributable to Taxotere when treated with dose
level xT of taxotere, then xT cannot be increased for the next patient in the trial (see the dose
escalation restriction in Section 2.2). Very few methods have been developed to incorporate
toxicity attribution in the dose escalation process. [6] proposed a design that models the
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joint probability of toxicity with a copula model known as the Gumbel model [31]. This
model allows the investigator to compute the probability of DLT when the DLT is exclusively
attributed to one drug, the other one, or both. However, they require all toxicities to be
attributable, which is rare in practice. [21] proposed a semi-attributable toxicity design based
on a trial with non-concurrent drug administration. In their design, one drug is administered
at the beginning of the treatment cycle and the other drug is administered at a much later
time point if and only if the patient did not experience DLT. If a DLT occurs before the
second drug is administered, then the DLT is attributed to the first drug. However, if the
DLT occurs after the second drug has been administered, then the DLT could be caused by
any of the drugs and therefore is not attributable. [32] propose a method that reduces the
effect of the bias caused by toxicity attribution errors by using personalized scores instead
of the traditional binary DLT outcome. [33] considered the toxicity attribution problem for
ruled-based designs with non-overlapping toxicities.

In this article, we propose a Bayesian adaptive design for drug combinations that allows
the investigator to attribute a DLT to one or both agents in an unknown fraction of patients,
even when the drugs are given concurrently.

We define toxicity attribution as a DLT caused by one drug and not the other when the
type of DLT is non-overlapping, e.g., a grade 4 neutropenia is caused by taxotere but can
never occur with metformin, or when the clinician judges that a type of DLT is caused by
one drug and not the other, e.g., a grade 4 diarrhea is caused by taxotere but not metformin
due to the low dosTe level of taxotere that was given in combination even though both drugs
have this side effect in common.

The relationship between the dose combinations and the risk of toxicity is modeled
using the same copula model used by [6]. The design proceeds using a variation of the
algorithm proposed in [13] where cohorts of two patients are allocated to dose combinations
where, at each stage of the trial, we search for the dose of one agent given the current dose
of the other agent. Our approach differs from the methodologies of [6] and [13] in three
aspects; (i) a non-negative fraction of DLTs are attributable to either one or both agents, (ii)
the dose combination allocated to patients uses the CRM scheme as opposed to escalation
with overdose control (EWOC) approach proposed by [11], and (iii) if a current patient
experiences DLT attributed drug D1 at dose level xD1 , then the dose level of agent D1 cannot
be more than xD1 for the next cohort of two patients. At the end of the trial, an estimate
of the MTD curve is proposed as a function of Bayes estimates of the model parameters.
Last, we show that our method can be easily adapted from a setting with continuous dose
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combinations to discrete dose combinations by rounding up the estimated MTD curve to the
nearest discrete dose combinations.

The rest of the manuscript is organized as follows. In Section 2.2, we describe the model
for the dose-toxicity relationship and the adaptive design to conduct the trial for continuous
dose combinations. In Section 2.3, we study the performance of the method in terms of safety
and efficiency of the estimate of the MTD set. In Section 2.4, we adapt our proposal to the
setting of discrete dose combinations. In section 2.5, we conduct a model misspecification
evaluation. Discussion and practical considerations of the method are discussed in Section
2.6.

2.2 Method

2.2.1 Dose-Toxicity Model

Let Xmin,Xmax,Ymin,Ymax, be the minimum and maximum doses available in a trial that
combines drugs with continuous dose combination levels. The doses are standardized to
be in a desired interval, e.g., [0.05, 0.3], so that Xmin = Ymin = 0.05 and Xmax = Ymax = 0.3.
Let Fα(·) and Fβ (·) be parametric models for the probability of DLT of drugs D1 and D2,
respectively. We specify the joint dose-toxicity relationship using the Gumbel copula model
(see [31]) as

π
(δ1,δ2) = Prob(δ1,δ2|x,y) = Fδ1

α (x) [1−Fα(x)]
1−δ1×

Fδ2
β
(y)
[
1−Fβ (y)

]1−δ2 +(−1)(δ1+δ2)Fα(x) [1−Fα(x)]Fβ (y)
[
1−Fβ (y)

] e−γ −1
e−γ +1

,
(2.5)

where x is the standardized dose level of drug D1, y is the standardized dose level of agent
D2, δ1 is the binary indicator of DLT attributed to drug D1, δ2 is the binary indicator of
DLT attributed to drug D2 and γ is the interaction coefficient. We assume that the joint
probability of DLT, when one of the drugs is held constant, is monotonically increasing; that
is Prob(DLT|x′,y)≥ Prob(DLT|x,y) or Prob(DLT|x,y′)≥ Prob(DLT|x,y), where x′ > x and
y′ > y. A sufficient condition for this property to hold is to assume that Fα(·) and Fβ (·) are
increasing functions with α > 0 and β > 0. In this article we use Fα(x) = xα and Fβ (y) = yβ .
Using (2.5), if the DLT is attributed exclusively to drug D1, then



12
Cancer Phase I trial design using drug combinations when a fraction of dose limiting

toxicities is attributable to one or more agents

π
(δ1=1,δ2=0) = Prob(δ1 = 1,δ2 = 0|x,y) = xα(1− yβ )− xα (1− xα)yβ

(
1− yβ

) e−γ −1
e−γ +1

.

(2.6)

If the DLT is attributed exclusively to drug D2, then

π
(δ1=0,δ2=1) = Prob(δ1 = 0,δ2 = 1|x,y) = yβ (1− xα)− xα (1− xα)yβ

(
1− yβ

) e−γ −1
e−γ +1

.

(2.7)

If the DLT is attributed to both drugs D1 and D2, then

π
(δ1=1,δ2=1) = Prob(δ1 = 1,δ2 = 1|x,y) = xαyβ + xα (1− xα)yβ

(
1− yβ

) e−γ −1
e−γ +1

. (2.8)

Equation (2.6) represents the probability that D1 causes a DLT and drug D2 does not
cause a DLT. This can happen, for example, when a type of DLT of taxotere (D1), such as
grade 4 neutropenia, is observed. However, this type of DLT can never be observed with
metformin (D2). This can also happen when the clinician attributes a grade 4 diarrhea to
taxotere (D1) but not to metformin (D2) in the case of a low dose level of this later even
though both drugs have this common type of side effect. The fact that dose level y is present
in equation (2.6) is a result of the joint modeling of the two marginals and accounts for the
probability that drug D2 does not cause a DLT. This later case is, of course, based on the
clinician’s judgment. Equations (2.7) and (2.8) can be interpreted similarly.

Following [6], it is easy to see that the total probability of having a DLT is calculated as
the sum of (2.6), (2.7) and (2.8). Hence,

π = Prob(DLT|x,y) = π
(δ1=1,δ2=0)+π

(δ1=0,δ2=1)+π
(δ1=1,δ2=1) =

xα + yβ − xαyβ − xα (1− xα)yβ

(
1− yβ

) e−γ −1
e−γ +1

.
(2.9)
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We define the MTD as any dose combination (x∗,y∗) such that Prob(DLT|x∗,y∗) = θ .
We set (2.9) equal to θ and re-write it as a 2nd degree polynomial in yβ , and solve for the
solutions. This allows us to define the MTD set C(α,β ,γ) as

C(α,β ,γ) =

(x∗,y∗) : y∗ =

[
−(1− xα

∗ −κ)±
√
(1− xα

∗ −κ)2−4κ(xα
∗ −θ)

2κ

] 1
β

 ,

(2.10)
where

κ = xα
∗ (1− xα

∗ )
e−γ −1
e−γ +1

.

Let T be the indicator of DLT, T = 1 if a patient treated at dose combination (x,y)
experiences DLT within one cycle of therapy that is due to either drug or both, and T = 0
otherwise. Among patients treated with dose combination (x,y) who exhibit DLT, suppose
that an unknown fraction η of these patients have a DLT with known attribution, i.e. the
clinician knows if the DLT is caused by drug D1 only, or drug D2 only, or both drugs D1

and D2. Let A be the indicator of DLT attribution when T = 1. It follows that for each
patient treated with dose combination (x,y), there are five possible toxicity outcomes: {T =

0},{T = 1,A = 0},{T = 1,A = 1,δ1 = 1,δ2 = 0},{T = 1,A = 1,δ1 = 0,δ2 = 1} and {T =

1,A = 1,δ1 = 1,δ2 = 1}. This is illustrated in the chance tree diagram in Figure 2.1. Using
equations (2.6),(2.7),(2.8),(2.9) and Figure 2.1, the contributions to the likelihood from each
of the five observable outcomes are listed in Table 2.1. The likelihood function is defined as

L(α,β ,γ,η | data) =
n

∏
i=1

[(ηπ
(δ1i ,δ2i)

i )Ai(πi (1−η))1−Ai]Ti(1−πi)
1−Ti, (2.11)

and the joint posterior probability distribution of the model parameters as

Prob(α,β ,γ,η | data) ∝ Prob(α,β ,γ)×L(α,β ,γ | data). (2.12)

With equation (2.12) we can easily sample and obtain MCMC estimates of α , β , γ and
η .
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Fig. 2.1 A chance tree illustrating the 5 possible outcomes we can find in a trial.

2.2.2 Trial Design

Dose escalation / de-escalation proceeds using the algorithm described in [13] but univariate
continual reassessment method (CRM) is carried out to estimate the next dose instead of
EWOC. In a cohort with two patients, the first one would receive a new dose of agent
D1 given the dose y of agent D2 that was previously assigned. The new dose of agent D1

is defined as xnew = argminu|P̂rob(DLT|u,y)− θ |,where y is fixed and ˆProb(DLT|u,y) is
computed using equation (2.9) with α,β ,γ replaced by their posterior medians. The other
patient would receive a new dose of agent D2 given the dose of agent D1 that was previously
assigned. Specifically, the design proceeds as follows:

1. Patients in the first cohort receive the same dose combination (x1,y1) = (x2,y2) =

(Xmin,Ymin).

2. In the i-th cohort of two patients,

• If i is even,

– Patient (2i−1) receives doses (x2i−1,y2i−1), where x2i−1 =

argmin
u

∣∣∣P̂rob(DLT|u,y2i−3)−θ

∣∣∣ , and y2i−1 = y2i−3. If a DLT was observed
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Table 2.1 Contributions to the likelihood function based on the observed outcomes: toxicity, attribution,
attribution to drug 1 (δ1) and attribution to drug 2 (δ2) for each patient.

Toxicity Attribution δ1 δ2 Likelihood

0 - - - 1−π = 1− [xα + yβ − xα × yβ− xα (1− xα)yβ

(
1− yβ

)
e−γ−1
e−γ+1 ]

1 0 - - π× (1−η) = [xα + yβ − xα × yβ− xα (1− xα)yβ

(
1− yβ

)
e−γ−1
e−γ+1 ]× (1−η)

1 1 1 0 π×η× π(1,0)

π
= η× [xα(1− yβ )− xα (1− xα)yβ

(
1− yβ

)
e−γ−1
e−γ+1 ]

1 1 0 1 π×η× π(0,1)

π
= η× [yβ (1− xα)− xα (1− xα)yβ

(
1− yβ

)
e−γ−1
e−γ+1 ]

1 1 1 1 π×η× π(1,1)

π
= η× [xα × yβ+ xα (1− xα)yβ

(
1− yβ

)
e−γ−1
e−γ+1 ]

in the previous cohort of two patients and was attributable to drug D1, then
x2i−1 is further restricted to be no more than x2i−3.

– Patient 2i receives doses (x2i,y2i), where y2i = argmin
v

∣∣∣P̂rob(DLT|x2i−2,v)−θ

∣∣∣ ,
and x2i = x2i−2. If a DLT was observed in the previous cohort of two patients
and was attributable to drug D2, then y2i is further restricted to be no more
than y2i−2.

• If i is odd,

– Patient (2i−1) receives doses (x2i−1,y2i−1), where y2i−1 =

argmin
v

∣∣∣P̂rob(DLT|x2i−3,v)−θ

∣∣∣ , and x2i−1 = x2i−3. If a DLT was observed

in the previous cohort of two patients and was attributable to drug D2, then
y2i−1 is further restricted to be no more than y2i−3.

– Patient 2i receives doses (x2i,y2i), where x2i = argmin
u

∣∣∣P̂rob(DLT|u,y2i−2)−θ

∣∣∣ ,
and y2i = y2i−2. If a DLT was observed in the previous cohort of two patients
and was attributable to drug D1, then x2i is further restricted to be no more
than x2i−2.

3. Repeat step 2 until the maximum sample size is reached subject to the following
stopping rule.

4. We would stop the trial if, Prob(Prob(DLT|x = Xmin,y = Ymin) ≥ θ + ξ1|data) > ξ2,
i.e. if the posterior risk of toxicity at the lowest combination significantly is high. ξ1

and ξ2 are design parameters tuned to obtain the best operating characteristics.

In step 2 of the algorithm, any dose escalation is further restricted to be no more than a
pre-specified fraction of the dose range of the corresponding agent. At the end of the trial, we
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obtain the MTD curve estimate Ĉ =C(α̂, β̂ , γ̂), where α̂ , β̂ and γ̂ are the posterior medians
of the parameters α,β and γ , given the data.

2.3 Simulation Studies

2.3.1 Simulation set up and Scenarios

In all simulated trials, the link functions Fα(x) = xα and Fβ (y) = yβ are used. To evaluate the
performance of our proposal, the DLT outcomes are generated from the true model showed
in (2.9). We used this model in 3 different scenarios to study the behavior of our design when
the prior distribution of the model parameters is both well and poorly calibrated. Let αtrue,
βtrue and γtrue represent the true parameter values we use in (2.9) to generate DLT outcomes.
In each scenario we select different values for αtrue, βtrue, but the prior distribution for α and
β , P(α) and P(β ), as well as γtrue, do not vary. In scenario 1, we choose values for αtrue

and βtrue such that αtrue < E[P(α)] and βtrue < E[P(β )]. In scenario 2, we choose values for
αtrue and βtrue such that αtrue = E[P(α)] and βtrue = E[P(β )]. Last, in scenario 3, we choose
values for αtrue and βtrue such that αtrue > E[P(α)] and βtrue > E[P(β )]. Figure 2.2 shows the
MTD curves with the true parameter values described here and their contours at θ ±0.05 and
θ ±0.1. We evaluate the effect of toxicity attribution in these 3 scenarios using 4 different
values for η : 0, 0.1, 0.25 and 0.4. These values are reasonable because higher values of η in
practice are very rare. Data is randomly generated using the following procedure:

• For a given dose combination (x,y), a binary indicator of DLT T is generated from a
Bernoulli distribution with probability of success computed using equation (2.9).

• If {T = 1}, we generate the attribution outcome A using a Bernoulli distribution with
probability of success η .

• If {T = 1,A = 1}, we attribute the DLT to drug D1, D2, or to both drugs with equal
probabilities.

We assume that the model parameters α,β ,γ and η are independent a priori. We
assign vague prior distributions to α , β and γ following [6], where α ∼ Uniform(0.2,2),
β ∼ Uniform(0.2,2) and γ ∼ Gamma(0.1,0.1). These prior distributions correspond to the
ones used by [6] for the main analysis. The prior distribution for the fraction of attributable
toxicities η is set to be Uniform(0,1). With these prior distributions, the true parameter
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Fig. 2.2 Contour plots for the working model in scenarios 1, 2 and 3. The black dashed curve
represents the true MTD curve and the gray dashed lines represent the contours at θ ± 0.05 and
θ ±0.10.

values for each scenario are as follows. In scenario 1, α = β = 0.9 and γ = 1. In scenario
2, α = β = 1.1 and γ = 1. Last, in scenario 3, α = β = 1.3 and γ = 1. For each scenario,
m = 1000 trials will be simulated. The target risk of toxicity is fixed at θ = 0.3, the sample
size is n = 40, and the values for ξ1 and ξ2 will be 0.05 and 0.8 respectively. All simulation
are done using the software R version 3.3.1.

2.3.2 Design Operating Characteristics

We evaluate the performance of the design by assessing its safety and its efficiency in
estimating the MTD curve.

For trial safety, we employ the average percent of DLTs, the percent of simulated trials
with DLT rate greater than θ ±0.05 and θ ±0.10.

For efficiency, we employ the pointwise average relative minimum distance from the true
MTD curve to the estimated MTD curve. This measure of efficiency is well described in
[12, 13] and can interpreted as a pointwise average bias in estimating the true MTD curve.
We also consider the pointwise percent of trials for which the minimum distance of the point
(x,y) on the true MTD curve to the estimated MTD curve is no more than (100× p)% of
the true MTD curve. This measurement will give us an estimate of the percent of trials with
MTD recommendation within (100 × p)% of the true MTD. This measure of efficiency can
be interpreted as the pointwise percent of correct MTD recommendation. In this paper we
select p = 0.1,0.2. For a detailed explanation of these measures of efficiency, see [12, 13].



18
Cancer Phase I trial design using drug combinations when a fraction of dose limiting

toxicities is attributable to one or more agents

Fig. 2.3 Estimated MTD curves for m = 1000 simulated trials. The black dashed curve represents the
true MTD curve, the gray dashed lines represent the contours at θ ±0.05 and θ ±0.10, and the solid
curves represent the estimated MTD curves at each value of η .
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2.3.3 Results

In general, increasing the value of η until 0.4 generates estimated MTD curves closer to the
true MTD curve. Figure 2.3 shows the estimated MTD curves for each scenario as a function
of η . In terms of safety, overall we observe that increasing the fraction of toxicity attributions
η reduces the average percent of toxicities and percent of trials with toxicity rates greater
than θ +0.05 and θ +0.10. Table 2.2, shows the average percent of toxicities as well as the
percent of trials with toxicity rates greater than θ +0.05 and θ +0.1 for scenarios 1-3.

Figure 2.4 shows the pointwise average bias of the 3 proposed scenarios for each value of
η . Overall, increasing the value of η until 0.4 reduces the pointwise average bias. In any case,
the pointwise average bias is around 10% of the dose range of either drug and practically
negligible for η = 0.25,0.4. For instance, under scenario 3, the maximum absolute value of
the pointwise average bias when η = 0.40 is about 0.01, which corresponds to 0.3% of the
dose range, which is practically negligible.

Figure 2.5 shows the pointwise percent of MTD recommendation of the 3 proposed
scenarios for each value of η . In general, increasing the value of η increases the pointwise
percent of MTD recommendation, reaching up to 80% of correct recommendation when
p = 0.2, and up to 70% of correct recommendation when p = 0.1. Based on these simulation
results, we conclude that in continuous dose setting the approach of partial toxicity attribution
generates safe trial designs and efficient estimation of the MTD.
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Fig. 2.4 Pointwise average bias in estimating the true MTD in m = 1000 simulated trials.
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Fig. 2.5 Pointwise percent of MTD recommendation for m = 1000 simulated trials. Solid lines
represent the pointwise percent of MTD recommendation when p = 0.2 and dashed lines represent
the pointwise percent of MTD recommendation when p = 0.1.
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2.4 Discrete Dose Combinations

2.4.1 Approach

Dose escalation follows the same procedure described in section 2.2.2. The only difference
is that, in step 2, the continuous doses recommended are rounded to the nearest discrete dose
level. For a detailed explanation of this procedure see [13].
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Table 2.2 Operating characteristics summarizing trial safety in m = 1000 simulated trials.

Average
% of toxicities

% of trials with
toxicity rate > θ +0.05

% of trials with
toxicity rate > θ +0.10

Scenario 1

η = 0.00 33.62 25.90 4.10
η = 0.10 32.67 22.60 4.80
η = 0.25 31.55 17.60 2.70
η = 0.40 30.70 13.30 2.00

Scenario 2

η = 0.00 30.64 9.40 0.90
η = 0.10 29.69 7.30 0.40
η = 0.25 28.76 5.00 0.20
η = 0.40 28.04 4.10 0.30

Scenario 3

η = 0.00 27.47 2.00 0.00
η = 0.10 26.80 1.80 0.00
η = 0.25 25.99 1.30 0.00
η = 0.40 25.37 0.70 0.00

2.4.2 Illustration

We study the performance of our proposal in a discrete dose level setting where the probability
of toxicity of each dose level is generated from the working model. We employ 6 scenarios
with 4 dose levels respectively in each drug for scenarios 1 - 3, and 4 and 6 dose levels
respectively in each drug for scenarios 4 - 6. The target probability of toxicity is always
θ = 0.3 and, for each scenario, we simulate m = 1000 trials using the same vague priors for
α , β and γ specified in section 2.3.1. The maximum sample size in all scenarios is again
n = 40. The performance of the method is evaluated using the percent of MTD selection
statistic proposed by [13].

In Table 2.3 we present the 6 mentioned scenarios we use to illustrate the implementation
of our design with discrete dose levels. Moreover, in Figure 2.6 we show the dose-toxicity
surface of these 6 scenarios, where we observe that all of them have a flat (near-constant)
surface.

In Table 2.4 we show the percent of times that at least 25%, 50%, 75% or 100% of
recommended MTDs belong to the true MTD set. Using vague prior distributions, the
scenario where toxicity attribution has the strongest effect is scenario 2. In scenarios 1,4 and
5, we observe a slight effect but it does not make a big difference.
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Fig. 2.6 Probability of DLT surfaces of the 6 scenarios from Table 2.3.
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2.5 Model Misspecification

In the previous sections, all the simulated scenarios are generated with the model showed in
(2.9). However, in practice we do not know the underlying model that generates the data and
therefore we need to assess the performance of our design under model misspecification. We
employ the same toxicity scenarios used by [6], which are shown in Table 2.5. Moreover, In
Figure 2.7 we show the dose-toxicity surface of these scenarios. Scenario 1 presents a very
constant surface gradient. The rest of the scenarios present surface gradients that vary as
we increase the dose combination levels. However, scenarios 3, 4 and 6 vary more abruptly
than scenarios 2 and 5. Scenario 6 is a particular case because the lowest dose combination
level has a probability of DLT that is already higher than the target risk of toxicity θ +0.1.
Therefore, for this scenario, instead of presenting the percent of correct recommendation
we present the percent of times the trial is stopped due to safety using the stopping rule in
Section 2.2 with ξ1 = 0.05 and ξ2 = 0.8. For each scenario, we simulate m = 1000 trials
with a target risk of toxicity of θ = 0.30, a sample size of n = 40 and we use the same prior
distributions for α , β and γ as in section 2.3.1.

In terms of safety, in general we observe that toxicity attributions reduce the average
percent of toxicities and percent of trials with toxicity rates greater than θ +0.05 and θ +0.10.
Table 2.6 shows the average percent of toxicities as well as the percent of trials with toxicity
rates greater than θ +0.05 and θ +0.1.

In Table 2.7, we show the percent of times that at least 25%, 50%, 75% or 100% of
recommended MTDs belong to the true MTD set. In scenario 1 we observe a positive
effect of the toxicity attributions, improving the percent of times at least 75% and 100% of
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Table 2.3 Dose limiting toxicity scenarios with θ = 0.3 generated with the working model. In bold
the dose combination levels that would compose the true MTD set.

Dose level 1 2 3 4 1 2 3 4 5 6

Scenario 1 Scenario 4
4 0.39 0.46 0.52 0.58 0.39 0.43 0.47 0.51 0.55 0.58
3 0.31 0.38 0.46 0.52 0.30 0.35 0.40 0.44 0.48 0.52
2 0.22 0.31 0.38 0.46 0.22 0.27 0.32 0.37 0.41 0.46
1 0.13 0.22 0.31 0.39 0.13 0.19 0.24 0.29 0.34 0.39

Scenario 2 Scenario 5
4 0.30 0.36 0.42 0.48 0.30 0.33 0.37 0.40 0.44 0.48
3 0.22 0.28 0.35 0.42 0.22 0.26 0.29 0.33 0.38 0.42
2 0.14 0.21 0.28 0.36 0.14 0.18 0.22 0.27 0.31 0.35
1 0.07 0.14 0.22 0.30 0.07 0.11 0.16 0.20 0.25 0.30

Scenario 3 Scenario 6
4 0.23 0.27 0.33 0.39 0.23 0.25 0.28 0.32 0.35 0.39
3 0.16 0.21 0.26 0.33 0.16 0.18 0.22 0.25 0.29 0.33
2 0.09 0.14 0.21 0.27 0.09 0.12 0.16 0.19 0.23 0.27
1 0.04 0.09 0.16 0.23 0.04 0.07 0.11 0.14 0.19 0.23

recommended MTDs belong to the true MTD set in to 5% when η = 0.25. In scenario 2 we
observe a positive effect of the toxicity attributions improving the percent of times at least
25% and 50% of recommended MTDs belong to the true MTD up to 5% and 4% respectively.
In scenarios 3, 4 and 5 we do not observe any positive effect when attributing toxicities.
However, these scenarios are particularly difficult for our design given the rounding up
procedure we follow with discrete dose combinations. In scenario 6 we observe a positive
effect of the toxicity attributions, improving the percent of times the trial is stopped due
to safety by almost 4% when η = 0.40. Based on these simulation results under model
misspecification, we conclude that the partial toxicity attribution method has good operating
characteristics in recommending dose combinations of which, at least 50% are the true
MTDs; these percent of correct recommendations vary between 65% to 98% depending on
the scenario. Moreover, there is a high probability of stopping the trial if there is evidence
that the minimum dose combination in the trial has high probability of DLT.

However some of the scenarios showed in Table 2.5 have a true set of MTDs that include
a large number of dose combinations. For this reason, we implemented our design in 6 extra
scenarios taken from [6, 7]. These scenarios are presented in Table 2.8 at the supplementary
material, where the set of true MTDs contains a much more restricted number of dose
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Table 2.4 Percent of times that at least 25%, 50%, 75% or 100% of recommended MTDs belong to
the true MTD set in m = 1000 simulated trials.

% of correct MTD recommendation for θ ±0.10

≥ 25% ≥ 50% ≥ 75% 100% ≥ 25% ≥ 50% ≥ 75% 100%

η = 0.00

Scenario 1

91.40 87.30 83.70 83.70

Scenario 4

90.00 85.50 73.70 67.70
η = 0.10 92.50 87.80 83.90 83.90 91.30 86.00 71.10 65.80
η = 0.25 90.90 87.70 83.80 83.80 89.40 85.90 71.50 68.20
η = 0.40 90.90 87.70 83.80 83.80 89.80 85.70 70.50 67.30

η = 0.00

Scenario 2

78.10 78.10 73.60 73.60

Scenario 5

82.90 81.50 72.70 72.70
η = 0.10 79.80 79.80 73.90 73.90 82.80 81.40 71.70 71.70
η = 0.25 83.00 83.00 75.50 75.50 85.00 81.80 71.00 71.00
η = 0.40 83.50 83.50 76.20 76.20 85.70 82.50 70.60 70.60

η = 0.00

Scenario 3

99.10 99.00 97.00 97.00

Scenario 6

98.80 96.50 93.10 92.70
η = 0.10 99.30 98.60 95.10 95.10 98.60 95.70 89.90 89.60
η = 0.25 97.10 96.40 91.90 91.90 96.20 92.10 87.00 86.20
η = 0.40 95.90 95.10 89.50 89.50 94.00 89.50 81.90 81.00

combinations. Also, since the scenarios showed in Table 2.5 where generated with a logistic
model, we selected the scenarios to observe how robust is our proposal in scenarios generated
with other models, such us the Clayton Copula, and scenarios that are arbitrarily generated.
Moreover, since we are using the same set of true MTDs as [6, 7], we use these methods to
make a performance comparison in terms of percent of correct MTD selection.

In Tables 2.9 and 2.10, in the supplementary material, we present operating characteristics
in term of safety and efficiency for each of the 6 proposed scenarios. In general, we observe
that the design behaves in a similar way as with the scenarios presented along this manuscript.
In terms of safety, toxicity attributions reduce the average percent of toxicities and the percent
of trials with toxicity rates greater than θ +0.05 and θ +0.10. In terms of efficiency, we
only observe a positive effect in scenarios with a relatively flat dose-toxicity surface. In
terms of performance comparison, our proposed method is competitive with other standard
designs for drug combinations such us [6, 7], and achieves better percent of correct MTD
recommendation in 4 out of the 6 used scenarios.

Another issue that is relevant to the methodology we present in this manuscript is the
errors in the attribution of toxicities by the treating investigators. Our design does not
include a parameter to control the uncertainty around the decision made by the investigator
when attributing the the DLT, which could be an extension of this work. However, in the
supplementary material, in order to assess the impact of these kind of errors, we present
simulation from 3 scenarios taken also from [6, 7] where we introduce 10% and 50% of
errors in the attribution of DLTs, and compare it to the case where we correctly attributes
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Fig. 2.7 Probability of DLT surfaces of the 6 scenarios from Table 2.5.
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100% of the DLTs. In Tables 2.11 and 2.12, we present the simulated results in terms of
safety and efficiency. Overall we do not observe any major difference when incorrectly
attributing 10% and 50% of the DLTs with respect to correctly attributing 100% of the DLTs.

2.6 Conclusions

In this paper we proposed a Bayesian adaptive design for cancer phase I clinical trials using
drug combinations with continuous dose levels and attributable DLT in a fraction of patients.
A copula-type model was used to describe the relationship between dose combinations and
probability of DLT. The trial design proceeds by treating cohorts of two patients, each patient
with a different dose combination estimated using univariate CRM for a better exploration of
the space of doses. Treating cohorts of two patients will allow trial conduct to be completed
in a reasonable amount of time. Although the two patients in a cohort are allocated to
different dose combinations, a patient in the current cohort can be treated at a dose (x,y) if
and only if a patient in the previous cohort was treated at a dose on the same horizontal or
vertical line within our dose range, that is was treated with either dose x or dose y. The use of
continuous dose levels is not uncommon in early phase trials, particularly when the drugs are
given as infusions intravenously. For instance, a drug combination trial of cabazitaxel and
cisplatin delivered intravenously was recently designed for advanced prostate cancer patients
where the dose levels are continuous and the protocol was approved by the scientific review
at Cedars-Sinai. For ethical reasons, we further imposed dose escalation restrictions for one
of the drugs when a DLT is attributable to that drug.
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Table 2.5 Toxicity scenarios for the model misspecification evaluation. In bold the doses considered
as true MTD set.

Dose level 1 2 3 4 1 2 3 4

Scenario 1 Scenario 4
4 0.28 0.41 0.55 0.68 0.04 0.09 0.17 0.32
3 0.25 0.35 0.48 0.60 0.03 0.06 0.12 0.23
2 0.22 0.30 0.40 0.51 0.02 0.05 0.09 0.16
1 0.19 0.26 0.34 0.43 0.02 0.03 0.06 0.11

Scenario 2 Scenario 5
4 0.17 0.29 0.45 0.62 0.12 0.26 0.48 0.71
3 0.14 0.23 0.35 0.50 0.09 0.19 0.36 0.57
2 0.12 0.18 0.27 0.38 0.07 0.14 0.26 0.43
1 0.09 0.14 0.19 0.27 0.05 0.10 0.18 0.30

Scenario 3 Scenario 6
4 0.37 0.72 0.92 0.98 0.78 0.94 0.99 1.00
3 0.26 0.59 0.85 0.96 0.68 0.90 0.97 0.99
2 0.18 0.44 0.74 0.91 0.57 0.83 0.94 0.98
1 0.12 0.30 0.59 0.82 0.45 0.73 0.90 0.97

We studied the operating characteristics of the design under various scenarios for the
true location of the MTD curve. In general, we observed that the trial is safe and as the
proportion of attributed toxicities increases, the average proportion of toxicities decreases
when we attribute toxicities. To assess the efficiency when estimating the MTD curve, we
employed the pointwise average bias and average percent selection. In general the method is
efficient although the results varied depending on the proportion of attributed toxicities. Note
that the operating characteristics were evaluated under vague prior distributions of the model
parameters and no toxicity profiles of single agent trials were used a priori. We also showed
how the method can be adapted to the setting of discrete dose combinations.

We also performed a model misspecification evaluation in scenarios with different dose-
toxicity surfaces. We only observed a positive effect in terms of percent of correct MTD
recommendation in scenarios with flat surfaces. In scenarios with non-flat dose-toxicity
surfaces we observed a decline in performance of percent selection consistent with the
findings by [10] when working with copula regression models. We also observed a positive
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Table 2.6 Operating characteristics summarizing trial safety for model misspecification in m = 1000
simulated trials.

Average
% of toxicities

% of trials with
toxicity rate > θ +0.05

% of trials with
toxicity rate > θ +0.10

Scenario 1

η = 0.00 32.99 22.90 4.20
η = 0.10 32.19 18.50 2.90
η = 0.25 31.43 15.80 2.60
η = 0.40 30.58 12.90 2.50

Scenario 2

η = 0.00 29.85 6.60 0.20
η = 0.10 29.14 4.10 0.10
η = 0.25 28.20 3.10 0.30
η = 0.40 27.90 2.30 0.00

Scenario 3

η = 0.00 36.53 40.70 16.40
η = 0.10 35.13 33.90 12.50
η = 0.25 33.94 28.60 11.00
η = 0.40 32.94 23.40 9.50

Scenario 4

η = 0.00 22.43 0.00 0.00
η = 0.10 21.83 0.00 0.00
η = 0.25 21.39 0.00 0.00
η = 0.40 20.87 0.00 0.00

Scenario 5

η = 0.00 30.43 6.60 0.30
η = 0.10 29.48 3.30 0.10
η = 0.25 28.60 3.60 0.00
η = 0.40 27.60 2.30 0.00

effect in scenarios where the lowest dose combination has an excessively high probability of
DLT. In this case, toxicity attributions improves the percent of times the trial was stopped due
to safety. In all cases, safety of the trial is not compromised by accounting for a partial toxicity
attribution. Clearly, there is a trade-off when increasing the fraction of DLT attribution to
one or more drugs. The design is more conservative in future escalations, lowering the
in-trial DLT percentages and reducing how quickly the MTD contour is reached, by favoring
experimentation over recommendation.

Our design is practically useful when the two drugs do not have many overlapping toxici-
ties, see e.g. [34] for some examples of drug combination trials with these characteristics. In
cases where we expect a high percent of overlapping DLTs, designs that do not distinguish
between drug attribution listed in the introduction may be more appropriate. Our method
relies on clinical judgment regarding DLT attribution. In many phase I trials, such decisions
are subject to error classifications and a possible extension is to introduce a parameter to
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Table 2.7 Percent of times that at least 25%, 50%, 75% or 100% of recommended MTDs belong to
the true MTD set in m = 1000 simulated trials under model misspecification. In scenario 6 we show
the percent of times the trial is stopped due to safety reasons.

% of correct MTD recommendation for θ ±0.10

≥ 25% ≥ 50% ≥ 75% 100% ≥ 25% ≥ 50% ≥ 75% 100%

η = 0.00

Scenario 1

82.90 75.60 55.40 55.40

Scenario 4

98.80 98.80 87.80 87.80
η = 0.10 82.70 72.70 57.30 57.30 97.20 97.20 85.70 85.70
η = 0.25 83.30 75.80 60.40 60.40 95.70 95.70 82.00 82.00
η = 0.40 80.60 73.10 57.60 57.60 95.20 95.20 76.20 76.20

η = 0.00

Scenario 2

74.70 71.00 58.20 45.70

Scenario 5

75.40 69.10 20.50 20.50
η = 0.10 77.00 73.50 53.60 44.60 71.80 62.80 20.40 20.40
η = 0.25 79.60 75.00 50.00 41.20 70.70 59.40 18.90 18.90
η = 0.40 77.30 73.10 47.90 37.80 71.20 60.50 16.70 16.70

η = 0.00

Scenario 3

76.90 65.30 23.30 23.30

Scenario 6

83.60
η = 0.10 72.50 61.80 21.90 21.90 82.90
η = 0.25 66.40 57.30 18.60 18.60 84.80
η = 0.40 66.10 54.70 15.70 15.70 87.20

account for errors in toxicity attribution as in [32] for single agent trials. We also plan
to study the performance of this design using other link functions under different copula
models, and extend this method to early phase cancer trials with late onset toxicity and by
accounting for patient’s baseline characteristic by extending the approaches in [14, 35] to the
drug combination setting.

2.7 Supplementary material

In this supplementary section we present additional simulated results that support the con-
clusions stated in the main document of this article. More precisely, we present two type of
simulations to show the robustness of the proposed methodology.

First, we employ six scenarios taken from [6] and [7] where, with respect to the scenarios
used in section 5 in the main document, the set of true maximum tolerated doses (MTDs)
is smaller (i.e., a more restricted set of MTDs) and also where the difference in terms of
probability of toxicity between dose combinations is larger. Moreover, we use these six
scenarios to make comparisons in terms of percent of MTD selection with respect to the
methodology proposed by [6] and [7].

Second, we employ three scenarios taken from [6], where we introduce 10% and 50%
of error in the attribution assessed by the treating investigator. We choose scenarios where
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Fig. 2.8 Probability of DLT surfaces of the 3 scenarios from Table 2.8.
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toxicity attribution has a positive effect and evaluate the impact of these errors in terms of
safety and percent of MTD recommendation.

In Table 2.8, we present the mentioned six scenarios taken from [6] and [7] where we
observe a restricted set of MTDs that is also placed in different locations in the space of dose
combinations, and also with different probability of toxicity targets. In Figure 2.8 we present
the dose-toxicity surface where we observe scenarios with a more flat surface and scenarios
with steeper surface.

In Table 2.9 we present operating characteristics in term of safety for each scenario. In
general, we observe that toxicity attributions reduce the average percent of toxicities and the
percent of trials with toxicity rates greater than θ +0.05 and θ +0.10.

In Table 2.10 we the percent of times at least one recommended MTD belongs to the true
MTD set. The reason why in this assessment we do not present the percent of times that at
least 25%, 50%, 75% or 100% of the recommended MTDs belong to the true MTD set is
because this is the only way we can make a fair comparison with other existing methodology
since we are able to recommend multiple MTDs at the end of a trial and, for example, [6]
and [7], only recommend one MTD at then end of a trial. Nevertheless, we observe a similar
behavior as in Tables 4 and 7 in the main document, since there is an improvement in terms of
percent of correct MTD selection when the dose-toxicity surface is relatively flat. Compared
to [6] and [7], our proposed method is competitive and achieves better performance when
η = 0 in four out of the six employed scenarios.
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Table 2.8 Toxicity scenarios for the model misspecification evaluation. In bold the doses considered
as true MTD set.

Dose level 1 2 3 4 1 2 3 4 5

Scenario 1 Scenario 4
4 0.30 0.50 0.55 0.60 0.49 0.58 0.68 0.75 0.81
3 0.12 0.30 0.50 0.55 0.48 0.59 0.68 0.75 0.81
2 0.10 0.15 0.30 0.45 0.40 0.45 0.59 0.67 0.74
1 0.08 0.12 0.16 0.18 0.24 0.40 0.47 0.56 0.64

Scenario 2 Scenario 5
4 0.48 0.52 0.55 0.58 0.16 0.18 0.20 0.30
3 0.42 0.45 0.50 0.52 0.13 0.16 0.18 0.20
2 0.30 0.40 0.48 0.50 0.12 0.14 0.16 0.18
1 0.15 0.30 0.40 0.45 0.10 0.12 0.14 0.16

Scenario 3 Scenario 6
4 0.20 0.30 0.45 0.50 0.50 0.66 0.67 0.73
3 0.16 0.18 0.30 0.45 0.40 0.54 0.62 0.68
2 0.14 0.16 0.20 0.30 0.21 0.40 0.50 0.60
1 0.08 0.13 0.16 0.18 0.15 0.25 0.40 0.56

Now we present the simulations related to the errors in the attribution assessed by the
treatment investigator. In Tables 2.11 and 2.12 we show the operating characteristing of the
design in terms of safety and percent of correct MTD recommendation respectively with 0%,
10% and 50% of attribution misspecification.

In Table 2.11, taking as a reference the case where we correctly attribute all the toxicities,
we do not observe any big difference in terms of average percent of toxicities and percent
of trials with toxicity rate greater than θ + 0.10, regardless the percentage of attribution
misspecification. The only case where we observe a slight worsening is in terms of percent
of trials with toxicity rate greater than θ +0.05.

In Table 2.12, taking again as a reference the case where we correctly attribute all the
toxicities, we observe that, when we request that at least 25%, 50%, 75% or 100% of the
recommended MTDs belong to the true MTD set, there are no big difference in any of the
scenarios, regardless the percent of attribution misspecification, and any difference we may
observe are due to the random nature of the simulations.
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Table 2.9 Operating characteristics summarizing trial safety for model misspecification in m = 1000
simulated trials.

Average
% of toxicities

% of trials with
toxicity rate > θ +0.05

% of trials with
toxicity rate > θ +0.10

η = 0.00

Scenario 1

31.59 11.60 0.40
η = 0.10 30.37 7.20 0.30
η = 0.25 29.42 4.80 0.30
η = 0.40 28.40 3.90 0.10

η = 0.00

Scenario 2

36.48 48.59 17.80
η = 0.10 35.78 42.20 15.00
η = 0.25 34.56 36.20 9.80
η = 0.40 33.76 30.00 9.70

η = 0.00

Scenario 3

28.93 3.60 0.00
η = 0.10 28.41 2.90 0.10
η = 0.25 27.32 1.70 0.10
η = 0.40 26.71 1.30 0.00

η = 0.00

Scenario 4

49.48 67.30 33.60
η = 0.10 48.11 59.10 27.50
η = 0.25 47.31 53.30 25.60
η = 0.40 46.20 45.60 22.00

η = 0.00

Scenario 5

21.49 0.00 0.00
η = 0.10 21.07 0.00 0.00
η = 0.25 20.68 0.00 0.00
η = 0.40 20.32 0.00 0.00

η = 0.00

Scenario 6

45.32 38.60 12.00
η = 0.10 43.99 30.90 8.10
η = 0.25 42.57 23.50 6.70
η = 0.40 41.11 18.00 4.50
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Table 2.10 Percent of times that at least one of the recommended MTDs belong to the true MTD set
in m = 1000 simulated trials.

% of correct MTD selection

Partial toxicity attribution
∗Yin and Yuan (2009a)
†Yin and Yuan (2009b)

η = 0.00

Scenario 1

67.50

53.00∗
η = 0.10 67.50
η = 0.25 66.00
η = 0.40 62.10

η = 0.00

Scenario 2

46.10

49.80∗
η = 0.10 50.80
η = 0.25 50.50
η = 0.40 48.50

η = 0.00

Scenario 3

53.50

50.70∗
η = 0.10 51.30
η = 0.25 52.50
η = 0.40 51.90

η = 0.00

Scenario 4

35.10

44.00†η = 0.10 35.70
η = 0.25 34.40
η = 0.40 33.00

η = 0.00

Scenario 5

64.10

60.50∗
η = 0.10 72.80
η = 0.25 67.00
η = 0.40 60.40

η = 0.00

Scenario 6

59.10

57.50†η = 0.10 60.00
η = 0.25 61.20
η = 0.40 57.40
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toxicities is attributable to one or more agents

Table 2.11 Operating characteristics summarizing trial safety in m = 1000 simulated trials under
attribution misspecification.

Table Scenario
% of attribution
misspecification

Average
% of toxicities

% of trials with
toxicity rate > θ +0.05

% of trials
with toxicity

rate > θ +0.10

2.5 1
0 31.43 15.80 2.60
10 31.67 18.10 2.70
50 32.05 18.40 2.40

2.8 2
0 35.78 42.20 15.00
10 35.59 42.40 13.80
50 36.09 45.70 16.40

2.8 5
0 21.07 0.00 0.00
10 21.17 0.00 0.00
50 21.28 0.00 0.00

Table 2.12 Percent of times that at least 25%, 50%, 75% or 100% of recommended MTDs belong to
the true MTD set in m = 1000 simulated trials under attribution misspecification.

% of MTD recommendation

Table Scenario % of attribution misspecification ≥ 25% ≥ 50% ≥ 75% 100%

2.5 1
0 83.30 75.80 60.40 60.40

10 83.60 74.80 59.00 59.00
50 83.99 75.60 57.90 57.90

2.8 2
0 50.80 50.80 34.80 34.80

10 49.70 49.70 34.90 34.90
50 48.60 48.60 31.60 31.60

2.8 5
0 72.80 72.80 72.80 72.80

10 74.40 74.40 74.40 74.40
50 74.20 74.20 74.20 74.20



Chapter 3

A Bayesian two-stage adaptive design for
cancer phase I/II trials with drug
combinations

3.1 Introduction

In cancer phase I/II clinical trials, the main goal is to identify a safe dose that maximizes
the treatment efficacy. In single-agent settings with binary or time to event endpoints where
efficacy is observed relatively fast (e.g. one or two cycles of therapy), one-stage sequential
designs where the joint probability of toxicity and efficacy is sequentially updated after
each cohort of patients are usually employed (see e.g. [31, 36–41] for binary endpoints, and
[42] for time to event endpoints). This methodology has been extended to accommodate
combination of drugs of any kind (see e.g. [43, 44] for binary endpoints and [42] for time to
event endpoints), and proceed in a similar fashion as the methods referenced for single-agent.

In cases where efficacy is not ascertained in a short period of time, it is frequent to
employ two-stage designs where, a maximum tolerated dose (MTD) set is first selected, and
then tested for efficacy in a second stage with possibly a different population of patients
than the one used in the first stage. This approach has been discussed by [45–47]. For drug
combination trials, methodology for these type of two-stage designs have been proposed for
binary efficacy endpoints (see e.g. [48, 49]).

One characteristic that most of these methods have in common is that they only recom-
mend a single MTD either at the end of the phase I trial, or at the end of the first stage in a



34A Bayesian two-stage adaptive design for cancer phase I/II trials with drug combinations

phase I/II trial. However, even if the recommended dose that will be tested for efficacy is
indeed a valid MTD, there could be another MTD with higher efficacy, making the MTD
recommended in the first place non-optimal.

In this article, we present a two-stage design for drug combination trials

In this article, we extend the work from [49] by proposing a two-stage design for drug
combinations trials with time to event efficacy endpoint in the second stage and continuous
dose levels when treatment efficacy is evaluated after three or more cycles of therapy. In the
first stage, the dose finding method proposed by [13] is used to estimate the MTD curve. In
the second stage, a Bayesian adaptive design that starts allocating a first cohort of patients
to dose combinations equally spaced along the MTD curve, and then allocates subsequent
cohorts of patients to dose combinations likely to have high posterior median TTP using
adaptive randomization. To allow for different shapes in the median TTP curve, we employ
a flexible family of cubic splines to model the dose - median TTP relationship. Adaptive
randomization is sequentially used after a pre-defined time period to minimize the number of
patients allocated at sub-therapeutic dose levels. At the end of the trial, the dose combination
within the MTD with highest a posteriori median TTP is selected and recommended for
further phase II or III studies.

The manuscript is organized as follows. In section 2, we review the first stage of the
proposed phase I/II trial previously described in [13, 49]. In section 3, we describe the second
stage of the design. In section 4, we illustrate the methodology with the phase I/II drug
combination trial of cisplatin and cabazitaxel in patients with prostate cancer with visceral
metastasis where time to progression is a secondary endpoint. The goal in this trial is to find
a tolerable dose combination with highest TTP median. A discussion of the approach and
final remarks are included in Section 5.

3.2 Phase I/II Trial: Stage 1

3.2.1 Model

Following [13], consider the generic form of a dose-toxicity model

P(T = 1|x,y) = F(η0 +η1x+η2y+η3xy), (3.1)
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where T = 1 represents an observed DLT at the dose combination (x,y), T = 0 otherwise,
x ∈ [Xmin,Xmax] is the dose level of agent A, y ∈ [Ymin,Ymax] is the dose level of agent B and
F(.) is a known cumulative distribution function. We assume that the dose combinations are
continuous and standardized to be in the interval [0,1], the interaction parameter η3 > 0, and
η1,η2 > 0 in order to guarantee that the probability of DLT increases with the dose of any
agent when the other one is held constant.

The MTD is defined as any dose combination (x∗,y∗) such that

P(T = 1|x∗,y∗) = θ . (3.2)

As described in [13], we reparameterize equation (3.1) as follows. Let ρ10, the probability
of DLT when the levels of drugs A and B are 1 and 0, respectively, ρ01, the probability of
DLT when the levels of drugs A and B are 0 and 1, respectively, ρ00, the probability of DLT
when the levels of drugs A and B are both 0. Hence, it is possible to show that MTD takes
the form

C =
{
(x∗,y∗) : y∗ =

[
(F−1(θ)−F−1(ρ00))− (F−1(ρ10)−F−1(ρ00))x∗

]
÷
[
(F−1(ρ01)−F−1(ρ00))η3x∗

]}
.

(3.3)

We assume that ρ10,ρ01 and η3 are independent a priori with ρ01 ∼ beta(a1,b1), ρ10 ∼
beta(a2,b2), and conditional on (ρ01,ρ10), ρ00/min(ρ01,ρ10)∼ beta(a3,b3). The prior dis-
tribution on the interaction parameter η3 is a gamma distribution with mean a/b and variance
a/b2. Let Dn = {(xi,yi,Ti)} be the data gathered after enrolling n patients. The posterior
distribution of the model parameters is

π(ρ00,ρ10,ρ01,η3) ∝

n

∏
i=1

G((ρ00,ρ10,ρ01,η3;xi,yi))
Ti

× (1−G(ρ00,ρ10,ρ01,η3;xi,yi))
1−Ti

×π(ρ01)π(ρ10)π(ρ00|ρ01,ρ10)π(η),

(3.4)

where
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G(ρ00,ρ10,ρ01,η3;xi,yi) = F(F−1(ρ00)+(F−1(ρ10)−
F−1(ρ00))xi +(F−1(ρ01)−F−1(ρ00))yi +η3xiyi).

(3.5)

Note that the operating characteristics of this stage are evaluated using informative prior
distributions (see [49]).

3.2.2 Trial Design

Dose escalation / de-escalation proceeds using the same algorithm described in [13]. It is
based on escalation with overdose control (EWOC) where, after each cohort of enrolled
patients, the posterior probability of overdosing the next cohort of patients is bounded by
a feasibility bound α , see e.g. [11, 50–52]. In a cohort with two patients, the first one
would receive a new dose of agent A given that the dose y of agent B that was previously
assigned. The other patient would receive a new dose of agent B given that dose x of agent A
was previously assigned. Using EWOC, these new doses are at the α-th percentile of the
conditional posterior distribution of the MTDs. The algorithm continues until the maximum
sample size is reached or until the trial is stopped for safety. A detailed description of this
algorithm can be found in [13]. At the end of the trial, the MTD curve is estimated as

Cest =
{
(x∗,y∗) : y∗ =

[
(F−1(θ)−F−1(ρ̂00))− (F−1(ρ̂10)−F−1(ρ̂00))x∗

]
÷[

(F−1(ρ̂01)−F−1(ρ̂00))η̂3x∗
]}

,
(3.6)

where ρ̂00, ρ̂10, ρ̂01, η̂ are the posterior medians given the data Dn. This method has been
extensively studied by [13] and hence we only present the operating characteristics in the
context of the CisCab trial described in section 3.4.
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3.3 Phase I/II Trial: Stage 2

3.3.1 Model

Let x be a dose of drug A such that (x,y) ∈Cest. Also, assume that x is standardized to in the
interval [0,1]. We model the time to progression as a Weibull distribution with probability
density function

f (t;x) =
k

λ (x;ψ)

(
t

λ (x;ψ)

)k−1

exp
(
− t

λ (x;ψ)

)k

. (3.7)

The median TTP is

Med(x) = λ (x;ψ)(log2)
1
k . (3.8)

A flexible way of modeling the median TTP along the MTD curve is through the use of
the cubic spline function

λ (x;ψ) = exp

(
β0 +β1x+β2x2 +

k

∑
j=3

β j(x−κ j)
3
+

)
, (3.9)

where ψ = (β ,κ), with β = (β0, . . . ,βk) and κ = (κ3, . . . ,κk), being κ3 = 0. Let Dm =

{(xi, ti,δi), i = 1 . . . ,m} be the data after enrolling m patients in the trial where t represents
the TTP or last follow-up, and δ the censoring status, and let π(ψ,k) be the joint prior density
on the parameter vector ψ and k. The posterior distribution is

π(ψ,k|Dm) ∝ π(ψ,k)
m

∏
i=1

[
k

λ (xi;ψ)

(
ti

λ (xi;ψ)

)k−1
]δi

× exp
(
− ti

λ (xi;ψ)

)k

.

(3.10)

Let Medx be the median TTP at dose combination x and let Med0 be the median TTP of
the standard of care treatment. We propose an adaptive design in order to test the hypothesis
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H0 : Medx ≤Med0 for all x vs.

H1 : Medx > Med0 for some x.
(3.11)

3.3.2 Trial Design

i We first treat n1 patients at dose combinations x1, . . . ,xn1 , which are equally spaced
along the estimated MTD curve Cest.

ii Obtain Bayes estimates of ψ̂ and k̂, of ψ and k given the data Dn1 using equation (3.10).
Note that prior to obtaining the Bayes estimates, patients that have not progressed are
censored.

iii Generate n2 dose combinations from the standardized density M̂ed(x)= λ (x; ψ̂)(log2)
1
k̂

and assign them to the next n2 patients.

iv Repeat steps (ii) and (iii) until a total of n patients have been enrolled to the trial subject
to pre-specified stopping rules.

Decision Rule: At the end of the trial, we reject the null hypothesis if Maxx{P(Med(x;ψ i)>

Med0|Dn,i)}> δu, where δu is a design parameter.

Stopping Rule (Futility): For ethical reasons and to avoid treating patient at sub-therapeutic
dose levels, we will stop the trial for futility if there is strong evidence that none of the dose
combinations are promising, i.e., Maxx{P(Med(x;ψ i) > Med0|Dn,i)} < δ0, where δ0 is a
design parameter.

Stopping Rule (Efficacy): For ethical reasons, if the investigator considers there is enough
evidence in favor of one or more dose combinations being tested, and no further patients
need to be enrolled, the trial can be terminated if Maxx{P(Med(x;ψ i)> Med0|Dn,i)}> δ1,
where δ1 ≥ δu is a study parameter and the dose combination
xopt = arg maxv{P(Med(v;ψ i)> Med0|Dn,i)} is selected for further randomized phase II or
phase III clinical trials.

Design Operating Characteristics

We assess the operating characteristics of the proposed design by assuming that λ (x;ψ) is a
cubic spline with two knots placed between 0 and 1. This class of modeling is very flexible
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and is able to adapt to scenarios where the median TTP is either constant or skewed toward one
of the edges. Vague priors are placed on the model parameters by assuming β ∼ N(µ,σ2I6),
where µ = {0,0,0,0,0,0} and σ2 = 100, and (κ4,κ5)∼ Unif{(u,v) : 0≤ u < v≤ 1}. Note
that the parameters of the prior distribution of β are always the same regardless the value of
Med0.

For each scenario favoring the alternative hypothesis, we estimate the Bayesian power,
which is defined as

Power≈ 1
M

M

∑
i=1

I[Maxx{P(Med(x;ψ i)> Med0|Dn,i)}> δu], (3.12)

where

P(Med(x;ψ i)> Med0|Dn,i)≈
1
L

L

∑
j=1

I
[
Med(x;ψ i, j)> Med0

]
(3.13)

and ψ i, j is the j-th MCMC sample for the i-th trial.

For scenarios favoring the null hypothesis, (3.12) is the estimated Bayesian type-I error
probability. The optimal dose from the i-th trial is defined as

xopt

i = arg maxv{P(Med(v;ψ i)> Med0|Dn,i)}. (3.14)

We also report the estimated TTP median by replacing ψ in (3.8) by the average posterior
median across all simulated trials. Last, we also report the mean posterior probability of
Medx > Med0 for any dose combination x.

3.4 Application to the CisCab Phase I/II Trial

We illustrate the methods proposed in sections 3.2 and 3.3 with a phase I/II trial referred
as the “CisCab trial” where TTP is a secondary endpoint of the trial. We are motivated by
a phase I trial published by [53], that combines cisplatin and cabazitaxel in patients with
advanced solid tumors, where the MTD was established at 15/75 mg/m2. In a first part of
this motivating trial, doses were escalated according to a standard “3+3” design and no DLTs
were observed at dose combination which was found to be the MTD. During the second part
of the trial, 15 additional patient were treated at the MTD and 2 DLTs were observed. In
total, 18 patients were treated at the MTD.
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Considering these results, there may be other active dose combinations that are tolerable
and active in prostate cancer with visceral metastasis. The CisCab trial considers doses that
range from 10 to 25 mg/m2 for cabazitaxel, and from 50 to 100 mg/m2 for cisplatin, that
will be administered intravenously. In a first stage, the CisCab trial will enroll 30 patients in
order to obtain the MTD curve. This stage of the design proceeds as explained in section 3.3,
with a target probability of DLT θ = 0.33, and a logistic link fuction F(.) in equation (3.1).
The starting dose combination for the first cohort of two patients is 15/75 mg/m2, and DLTs
are to be resolved within 1 cycle of treatment (3 weeks). Prior distributions are calibrated
such that the prior mean probability of DLT at dose combination 15/75 mg/m2 equals θ (see
[49]). The operating characteristics of this first stage are obtained by simulating 1000 trials
replicates following [13].

In Figures 1 and 2 we show the true and estimated MTD curves obtained with equation
(3.6) respectively in two different scenarios . In the scenario presented in Figure 1, the true
MTD curve passes through the dose combination 15/75 mg/m2, whereas in the scenario
presented in Figure 2, the true MTD curve is significantly above the dose combination 15/75
mg/m2. In both scenarios the estimated MTD curves are very close to the true MTD curves.
These results are supported the pointwise average bias shown in Figures 6 and 7. In these
scenarios, the pointwise average bias fluctuates between -0.01 and 0.01, and between -0.05
and 0.1 respectively. In terms of safety, the percent of trials with DLT rate above θ +0.1
is below 10% in both scenarios with average number of DLTs of 34% and 27%. We also
present results regarding percent correct recommendation. These results are shown in Figures
8 and 9 and overall we observe that, in the two proposed scenarios, the percent of correct
recommentation is between 70% and 100% in the scenario where the MTD passes through
the dose combination 15/75 mg/m2, and between 50% and 100% in the scenario where the
MTD is above the dose combination 15/75 mg/m2. Note that these results depend on a
design parameter p that takes the values 0.05 and 0.1and that states how strict we are when
considering a correct recommendation, being p = 0.1 less strict than p = 0.05. The true
parameter values as well as the safety results are shown in Table 3.1.

In the second stage, 30 additional patients are enrolled to identify the dose combinations
along the MTD curve from the first stage, that are likely to have high posterior median TTP.
The TTP of the standard care of treatment, which is necessary to perform the hypothesis
testing procedure, is chosen to be 4 months since this is the radiographic median TTP in
a placebo arm in a previous phase III trial. We present simulations based on 4 scenarios
supporting the alternative hypothesis and 4 scenarios favoring the null hypothesis. For each
scenario favoring the alternative hypothesis, effect sizes of 1.5 and 2 months and accrual
rates of 1 and 2 patients per month will be used. In order to correctly assess the operating
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characteristics of the design, the 4 scenarios will have the same TTP of the standard treatment
of care, the same effect size and the same accrual rate. This way, the only difference between
scenarios will be the shape of the TTP median curve, allowing to see the behavior of the
design when the optimal dose level is located at different dose levels.

The simulations were carried out using the model and prior distributions presented in
sections 3.3.1 and 3.3.2 respectively, with n1 = 10, n2 = 5, δu = 0.8 and δu = 0.9.

In Figures 3 and 4 we present the 4 simulated scenarios favoring the alternative hypothesis
with effect sizes of 1.5 and 2 months respectively, and an accrual rate of 1 patient per month.
In Figure 5 we present the same 4 simulated scenarios favoring the null hypothesis with
an accrual rate of 1 patient per month. Results for the same 4 simulated scenarios with an
accrual rate of 2 patients per month can be found in Figures 10, 11 and 12 in the appendix.
In these figures, we present the true median TTP curve, the null medial TTP, as well as the
average recommended dose, the estimated median TTP curve and the posterior probability
that the median TTP at a dose level x is greater than the null median TTP as measurements
of efficiency. Overall, we observe that the design captures the shape of the median TTP
curve. However, the estimated median TTP curve is not a very informative measurement
of efficiency since we are using adaptive randomization and hence much more patients are
allocated in certain dose levels. The efficiency measurement we believe is more interesting is
the posterior probability that the median TTP at a dose level x is greater than the TTP of the
standard treatment of care. In all figures, we observe that the recommended optimal dose is
very close to the true optimal dose regardless the shape of the TTP median, the effect size or
the accrual rate.

In Table 3.2, we present the Bayesian power, the probability of the type-I error as well as
the probability of type-I + type-II errors for different effect sizes and different accrual rates.
With an accrual rate of 1 patient per month, the probability of type-I error remains between
0.104 and 0.227 when δu = 0.8 and between 0.235 and 0.308 when δu = 0.9. However, with
an accrual rate of 2 patients per month, the probability of type-I error is much smaller overall
and it remains between 0.035 and 0.107 when δu = 0.8 and between 0.008 and 0.048 when
δu = 0.9.

In terms of power, with effect size of 1.5 months and an accrual rate of 1 patient per month,
we observe that the power remains between 0.706 and 0.924 when δu = 0.8 and between
0.52 and 0.844 when δu = 0.9. If the effect size increases up to 2 months and maintaining the
same accrual rate, the power remains between 0.931 and 0.972 when δu = 0.8 and between
0.846 and 0.932 when δu = 0.9. In contrast, if we fix the accrual rate to 2 patient per month,
we observe that overall the power decreases considerately. With an effect size of 1.5 months,
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the power remains between 0.522 and 0.824 when δu = 0.8 and between 0.338 and 0.674
when δu = 0.9. If the effect size increases up to 2 months and maintaining the same accrual
rate, the power remains between 0.766 and 0.92 when δu = 0.8 and between 0.615 and 0.829
when δu = 0.9.

Because it is difficult to find the right balance between power and type-I error, and since
it is not unusual to find probabilities of type-I error between 0.15 - 0.2 in phase II trials of
these characteristics where we try a large set of doses with a small sample size, we evaluate
the sum of the probabilities of type-I error and type-II errors. In general, a design where
the sum of these two probabilities is above 0.3 is not advisable. In our proposal, with effect
size of 1.5 months and an accrual rate of 1 patient per month, the sum of the probabilities of
type-I error and type-II error remains between 0.235 and 0.416 when δu = 0.8 and between
0.264 and 0.523 when δu = 0.9. If the effect size increases up to 2 months and maintaining
the same accrual rate, the sum of the probabilities of type-I error and type-II error remains
between 0.15 and 0.256 when δu = 0.8 and between 0.123 and 0.198 when δu = 0.9. If we
fix the accrual rate to 2 patient per month, with an effect size of 1.5 months, the sum of
the probabilities of type-I error and type-II error remains between 0.283 and 0.513 when
δu = 0.8 and between 0.374 and 0.67 when δu = 0.9. If the effect size increases up to 2
months and maintaining the same accrual rate, the the sum of the probabilities of type-I error
and type-II error remains between 0.17 and 0.287 when δu = 0.8 and between 0.219 and
0.403 when δu = 0.9.

If we focus one the sum of the probabilities of type-I error and type-II error, we observe
that with an effect size of 1.5 months we observe a lot of values above our 0.3 threshold
regardless the accrual rate, which is normal since the original design’s primary endpoint was
not the TTP median and it is not sufficiently powered for this effect size. In contrast, with
an effect size of of 2 months, we observe that if δu = 0.8 all the values are below our 0.3
threshold regardless the accrual rate and if δu = 0.9, only one scenario with an accrual rate
of 2 patients per month has a value above the threshold.

In Table 3.3, we present the probability of early stopping and average sample size at the
moment of stopping in scenarios favoring the null hypothesis. Overall, we observe that an
accrual rate of 2 patients per month produces a slight increase in the probability of early
stopping and a decrease between 1 and 2 patients in the average sample size at the moment
of stopping with respect to using an accrual rate of 1 patient per month.

Even though it is not listed in the operating characteristics, in Figure 13 we show the dose
allocation distribution in the four scenarios with the different effect sizes and accrual rates.
In scenario 1, we correctly allocate more than 71% of the patients in doses that are above the
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TTP of the standard treatment of care. In scenarios 2, 3 and 4 we correctly allocate more
than 65%, 77% and 60% of the patients respectively in dose above the TTP of the standard
treatment of care. Note that from these distributions we excluded the first n1 doses which are
automatically allocated in doses equally spaced along the MTD.

We also implement scenarios 1 and 2 when the TTP of the standard treatment of care
is higher than 4 months. More precisely we tuned scenarios 1 and 2 to have effect sizes of
2 months but the TTP of the standard treatment of care is now 8 months. We used accrual
rates of 2 and 3 patients per month and we observed values of power, type-I error and sum
of type-I and type-II errors that are consistent with the values presented in Table 3.2. These
results are showed in Table 3.4.

Hence, we conclude that our design has overall good operating characteristics with
accrual rates that are considered realistic in practice.

3.5 Conclusions

In this paper we propose a Bayesian adaptive two-stage design for cancer phase I/II trials
using drug combinations with continuous dose levels and TTP endpoint. We are motivated
by a phase I trial published by [53], that combines cisplatin and cabazitaxel in patients with
prostate cancer with visceral metastasis, where the MTD was established at 15/75 mg/m2.
In a first part of this motivating trial, doses were escalated according to a standard “3+3”
design and no DLTs were observed at dose combination which was found to be the MTD.
During the second part of the trial, 15 additional patient were treated at the MTD and 2 DLTs
were observed, and in total 18 patients were treated at the MTD. However, considering these
results, there may be other active dose combinations that are tolerable and active in prostate
cancer with visceral metastasis.

In the first stage of the design a logistic model is used to model the probability of DLT.
The dose escalation algorithm proceeds by using EWOC as described in [13]. At the end
of this stage, an estimate of the MTD curve is obtained. In the second stage we model the
median TTP along the MTD curve using a weibull model and incorporating a cubic spline
through the scale parameter of the model. In this stage of the design a hypothesis test is
performed where the null hypothesis states that the median TTP corresponding to all dose
levels is below or equal to a TTP of the standard treatment of care. On the other hand,
the alternative hypothesis states that the median TTP corresponding to some dose levels is
above the TTP of the standard treatment of care. The dose escalation in the second stage
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proceeds by first allocating n1 patients in dose levels equally spaced along the MTD curve.
Subsequent patients are allocated in cohorts of n2 patients in doses with higher posterior
probability of having a median TTP greater TTP of the standard treatment of care using
adaptive randomization.

Regarding the first stage, we studied the operating characteristics in 2 scenarios. In the
one scenario the true MTD curve passes through the dose combination 15/75 mg/m2, whereas
in the other scenario the true MTD curve is significantly above the dose combination 15/75
mg/m2. We found that this stage of the trial is safe and has good operating characteristics in
terms of pointwise bias and percent selection. Note that the operating characteristics of this
stage were evaluated using informative prior distributions as commented in section 3.4.

With respect to the second stage, we studied the operating characteristics of the design in
4 scenarios in which the null median TTP is the same and so is the effect size and accrual
rate and hence the only difference between them is the median TTP curve shape that places
the dose level with highest TTP at a different location in each scenario. These 4 scenarios
were implemented with effects sizes of 1.5 and 2 months, and accrual rates of 1 patient and 2
patients per month, which are considerate reasonable in practice. In general, we observed
good operating characteristics in terms of optimal dose recommendation and sum of the
probabilities of type-I and type-II errors as main measurements of efficiency. Scenarios 1
and 2 were also implemented when the TTP of the standard treatment of care is higher than
4 months. More precisely we tuned scenarios 1 and 2 to have effect sizes of 2 months but
the TTP of the standard treatment of care is now 8 months. We used accrual rates of 2 and
3 patients per month and we observed values of power, type-I error and sum of type-I and
type-II errors that are consistent with the values presented in Table 3.2.

Note that the operating characteristics in the second stage were evaluated under vague
prior distributions of the model parameters and no efficacy profiles of single agent trials we
used a priori.

A limitation of this methodology is that the uncertainty of the estimated MTD curve in
stage I is not taken into account in stage II of the design. This implies that the MTD curve is
not updated during the second stage, which is a limitation since patients in stage II may come
from a different population with respect to patients in the first stage. As pointed out by [49],
an alternative design for this particular paper would account for first-, second- and third-cycle
DLT in addition to efficacy outcome at each cycle. Also, the nature of DLT (reversible
versus non-reversible) should be taken into account since patients with a reversible DLT are
usually treated for that side effect and kept in the trial with dose reduction in subsequent
cycles. Hence, for drug combinations with continuous dose levels and three cycles of therapy,
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another layer of model complexity would be introduced but such designs are beyond the
scope of this paper and are subjects of future research. In addition, we note that a continuous
monitoring of the rate of DLT in stage II is also carried out as discussed in [49] so that the
trial will stop early if there is evidence of an excessive rate of DLT.

Fig. 3.1 True and estimated MTD curve for scenario 1 in the first stage of the design.

Table 3.1 True parameter values for ρ00,ρ01,ρ10,η and θ as well as safety results for the two simulated
scenarios of the first stage where EWOC is employed.

Scenario 1 Scenario 2

ρ00 1e-5 1e-8
ρ01 0.10 0.00005
ρ10 0.10 0.00008
η 20 20
θ 0.33333 0.33333

Average number of DLTs 0.34 0.27
Number of trials with DLT rate > θ + 0.1 7.30 0.00
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Fig. 3.2 True and estimated MTD curve for scenario 2 in the first stage of the design.

Table 3.2 Bayesian power, type I error probability and type-I + type-II error probability in four
scenarios with effect sizes of 1.5 and 2 months, and accrual rates of 1 and 2 patients per month.

Power
(effect size

of 1.5 months)

Power
(effect size

of 2 months)

Probability of
type-I error

Probability of
type-I + type-II

errors (effect
size of 1.5 months)

Probability of
type-I + type-II

errors (effect
size of 2 months)

δu δu δu δu δu

Scenario
Accrual

rate 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9

1

1

0.924 0.844 0.971 0.927 0.227 0.121 0.303 0.277 0.256 0.194
2 0.706 0.520 0.972 0.920 0.122 0.043 0.416 0.523 0.150 0.123
3 0.904 0.808 0.973 0.932 0.139 0.072 0.235 0.264 0.166 0.140
4 0.796 0.646 0.931 0.846 0.104 0.044 0.308 0.398 0.173 0.198

1

2

0.824 0.674 0.920 0.829 0.107 0.048 0.283 0.374 0.187 0.219
2 0.522 0.338 0.865 0.755 0.035 0.008 0.513 0.670 0.170 0.253
3 0.759 0.598 0.896 0.790 0.068 0.024 0.309 0.426 0.172 0.234
4 0.623 0.445 0.766 0.615 0.053 0.018 0.430 0.573 0.287 0.403
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Fig. 3.3 True and estimated TTP medians under four scenarios favoring the alternative hypothesis
with effect size of 1.5 months and accrual rate of 1 patient per month.
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Fig. 3.4 True and estimated TTP medians under four scenarios favoring the alternative hypothesis
with effect size of 2 months and accrual rate of 1 patient per month.
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Fig. 3.5 True and estimated TTP medians under four scenarios favoring the null hypothesis with an
accrual rate of 1 patient per month.
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Table 3.3 Probability of early stopping under the null hypothesis in four scenarios with accrual rates
of 1 and 2 patients per month.

Probability of
early stopping Average sample size

δ0 δ0

Scenario
Accrual

rate 0.10 0.15 0.20 0.10 0.15 0.20

1

1

0.164 0.266 0.355 19.94 18.14 16.92
2 0.121 0.252 0.390 17.44 15.41 13.76
3 0.234 0.358 0.506 20.17 17.67 16.13
4 0.264 0.417 0.554 19.79 17.75 16.17

1

2

0.307 0.457 0.576 18.55 16.95 15.99
2 0.270 0.452 0.611 15.64 13.63 12.20
3 0.410 0.611 0.740 19.02 16.94 15.01
4 0.421 0.590 0.731 18.41 16.44 14.67



3.5 Conclusions 51

Appendix

In this section we display Figures that contain information regarding operating characteristics
of the design and support the conclusions obtained along the manuscript.

Fig. 3.6 Pointwise average bias for scenario 1 in the first stage of the design.

Fig. 3.7 Pointwise average bias for scenario 2 in the first stage of the design.
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Fig. 3.8 Percent of correct recommendation for scenario 1 in the first stage of the design.

Fig. 3.9 Percent of correct recommendation for scenario 2 in the first stage of the design.

Table 3.4 Bayesian power, type I error probability and type-I + type-II error probability in two
scenarios with effect size of 2 months, and accrual rates of 2 and 3 patients per month.

Power
(effect size

of 2 months)

Probability of
type-I error

Probability of
type-I + type-II

errors (effect
size of 2 months)

δu δu δu

Scenario
Accrual

rate 0.8 0.9 0.8 0.9 0.8 0.9

1
2

0.836 0.677 0.162 0.080 0.326 0.403
2 0.742 0.577 0.121 0.052 0.379 0.475

1
3

0.824 0.639 0.167 0.081 0.343 0.442
2 0.747 0.572 0.109 0.046 0.362 0.474
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Fig. 3.10 True and estimated TTP medians under four scenarios favoring the alternative hypothesis
with effect size of 1.5 months and accrual rate of 2 patients per month.
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Fig. 3.11 True and estimated TTP medians under four scenarios favoring the alternative hypothesis
with effect size of 2 months and accrual rate of 2 patients per month.
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Fig. 3.12 True and estimated TTP medians under four scenarios favoring the null hypothesis with an
accrual rate of 2 patient per month.
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Fig. 3.13 Dose allocation density across scenarios with effect sizes (ES) of 1.5 and 2 months and
accrual rates (AR) of 1 and 2 patients per months.
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Chapter 4

Properties of the weighted log-rank test
in the design of confirmatory studies
with delayed effects

4.1 Introduction

In drug development, randomized controlled trials remain the gold standard to confirm
efficacy and safety of novel drug candidates. Often phase III trials embed formal interim
analyses to allow studies to be stopped earlier for futility if the novel drug is not efficacious
or for efficacy if the treatment effect is overwhelmingly positive.

Immuno-oncology (IO) is a rapidly evolving area in the development of anti-cancer drugs.
IO agents can have effect on both the human immune system and the tumor microenvironment.
By doing so, the tumors may be eradicated from the host or disease progression may be
delayed. The effect of an IO agent is not typically directed to the tumor itself; it instead boosts
or releases the brake from the patient’s immune system, and this positive effect may not be
observed immediately. The lag between the activation of immune cells, their proliferation
and impact on the tumor is described in the literature as a delayed treatment effect. Some
patients may not derive clinical benefit before their disease progresses while others may
derive sustained response or control of their disease. The primary endpoints often used
for confirmatory phase III studies in oncology are time to event: progression free survival
(PFS) and overall survival (OS). PFS is defined as time from randomization until disease
progression or death and OS is defined as time from randomization until death from any
cause. The delayed treatment effect may translate to inferior or equal PFS or OS compared
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to control treatment in the first months of therapy and superior survival thereafter leading to
non-proportionality of hazards in the experimental and control arms of study. Therefore, the
original design based on a proportional hazards assumption will lead to an underpowered
study and hence both the sample size calculation and the analysis methods to be used should
be reconsidered [54].

A weighted version of the log-rank test that incorporates the Fleming and Harrington
class of weights [55], allows tuning the two parameters (ρ,γ) depending on if we expect
early, middle or late delays, is proposed in the literature to increase the power at the end of
the trial. However, tuning these parameters is not straightforward, since a misspecification
may cause an even larger power drop with respect to the log-rank test.

The Fleming and Harrington class of weights, along with the estimated delay, can be
incorporated into the sample size calculation in order to maintain the desired power once the
treatment arm differences start to appear (see [56]).

In this article we make an empirical evaluation of the impact of having a delayed effect
on power and type I error rate in the design of a confirmatory phase III study with an IO agent
used in combination with a standard of care, assuming a range for delay time. We assess the
performance of the weighted log-rank test as an alternative to the log-rank test given it allows
weighting of late differences and the potential gain power under non-proportional hazards.
The evaluation is made for both group sequential and adaptive group sequential designs with
fixed values of the Fleming and Harrington class of weights. We also give some practical
recommendations regarding the methodology to be used in the presence of delayed effects
depending on certain characteristics of the trial.

The manuscript is organized as follows. In section 2, we describe the weighted log-rank
test and derive derive the sample size calculation formula needed to incorporate the estimated
delay and the Fleming and Harrington class of weights, and we introduce the combination
test statistic that will be necessary when doing sample size re-assessment. In section 3
we briefly describe group sequential and adaptive group sequential designs, emphasizing
two popular methods used to do sample size re-assessment. In section 4, we describe the
simulated example.

4.2 Methods

In this section we describe the statistical methodology we review in this article. In sections
4.2.1 and 4.2.2 we present the weighted log-rank test and derive an optimal sample size when
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using this test following [56]. This sample size derivation is presented as an alternative to the
Schoenfeld’s formula [57], which is normally used when calculating the necessary sample
size in confirmatory trials. In section 4.2.3 we introduce the combination test statistic, which
will be necessary when we perform sample size re-estimation in adaptive group sequential
designs.

Let T be a vector that contains the event times, ti, i = 1,2, . . . ,D, between the patients’
enrollment date and the patients’ final event date, tD, such that t1 < t2 < · · · < tD. Let the
number of events at time ti be denoted as di, the total number of patients at risk at that time
be denoted as ni, and the effect delay (in months) be denoted as ε . As previously described
if t < ε both survival curves go in parallel and once t ≥ ε , the survival curves will start
diverging. Hence, we assume the following density functions f j(t), survival functions S j(t)
and hazard functions h j(t) for the control group ( j = 1) and for the experimental group
( j = 2):

f1(t) = λ exp(−λ t), S1(t) = exp(−λ t) and h1(t) = λ ,

f2(t) =

{
λ exp(−λ t)

cψλ exp(−ψλ t)
, S2(t) =

{
exp(−λ t)

cexp(−ψλ t)
and h2(t) =

{
λ if 0≤ t < ε

ψλ if t ≥ ε
,

(4.1)

where c = exp
[
εψλ

(
1

ψ−1

)]
so that

∫
∞

0 f2(t)dt = 1. This way, we assume a step function
for the hazard ratio where from time 0 to ε , the hazard ratio is equal to 1, and from time ε

the hazard ratio is equal to 1/ψ .

In this article we assume that the control group receives the standard of care and the
experimental group receives a combination of the standard of care plus the IO agent which
causes the delayed effect. Hence, any observed difference from time 0 until time ε is random.
The conclusions we obtain are only applicable to studies where a similar assumption is made.
Otherwise, we cannot guarantee that from time 0 to time ε , both groups have a common
survival function.

4.2.1 Weighted log-rank test

The weighted log-rank test is defined as
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Zr =
∑

D
i=1 ri(d1i−E(d1i))√

∑
D
i=1 r2

i Var(d1i)
, (4.2)

where E(d1i) = n1i×
(

di
ni

)
, Var(d1i) =

n1in2idi(ni−di)

n2
i (ni−1)

and Zr ≈ N(0,1) under the null hypothe-
sis H0 : h1/h2 = 1.

[55] proposed the use of ri to weight early, middle and late differences through the Gρ,γ

class of weighted log-rank tests, where the weight function at a time point ti is equal to

ri = Ŝ(ti)ρ(1− Ŝ(ti))γ , (4.3)

where Ŝ(ti) corresponds to the Kaplan-Meier estimator.

Depending on the values of ρ and γ , we will have different weight functions that will
emphasize early differences (ρ = 1,γ = 0), middle differences (ρ = 1,γ = 1) or late differ-
ences (ρ = 0,γ = 1) in the hazard rates or the survival curves. The parameter combination
attributes equal weights to all (ρ = 0,γ = 0) data values and hence does not emphasize any
survival differences between treatment arms. Moreover, with this parameter combination
(4.2) corresponds to the usual log-rank test.

As mentioned by [56], since we focus on the entire survival curve rather than the late
difference, valid inference requires pre-specification of ρ and γ prior to any data collection.

Prior specification of (ρ,γ) is always advisable for the trial integrity, although some
authors (see e.g., [58]) note that the value of (ρ,γ) can be modified at the interim analysis
without type-I error rate inflation. At the end of the trial, we are interested in estimating the
hazard ratio across the entire study, which is obtained through the standard Cox model [59].
Note however that there will be a disconnect between the hazard ratio (i.e., the standard Cox
model) and the weighted log-rank test. To obtain an estimate based on the Cox model that
corresponds to the weighted log-rank test see [60].

In this article we focus on the use of the weighted log-rank test in confirmatory trials with
delayed effects. Other areas of use may include treatment switching, which is sometimes
present in confirmatory trials and also induces non-proportional hazards (see [61]). However,
it is out the scope of this article to evaluate the performance of the weighted log-rank test
under the presence of treatment switching and further research on this matter would be
necessary.
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4.2.2 Sample size derivation for the weighted log-rank test

We introduce the optimal sample size derivation proposed by [56]. Assume that we recruit
patients during time T at a certain rate in a confirmatory trial where we aim to compare
survival time between two groups ( j = 1,2): a control group, with a constant hazard over
time, and an experimental group, with a hazard that changes over time. The final analysis
is performed at time T + τ after the first patient is enrolled. The study period [0,T + τ] is
partitioned into M subintervals of equal length {t0 = 0, t1, t2, . . . , tM = T + τ}. Let h j(ti) be
the hazard function for group j at time ti and N j(ti) be the expected number of patients at
risk for group j at time ti, where i = 0, . . . ,M−1.

[62] showed that the weighted log-rank statistic is normally distributed with unit variance
and approximate expectation of

E =
∑

M−1
i=0 Diri

(
φiθi

1+φiθi
− φi

1+φi

)
√

∑
M−1
i=0 Dir2

i
φi

(1+φi)2

, (4.4)

where

θi =
h2(ti)
h1(ti)

, φi =
N2(ti)
N1(ti)

, Di = (h1(ti)N1(ti)+h2(ti)N2(ti)),

N j(t0) = nw j, N j(ti+1) = N j(ti)
[

1−h j(ti)−
(

1
T + τ− ti

)
I{ti>τ}

]
,

(4.5)

w j represents the allocation ratio for group j, and ri corresponds to the Fleming-Harrington’s
Gρ,γ class of weights where ri = (S(ti))ρ(1−S(ti))γ and S(ti) represents the pooled survival
function. Even though it was originally proposed by [63], [56] uses S(ti)=w1S1(ti)+w2S2(ti)
as a substitute for the pooled survival function, where S j(ti) represents the survival function
of group j at time ti. However, as stated by [56], equation (4.4) can be equivalently expressed
as

E = n
1
2 E∗ = n

1
2

∑
M−1
i=0 D∗i ri

(
φiθi

1+φiθi
− φi

1+φi

)
√

∑
M−1
i=0 D∗i r2

i
φi

(1+φi)2

 , (4.6)

where



62
Properties of the weighted log-rank test in the design of confirmatory studies with delayed

effects

D∗i = (h1(ti)N∗1 (ti)+h2(ti)N∗2 (ti)),

N∗j (t0) = w j, N∗j (ti+1) = N∗j (ti)
[

1−h j(ti)−
(

1
T + τ− ti

)
I{ti>τ}

]
,

(4.7)

Assuming that the weighted log-rank statistic is normally distributed with mean n
1
2 E∗

and unit variance, then for a power equal to 1−β and one-sided significance level α we have

∣∣∣n 1
2 E∗
∣∣∣= zα + zβ , (4.8)

where zα and zβ correspond to the α-th and β -th percentile of the standard normal distribution
respectively. The required sample size is calculated as

n =

(
zα + zβ

E∗

)2

, (4.9)

and the total expected number of events is equal to n×∑
M−1
i=0 Di.

4.2.3 Test statistic

We aim to test the null hypothesis, H0 : h1
h2

= 1, against the alternative, H1 : h1
h2

< 1. In the
context of group sequential designs, since we are only interested in early efficacy testing we
make use of the well known classical group sequential design methodology (see [64]) and
make use of the O’Brien and Fleming rejection boundaries. In the context of adaptive group
sequential designs, we make use of the independent increment property of the inverse normal
method, which is an efficient way of incorporating data of patients who where censored
at interim analysis while ensuring type-I error rate control (see [65]). The test statistic is
defined as

Z∗ = ξ1Φ
−1(1− p1)+ξ2Φ

−1(1− p2), (4.10)

where p1 and p2 denote the separate stage p-values from stages 1 and 2, Φ−1 denotes the
inverse of the standard normal distribution, and ξ1 and ξ2 are pre-specified weights such
that ξ 2

1 = n1
n1+n2

, ξ 2
2 = n2

n1+n2
and where n1 and n2 represent the number of events observed in

each stage. The null hypothesis will be rejected at level α if Z∗ > Φ−1(1−α).
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However, the inverse normal method is in general not valid when doing sample size
re-assessment if the adaptations depend on endpoints such OS or PFS (see [66]). We use the
approach proposed by [67] where, in equation (4.10), the first stage p-value is defined by the
cohort of patients included before the interim analysis and is calculated only at the end of the
trial. This allows the inclusion of all the events, but it prohibits early stopping for efficacy.
See [68] for a detailed review of the existing methods on this matter.

4.3 Group sequential and adaptive group sequential de-
signs

In this section we aim to briefly describe how group sequential and adaptive group sequential
designs work. For a detailed definition and explanation of this methodology see [64].

4.3.1 Group sequential designs

The formulae presented in section 4.2.2 allow to obtain a sample size that maintains an
acceptable power at the end of the trial under the presence of delayed effects. However, a
key condition is to have some knowledge about the delay of the drug. Assuming we have
this knowledge when designing the confirmatory trial, we can implement a group sequential
design with an interim analysis for efficacy. Note that interim analysis for futility is not
advised in the presence of delayed effect because of high risk of stopping the study for futility
even in scenarios that favor the alternative hypothesis.

A group sequential design with one interim analysis for efficacy is graphically described
in Figure 4.1.

4.3.2 Adaptive group sequential design

Even though the sample size derivation described in section 4.2.2 guarantees that after a
pre-specified effect delay we will have an acceptable power at the end of the trial while
controlling the type-I error rate, we may have misspecified the delay value or maybe this
value is unknown. Either way, an adaptive group sequential design that allows interim
analyses and sample size re-assessment would be useful in case we expect a lack of statistical
power at the end of the trial given the results at the interim analyses. Hence, with this design
we aim to recover the power lost due to misspecification of the delay. As explained in section
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Fig. 4.1 Graphical representation of a group sequential design with an interim analysis for efficacy
where ρ1 is the efficacy boundary at the interim analysis and ρ2 is the efficacy boundary at the final
analysis.

H0 is rejected H0 is rejected

H0 is not rejected

If z1 > ρ1 If z2 > ρ2

If z2 ≤ ρ2
Interim
analysis

Final
analysis

4.2.3, to maintain type-I error rate control when the sample size criteria is based on survival
endpoints, the interim analysis is only used to do a sample size re-assessment and not for
early stopping. Because we need to distinguish between the effect at the interim analysis and
the effect at the final analysis, let δ1 be the hazard ratio at the interim analysis and let δ be
the hazard ratio at the end of the trial.

We now introduce two popular approaches for sample size re-assessment:

Mehta and Pocock’s “promising zone” approach [69]

[69] propose a method that adaptively increases the sample size when interim results are
considered “promising”. For that, we compute the conditional power at the interim analysis
using δ̂1 rather than the true δ1. The formula for the conditional power is defined as

CP
δ̂1
(z1, ñ2) = 1−Φ

(
zα

√
n2− z1

√
n1√

ñ2
− z1
√

ñ2√
n1

)
. (4.11)

If the conditional power is within a certain pre-specified range that we consider promising,
we may re-estimate the sample size to recover the power lost due to the effect delay. The
selection of this range depends not only on the estimate of the effect delay but also on the
budget of the sponsor for this particular trial. For example, if we have an estimated effect
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delay between 3 and 7 months, but we only have budget to guarantee 80% of power up to 5
months, the sponsor can choose to stop the trial. Therefore, following [69], we partition the
sample space of attainable CP

δ̂1
(z1, ñ2) values into three zones:

1. Favorable: We consider the interim results to be in the favorable zone if CP
δ̂1
(z1, ñ2)≥

1−β . In this zone, the study is sufficiently powered for the observed δ̂1 and therefore
no sample size re-estimation is required.

2. Promising: We consider the interim results to be in the promising zone if 1−β >

CP
δ̂1
(z1, ñ2) ≥ CPmin. In this zone, δ̂1 is close to δ1 but the study is not sufficiently

powered and a sample size re-estimation is required. Specifically, the sample size will
be increased to

ñ∗2(z1) = min(ñ′2,n(z1)max), (4.12)

where nmax is the maximum sample size the sponsor is willing to enroll and ñ′2(z1)

satisfies that CP
δ̂1
(z1, ñ′2) = 1−β . Following [70], it is possible to show that

ñ′2 =
(

n1

z2
1

)(
zα

√
n2− z1

√
n1√

n2−n1
+ zβ

)2

. (4.13)

3. Unfavorable: We consider the interim results to be in the unfavorable zone if the value
of CP

δ̂1
(z1, ñ2) < CPmin. The value of CPmin is pre-specified before the trial starts

and it depends on the prior knowledge about the effect delay. In this zone the interim
results are not promising and the sample size will not be re-estimated.

Type-I error rate is controlled following [71], where it is shown that the overall type-I
error does not increases if the sample size is only re-assessed when

CP
δ̂1
(z1)≥ 0.5. (4.14)

Jennison and Turnbull’s “start small then ask for more” approach [72]

[72] made a detailed analysis of Mehta and Pocock’s “promising zone” approach.

One drawback of the “promising zone” approach is the use of δ̂1 in the construction of
the promising zone and sample size increase function. The reason is that δ̂1 is considered
as a highly variable estimate of δ1, and also because it is used twice in determining the
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conditional power that underlies the sample size function: the first time through the value of
z1 and the second time when evaluating the conditional power at δ = δ̂1. This double use
of δ̂1 was also pointed out by [73] who recommends a careful inspection of the operating
characteristics when using δ = δ̂1.

Another drawback of Mehta and Pocock’s “promising zone” approach is that, despite
the type-I error rate being controlled, because of the restriction showed in (4.14), the gain
in power is relatively small for the increases in the expected sample size. Moreover, [72]
demonstrated that other alternatives such us a fixed sample design and a group sequential
design have exactly the same power curve and a lower expected sample size around the true
value of δ .

To overcome the last limitation, [72] propose an optimal sample size calculation rule
where we need to find the value of n∗2 that maximizes the objective function

f (n∗2) = CP
δ̂1
(z1,n∗2)−η(n∗2−n2), (4.15)

where η can be considered as “a tuning parameter that controls the degree to which the
sample size may be increased when interim data are promising but not overwhelming”.

[72] pointed out that even though the objective function given by equation (4.15) “con-
cerns conditional probabilities given the interim data, choosing a sample size rule to optimize
this objective function also yields a design with an overall optimality property expressed in
terms of unconditional power”. They show that

P
δ̂1
(Reject H0)−ηE

δ̂
(N) =

∫
{CP

δ̂
(z1,n∗2(z1))−η(n∗2(z1)−n2)} f

δ̂
(z1)dz1, (4.16)

where f
δ̂
(z1) represents the density of Z1 under δ = δ̂ , and since we maximize equation

(4.15), for every z1, we also maximize the right hand side of equation (4.16). Moreover, it is
possible to show that this sample size rule has the minimum expected sample size among all
rules that achieve the sample power under δ = δ̂ .

In algorithms 1 and 2 we describe how to implement the reviewed methodology in case
the sample size needs to be re-assessed.
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Algorithm 1 Group sequential adaptive design using Mehta and Pocock’s “promising zone”
approach.

1: procedure
2: Recruit up to n patients and when n1 events are observed analysis compute

CP
δ̂1
(z1, ñ2)

3: Calculate the number of events ñ′2 and total sample size necessaries for the second
stage.

4: Recruit patients until ñ′2 events are observed.
5: Compute Z∗ = ξ1Φ−1(1− p1)+ξ2Φ−1(1− p2) ▷ p1 is calculated at the final stage

using only the patients enrolled before the interim analysis.
6: if (Z∗ > Zα ) then
7: Outcome← 1 ▷ H0 is rejected at the final analysis
8: else
9: Outcome← 0 ▷ H0 is not rejected at the final analysis

10: end if
11: return Outcome
12: end procedure

Algorithm 2 Group sequential adaptive design with one interim analysis for efficacy using
Jennison and Turnbull’s “start small then ask for more” approach.

1: procedure
2: Recruit up to n patients, and when n1 events are observed do the interim analysis.
3: Calculate the number of events n∗2 and total sample size necessaries for the second

stage.
4: Recruit patients until n∗2 events are observed.
5: Compute Z∗ = ξ1Φ−1(1− p1)+ξ2Φ−1(1− p2) ▷ p1 is calculated at the final stage

using only the patients enrolled before the interim analysis.
6: if (Z∗ > Zα ) then
7: Outcome← 1 ▷ H0 is rejected at the final analysis
8: else
9: Outcome← 0 ▷ H0 is not rejected at the final analysis

10: end if
11: return Outcome
12: end procedure
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4.4 Simulation setup

We implement the methodology described in sections 4.2 and 4.3 on a scenario that tries to
imitate a realistic phase III trial with delayed effects in oncology.

Survival data for the control arm is simulated using an exponential distribution while data
for the experimental arm is simulated using a distribution that is piece-wise exponential (see
equation (4.1)). Under proportional hazards, we assume that the control arm has a median
survival of 6 months while the experimental arm has a median survival of 9 months. Hence,
the hazard ratio is equal to 0.667. However, under the presence of delayed effects we assume
a step function for the hazard ratio where it will be equal to 1 until a certain time point ε , and
then it will be at its full effect after ε . This means that while the control arm will keep its
median survival of 6 months, the median survival of the experimental arm will no longer be
9 months because of the delayed effect.

We establish a total study duration of 25 months, a total enrollment period of 17.5 months,
randomization ratio 1:1, a power of 90% and a one-sided level α of 2.5%.

Clinical trial enrollment follows a Poisson distribution with rate of 10 patients per month.
Plotting the cumulative distribution function of a Poisson distribution of these characteristics
using, for instance, the R function ecdf(), it is straightforward to see that after 17.5 months
almost all the patients, if not all, are enrolled in the trial. Results are obtained running
200,000 simulated trials. R code is showed in the appendix explaining how to simulate
survival data under the presence of delayed effects.

In Table 4.1 we show the information fraction, the cumulative α spent, the O’Brien and
Fleming efficacy boundaries, and the boundary crossing probability at each look. Recall that
these boundaries are only used in the context of group sequential designs where the sample
size is not re-assessed and they are calculated based on the information fraction only. If the
sample size needs to be re-assessed, we employ different methodology (see section 4.2.3)

Table 4.1 Information fraction, the cumulative α spent, the efficacy boundaries, and the boundary
crossing probability at each analysis in the group sequential design we use as an example.

Look #
Information

Fraction
Cumulative α

spent
Efficacy

boundary Z
Boundary crossing

probability (incremental)
1 0.75 0.01 2.34 0.688
2 1 0.025 2.012 0.212
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For both the group sequential and the adaptive group sequential designs, we estimate
the empirical power and the empirical type-I error rate at the final analysis. In the context
of group sequential designs, let Ztest be the Z-statistic obtained at the end of the trial and Z2

be the efficacy boundary of the final analysis presented in Table 4.1. In scenarios under the
alternative hypothesis, the empirical power is defined as

Power =
1
M

m

∑
i=1

I[Ztest > Z2], (4.17)

whereas in scenarios under the null hypothesis, (4.17) is the empirical type-I error rate. In the
context of group sequential adaptive designs, in equation (4.17), Ztest needs to be substituted
by Z∗ and Z2 needs to be substituted by Zα in order the implement the inverse normal method
described in section 4.2.3.

4.5 Results

In this section we evaluate the repercussion of delayed effects on the power and the type-I
error rate in group sequential and adaptive group sequential designs. The results presented in
this section are based on the simulated scenario described in section 4.4.

Because one of the purposes of this work is to make a comparison between the log-
rank test and weighted log-rank test, in Table 4.2 we show, for different delay times, the
required number of events and the sample size using the parameter values (ρ = 0,γ = 0)
and (ρ = 0,γ = 1) following the formulas presented in section 4.2.2. As we can see, under
proportional hazards the parameter combination (ρ = 0,γ = 0) is more efficient since it
requires 258 events whereas the parameter combination (ρ = 0,γ = 1) requires 369 events
to maintain 90% of power. However, with 5 months delay, the parameter combination
(ρ = 0,γ = 1) becomes more efficient since it requires 741 events whereas the parameter
combination (ρ = 0,γ = 0) requires 1436 events to maintain 90% of power.

Table 4.2 Sample size calculation for different effect delay times using the parameter values (ρ =
0,γ = 0) and (ρ = 0,γ = 1) using the sample size formulae reviewed in Section 4.2.2.

Delay (months) 0 1 2 3 4 5

(ρ = 0,γ = 0)
# of events 258 359 492 686 986 1436

# of patients 330 456 621 860 1228 1777

(ρ = 0,γ = 1)
# of events 369 376 406 468 578 741

# of patients 472 478 512 587 719 917
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4.5.1 Group sequential design

In Figure 4.2 we show the empirical power and type-I error rate at the final analysis for a
wide range of ρ and γ combinations with the design characteristics presented in section 4.4
assuming no delayed effect in the sample size calculation. As expected, the results show
that the parameter combination (ρ = 0,γ = 0) achieves 90% of power and 2.5% type-I error
at the final analysis. However, as the delay increases, we observe that power drops faster
than other combinations of ρ and γ as the effect delay increases. Other combinations like
(ρ = 0,γ = 1) have less power under proportional hazards but maintain higher power as the
effect delay increases. These results are expected since low values of ρ and high values of γ

weight late differences, which is the situation we recreate in this simulated trial. However,
combinations that weight late differences produce a slight type-I error rate inflation as we
can observe in Figure 4.2, right image.

Using the methodology described in section 4.2.2, if we incorporate an estimate of the
effect delay in the sample size calculation, we are able prevent the power to drop until that
specified moment. This is shown in Figure 4.3, where for each delay time we calculate the
sample size necessary to achieve 90% power taking the delay into account. Moreover, when
correctly specifying the effect delay, we observe that not only low values of ρ and high values
of γ achieve high power. However, in terms of type-I error rate, we observe the same slight
type-I error rate inflation we observed in Figure 4.2 for low values of ρ and high values of γ .

To control the type-I error rate, we propose to use a similar approach as the one used
by [74] in which, although in a different context, instead of calculating the sample size for
α = 2.5%, a lower value of α is fixed so the final type-I error rate is maintained at 2.5%.
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Fig. 4.2 Empirical power and type-I error for a wide range of combinations of ρ and γ at the final
analyses with different effect delay times and a unique sample size calculated assuming proportional
hazards. In black, the five combinations with less cumulative power loss over time, in dark grey the
power loss of the log-rank test (ρ = 0,γ = 0) over time, and in light grey the power loss of the rest of
the combinations.
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Fig. 4.3 Empirical power (left) and type-I error (right) for a wide range of combinations of ρ and γ at
the final analyses with different effect delay times and a different sample size for each delay time. In
the left image, in black, the five combinations with highest mean power over time. In dark grey the
log-rank combination (ρ = 0,γ = 0) and in light grey the rest of the combinations. In the right image,
in black the type-I error of the five combinations with highest mean power over time. In dark grey the
log-rank combination (ρ = 0,γ = 0) and in light grey the rest of the combinations.
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4.5.2 Adaptive group sequential design

In this section we show how performing a sample size reassessment we recover some of the
power lost due to the delayed effect. As in the previous section, the results presented here
make use of the simulated example described in section 4.4. However, rather than using a
wide range of combinations of ρ and γ , we use the combination (ρ = 0,γ = 1) since we
believe it is the most suitable combination for this kind of setting.

In Figure 4.4 we present the empirical type-I error (top-left image), empirical power
(top-right image), percent of times we re-adjust the sample size (bottom-left image) and the
ratio between new sample size and original sample size (bottom-right image) for different
effect delays using the weighted log-rank test with the parameter combination (ρ = 0,γ = 1)
using the promising zone approach proposed by [69].
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We employ three different promising zone lower bounds (0.5, 0.1, 0.001) and compare
their operating characteristics against a design that does not reassess the sample size. Without
any sample size reassessment, the power is below 80% after 3 months. Using a promising
zone lower bound of 0.5, the power will be below 80% after 3.5 months. However, if the
promising zone lower bound is 0.1 or 0.001, the power will be below 80% after 4 and 6
months, respectively. As discussed in the literature (see [72]) we corroborate that the gains
when using a lower bound of 0.5 is practically negligible and the greatest gains in power are
likely to be found outside the region defined by [69].

In terms of type-I error, we observe it is perfectly controlled for any value of the promising
zone lower bound. However, note that we implemented our previously described proposal in
which instead of calculating the sample size for α = 2.5%, a lower value of α is fixed so the
final type-I error rate is maintained at 2.5%. Otherwise we would see the same slight type-I
error rate inflation we identified in the Figures 4.2 and 4.3 due to the ρ and γ parameters that
we employ.

In terms of percent of times we fall in the promising zone, when the lower bound is 0.5,
the probability of re-adjusting the sample size reaches its maximum value, which is around
15% at 4 months. If the lower bound is 0.1, the probability of re-adjusting the sample size
reaches its maximum value, which is around 35% between 4 and 5 months. Last, if the lower
bound is 0.001, the probability of re-adjusting the sample size reaches its maximum value,
which is close to 70% at 6 months.

In terms of how much we need to increase the sample size with respect to the original
sample size every time we fall in the promising zone, we observe that if the lower bound is
0.5, we need around 1.5 times the original sample size regardless the delay time. If the lower
bound is 0.1, we need around 2.5 times the original sample size also regardless the delay
time. Last, if the lower bound is 0.001, for a delay time t = 0, we need around 4.5 times the
original sample size. For a delay time t = 4 we need around 9 times the original sample size
and for a delay time t = 6 we need around 15 times the original sample size.

It is important to mention that, in practice, a promising zone lower bound of 0.001 may
not be possible to implement given the excessively increase in the number of events needed
and the consequent increase in the budget for the trial. However, we believe it is interesting to
show that it is possible to maintain a power of 80% for another three extra months, regardless
of the additional duration and expenses of the trial.

Last, in Figure 4.5 we make a comparison between the approaches of [69] and [72]. We
selected the promising zone’s lower bound 0.001 because it is the one that is more expensive
to put into practice and where greater differences are observed. As expected, the approach
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from [72] is able to maintain the same power as the approach from [69]. However, in terms
of how much we need to increase the sample size with respect to the original sample size,
[72] requires smaller sample size, specially after 4 months of delay.

Fig. 4.4 Empirical type-I error rate (top left), empirical power (top right), percent of times sample
size is reassessed (bottom left) and ratio between the reassessed number of events and the original
number of events (bottom right) at different delay times, when the sample size is calculated assuming
no delay, using the “promising zone” approach.
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Fig. 4.5 Empirical power and ratio between the reassessed number of events and the original number
of events when using the approaches from [69] and [72]
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4.6 Practical Considerations

In the previous sections we evaluated the impact of delayed effects in clinical trials and what
methodology exists in order to reduce it. However, we cannot conclude which methodology is
better in general terms because it will depend on many factors. In this section, we emphasize
some practical considerations regarding the use of the presented methodology.

The first question we tackled in this article in the use of the weighted log-rank test versus
the log-rank test in group sequential and adaptive group sequential designs. In the presence
of known delayed effects, we observed that the weighted log-rank test with parameter values
(ρ = 0,γ = 1) is the overall best choice, not only for the analysis but also for the sample
size formula. We recall that the use of these parameter values in the weighted log-rank test
generates a slight type-I error rate inflation and hence the value of α needs to be slightly
decreased in order to achieve a final type-I error rate of 2.5%.

In cases where the delayed effect is unknown or underestimated in the sample size
calculation, there exists methodology that re-adjusts the sample size in order to increase the
power at the final analysis. The use of each method will depend on the characteristics of the
trial. From the two methods we evaluated in the article, we observed that the proposal of
[72] outperforms the proposal of [69] in the sense that for the same power, [72] requires less
sample size. However, with these approaches it is possible to back-calculate the conditional
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power at the interim analysis if we know the sample size increase recommended for the
second stage of the trial. If this situation does not compromise the integrity of the trial, we
recommend the use of [72] as it is proven to be more efficient. However, if the effect at the
interim analysis has to remain masked, we propose the use of a modified version of [69],
which would work as follows.

We would establish a promising zone, as in the original method, in which we re-calculate
the sample size if the conditional power falls within a certain pre-specified range. The
original method would calculate a different sample size for each conditional power (or delay
time). However, in order to avoid back-calculations based on the second stage sample size,
we propose to fix in advance the sample size to be used in the second stage of the trial. To
avoid having an underpowered trial, we can fix the sample size increase assuming the lowest
possible value for the conditional power (or the highest delay time) of the promising zone.
This value would represent the maximum fixed sample size increase, although with this
approach, we will be overpowering the trial for almost all values of the conditional power that
fall in the promising zone. On the other hand, we can also fix the sample size increase to the
highest possible value for the conditional power (or the lowest delay time) of the promising
zone. This fixed value would represent the minimum fixed sample size increase, although
with this approach, we will be underpowering the trial for almost all values of the conditional
power that fall in the promising zone. This modification of the method proposed by [69] is
illustrated (using a toy example) in Figure 4.6.

In this case, even though the “safest” option would always be using the maximum fixed
sample size increase, we cannot give a recommendation since a large number of sample sizes
between the maximum and the minimum fixed sample size increases can be employed and
the choice depends on how much risk of having an underpowered study the sponsor is willing
to take.
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Fig. 4.6 Fixed sample size increase illustration following a modified version of the “promising zone”
proposed by [69].
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4.7 Conclusions

In this article we evaluated the impact of delayed effects, in terms of power and type-I
error rate, in phase III clinical trials. We studied the use of the weighted log-rank test as an
alternative to the log-rank test in group sequential and adaptive group sequential designs.
This includes not only the analysis but also the incorporation of the Fleming and Harrington
class of weights, as well as a delay estimate, in the sample size calculations. Also, we
reviewed two different sample size re-adjustment methods, and explored which one is more
efficient.

Results show that, in the presence of delayed effects when assuming proportional hazards,
the weighted log-rank test with parameter values (ρ = 0,γ = 1) was the best overall choice,
as it was the one that maintained a higher power as the delay increases. When incorporating
the Fleming and Harrington class of weights, as well as a delay estimate, into the sample
size calculation, we observed that the power remains until the delay estimate we provided
and the difference in terms of power between parameter values was not as big as under
the assumption of proportional hazards, although the parameter values (ρ = 0,γ = 1) were
overall the best combination. Sample size re-adjustment allows increasing the sample size
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at the interim analysis to lower the risk of failing to meet the study objective. We explored
the operating characteristics of two popular approaches for sample size re-adjustment: the
“promising zone” approach by [69] and the “start small then ask for more” approach by [72].

With the proposal from [69] it is possible to maintain the power high enough for the trial
to be valid. However, the proposal from [72] is proven to be more efficient as for the same
power curve, it requires less sample size. Nevertheless, there are situations in which having
a “promising zone” may be more beneficial. This is the case when the effect at the interim
analysis has to remain masked for integrity reasons. The problem is that it is possible to
back-calculate the effect at the interim analysis by knowing the sample size increase. Hence,
in this article we propose a modified version of the proposal from [69]. It does not require
any modification of the original formulation. If a trial has a conditional power that falls in a
pre-specified promising zone, we apply a pre-specified fixed sample size increase that will be
used regardless the value of the conditional power as long as it falls in the promising zone.
With this approach, even though we maintain the effect masked at the interim analysis, there
is the risk of having an underpowered study if the fixed sample size increase in not large
enough. However, if we want to avoid that risk, we will need to recruit more patients than
necessary with the associated extra cost.



Chapter 5

Conclusions

5.1 Discussion

Even though this thesis focuses on adaptive designs in oncology clinical trials, it has two
different parts. In the first one, we study dose finding designs in a drug combination setting.
Dose finding clinical trials, also known as phases I and II, aim to identify the dose with
highest efficacy among a set of doses that is considered tolerable. These two phases can be
done in separate studies or in a single study with either one or two stages, depending on the
indication. Phase I trials aim to find the MTD set, or in other words, a set of doses with a
probability of observing DLT close to a pre-specified target, which in practice is between 0.2
and 0.4. The dose-toxicity relationship can modeled using any statistical model we think it is
appropriate (e.g. logistic or copula). Dose escalation is done using mainly CRM or EWOC,
which are algorithms that recommend a dose for the following cohort of patients based on
previous administered doses and the target probability of DLT. As previously mentioned,
phase II trials aim to identify the dose with highest efficacy with the MTD set recommended
by the phase I trial. In an adaptive setting, patients are sequentially allocated to doses
with high probability of efficacy based on previous administered doses. The dose-efficacy
relationship can be modeled using any statistical model we think it is appropriate.

Our contributions to the field of dose finding clinical trials are:

• A Bayesian adaptive phase I trial design that allows the investigator to attribute a DLT
to one or both agents in a unknown fraction of patients, even when the drugs are given
concurrently [75].
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• A Bayesian adaptive phase I/II design with drug combinations, a binary endpoint in
stage 1, and a TTP endpoint in stage 2, where we aim to identify the dose combination
region associated with the highest median TTP among doses along the MTD curve
[76].

In the second part of the thesis, we focus on confirmatory clinical trials also in a drug
combination setting, focusing on group sequential and adaptive group sequential designs.
Confirmatory trials, or phase III trials, are the gold standard to confirm both safety and
efficacy of novel drugs. These studies aim to detect differences between treatment arms while
controlling the type-I error rate and maintaining a high power. One common assumption in
these trials is that the hazard is not time dependent. However, in the presence of delayed
effects, this assumption does not hold, and hence the design needs to be modified in order to
prevent both type-I error rate inflation and power drop.

Our contribution to the field of confirmatory trials is:

• Assessment of the impact of delayed effects in group sequential and adaptive group
sequential designs, and empirical evaluation in terms of power and type-I error rate
of the weighted log-rank in a simulated scenario. We also give some practical recom-
mendations regarding which methodology should be used in the presence of delayed
effects depending on certain characteristics of the trial [77].

5.2 Further work

This thesis contributes to obtaining more efficient designs in phases I, II and III clinical trials.
However, there is still a need of new methods in order to properly accommodate both the
drug and the indication characteristics in a clinical trial. Hence, we finish the discussion by
providing some ideas to extend the work presented in this thesis:

• In a phase I trial the output, that is later used in a phase II trial, is the MTD set,
which is the set of doses that are considered tolerable. However, uncertainty about
the MTD set is never translated into the phase II, increasing the probability of not
having a successful phase II trial. Incorporating this uncertainty would increase the
number of doses in the MTD set. However, given the low number of patients usually
enrolled in phase II trials, there is a chance that the MTD set is too large for the sample
size available and we never allocate patients in certain regions of the MTD. Adaptive
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randomization methods could be used in order to make a more efficient use of the
sample size available.

• Develop dose finding methodology using immuno-therapy in a drug combination
setting. In a traditional phase I/II trial, unless we jointly model toxicity and efficacy,
the MTD set is fixed when we move from the phase I to the phase II. Immuno-therapy
is known for causing delayed effects, and hence the MTD set needs to be updated
during the phase II as well because we may observe toxicity events from the phase I.

• One major question when using immuno-therapy in confirmatory trials with a group
sequential design is whether at the interim analysis, there is no difference between
treatment arms or the difference has not occurred yet. A possible further research line
could be the use enrichment designs in order to identify and keep subgroups in which
the treatment may work with higher probability.
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