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Abstract

In this paper we describe some well–known means and their proper-
ties, focusing on the relationship with integer sequences. In particular,
the harmonic numbers, deriving from the harmonic mean, motivate
the definition of a new kind of mean that we call biharmonic mean.
Biharmonic mean allows us to introduce the biharmonic numbers and
to provide a new characterization of primes. Biharmonic numbers ap-
pear to be very interesting for some properties of divisibility which
have been studied in our paper by means of linear recurrent sequences
and diophantine equations.

1 Introduction

The need to explore Nature and establish from direct observation its rules,
encouraged ancient thinkers in finding appropriate mathematical tools, able
to extrapolate numerical data. One of the oldest method used to combine
observations in order to give an unique approximate value is the arithmetic
mean. It has been probably used for the first time in the third century B.C.,
by ancient Babylonian astronomers, to determine the positions of celestial
bodies. The mathematical concept of arithmetic mean was first enhanced
by the greek astronomer Hipparchus (190–120 B.C.) and some other greek
mathematicians, following the Pythagoric ideals, have also introduced or
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rigorously defined further kinds of means. For example Archytas (428–360
B.C.) named the harmonic mean and used it in his theory of music and in
an algorithm for doubling the cube. His disciple Eudoxus (408–355 B.C.)
introduced the contraharmonic mean while he was developing the studies on
proportions. So in parallel with the practical use of many numerical means in
various sciences, a deep exploration of their arithmetic and geometric prop-
erties took place during the centuries. The book of Bullen [2] is a classical
reference for a good survey about means and their history.

In this paper we especially focus our attention to some interesting arith-
metic aspects related to the most used means in many fields of Mathematics.
We also define a new kind of mean, showing how it also allows us to give a
new characterization of prime numbers.

We start recalling the classical definitions and properties of the involved
means.

Definition 1. Let a1, a2, . . . , at be t positive real numbers, then we define
their

• arithmetic mean

A(a1, a2, . . . , at) =
a1 + a2 + · · ·+ at

t
; (1)

• geometric mean

G(a1, a2, . . . , at) = t
√
a1a2 · · · at; (2)

• harmonic mean

H(a1, a2, . . . , at) =

(
1

t

(
1

a1
+

1

a2
+ · · ·+ 1

at

))−1
; (3)

• contraharmonic mean

C(a1, a2, . . . , at) =
a21 + a22 + · · ·+ a2t
a1 + a2 + · · ·+ at

. (4)

We have the well–known inequalities

H(a1, a2, . . . , at) ≤ G(a1, a2, . . . , at) ≤ A(a1, a2, . . . , at) ≤ C(a1, a2, . . . , at)
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and only if we consider two positive real numbers a and b, we always have
the following beautiful relations:

A(a, b) = A(H(a, b), C(a, b)), (5)

G(a, b) = G(H(a, b),A(a, b)). (6)

A very interesting question is to determine whether at least one of these
equalities holds for some choice of more than two positive real numbers. In
1948 Oystein Ore, ([4], [5]), introduced the idea of harmonic number finding
some related properties and a quite surprising answer to this question. He
applied the four means to all the divisors of a positive integer n. If we indicate
the set of divisors of n as

D(n) = {d1, d2, . . . , dt}

and for the sake of simplicity we pose

A(n) = A(d1, d2, . . . , dt),

G(n) = G(d1, d2, . . . , dt),

H(n) = H(d1, d2, . . . , dt),

C(n) = C(d1, d2, . . . , dt),

recalling that the divisor function is

σx(n) =
t∑
i=1

dxi , x ∈ N (7)

the first immediate result of Ore can be summarized in the following theorem.

Theorem 1.

A(n) =
σ1(n)

σ0(n)
, (8)

G(n) =
√
n, (9)

H(n) =
nσ0(n)

σ1(n)
, (10)

C(n) =
σ2(n)

σ1(n)
. (11)
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Proof. We give a proof only for equalities (10) and (9) since (8) and (11)
clearly arise from (1) and (4) respectively. From equation (3) clearly

H(n) =

(
1

t

(
1

d1
+

1

d2
+ · · ·+ 1

dt

))−1
and the sum 1

d1
+ 1
d2

+· · ·+ 1
dt

, when reduced to the least common denominator
n, gives as numerator σ1(n) (the sum of all the divisors of n). Moreover, since
t = σ0(n) (the number of all the divisors of n), relation (10) easily follows.
Now, to prove equation (9), we start from (2)

G(n) = t
√
d1d2 · · · dt =

σ0(n)

√√√√σ0(n)∏
i=1

di

distinguishing the two cases n = m2 or n 6= m2. When n 6= m2, n has an
even number of divisors, so we multiply di with n

di
for all i = 1, . . . , σ0(n)

2
,

finding
∏σ0(n)

i=1 di = n
σ0(n)

2 and we are done. On the other hand if n = m2,
then t = σ0(n) is odd. As before, we multiply di with n

di
, but in this case we

can do this only for every di 6= m, finding

σ0(n)∏
i=1

di = n
σ0(n)−1

2 m = (m2)
σ0(n)−1

2 m = mσ0(n).

Thus

G(n) =
σ0(n)

√√√√σ0(n)∏
i=1

di =
σ0(n)
√
mσ0(n) = m =

√
n.

A straightforward consequence of these results, observed by Ore in [4],
shows how an equality similar to (6) holds if we take into account the elements
of D(n). We have

Corollary 1. For any positive integer n

G(n) = G(H(n), A(n)). (12)
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Proof. From what we stated in the previous theorem, we clearly obtain

G(H(n), A(n)) =
√
H(n) · A(n) =

√
nσ0(n)

σ1(n)

σ1(n)

σ0(n)
=
√
n = G(n).

Before considering another fashinating question, we want to point out
that equality (12) can be interpreted also as a formal identity. For example
when n = p2q, where p and q are two primes, D(n) = {1, p, q, pq, p2, p2q} and
we have from (12)

G(1, p, q, pq, p2, p2q) = G(H(1, p, q, pq, p2, p2q),A(1, p, q, pq, p2, p2q)). (13)

The astonishing fact is that this equality also holds if we substitute p and
q with any other couple of positive real numbers. For example if we use in
(13)

√
2 and π instead of p and q respectively, we obtain the identity

G(1,
√

2, π,
√

2 π, 2, 2π) = G(H(1,
√

2, π,
√

2 π, 2, 2π),A(1,
√

2, π,
√

2π, 2, 2π)).

which is not so immediate. In general, as we have previously observed, for
a set of t positive distinct real numbers a1, . . . , at randomly choosed, the
equality

G(a1, a2, . . . , at) = G(H(a1, a2, . . . , at),A(a1, a2, . . . , at)),

is false.
The second question is pretty natural: when do the means applied to the

divisors of an integer n also give a result which is an integer? The case of
G(n) is not so interesting because G(n) is an integer if and only if n is a
square.

All the integers n such that A(n) is also an integer are the terms of the
sequence A003601 in OEIS [6]:

1, 3, 5, 6, 7, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 27, 29, 30, 31, 33, 35, 37, . . .
(14)

These integers are the so–called arithmetic numbers.
Moreover, every integer n giving an integer value for C(n) belongs to the
sequence A020487:

1, 4, 9, 16, 20, 25, 36, 49, 50, 64, 81, 100, 117, 121, 144, 169, 180, 196, 200, 225, . . . .

Maybe the most important case is related to the harmonic mean. Ore
provided the following definition.
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Definition 2. A positive integer n is an harmonic (divisor) number (or Ore
number) if H(n) is an integer.

The first harmonic numbers are

1, 6, 28, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 18620, 27846, 30240, . . .

and they form the sequence A001599. The corresponding values for H(n) are
listed in A001600

1, 2, 3, 5, 6, 5, 8, 9, 11, 10, 7, 15, 15, 14, 17, 24, . . . .

Ore also proved that all perfect numbers are harmonic numbers.
In the next section, moving from the beautiful properties shown before, we

define a new kind of mean that we will call biharmonic mean. Starting from
the biharmonic mean we will define the biharmonic numbers, which appear
to be very interesting since they allow us to provide a new characterization
for prime numbers. Moreover, the investigation of composite biharmonic
numbers will lead to the study of interesting divisibility properties, involving
consecutive terms of certain linear recurrent sequences.

2 Biharmonic mean and biharmonic numbers

Here we introduce a new mean: the biharmonic mean.

Definition 3. We call the biharmonic mean of the t positive real numbers
a1, a2, . . . , at, the positive real number

B(a1, a2, . . . , at) = A(H(a1, . . . , at), C(a1, . . . , at)) =
H(a1, a2, . . . , at) + C(a1, a2, . . . , at)

2

corresponding to the arithmetic mean of the harmonic and contraharmonic
means evaluated for all the ai.

From Eq. (5) we know that the biharmonic mean is clearly equal to the
arithmetic mean when t = 2. But we also know that this fact is generally
false when t > 2. Following Ore’s idea we define the biharmonic numbers by
means of an analogous function to H(n).
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Definition 4. Let us consider a positive integer n with D(n) = {d1, d2, . . . , dt}.
We define B(n) as the biharmonic mean of the divisors of n

B(n) = B(d1, d2, . . . , dt).

We call an integer n biharmonic number if B(n) is an integer.

From this definition we clearly have

B(n) = B(d1, d2, . . . , dt) =
H(d1, d2, . . . , dt) + C(d1, d2, . . . , dt)

2
=
H(n) + C(n)

2
,

and, thanks to Theorem 1, we can easily find a closed form for B(n)

B(n) =
H(n) + C(n)

2
=

nσ0(n)
σ1(n)

+ σ2(n)
σ1(n)

2
=
nσ0(n) + σ2(n)

2σ1(n)
. (15)

Investigating the occurrence of biharmonic numbers among positive inte-
gers, we initially find the sequence

1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 37, 41, 43, 47, 53, 59, 61, . . .

which is , except from 1 and 35, very similar to the sequence of prime
numbers. This is not so strange, because if n is prime B(n) = A(n).

Theorem 2. Every odd prime number p is a biharmonic number and B(p) =
p+ 1

2

Proof. If p is an odd prime we have σ0(p) = 2, σ1(p) = 1 + p, σ2(p) = 1 + p2,
thus

B(p) =
2p+ 1 + p2

2(1 + p)
=
p+ 1

2

But the very interesting fact is that we can characterize odd prime num-
bers using B(n), because we now will prove that the converse of the previous
theorem is also true.

Theorem 3. An odd integer n 6= 1 such that B(n) = n+1
2

is a prime.
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Proof. First of all we observe that the equality B(n) = n+1
2

corresponds to

(n+ 1)σ1(n)− (σ2(n) + nσ0(n)) = 0. (16)

Let us consider two possible cases: n = k2 or n 6= k2. When n = k2 with
k 6= 1, we have σ0(n) = 2m+ 1 for some m > 0 and

D(n) = {d1, d2, ..., dm, dm+1, dm+2, ..., d2m, k} ,

where we pose di = n
dm+i

for i = 1, ...,m.

Clearly by definition

σ1(n) =
2m∑
i=1

di + k (17)

and

σ2(n) =
2m∑
i=1

d2i + k2. (18)

We find from (17) that

(n+1)σ1(n) =
2m∑
i=1

ndi+nk+
2m∑
i=1

di+k =
m∑
i=1

d2i dm+i+
m∑
i=1

did
2
m+i+nk+

2m∑
i=1

di+k

Rearranging all the terms in a suitable way and remembering that n = k2,
we obtain

(n+ 1)σ1(n) =
m∑
i=1

(di + dm+i)(didm+i + 1) + k3 + k. (19)

On the other hand from (18) the following relation holds

σ2(n) + nσ0(n) =
2m∑
i=1

d2i + k2 + (2m+ 1)n =
2m∑
i=1

d2i +
2m∑
i=1

di
n

di
+ 2k2 =

=
2m∑
i=1

d2i + 2
m∑
i=1

didm+i + 2k2 =
m∑
i=1

(di + dm+i)
2 + 2k2.

(20)

Now using (19) and (20) we have

(n+1)σ1(n)−(σ2(n)+nσ0(n)) =
m∑
i=1

(di+dm+i)(didm+i+1)+k3+k−2k2−
m∑
i=1

(di+dm+i)
2,
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and we finally get

(n+1)σ1(n)−(σ2(n)+nσ0(n)) =
m∑
i=1

(di+dm+i)(di−1)(dm+i−1)+k(k−1)2.

(21)
This equality tell us that in this case the first member of (16) will never be
equal to 0 if n 6= 1.
If n 6= k2, σ0(n) = 2m for some m ≥ 1. With calculations similar to those
we have done before, we easily find that

(n+ 1)σ1(n)− (σ2(n) + nσ0(n)) =
m∑
i=1

(di + dm+i)(di − 1)(dm+i − 1). (22)

When m > 1 the only summand equal to 0 corresponds to the couple of
trivial divisors 1 and n, thus equality (16) occurs only when σ0(n) = 2, or,
in other words, if n is prime.

Clearly, it is interesting to study properties of composite biharmonic num-
bers. The non–prime biharmonic numbers most similar to prime numbers
are the semiprime biharmonic numbers, i.e., numbers n such that n = pq,
for p, q primes, and B(n) ∈ N. In this case, we have

B(n) = B(pq) =
(p+ q)2 + (pq + 1)2

2(p+ 1)(q + 1)
.

Semiprime biharmonic numbers belong to a more wide set of integers that we
will call crystals for their beautiful properties. Let us consider the following
function of integers:

B(a, b) =
(a+ b)2 + (ab+ 1)2

2(a+ 1)(b+ 1)
. (23)

Definition 5. An odd number n is a crystal if and only if n = ab, with
a, b > 1 and B(a, b) ∈ N.

In the following section, we determine all the crystals by means of a
particular linear recurrent sequence.
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3 Divisibility properties

In this section we will characterize all the pairs of odd integers a, b such that
B(a, b) ∈ N by using recurrent sequences and integer points over certain
conics.
First of all, we highlight that B(a, b) ∈ N is equivalent to different divisibility
properties involving the numbers a, b.

Proposition 1. Given two integer odd numbers a, b, the following statements
are equivalent

1. B(a, b) ∈ N

2. F(a, b) =
(ab+ 1)2

(a+ 1)(b+ 1)
∈ N

3. P(a, b) =
(a+ b)(ab+ 1)

(a+ 1)(b+ 1)
∈ N

4. Q(a, b) =
(a+ b)2

(a+ 1)(b+ 1)
∈ N

Proof.
Since

B(a, b)+P(a, b) =
(a+ 1)(b+ 1)

2
, P(a, b)+Q(a, b) = a+b, F(a, b)+P(a, b) = ab+1,

we clearly have

B(a, b) ∈ N⇔ P(a, b) ∈ N, P(a, b) ∈ N⇔ Q(a, b) ∈ N, F(a, b) ∈ N⇔ P(a, b) ∈ N.

In order to characterize the crystals we need some preliminar result about
the diophantine equation

(x+ y − 1)2 − wxy = 0

with x, y unknown and w ∈ N a given parameter. This equation has been
solved in positive integers by the authors in [1], using a particular recurrent
sequence. The authors proved the following
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Theorem 4. The pair (x, y) is a positive integer solution of the diophantine
equation

(x+ y − 1)2 − wxy = 0,

with w ∈ N, if and only if (x, y) = (un(w), un−1(w)) for a given index n ≥ 1,
where (un(w))+∞n=0 is the sequence defined by{

u0(w) = 0, u1(w) = 1

un+1(w) = (w − 2)un(w)− un−1(w) + 2, ∀n ≥ 2 .

When there will be no possibility of confusion, we will omit in the next
the dependence from w. The sequence (un)+∞n=0 can be written as a linear
recurrent sequence of order 3:{

u0 = 0, u1 = 1, u2 = w,

un+2 = (w − 1)un+1 − (w − 1)un + un−1, ∀n > 2 .
(24)

Indeed, in general if (pn)+∞n=0 is a linear recurrent sequence of order m with
characteristic polynomial f(t) = tm −

∑m
h=1 fht

m−h and initial conditions
p0, ..., pm−1, then the sequence (qn)+∞n=0 satisfying the following recurrence

qn =
m∑
h=1

fhqn−h + k

and initial conditions p0, ..., pm−1 is a linear recurrent sequence of degree
m + 1 with characteristic polynomial (x − 1)f(x) and initial conditions
p0, ..., pm−1, pm + k (see, e.g., [3]). Thus, from

x3 − (w − 1)x2 + (w − 1)x− 1 = (x− 1)(x2 − (w − 2)x+ 1)

we have that the sequence (un)+∞n=0 satisfies the recurrence (24). This sequence
is related to the linear recurrent sequence (an(w))+∞n=0 defined by{

a0(w) = 0, a1(w) = 1,

an(w) =
√
wan−1(w)− an−2(w), ∀n ≥ 2 .

(25)

The relation between sequences (un)+∞n=0 and (an)+∞n=0 is determined by the
following function

θ(x) = 2x2 − 1 ∀x ∈ R,
and stated in the following proposition.

11



Proposition 2. For any index n we have

θ(an) = 2un − 1.

Proof. The sequence (an)+∞n=0 recurs with characteristic polynomial x2−
√
wx+

1 whose companion matrix is

F =

(
0 1
−1

√
w

)
.

By definition of θ we have θ(an) = 2a2n − 1, ∀n ≥ 0 and the sequence
(θ(an))+∞n=0 is a linear recurrent sequence whose characteristic polynomial is
the characteristic polynomial of the matrix F ⊗F , where ⊗ is the Kronecker
product (see [3]). In this case, we have

F ⊗ F =


0 0 0 1
0 0 −1

√
w

0 −1 0
√
w

1 −
√
w −

√
w w


whose characteristic polynomial is

(x− 1)2(x2 − (w − 2)x+ 1).

Thus the minimal polynomial whereby (θ(an))+∞n=0 recurs is the same charac-
teristic polynomial of the sequence (un)+∞n=0. Finally, observing that

θ(a0) = 2a20 − 1 = 2u0 − 1 = 0, θ(a1) = 2a21 − 1 = 2u1 − 1 = 1,

θ(a2) = 2a22 − 1 = 2u2 − 1 = 2w − 1,

we have the thesis.

Moreover, two consecutive elements of the sequence (an)+∞n=0 corresponds
to a point belonging to the conic

C(w) = {(x, y) ∈ R : x2 + y2 −
√
wxy = 1}

with w ∈ N.

Proposition 3. For any integer n > 0, we have

(an, an−1) ∈ C(w)

12



Proof. In the proof of the previous proposition, we have observed that F
is the companion matrix of the characteristic polynomial of the sequence
(an)+∞n=0. Thus, we have

F n =

(
−an−1 an
−an an+1

)
.

Since det(F ) = 1, we have det(F n) = 1, i.e.,

a2n − an−1an+1 = 1

and by Eqs. (25)

a2n − an−1(
√
wan − an−1) = a2n + a2n−1 −

√
wanan−1 = 1.

In the following proposition, we highlight the relation between points over
the conic C(w) and points over the conic

C2(w) = {(x, y) ∈ R : (x+ y − 1)2 = wxy}.

Proposition 4. Let C(w), C2(w), C3(w) be the following conics

C(w) = {(x, y) ∈ R : x2+y2−
√
wxy = 1}, C2(w) = {(x, y) ∈ R : (x+y−1)2 = wxy},

C3(w) = {(x, y) ∈ R : (x+ y)2 = w(x+ 1)(y + 1)},
with w ∈ N. For any pair of positive real numbers x, y ∈ R+ we have

(x, y) ∈ C(w)⇔ (θ(x), θ(y)) ∈ C3(w)

(x, y) ∈ C(w)⇔ (x2, y2) ∈ C2(w)

(x, y) ∈ C2(w)⇔ (2x− 1, 2y − 1) ∈ C3(w).

Proof. Remembering that

Q(a, b) =
(a+ b)2

(a+ 1)(b+ 1)
,

we obtain

Q(θ(x), θ(y)) =
(x2 + y2 − 1)2

x2y2

13



and

Q(θ(x), θ(y)) = w ⇔
(x2 + y2 − 1)2

x2y2
= w.

Now, we get
(x2 + y2 − 1)2

x2y2
= w ⇔

x2 + y2 − 1

xy
=
√
w

and finally
Q(θ(x), θ(y)) = w ⇔ x2 + y2 −

√
wxy = 1.

Moreover, we have

(x, y) ∈ C(w)⇔ x2 + y2 − 1 =
√
wxy

and squaring both members

(x, y) ∈ C(w)⇔ (x2 + y2 − 1)2 = wx2y2 ⇔ (x2, y2) ∈ C2(w).

Finally, (x, y) ∈ C2(w)⇔ (2x− 1, 2y − 1) ∈ C3(w) since

Q(2x− 1, 2y − 1) =
(x+ y − 1)2

xy
.

Now, we are ready to classify all the crystals in the following theorem.

Theorem 5. An odd number N = ab is a crystal if and only if there exist
w, n ∈ N such that

a = θ(an), b = θ(an−1).

Proof. 1. ”⇐”
If a = θ(an) and b = θ(an−1) (i.e., θ(an) and θ(an−1) are odd posi-
tive integers), then by Proposition 3 (a, b) ∈ C(w) and by previous
proposition we have Q(a, b) = w, so N = ab is a crystal.

2. ”⇒”
Let N = ab be a crystal. By Propostion 1 there exists a positive integer
w such that Q(a, b) = w and by Proposition 4 we know that(

a+ 1

2
,
b+ 1

2

)
∈ C2(w).
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Thus, by Theorem 4 there exists an index n such that(
a+ 1

2
,
b+ 1

2

)
= (un, un−1)

and finally by Proposition 2 we obtain

a = θ(an), b = θ(an−1).

References

[1] M. Abrate, S. Barbero, U. Cerruti, N. Murru, Polynomial sequences on
quadratic curves,

Integers: The electronic journal of combinatorial number theory, Sub-
mitted, 2014.

[2] P. S. Bullen, Handbook of means and their inequalities,

Series: Mathematics and Its Applications, Vol. 560, 2nd ed., 2003.

[3] U. Cerruti, F. Vaccarino, R–algebras of linear recurrent sequences,

Journal of Algebra, Vol. 175, No.1, pp. 332–338, 1995.

[4] Oystein Ore, On the Averages of the Divisors of a Number,

The American Mathematical Monthly, Vol. 55, pp. 615–619, 1948

[5] Oystein Ore, Number Theory and its History,

McGraw–Hill Book Company Inc., Vol. 3, pp. 209–220, 1953

[6] N. J. A. Sloane, The On–Line Encyclopedia of Integer Sequences, Pub-
lished electronically at http://www.research.att.com/njas/sequences
(2010).

15


