View metadata, citation and similar papers at core.ac.uk

L

POLITECNICO DI TORINO
Repository ISTITUZIONALE

XDN: Cross-Device Framework for Custom Notifications Management

-

brought to you by i CORE
provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

Original
XDN: Cross-Device Framework for Custom Notifications Management / Corno, Fulvio; De Russis, Luigi; Montanaro,
Teodoro. - In: COMPUTING. - ISSN 0010-485X. - STAMPA. - 101:11(2019), pp. 1735-1761.

Availability:
This version is available at: 11583/2718416 since: 2019-10-14T15:04:28Z

Publisher:
Springer

Published
DOI:10.1007/s00607-018-0686-6

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
springer

Copyright Springer. The final publication is available at link.springer.com

(Article begins on next page)

04 August 2020

https://core.ac.uk/display/234925469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Noname manuscript No.
(will be inserted by the editor)

XDN: Cross-Device Framework for Custom Notifications
Management

Fulvio Corno - Luigi De Russis - Teodoro
Montanaro

Received: date / Accepted: date

Abstract With the increase of connected devices and online services, and recently
IoT devices, the number of notifications received by every person is growing. The
importance of notifications, as they become part of people’s lives, often depends on
various factors that can differently influence the reaction and the disruption of recip-
ients. For this reason, the generation and the distribution of notifications has been
gaining importance in the design of new applications, services, and smart devices.
Nowadays, developers have not yet fully exploited all the advantages that the avail-
ability of multiple devices could bring in the customization and the distribution of
notifications, e.g., exploiting a cross-device approach.

This paper presents XDN (Cross Device Notification), a framework to assist devel-
opers in creating cross-device notifications by scripting. The XDN architecture in-
cludes: a library to enable developers to design personalized notifications to be dis-
tributed among ad-hoc networks of IoT/mobile devices; a GUI to assist developers in
implementing and testing (through a simulator) notification strategies; a server-side
runtime environment; and an XDN IoT/mobile library for device support.

We discuss the requirements for cross device notification systems, and we present the
features of the XDN framework, in particular from the point of view of developer
advantages, validated through different scenarios.

Keywords Cross-Device - Framework - Notifications - Developer - API

1 Introduction

During the last decade, the presence of notifications in people’s routines has grown:
people receive, in fact, a huge and increasing number of notifications generated by
different sources (e.g., instant messaging apps, cloud services, Internet of Things
devices) at any time with the aim of facilitating their lives [14]]. Although people are

FE. Corno - L. De Russis - T. Montanaro
Politecnico di Torino, Dip. Automatica ed Informatica, Corso Duca degli Abruzzi 24, 10129 - Torino, Italy
E-mail: {fulvio.corno, luigi.derussis, teodoro.montanaro } @polito.it

2 Fulvio Corno et al.

becoming accustomed to them, the usefulness and the importance of each notification
often depends on various factors that can influence the reaction and the disruption of
recipients. The information contained in notifications, or the device(s) on which they
are presented, are only a few examples of factors that can influence the user reaction
and disruption caused by notifications.

As declared by Seshadri et al. [[18]], in fact, even though providing individuals
with relevant information is an essential element in facilitating their activities, the
challenge for developers is “to provide information in a desired manner notwith-
standing vast differences in individuals’ information and delivery preferences”. De-
velopers should create applications that “deliver timely and personalized information
on whatever suitable device is available and accessible” [18]].

Furthermore, the Internet of Things (IoT) is also gaining importance in the no-
tification context. The IoT is the network of physical objects always connected to
the Internet with the aim of sharing services and information with other connected
“things”. Its growing spread is introducing new devices every day and, as declared by
Weber [19]], “the ongoing wave of smart devices makes it possible to reach the user
through multiple devices at once, amplifying the effects of notifications”. Nonethe-
less, in recent years, this possibility has not been fully exploited by developers: most
existing applications mainly duplicate the same notification on all the available sup-
ported devices.

While it is necessary to personalize notifications according to their importance,
the developed notification strategies (i.e., algorithms for distributing notifications)
should exploit the possibility of reaching the same user through different devices.
As already proposed [6,[10], a possible contribution entails the adoption of a cross-
device approach [3]] to notifications, a growing trend of the last decades that consists
of extending an application user experience across multiple devices. By applying the
cross-device approach to notifications, in fact, developers could distribute different
“signals” related to the same notification on different devices. For instance, a warning
sound could be sent to the smart Hi-Fi, while vibration could be activated on the
personal smartphone and the notification content could be shown on the smart TV.

Developers should therefore focus on both personalizing notifications to differen-
tiate the presentation of important and unimportant information, and designing cross-
device notifications strategies responsible for informing users without causing too
much disruption and involving mobile and IoT devices. Nonetheless, as highlighted
by related works, developers are not yet supported in implementing solutions that
respect both needs in all their aspects.

This paper presents XDN (Cross Device Notification), a framework that allows
developers to create, by scripting, cross-device notifications. Inspired by the Chord
framework [22ﬂ and with the aim of contributing to its future development (if the
project will be revived), XDN assists developers in a) designing personalized noti-
fications, and b) designing, implementing and testing notification strategies able to
distribute notifications among mobile and IoT devices using a cross-device approach.
The framework architecture is composed of four main parts:

1 https://github.com/google/chord, last visited on July 10, 2017, last updated on December 5,
2015

https://github.com/google/chord

XDN: Cross-Device Framework for Custom Notifications Management 3

— the XDN library, that implements a set of high-level APIs to let developers a)
handle incoming notifications and their properties (i.e., content, receipt date/time,
generator, and icon), b) select devices, also through their properties and status to
be involved in the notification distribution, and c) separately perform different
actions on selected devices (e.g., play a sound, activate the vibration, or show the
notification content);

— the XDN runtime environment, that is a service supposed to be run on a server and
that is able to a) accept notifications from IoT/mobile devices, b) process them by
running the deployed script and c) distribute processed notifications to available
devices through its dispatcher module. It is also responsible for d) registering new
devices and e) storing device status updates;

— the XDN GUI that provides a) an editor for allowing developers implement and
debug their notification strategies and b) a simulator that shows how the pre-
defined devices will behave when a new notification arrives by simulating the
runtime environment;

— the XDN IoT/mobile library that will be imported in every application/service
that uses XDN to generate and distribute notifications. It allows developers to
a) generate notifications compatible with the JSON format supported by XDN,
and b) send the generated notifications to the XDN runtime environment. In addi-
tion, it is also able to autonomously c) receive commands from the XDN runtime
environment, and d) execute them.

A first prototype of the XDN framework, that implements only the XDN library
and the XDN GUI was developed in the Node.js framework. Consequently, the meth-
ods, classes and objects provided by the XDN library are provided for JavaScript
applications. Furthermore, the feasibility of the framework and the fulfillment of all
the requirements presented in Section] section were verified through the simulation
of realistic scenarios.

The main contribution of this work is a) a new cross-device proposal for cus-
tomizing and distributing notifications among ad-hoc networks of end-user mobile
and IoT devices; b) the XDN framework, that provides the APIs, the GUI, the run-
time enviroment, and the IoT/mobile library for developers that would develop their
algorithms respecting the cross-device approach; c) two different scenarios imple-
mented as realistic notification strategies to verify the feasibility of the framework
and the fulfillment of all the requirements.

2 Background

With the aim of helping readers in understanding the situations in which the XDN
framework would help developers, this section presents a sample notification strat-
egy (i.e., an algorithm developed with the aim of smartly distribute the incoming
notifications) that will be also used as a running example through the remainder of
the paper.

4 Fulvio Corno et al.

2.1 Scenario: Messaging Application

Three different specific scenarios, inspired by the motivating scenarios presented by
Campbell et al. [10] will be used to extract the final general strategy.

Ashley is a developer, working on a messaging application that should differ-
ently disrupt users depending on their current activity and location. She identified
three sample situations that should be handled by her algorithms, considering some
hypothetical users of her application.

— The user is at her business location, is wearing a smartwatch and is using her
desktop computer. Unfortunately, her smartphone went out due to low battery
and, suddenly, an important personal message arrives. The user should be warned
about that message as soon as possible by showing it on the desktop computer that
he is using and by making the smartwatch vibrate. In addition, no other persons
should be disrupted (e.g., by playing a warning sound for more than one time on
other devices).

— The user is at home and her smart TV is playing a movie. The user owns one
smartphone. It is supposed that the user is relaxing in front of the smart TV, so
the system should not cause any disruption to him. In this situation, a notification
should be shown on the smart TV, while the smartphone vibration should be also
activated just because the user could not be actually in front of her TV.

— The user is driving. The car is equipped with an IoT Hi-Fi system, i.e., an Hi-Fi
that is connected to the Internet to provide different services. One of these ser-
vices consists of loudly reading incoming notifications. While the user is driving,
he receives two notifications on her smartphone: one is from her daughter who is
waiting her in front of the school, while the other one is an advertisement. The
system should a) generate a textual notification on user smartphone for both re-
ceived messages, b) activate the vibration on the smartphone to inform the user
about the daughter’s message, only, and c¢) read the daughter’s message on the car
Hi-Fi.

The above situations are not exhaustive, for this reason, in all the situations that are
not covered by the described ones, the smartphone will be used as the preferred de-
vice: the notification content will be shown on the smartphone display, the vibration
will be activated and the smartphone LED will be made blink.

Ashley identified the following notification strategy expressed in term of general
rules that she will implement. In the following list the adjective “available” will be
used to indicate a device that is turned on and connected to the internet.

— If a message is received from a service that inserted the words “@important” and
“@personal” in the notification metadata and the user is working (i.e., no smart
Tv and/or Hi-Fi and/or car Hi-Fi is available, while a PC is available), the message
should be notified by showing the notification content on all the available PCs and
tablets and the vibration should be activated only once and on all the available
devices that support it;

— If a message is received when the user is relaxing in her house and in front of her
smart TV (i.e., the status of a presence detector installed near the TV reveals the

XDN: Cross-Device Framework for Custom Notifications Management 5

user presence, or one smart TV or one Hi-Fi system is available and is playing
music/video), the notification content should be shown on the available TVs, and
the vibration should be activated on all the available devices that support it (just
in case she is inattentive);

— If a message is received when the user is driving (i.e., the car Hi-Fi system is
available and playing music), the system should distinguish useful and useless
messages. It is supposed that the app generating the message inserts the word
“@unimportant” in the notification metadata, when needed. If the message is
not important, only a textual notification will be shown on the user smartphone.
Otherwise, the following actions will be performed: a) a textual notification will
be generated on all the available smartphones, b) the vibration will be activated
on all the available smartphones, c¢) the notification content will be read on the
car Hi-Fi system.

— In all the cases that are not covered by the previous ones, a) a textual notification
will be shown on all the available smartphones, b) the vibration will be activated
on all the available smartphones, c) the smartphones LED will be made blink.

In addition, Ashley must be able to develop the just described rules without mov-
ing from her workplace (e.g., to test the situation in which the user is driving) and
to test them without actually owning the involved devices. Consequently, she needs
a tool to: a) design and develop the notification strategies able to manage the de-
scribed situations, b) simulate the behavior of devices that she does not actually own
by simulating the arrival of notifications in all the presented realistic situations.

3 Related works

Due to the increasing presence of notifications in people’s lives, user frustration
and/or disruption caused by notifications have been examined in the literature [3/12}
Oll1]]. Some works also proposed solutions to mitigate the negative effects that notifi-
cations cause on user attention [8L15L[1312/[22//4]. Almost all these solutions rely on
the customization of notification strategies at the distribution level (i.e., notifications
are intercepted and then systems decide if, when, and how showing them). Instead,
in our opinion, another approach is also feasible: the customization of notification
strategies at the design level (i.e., notification strategies are designed with the aim of
reducing user disruption).

Specifically, nowadays, developers misuse notifications and generate/show them
on almost every available device and in every moment of the day, with no uniform
mechanism for considering the importance of the notification and/or the user avail-
ability. For this reason, we believe that developers should design their algorithms so
that notifications could be distributed according to a well-designed and accurately
tested strategy. Different works [15122,20]], for example, as a result of their exper-
iments report some issues about user attention and/or preferences that developers
could consider in implementing their notification strategies with the aim of reducing
the overall user disruption. Likewise, some commercial systems have already im-
proved notification distribution strategies at the design level: Slac a cloud-based

2 https://slack.com/, last visited on July 10, 2017

https://slack.com/

6 Fulvio Corno et al.

Feature Description

F1 Design and develop notification strategies

F2 Support IoT devices as receipt of notifications
F3 Simulate selected device(s) (not owned)

F4 Simulate more than one device at a time

F5 Multi-device

F6 Multi-platform

F7 GUI for developers

F8 Support cross-device approach

Table 1 Summary of features provided by related works

team collaboration tool that generates a huge number of notifications a day, for in-
stance, already implemented a notification strategyﬂ that “smartly” distributes notifi-
cations to a cleverly chosen subset of available devices. However, the complexity of
such techniques could cause different problems in managing and testing them without
a dedicated tool.

The community of developers needs a framework that allows developers to de-
sign, develop and finally test their own algorithms to generate customized notifica-
tions and distribute them among available mobile and IoT devices using a cross-
device approach.

To the best of our knowledge, no work provides such a similar support, con-
sequently, the analysis of related works is split in two different topics: Section [3.1]
treats the development of applications, services, or systems able to generate and/or
distribute cross-device notifications among available mobile and IoT devices, while
Section treats the development of a framework for developers for customizing
notifications and/or their distribution.

Both subsections discuss the drawbacks and problems of the related works with
respect to the notification strategy presented in Section 2] In addition, Table[2]summa-
rizes all the presented related works with respect to the exposed features and services
reported in Table[T]

3.1 Frameworks and tools for developers for managing notifications

As already mentioned, notifications have been extensively examined in the litera-
ture, but only a few works provide developers with aids for customizing notifications
and/or their distribution. The main characteristics that distinguish almost every pre-
sented work from XDN are related to the absence of a simulator or the impossibility
of supporting cross-device interactions.

An interesting work specifically proposed for designing and deploying notifica-
tion strategies is presented by Kubitza et al. [L1]. They describe an infrastructure
for homes and offices that allows designers and web developers to design and de-
ploy context sensitive notification strategies using arbitrary things and smart home

3 https://slack.engineering/reducing-slacks-memory- footprint-4480fec7e8eb#
8c3c, last visited on July 10, 2017

https://slack.engineering/reducing-slacks-memory-footprint-4480fec7e8eb#8c3c
https://slack.engineering/reducing-slacks-memory-footprint-4480fec7e8eb#8c3c

XDN: Cross-Device Framework for Custom Notifications Management 7

Related work F1 F2 F3 F4 F5 Fé6 F7 F8
meSchHub [11]] Yes Yes No No Yes Yes No No
Seshadri et al. solution [18]] Yes No No No No No Yes No
Apple Framework Yes Partially Yes No No No Yes No
Google Framework Yes Partially Yes No No No Yes No
Apache Cordova Framework Yes Partially Yes No No Yes Yes No
AllJoyn Project No Yes No No Yes Yes No No
Panelrama [21] No Partially No Yes Yes Yes No Yes
XDStudio [16] No Partially Yes Yes Yes Yes Yes Yes
Connichiwa [[17] No Partially Yes Yes Yes Yes No Yes
Notification Platform [6] No No No No Yes Yes No No
Campbell et al. solution [[10] No No No No Yes Yes No No
Chord [22] No Yes Yes Yes Yes Yes Yes Yes
XD-Testing [7] No Yes Yes Yes Yes Yes Yes Yes

Table 2 Summary of related works’ features

products connected to their meSchHub gateway, such as TVs, tablets, projections,
lamps, speakers and many more. In the proposed infrastructure, the notifications re-
ceived on the user smartphone are sent to the meSchHub gateway that forwards them
to available IoT devices according to interaction scripts pre-defined by developers.
One gateway can be set up per each smart space (e.g., office, flat, house) and, in the
proposed architecture only a single smartphone can be connected to a single gateway.
When a smartphone leaves the range of a certain smart space (e.g., out of home WiFi)
and comes into the range of another known smart space (e.g., office WiFi) the app
automatically discovers the local meSchHub gateway and starts working with the in-
teraction scripts that are defined for that space. According to the description of the
system, the meSchHub system lacks a simulator: Ashley, the developer of the “Mes-
saging Application” scenario, in fact, would not be allowed to test her notification
strategies on devices that she does not actually own. In addition, the meSchHub sys-
tem is limited to the environment in which the gateway is installed and in which the
user is currently present.

Another interesting related work is the patent proposed by Seshadri et al. [18]]
that presents a system and a methodology to facilitate the development, debug, and
deployment of a notification platform application. The whole system is based on an
Application Definition File (ADF) which describes all the components that interact to
perform notification services, wherein the components are often in various languages
and formats. In their proposal, a visual user interface is provided to facilitate efficient
design, debug, management and deployment of an ADF and related configuration file
(and other related files) when developing notification applications. Developers are, in
fact, directed through visual diagrams and processes leading to the development and
ultimately deployment of a notification application. However, the proposed system
does not provide any simulator to test the designed algorithms. In addition, according
to the description of the system, it does not support any cross-device interaction (e.g.,
activate the vibration on a device and make the LED blink on another device at the
same time).

8 Fulvio Corno et al.

Moreover, in addition to the solutions found in the literature, developers are sup-
ported by all the existing commercial frameworks and/or APIs used in the develop-
ment of mobile and/or IoT applications. The following analysis will focus on the
three most used frameworks/tools for mobile devices development, but the reported
observations also apply to other existing solutions that provide the same or similar
features: a) the frameworks proposed by Apple for managing notifications within
108, tvOS, watchOS or macOS applications, b) the framework proposed by Google
for the customization and distribution of notifications within Android applications,
c) the framework proposed by Apache Cordova (formerly PhoneGap) for the dis-
tribution of notifications across multiple platforms (i.e., Amazon Fire OS, Android,
BlackBerry 10, Browser, Firefox OS, iOS, Tizen, Windows Phone 7 and 8, Win-
dows). All of them provide support for managing a single device at a time, thus it is
not possible to develop cross-device strategies nor to simulate more than one device
at a time.

Apple provides two different frameworks for customizing notification in the de-
velopment of mobile applications: the User Notifications framework that mainly han-
dles the content of the notifications, and the User Notifications Ul framework, avail-
able only in the iOS SDK (i.e., currently it is not usable for the development of
tvOS, watchOS, and macOS apps), that mainly handles the appearance of the notifi-
cations. Even though, in some cases, the notification appearance can be customized,
developers can only choose how the user should be notified by selecting one of the
following options for delivering the notification: a) an onscreen alert or banner, b) a
badge on the app’s icon, c) a sound that accompanies an alert, banner, or badge. On
the other hand, Google provides a similar solution for Android devices but allows
more customizationﬂ In the development of Android applications, in fact, it is pos-
sible to personalize: a) the notification content, b) the notification icon, and c) the
notification priority. In addition, in the upcoming “O” release of Android, the fol-
lowing customizations will be added: a) specify the notification channel at which the
notification belongs, b) remove or update a snoozed notification, c) set a timeout for
creating a notification after a specified time, d) set and enable a background color for
a notification, e) add some style to the notification, and f) know the user reaction to a
notification (i.e., dismissed or not).

Furthermore, Apache Cordova (formerly PhoneGapﬂ one of the most used frame-
works for building cross-platform applications, provides the “cordova-plugin-dialogs”
plugirﬁ] for customizing notifications. The supported methods mainly provide the fol-
lowing customizations: a) specify the message of the notification, b) specify the ti-
tle of the notification, c) specify the function that should be invoked when the user
presses on the notification, d) specify the function that should be invoked when the
user presses on a button present within the notification. In addition, it is possible
to play a sound when the notification arrives on all the supported platforms except
Firefox OS and Windows (it is possible only on Windows 8).

4 https://developer.android.com/guide/topics/ui/notifiers/notifications.html,
last visited on March 22, 2017
5 https://cordova.apache.org/| last visited on May 02, 2017

6 https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-dialogs/,
last visited on May 02, 2017

https://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://cordova.apache.org/
https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-dialogs/

XDN: Cross-Device Framework for Custom Notifications Management 9

The provided description of such solutions highlights that it is already possible to
personalize notifications, even though some limitations can be revealed with respect
to the customization we are proposing (e.g., it is not possible to activate only the vi-
bration). However, the main disadvantage of such solutions is that it is not possible
to develop notification strategies implementing the cross-device approach. Likewise,
some other drawbacks emerge from this brief analysis. First of all, the first two pre-
sented commercial frameworks are strictly limited to the development of applications
for specific devices and/or platforms. Thus, if a notification strategy is developed for
a platform (e.g., Android) it is not easy, then, to export and use it in other platforms
(e.g., 10S). In addition, the available developer tools (e.g., Android Studi{] for the
development of Android applications, XCodeE] for the development of i0S, tvOS,
watchOS and macOS applications) and the PhoneGap Developer App does not al-
low the simultaneous simulation of different devices to test the designed notification
strategy on all target devices.

Finally, another interesting project is the one proposed by the AllSeen Alliance:
AllJoynT‘Vﬂ Even though, at the moment of writing, the documentatio is under
review@ the AllJoyn™ Project seems to fully support notifications by providing a
common way for devices to send and receive information directed to users. However,
although multiple devices can be used as receipt of the notifications, the messages
are broadcast to all the devices connected on the AllJoyn™ network without any
possibility of customizing the notification strategy. In addition, it does not provide
any graphical tool to design and test notification strategies and does not allow the
simultaneous simulation of different devices to test the designed notification strategy
on all target devices{ﬂ

3.2 Cross-device interactions

A growing trend in ICT is the use of the cross-device approach in the development of
applications [5]. It consists of extending an application user experience across multi-
ple devices. The development of cross-device applications has already been applied in
different domains to solve different problems, but only a limited number of works are
devoted to the generation and/or the cross-device distribution of notifications among
different devices.

7 https://developer.android.com/studio/index.html) last visited on March 22, 2017

8 https://developer.apple.com/xcode/, last visited on March 22, 2017

9 https://openconnectivity.org/developer/reference-implementation/alljoyn, last
visited on May 03, 2018

10 https://github.com/alljoyn/extras-webdocs/blob/master/docs/learn/
base-services/notification/index.md, last visited on May 03, 2018

1" Due to the merge of the AllSeen Alliance, who sponsored the AllJoyn Project, and the Open Connec-
tivity Foundation (OCF), all the AllJoyn documentation was moved to new locations and some links were
not yet updated after the migration

12' The reported description of the AllJoyn framework may change in the next future: the website reports
the intention of a future migration of AllJoyn to the OCF specification that does not provide any support
for sending notifications to users

https://developer.android.com/studio/index.html
https://developer.apple.com/xcode/
https://openconnectivity.org/developer/reference-implementation/alljoyn
https://github.com/alljoyn/extras-webdocs/blob/master/docs/learn/base-services/notification/index.md
https://github.com/alljoyn/extras-webdocs/blob/master/docs/learn/base-services/notification/index.md

10 Fulvio Corno et al.

Three of the most popular frameworks that facilitate the creation or the conver-
sion of cross-device applications do not, in fact, support notifications at all. One of
them is presented by Yang et al. [21]: Panelrama. It is a framework that facilitates
the creation and the easy conversion of existing web applications to enable cross-
device interaction. In brief, an application is decomposed in a set of panels, that are
distributed among all available devices and properties and statuses are synchronized.
The main advantage of Panelrama is that applications can be tested, and also deployed
on every available device that is equipped with a browser. However, a) it is not pos-
sible to test the designed application on not owned devices, b) until the moment of
writing, neither the simulation of IoT devices nor the management of IoT-dedicated
properties and/or hardware accessories (e.g., the vibrator) are supported by existing
browsers and, consequently, by Panelrama. Moreover, as already mentioned, accord-
ing to the provided description, Panelrama is not designed to manage or customize
notifications. A possible solution to the absence of a support for notifications could
resort to the use of Web Push Notifications inside the browsers by using standard Web
Notificationg'’| proprietary APIs (like Mozilla Notification APIEI) or public libraries
(like Roost"”| or Push.j@, but, in this way the notifications could not be received
when the browser is closed.

The second and the third frameworks able to facilitate the development of cross-
device applications are XDStudio [[16]] and Connichiwa [[17]], but, unfortunately, they
lack support for notifications. XDStudio provides a GUI builder designed to sup-
port interactive development of cross-device web interfaces. The most important ad-
vantage with respect to Panelrama is the presence of a simulation tool that allows
developers to design algorithms for a multi-device environment and test them on de-
vices that are not owned by the developer. Connichiwa [17]], instead, is a versatile
framework for creating web applications across multiple devices. It is based on an
event-based mechanism to imperatively show and hide content on devices upon con-
nection or disconnection of other devices [7]. Both of them are designed to mainly
support the development of user interfaces and do not handle notifications, too.

Consequently, the considerations reported for Panelrama could be extended for
XDStudio and Connichiwa, too: a) notifications could not be used when the browser
is closed, and b) XDStudio and Connichiwa are not able to manage loT-dedicated
properties and/or hardware accessories (e.g., a LED or a vibrator).

Two works that are specifically designed for notifications are described in the
following. Although the authors declare that their proposals are designed to support
cross-device notifications, the description does not provide any evidence of it. In
fact, to the best of our knowledge, both works provide only support for multi-device
notifications, but do not support developers in distributing different “signals” related
to the same notification on different devices.

First, Horvitz et al. [6] present the Notification Platform, a cross-device messag-
ing system that modulates the flow of messages from multiple sources to other de-

13 https://www.w3.org/TR/notifications/, last visited on March 22, 2017

14 https://developer.mozilla.org/en-US/docs/Web/API/notification, last visited on
March 22, 2017

15 https://goroost.com/, last visited on March 22, 2017
16 https://nickersoft.github.io/push. js/, last visited on March 22, 2017

https://www.w3.org/TR/notifications/
https://developer.mozilla.org/en-US/docs/Web/API/notification
https://goroost.com/
https://nickersoft.github.io/push.js/

XDN: Cross-Device Framework for Custom Notifications Management 11

vices by performing ongoing decision analysis. Specifically, it balances the costs of
disruption with the value of information from multiple message sources. The system
employs a probabilistic model of attention and executes ongoing decision analyses
about ideal alerting, fidelity, and routing. The main drawback of this work is that the
developer would not be allowed to modify in any way the predicted model. In fact,
it is not possible to customize the notification distribution strategies. In addition, ac-
cording to the provided description, they apply the cross-device approach to mobile
devices only, without considering IoT devices.

Second, Campbell et al. [10] present some techniques for cross-device notifica-
tions. They start from the consideration that a notification could be missed for many
reasons (e.g., because the smartphone is in a bag) and, even though other devices
are in use, the user remains unaware about it. Consequently, they propose a solution
that involves available devices to allow user to be warned about arriving notifications.
They provide a solution to handle the receipt of a notification from a device different
from the one that received it but does not allow to customize the notification or its
distribution. Consequently, with respect to the “Messaging Application” scenario, in
which Ashley would like to personally design the strategy for distributing the notifi-
cation and/or its properties, this solution lack of the possibility to do both actions. In
addition the proposed technique does not support IoT devices.

More interestingly, Chi et al. [22] present Chord (previously known as “Weave”),
a framework for developers to create cross-device wearable interaction by scripting.
According to the supplied description, it provides a set of high-level APIs, based on
JavaScript, for developers to easily distribute UI output and combine sensing events
and user input across mobile and wearable devices. It also contributes an integrated
authoring environment for developers to program and test cross-device behaviors,
and when ready, deploy these behaviors to its runtime environment on users’ ad-hoc
network of mobile devices. The main characteristic of Chord is that it is designed to
assist the implementation of cross-device interactions. Thus, it does not treat at all
notifications and/or features that are essential to adequately reduce user disruption
caused by them. First of all, in fact, in Chord only two characteristics are provided
as output of the available devices: the display and the speaker (with a corresponding
show and play method), while some other features like vibration and light and the
corresponding methods (i.e., vibrate, on, off, blink, ... etc) are not provided. In addi-
tion, it is not possible to manage notification properties like the notification content,
the notification arrival date, the notification generator.

Finally, Husmann et al. [7] present XD-Testing, a library for testing web-based
cross-device applications quite similar to Chord. In facts, it provides a similar data
structure and similar related methods, but, in addition, provides a mechanism for
specifying formal tests and automating their execution. Furthermore, XD-Testing
introduces concepts for implicitly and explicitly selecting devices that are needed,
respectively to address specific devices or to dynamically choose the appropriate de-
vices for each command that is executed on them. The absence of an explicit support
for notifications is the main drawback of XD-Testing.

In this work we decided to develop XDN to be a) inspired by Chord, mainly due
to its cross-device nature, its ease of use and its linear data structure, b) compatible
with Chord to be integrated in its future extensions.

12 Fulvio Corno et al.

4 Requirements

This section presents the design-time requirements devised for the XDN framework:
they were designed by analyzing both the shortcomings and the successes of existing
solutions discussed in the [Related worksl section.

(R1) API for selecting available devices and executing specific actions

The two most complete cross-device solutions found in literature are the Chord
framework and the XD-Testing library. Even though they do not provide support to
manage notifications, they introduce some useful methods and functions that allow
developers to easily select available devices and then execute specific actions (e.g.,
activate the screen). This model was really appreciated by developers that tested their
solutions, consequently it will be used as inspiration for providing similar methods
and classes in XDN. Specifically, XDN will provide APIs to:

— select available mobile/IoT devices based on their specific properties and status;
— perform specific actions on selected devices (e.g., turn on a LED or make it blink);
— manage notification properties (e.g., arrival time, notification content).

As already done in Chord [22], XDN will be implemented following the “object-
oriented event-driven paradigm”. Specifically, inspired by Chord and popular Java-
Script libraries such as jQuer XDN will provide a high-level abstraction for pro-
grammers to manipulate notifications and device’s properties and actions.

(R2) GUI

One of the most important features provided within existing works is a Graphic
User Interface (GUI) that support developers in a) implementing their algorithms/-
code, b) visualize the current status of available devices, ¢) visualize/simulate the be-
havior of the designed algorithms/strategies. Its presence in almost all the discussed
related works, in fact, confirms that it is essential in development tools like the one we
are going to develop. Therefore, XDN should provide a GUI to a) develop notifica-
tion strategies and, then, b) monitor the behavior of the simulated devices performed
when one or more new notification is delivered to users.

(R3) Notification strategies simulation on not owned devices

A limitation of some existing works (e.g., [L1]) able to simultaneously distribute
notifications across multiple devices is the absence of a simulator for testing notifica-
tion strategies on not-owned devices. Considering that the number of IoT and mobile
devices is growing day by day, in fact, developers could not be asked to own every
existing device to test their algorithms on them. Therefore, XDN should support the
simulation of developed notification strategies on devices that are not actually owned
by developers.

(R4) Simulation of the designed notification strategies

The example reported in the section, i.e., the notification strategy
developed by the Slack platform (that is able to distribute notifications across multiple
devices) demonstrates that the complexity of notification strategies is growing. In
addition, by introducing the cross-device approach, they will become more complex
in the next years and a graphic simulator able to simultaneously show the behavior of
more than one device could be really appreciated by developers.

17 https://jquery.com/, last visited on January 15, 2017

https://jquery.com/

XDN: Cross-Device Framework for Custom Notifications Management 13

Unfortunately, the existing solutions that allow developers to define notification
strategies (i.e., the work of Seshadri et al. [[18]], or commercial solutions like Android
Studio or Apple XCode) do not provide any graphic simulator for visualizing such
behaviors. Consequently, XDN should provide a simulator able to show the behavior
of more than one device performed when a new notification arrives.

(R5) Multi-platform

Although different existing works propose some solutions to let developers de-
sign cross-device applications and algorithms, they have two main drawbacks related
to the distribution of such applications/algorithms. Specifically, at first, most of the
discussed solutions propose web-based applications able to distribute notifications
within a browser. However, this solution has a main shortcoming: users cannot be
reached when the device is not in use and when a browser is not running. Second,
the solutions that support the distribution of notifications outside the browser (e.g.,
development of Android app through Android Studio) mainly allow the creation of
software that is strictly limited to some specific devices (e.g., Android devices). In-
stead, XDN should allow the development of notification strategies that could be
easily exported on different platforms and run without using additional tools like a
browser.

(R6) Support for IoT devices

Nowadays, with the increasing spread of the IoT, new smart devices and ap-
pliances are developed everyday with the ability not only to generate but also to
show notifications. Consequently, in addition to existing mobile devices, the XDN
framework should support existing IoT devices to let developers test their notifica-
tion strategies.

(R7) JavaScript

As already discussed, the two most complete cross-device existing solutions found
in literature are the Chord framework and the XD-Testing library. Due to its ease of
use and its linear data structure, and considering that we are going to use the same de-
sign pattern (as declared in R1), XDN will be designed to be compatible with Chord.
Consequently, XDN will provide JavaScript methods and classes to let developers
implement their strategies using the JavaScript programming language and let them
reuse the implemented code in future version of Chord.

5 Framework

The architecture of the XDN framework was designed to satisfy all the reported re-
quirements. XDN was designed to be compatible with the architecture of the Chord
framework [22], therefore the syntax of the Chord APIs has guided the design of the
XDN APIs.

As shown in Figure[T] the architecture of the framework is composed of four main
blocks: the XDN library, the XDN GUI, the XDN runtime environment and the
XDN IoT/mobile library.

The XDN library implements a set of high-level APIs to perform the following
actions: a) handle incoming notifications and their properties (i.e., content, receipt
date/time, generator, and icon), b) select devices, also through their properties and

14 Fulvio Corno et al.

%@..

Developer

XDN GUI

Simulator

Editor

define

XON
loT/mobile

|
|
| arrive

librai 4 |
v
loT/mobile sensors
XDN
runtime
loT/mobile devices environment

v

Devices
portfolio

@7 h J
(‘:‘“z ~ Dispatcher | Distribute on
B e ;

XDN
loT/mobile
librar

Devices
status

Distribute
notification
on

Fig. 1 Architecture of the XDN framework

status, to be involved in the notification distribution, and c) separately perform differ-
ent actions on selected devices (e.g., play a sound, activate the vibration, or show the
notification content). It is mainly designed to be integrated in the XDN runtime envi-
ronment module and its simulator. The details of the XDN library will be discussed

in the following sub-section.

The XDN runtime environment is a service that is supposed to be run on a
server and to be always available (i.e., turned on and connected). In fact, it is able
to a) accept real notifications, b) process them by running the deployed script and c)
distribute processed notifications to available devices through its internal dispatcher
module. In addition, it is responsible for d) registering new devices and e) storing
device status updates. The details of the XDN runtime environment will be discussed
in the following [XDN runtime environment|sub-section.

Moreover, developers will mainly interact with the XDN GUI module. It pro-
vides a) an editor to implement and test notification strategies and b) a simulator to
test them. Specifically, the editor provides support to write JavaScript notification
strategies or load them from an existing developer script. Meanwhile, the simulator
is able to simulate the arrival of notifications by permitting to:

— define or load a device set (better explained in the following description) to be
used during the simulations;

— define or load a list of notifications used during the simulation as arriving notifi-
cations;

— run the simulation, to actually simulate the arrival of notifications and visualize
the behavior (only related to the arrival of a notification) of all the loaded devices.

XDN: Cross-Device Framework for Custom Notifications Management 15

00w s

OxoN

Device set Notification sets g,
oad code ave code » Run code
() Load cod Save cod Run cod
) Portfolio: @ Status: € % Notifications: Load
[scenariof v | |scenariol-status * © safetyGrandma v | ©

List of all available devices Listof notifications

- Notification . 1 -
Content: It s not necessary to
reach your grandma
dateTime: 2017-04-

smartphone
Name: iPhone &
Is avallable: true
Display: locked
Speaker.

Content: Hurry up: your mother fell
dateTime: 2017-04-
12T16:28:37+02:00

Status: off
ntensity: 0

Color:

Available colors: +
Curent color: rene-red red
Frequency: 0

Vibration: offr-off6 off

tablet

Name: Samsung Galaxy Tab
A

is available: true

Display: on

Speaker.

Volume: 50

Status: playing

L

dateTime: 2017-04-
12T16:29:21+02:00

Generator: safelyGrandma@silent
icon: none.

2
“E

Fig. 2 Screenshot of the XDN GUI

As can be observed in the architecture shown in Figure[T] the simulator relies on simu-
lated notification sets and simulated device sets. The simulated notification sets block
represents the list of notifications that will be “sent” during the simulation. While, the
simulated device sets block represents the group of devices that will be simulated:
their behavior corresponding to the arrival of a new notification will be shown during
the simulation. A single simulated device set is composed of a) some devices’ prop-
erties that are static and represent the device capabilities, and b) the corresponding
current devices’ statuses, that represent the current values for each device’s property.
The details of the XDN GUI module will be discussed in the following
sub-section.

Finally, the XDN IoT/mobile library is the module that is supposed to be im-
ported in every application/service that uses XDN to both a) generate and distribute
notifications, and b) update its current status. It allows developers to a) generate no-
tifications compatible with the JSON format supported by XDN, b) send the gen-
erated notifications to the XDN runtime environment. In addition, it is also able to
autonomously c) update the device current status, d) receive commands from the
XDN runtime environment, and e) execute them.

The details of the presented modules will be discussed in the following sub-
sections, where the “Messaging Application” scenario (reported in Section 2.T)) will
be used as a running example.

5.1 XDN GUI

Figure 2] shows a screenshot of the XDN GUL. It is composed of four different main
parts:

16 Fulvio Corno et al.

— the script editor (letter A), that allows developers to develop their notification
strategies in JavaScript. It integrates graphic warning signals to inform the devel-
oper of any syntax error in the implemented code;

— the device set column (letter B), that shows the current status of each loaded
device and, if the device supports notifications, simulate its behavior during the
simulation of a notification arrival. It also allows to save and load sets of devices
to use during the simulation;

— the notification set column (letter C), that shows the list of notifications that will
be “sent” during the simulation. It also provides a buttons to save and load a list
of notifications;

— the log (letter D), that shows developers any error and warning generated during
the simulation and, also, shows the list of all the actions performed on the avail-
able devices. Thus, it actually acts as a storyboard of the behaviors of the devices
loaded in the device set.

To better clarify the role of each presented component, the “Messaging Applica-
tion” will be used as a running example to explain the actions that a developer should
perform to use the XDN GUI to design, implement and test her notification strategies.

As already presented, in the “Messaging Application” example, Ashley is devel-
oping a messaging application that should differently notify users depending on their
current activity and location (acquired by analyzing the available devices and their
statuses). As a first step, Ashley connects to the web-based XDN GUI and starts from
the selection of the devices a user will supposedly own and use. She can choose be-
tween two options: select one of the existing set of devices provided in the XDN GUI
or create a new custom set of devices. She decides to choose the first option and she
selects and loads the predefined set of devices (i.e., a smartphone, a smartwatch, a
smart TV, a PC, and a car Hi-Fi). Loaded devices appear in column “Device Set” (B).

Now it is time to write the code she will load on the runtime environment. She
can write it by using the editor present in the GUI, located in the left column (A).

The details of the algorithm will be discussed in the following Section[5.2]

After creating the algorithm, Ashley tests it using the simulator. To do it she has
to perform three actions: a) load the initial status of the available devices by using the
buttons present at the top of column B, b) load the notifications set that will be sent
during the simulation, by using the buttons present at the top of column C and, c) run
the simulation using the Run code button located at the top of the editor (A).

When all these actions are performed, Ashley will see all the updated statuses in
column B and will be able to analyze the list of all the performed actions in the log
section (D).

5.2 XDN library

The XDN library provides a set of APIs that clearly define methods to customize and
distribute cross-device notifications by reducing repetitive code. They are based on
two main objects: xdn.notification and xdn.device.

The xdn.notification object is responsible for all the interactions with the no-
tifications and their properties. The class diagram reported in Figure |3| shows its

XDN: Cross-Device Framework for Custom Notifications Management 17

dn.notificati notificationObj e
Vv

+ dateTime
+ content
+generator
ionObj)) +icon

Fig. 3 Class diagram that shows the structure of the xdn.notification Object

Property Type

dateTime date and time at which the notification was received

content the content of the notification
generator meta-data associated with the notification, inserted by the generating app
icon the icon associated to the notification, if available

Table 3 Notification properties

structure. As shown in the diagram, the xdn.notification object provides only the
onNotification function. It allows developers to attach an event handler to the arrival
of a notification. In fact, whenever a new notification arrives, the handler function is
called. Thus, developers can implement their notification strategies inside a function
that should be, then, passed as input parameter of the onNotification method. Notifi-
cation properties can be accessed by the NotificationObject object accepted as input
parameter of the handler function. It represents a single notification and contains the
properties reported in Table[3] As an example, the code for logging the content of the
received notification is:

xdn.notification.onNotification(function(myNotification) {
var content = myNotification.content;
xdn.log(content);

b

The xdn.device object implements all the classes, sub-objects and methods needed
by developers to interact with available devices. The class diagram reported in Fig-
ure [4{ shows its structure. It is only an abstract object that exposes the methods im-
plemented by the DeviceSelection sub-object. The provided methods can be used to
a) search and filter across a set of devices, and b) perform actions on one or more se-
lected devices. The list of all the registered devices is stored inside the private devices
object with their properties, sub-properties and statuses. Each property is assigned to
each device depending on its nature: every time a new device is registered to the sys-
tem (through the XDN runtime environment), only the properties that are supported
are specified. As an example, if Ashley is using a smartphone, it has for sure a display
and a speaker, consequently the properties display and speaker will be available.

All possible properties and sub-properties of a device are listed in Table [in
the Property and Sub-Property columns. The lower part of the table lists the status
properties and sub-properties.

Before interacting with devices it is necessary to select them by using one of the
methods listed below. According to the specified criteria they return a DeviceSelec-
tion object containing the selected devices.

Fulvio Corno et al.

Device properties

xdn.device

Dev

devices

1

1

Device

devices: Device

+log()

+length()

+ has(property)

+ select(selector)

+ selectWith(property)
+selectAll]

+ getDeviceByName(name)
+ not{selector)

+show

+ play(string, volume)
+ ring(sound,volume)

+ changeColor{color)
+ changelntensity(newLevel)
+ blink{frequency)

+log()

+length()

+ has(property)

+ select(selector)

+ selectWith(property)
+ selectAll()

+ getDeviceByName(name)
+ not(selector)

+show

+ play(string, volume)
+ ring(sound,volume)

+ changeColor{color)
+ changelntensity(newLevel)
+ blink(frequency)

name: string
deviceType: string
display: object

display.size: double

display.privacy: string

display.touch: boolean

display.currentStatus: string
speaker: object

speaker.privacy: string

speaker.currentVolume: int

speaker.currentStatus: string
light: object

light=.colors: object

light: frequency: boolean

light:.currentColor: string
vibration: object
vibration.currentStatus: string

name: string
deviceType: string
display: object
display.size: double
display.privacy: string
display.touch: boolean
speaker: object
speaker.privacy: string
light: object
lightcolors: object
light: frequency: boolean
light.blink: boolean
vibration: boolean
os: string

+vibrate() +vibrate() # light.blink: boolean
+on) +on() # light:.currentStatus: string Device status
+off() +off() # light-.currentlntensity: int

name: string
display: object
display.currentStatus: string

#speaker: object
speaker.currentVolume: int

os: string
isAvailable: boolean

speaker.currentStatus: string
light: object

light:.currentStatus: string

light:.currentlntensity: int

light:.currentColor: string
vibration: object

vibration.currentStatus: string
isAvailable: boolean

Fig. 4 Class diagram that shows the structure of the xdn.device Object

— xdn.device.select: selects the devices that satisfy the specified criteria (e.g., the
code xdn.device.select(’deviceType=="smartwatch"’) returns a list of
all the smartwatches, that are all the devices with the “deviceType” property set
to “smartwatch”);

— xdn.device.selectWith: selects the devices that has the specified property (the prop-
erty is set as input parameter);

— xdn.device.selectAll: selects all the devices registered to the system;

— xdn.device.getDeviceByName: selects a single device, the one with the specified
name (deviceName property set to the specified name)

— xdn.device.not: selects the all the devices that do not satisfy the specified crite-
ria. This method is used to exclude one or more devices, e.g., if Ashley wants
to exclude all the smartwatches: xdn.device.not(’deviceType == "smart-
watch"’).

These methods can be concatenated with a “fluent” programming pattern, so that
only the Device objects satisfying all the specified criteria are selected. Thus, if Ash-
ley wants to select all the available smartphones, she can use:

xdn.device.select(’deviceType=="smartphone"’).select(’isAvailable==
true’)

Furthermore, if she wants to understand if a person is present in a room she can
select all the Presence devices that has “true” as “currentStatus” and then count them;
if the number is more than O then a person is present. These behavior can be perfomed
through the following Listing [I]

Table [5] summarizes all the actions that it is possible to perform on each selected
device. It is important to note that the available methods can be used only if the

XDN: Cross-Device Framework for Custom Notifications Management 19
Property SubProperty/[value] Note
name - unique identifier
deviceType [smartphone, smartwatch, bracelet, -
smartLight, tablet, PC, fridge, hi-fi,
smartTv, carHi-fi, smartToothbrush,
presenceDetector]
display size, privacy: [high, normal, low], privacy =indicate if the message could
touch: [true, false], be read from only the recipient or also
by others
speaker privacy: [high, normal, low] privacy = indicate if the message could
be read from only the recipient or also
by others
light colors, intensity: [true, false], fre- it indicates both the light of a bulb or
quency: [true, false], blink: [true, false] the light of a LED (e.g., the status LED
of a smartphone)
vibration [true, false] -
0s - -
presence - -
isAvailable [true, false] - it is set to true if the device is turned
on and connected
display currentStatus: [on, locked, off] -
speaker currentVolume, currentStatus: [play- -
ing, off]
light currentStatus: [on, off, blinking], cur- -
rentIntensity, currentColor
vibration currentStatus -
presence currentStatus: [true, false] -

Table 4 Device properties (above) and statuses (below)

var num =

presence.currentStatus==true’);

if (num >0) {

// user is present

}

Listing 1: Code for acquiring information about user presence in a place

Enabling property Action

display .show

speaker .play, .ring

light .on, .off, .changeColor, .changelntensity, .blink
vibration .vibrate

Table 5 Device actions

xdn.device.select(’deviceType=="presenceDetector"’).select(’

corresponding property (reported in the column “Enabling property”) is defined for
the specific device. For example, it is possible to turn the light on with the action .on
only if a light property is specified for the device. Otherwise, a warning message is
be shown in the log section.

20 Fulvio Corno et al.

Finally, Listing[2]shows the pseudocode of the final complete algorithm written by
Ashley to implement the designed behavior of her “Messaging Application” system.

Every time a notification arrives
Get the content and the generator of the notification
if the generator contains the string ’@important’ AND the string
@personal’
if user is working ((no smart Tv) and (no Hi-Fi) and (no car Hi-Fi
) and (PC) is available)
Show the content on every available PC and tablets
Activate vibration on every available device with vibration
else
if the user is driving (car Hi-Fi is available and playing music
)
Show the content on all the available smartphones
Activate the vibration on all the available smartphones
Loudly read the content on the car Hi-Fi
else
if the user is driving (car Hi-Fi is available and playing music)
Show the content on all the available smartphones
else
if the user is relaxing at home (presenceDetector reveals user
presence and (one smart TV or one Hi-Fi system is available
and playing music/video)
Show the content on all the available Tvs
Activate vibration on all the available device with vibration
else
Show the content on all the available smartphones
Activate vibration on all the available smartphones
Make the LED of all the available smartphones blink

Listing 2: Pseudocode for the “Messaging Application” system

5.3 XDN runtime environment

The XDN runtime environment is a service that is run on a server. Each developer
can instantiate a new XDN runtime environment for every notification strategy in her
applications. By interacting with the XDN library, it is able to:

— accept registration requests from a device. Every time a new device should be
registered to the system, it has to contact the runtime environment providing in-
formation about its properties and statuses (Table [);

— accept update requests arriving from registered devices to inform the system about
the changes in their statuses;

— accept new notifications generated by the registered devices. The notification will
be accepted in the JSON format, with the fields listed in Table E];

— customize and dispatch the notifications according to the notification strategy de-
fined by the developer.

XDN: Cross-Device Framework for Custom Notifications Management 21

5.4 XDN IoT/mobile library

The XDN IoT/mobile library is the module that developers should integrate in their
applications and services for [oT/mobile device to:

generate notifications as presented in the previous sub-section;

send the generated notifications to the XDN runtime environment;

receive commands from the XDN runtime environment, in JSON format contain-
ing the properties of Table [5}

execute the received commands.

Considering that this module should be integrated in almost every existing IoT/-
mobile application, it is supposed to be developed in different programming lan-
guages and for different platforms.

6 Implementation and evaluation

To demonstrate the feasibility of the proposed XDN framework and the fulfillment of
all the requirements (Section [), a prototypical version of the XDN framework was
implemented, and two different scenarios were designed and implemented.

The goal of the experiments was to collect information, from the developer point
of view, about how much effort, in terms of lines of code and spent time, is required
by developers to implement their notification strategies. For this purpose, the XDN
prototype, currently integrates the XDN GUI and the XDN library, only.

6.1 Implementation details

The implemented prototype consists of a backend server and a frontend user interface.
The backend server is a web application based on Node.j@ and jQueryE;] and was
packaged by NW.jsEG]to become a native application. It serves different purposes: a)
it maintains and exposes the XDN library with its methods and classes, b) it hosts
the predefined simulated notification sets and the predefined simulated device sets, c)
it provides the methods needed to load and/or store developer-defined scripts, device
sets and notifications, and d) it provides the methods used by the GUI to simulate the
arrival of a notification.

A developer interacts with the frontend application which implements the XDN
GUI. The GUI is composed of an editor, and a simulator which includes a log and
two modules for loading the device sets and the notifications. The frontend appli-
cation was built upon aceErl, an embeddable code editor. When a developer edits the
script algorithm, after pressing the “Run code” button, the frontend app automatically

18 https://nodejs.org/, last visited on January 15, 2017
19 https://jquery.com/, last visited on January 15, 2017
20 https://nwjs.io/, last visited on January 15,2017

21 https://ace.c9.io/, last visited on January 15, 2017

https://nodejs.org/
https://jquery.com/
https://nwjs.io/
https://ace.c9.io/

22 Fulvio Corno et al.

updates the stored code and then interprets the developer’s code executing the spec-
ified operations. In the current prototypical implementation, the simulated runtime
environment adopts JavaScript eval() function to interpret developer’s code.

Finally, the xdn class was implemented as a JavaScript object literal providing the
notification, device and log objects.

6.2 Scenario 1: Messaging Application

This scenario presents the details of the notification strategy developed for the “Mes-
saging Application” scenario presented in Section[3] We have already presented three
sample situations, and we have already presented the general rules designed by Ash-
ley. In the following description, we detail such rules.

Every time a new notification is received, the following verifications and conse-
quent actions will be performed by the notification strategy.

— If the two words “@important” and “@personal” are simultaneously present in
the generator field of the notification and the user is working (i.e., no Smart TV
and Hi-Fi and car Hi-Fi is available, while at least one PC is available): a) the
notification content will be shown on all the available PCs and tablets, and b) the
vibration will be activated only once on all the available devices that support it;

— If the user is relaxing in her house and in front of her smart TV (i.e., the status
of a presence detector installed near the TV reveals the user presence, or one
smart TV or one smart Hi-Fi system is available and is playing music/video), the
notification content should be shown on all the available TVs. In addition, the
vibration will be activated on all the available devices that support it (in case she
is inattentive);

— If the user is driving (i.e., a car Hi-Fi system is available and playing music),
the system should distinguish useful and useless messages. It is supposed that the
generator of the message inserted the word “@unimportant” in the generator field
of the notification if it recognizes that it is useless. If the message is useless, only
the notification content will be shown on all the available smartphones without
any other action. Otherwise, the following actions will be performed: a) the noti-
fication content will be shown on all the available smartphones, b) the vibration
will be activated on all the available smartphones, c) the notification content will
be read on the car Hi-fi system.

— In all the cases that are not covered by the previous ones, a) a textual notification
will be shown on all the available smartphones, b) the vibration will be activated
on all the available smartphones, c) the smartphones LED will be made blink.

The complete pseudocode of such an application is shown in Listing [2] The au-
thors of this paper employed 18 minutes to implement it. The editor provided by
the GUI helped them to immediately identify syntax errors: some red error symbols
were shown near the lines in which the errors were. Moreover, the log section and
the graphic simulator helped them in identifying the runtime errors, too. The final
version of the implemented notification strategy amounts to just 33 lines of code.

XDN: Cross-Device Framework for Custom Notifications Management 23

6.3 Scenario 2: Ambient assisted living

In addition, we developed a second scenario, designed so to cover all the requirements
discussed in section 4l

Peter is developing an IoT system to monitor the health of elderly people. The sys-
tem is able to monitor the elderly behavior, their health status, the status of the house,
and can autonomously generate notifications to warn their relatives about unexpected
situations. Peter is designing the algorithm that should manage all the notifications
arriving from the monitoring devices and wants to test it in a real situation.

To better design such a system, Peter identified a simplified use case that would
help him in designing the notification strategies. In this use case only one elderly
person (Mary) is considered with her daughter, Julie (they live in the same house).
Julie owns two smartphones, one running iOS and another one running Android, a
smartwatch, a smart TV, two smart lights, a smart fridge and an Hi-fi connected to the
internet. All these devices are able to show and/or loudly read incoming notifications.

The system should generate three different kinds of notifications:

— dangerous,
— warning;
— silent.

The dangerous notification aims at warning the user by using all the available
devices. This kind of notifications could be sent, for instance when the system rec-
ognizes that Mary fell and, consequently, her daughter should be warned as soon as
possible. Every available device will be involved: the smart lights will be turned on
and will change their color to red, the smart TVs will show the content of the notifica-
tion playing a warning sound, and all the tablets, PCs, smartphones and smartwatches
will show the content of the notification also playing a sound and vibrating.

The warning notification, on the other hand, aims at warning the user without
scaring her but being sure the message can be easily delivered. Consequently, the
smartphone will be the preferred device for showing the notification, but other actions
will be used in addition to the visualization of the notification content: a warning
sound will be played, in addition to the vibration and the LED blink. Furthermore, to
be sure that the user will be informed about the notification, if at least one smartphone
is playing some other sounds (so the user is already disrupted by something else),
another available personal device (e.g., the smartwatch) will be selected as recipient,
too.

Finally, the silent notification aims at informing the user but without causing dis-
ruption. For example, if the monitored person has just measured her body temperature
and all is ok, even though her daughter wants to be informed about it, it is not nec-
essary to attract her attention. Therefore, the smartphone will remain the preferred
device for this notification but without any disruptive method (e.g., no vibration nor
sound should be played): the content of the notification will be shown on all the avail-
able smartphones that have the display on. Otherwise, if no smartphones have the
display on, the notification content will be shown on all the available smartwatches.

The full code implemented to manage the described system is composed of 39
lines of code (space limitations prevent us to include the full code in the paper) and

24 Fulvio Corno et al.

the authors of the paper employed 24 minutes to implement it. As in the previous
scenario, the editor provided by the GUI helped authors to identify syntax errors
while the log section and the graphic simulator helped them in identifying the runtime
ones.

In all the presented applications, XDN helped the developers in implementing the
code to customize and distribute cross-device notifications. In general, we observed
that most of the time was needed to differentiate the designed situations and the cor-
responding behaviors of the devices based on their status and/or the properties of the
received notification.

7 Discussion

This section presents a preliminary analysis of the actual contribution brought by the
XDN framework in supporting developers in designing algorithms able to customize
and distribute cross-device notifications.

Starting from the observation, supported by related works, about the lack of sup-
port for the customization of notifications and the development of cross-device noti-
fication strategies, the emphasis of the analysis has been put on the actual advantages
and challenges that the XDN framework could provide for developers. This analysis
was conducted through the development of the two scenarios presented in the previ-
ous section and it was performed by the authors of the paper.

7.1 Successes

In Section[d] seven different requirements were presented.

The first one regarded the need of APIs to support developers in: a) selecting
available mobile/IoT devices based on their specific properties and status, b) per-
forming specific actions on selected devices (e.g., turn on a LED or make it blink),
and c¢) manage notification properties (e.g., arrival time, notification content). We can
claim that the methods and classes provided by the XDN library in conjunction with
the services provided by the XDN runtime environment satisfy R1.

In addition, R2 regarded the need of a graphical interface. The designed GUI is
able to satisfy all the low-level described requirements: helping developers in im-
plementing the notifications strategies’ scripts, b) visualizing the current status of
available devices, c¢) visualizing/simulating the behavior of the designed algorithm-
s/strategies.

Furthermore, the presence of an editor, a log, a module to load devices’ portfolios
and statuses, a module to load notifications and the possibility of running the simu-
lation satisfy R3 and R4 requirements regarding the necessity of a device simulator
that is also able to simulate more than one devices at the same time.

The use of JavaScript, one of the most commonly used programming languages,
satisfies R7 and makes XDN be compatible with Chord. Moreover, the use of Java-
script merged with the presence of the XDN runtime environment and the presence

XDN: Cross-Device Framework for Custom Notifications Management 25

of the XDN IoT/mobile library also satisfies RS that regarded the possibility of dis-
tributing notification strategies among multiple platforms. The spread of such pro-
gramming language, in fact, guarantees an high compatibility with most of existing
mobile and IoT systems and motivate developers in using the XDN framework for
their applications.

Finally, R6, that regarded the support for IoT devices, is satisfied by the two
modules that allow to load and manage IoT devices and their properties.

7.2 Challenges

Some challenges were identified while using this preliminary implementation of the
XDN framework for developing the notification strategies described in the scenarios.

The first challenge regards the XDN GUI and specifically, the editor. Even though,
in this initial implementation, the editor recognizes JavaScript syntax errors, it is not
yet able to recognize errors in using the XDN API. For example, if the developer
writes “DeviceType” instead of “deviceType” the editor does not recognize it as an
error. Although the log helps developers identifying such errors, such a feature would
be really appreciated by developers.

Furthermore, another challenge regards the interaction with the available devices.
With the current version of the XDN framework it is possible to customize notifi-
cation strategies and graphically simulate the behavior of the devices when a new
notification arrives. However, the current implementation does not treat the possibil-
ity of performing specific actions due to the reaction of users to notifications. So, for
example, it is not possible to capture the user disruption to notifications and, in con-
sequence, implement some extra code to perform new actions after a predefined time
from the one at which, for instance, the user swiped a notification away.

Finally, the last challenge regards the absence of the XDN runtime environment
in the developed prototype: even if the simulator helped the authors of the paper in
testing their notification strategies, the lack of the XDN runtime environment did not
allow them to test their strategies in the wild with real devices.

8 Conclusions

This paper proposed a framework for developers to create and distribute cross-device
notifications by scripting. The XDN architecture includes a) an XDN library to as-
sist developers in designing personalized notifications to be distributed among ad-hoc
networks of mobile and IoT devices, b) an XDN GUI to assist developers in imple-
menting notification strategies and testing them by simulating the arrival of notifica-
tions, ¢) an XDN runtime environment for receiving notifications from IoT/mobile
devices, executing the deployed notification strategies, and sending commands to be
executed on the devices, and d) an XDN IoT/mobile library to both generate notifica-
tions compatible with XDN and execute the commands received by the XDN runtime
environment.

26 Fulvio Corno et al.

Using one simple scenario as a running example, the major components of the
framework were presented and explained. To demonstrate the feasibility of the frame-
work and the fulfillment of all the presented requirements, two different realistic sce-
narios were designed and implemented. During the assessment the emphasis was also
put on the time needed to implement the desired applications and on the number of
lines of code needed to implement the desired behaviors: results demonstrate that
XDN framework is a promising technology.

Assessment revealed some challenges that will be addressed in future works. As
a future work, the framework will be, also, evaluated in one or more complete user
studies, with groups of developers. In addition, the prototype will be enhanced by
adding other functions that developers may suggest during test sessions.

References

1. Adamczyk, P.D., Bailey, B.P.: If not now, when?: The effects of interruption at different moments
within task execution. In: Proc. SIGCHI Conference on Human Factors in Computing Systems, CHI
’04, pp. 271-278. ACM (2004)

2. Arlein, R.M., Betgé-Brezetz, S., Ensor, J.R.: Adaptive notification framework for converged environ-
ments. Bell Labs Technical Journal 13(2), 155-159 (2008)

3. Bailey, B.P., Konstan, J.A.: On the need for attention-aware systems: Measuring effects of interruption
on task performance, error rate, and affective state. Computers in Human Behavior 22(4), 685 — 708
(2006). Attention aware systemsSpecial issue: Attention aware systems

4. Corno, F,, De Russis, L., Montanaro, T.: A context and user aware smart notification system. In: 2015
IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 645-651 (2015)

5. Hamilton, P., Wigdor, D.J.: Conductor: Enabling and understanding cross-device interaction. In: Proc.
SIGCHI Conference on Human Factors in Computing Systems, CHI * 14, pp. 2773-2782. ACM, New
York, NY, USA (2014)

6. Horvitz, E., Kadie, C., Paek, T., Hovel, D.: Models of attention in computing and communication:
From principles to applications. Commun. ACM 46(3), 52-59 (2003)

7. Husmann, M., Spiegel, M., Murolo, A., Norrie, M.C.: Ui testing cross-device applications. In: Proc.
2016 ACM on Interactive Surfaces and Spaces, pp. 179-188. ACM, New York, NY, USA (2016)

8. Igbal, S.T., Bailey, B.P.: Effects of intelligent notification management on users and their tasks. In:
Proc. SIGCHI Conference on Human Factors in Computing Systems, CHI 08, pp. 93-102. ACM,
New York, NY, USA (2008)

9. Igbal, S.T., Horvitz, E.: Notifications and awareness: A field study of alert usage and preferences.
In: Proc. 2010 ACM Conference on Computer Supported Cooperative Work, CSCW 10, pp. 27-30.
ACM, New York, NY, USA (2010)

10. Koss, M.C., Dewitt, J., Messerly, K.J., Titov, D.: Cross-device notifications (2015). US Patent
2015/0373089

11. Kubitza, T., Voit, A., Weber, D., Schmidt, A.: An IoT infrastructure for ubiquitous notifications in
intelligent living environments. In: Proc. 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp ’16, pp. 1536-1541. ACM, New York, NY, USA (2016)

12. Kaushlev, K., Proulx, J., Dunn, E.W.: "silence your phones": Smartphone notifications increase inat-
tention and hyperactivity symptoms. In: Proc. 2016 CHI Conference on Human Factors in Computing
Systems, CHI "16, pp. 1011-1020. ACM, New York, NY, USA (2016)

13. Mehrotra, A., Hendley, R., Musolesi, M.: Prefminer: Mining user’s preferences for intelligent mo-
bile notification management. In: Proc. 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp ’16, pp. 1223-1234. ACM, New York, NY, USA (2016)

14. Mehrotra, A., Musolesi, M., Hendley, R., Pejovic, V.: Designing content-driven intelligent notification
mechanisms for mobile applications. In: Proc. 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, UbiComp 15, pp. 813-824. ACM, New York, NY, USA (2015)

15. Mehrotra, A., Pejovic, V., Vermeulen, J., Hendley, R., Musolesi, M.: My phone and me: Understand-
ing people’s receptivity to mobile notifications. In: Proc. 2016 CHI Conference on Human Factors in
Computing Systems, CHI ’16, pp. 1021-1032. ACM, New York, NY, USA (2016)

XDN: Cross-Device Framework for Custom Notifications Management 27

16.

17.

18.

19.

20.

21.

22.

Nebeling, M., Husmann, M., Zimmerli, C., Valente, G., Norrie, M.C.: Xdsession: Integrated develop-
ment and testing of cross-device applications. In: Proc. 7th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, EICS ’15, pp. 22-27. ACM, New York, NY, USA (2015)

Schreiner, M., Ridle, R., Jetter, H.C., Reiterer, H.: Connichiwa: A framework for cross-device web
applications. In: Proc. 33rd Annual ACM Conference Extended Abstracts on Human Factors in Com-
puting Systems, CHI EA ’15, pp. 2163-2168. ACM, New York, NY, USA (2015)

Seshadri, P., Abileah, S., Nilakantan, N., Knight, H., Pather, S., Gerber, R., Mensa-Annan, C., Garrett,
P., Faoro, M., Lavery, D.: User interface system and methods for providing notification(s) (2008). US
Patent 7,360,202

Weber, D., Shirazi, A.S., Henze, N.: Towards smart notifications using research in the large. In: Proc.
17th International Conference on Human-Computer Interaction with Mobile Devices and Services,
MobileHCI *15, pp. 1117-1122. ACM, New York, NY, USA (2015)

Weber, D., Voit, A., Kratzer, P., Henze, N.: In-situ investigation of notifications in multi-device envi-
ronments. In: Proc. 2016 ACM International Joint Conference on Pervasive and Ubiquitous Comput-
ing, UbiComp ’16, pp. 1259-1264. ACM, New York, NY, USA (2016)

Yang, J., Wigdor, D.: Panelrama: Enabling easy specification of cross-device web applications. In:
Proc. SIGCHI Conference on Human Factors in Computing Systems, CHI * 14, pp. 2783-2792. ACM,
New York, NY, USA (2014)

Yuan, F,, Gao, X., Lindqvist, J.: How busy are you?: Predicting the interruptibility intensity of mobile
users. In: Proc. 2017 CHI Conference on Human Factors in Computing Systems, CHI *17, pp. 5346—
5360. ACM, New York, NY, USA (2017)

