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Abstract 

The purpose of this thesis is the development of a methodology for the calculation 
of the non-linear aero-elastic behavior of a bladed disk to be used in an industrial 
process. The non-linear aero-elastic phenomena of a bladed disk for aeronautical 
applications are studied in the presence of friction contacts using a one-way 
coupled method. The calculation is performed using a method based on the 
Harmonic Balance Method (HBM) and the balance between the energy introduced 
by the unsteady aerodynamics on the blade airfoil and the dissipative energy. The 
HBM method is preferred with respect to the Direct Time Integration (DTI) for 
the strong reduction of the computation time that HBM technique allows in spite 
of an acceptable level of approximation when nonlinearities are introduced and 
the response is periodic. 

The nonlinearity is introduced by purposely developed contact elements, placed at 
the blade root-joints, that produce additional stiffening and damping in the system 
due the introduction of contact stiffnesses and friction forces based on Coulomb’s 

law. The aero-elastic equilibrium will be investigated through a Parameter 
variation of the Limit Cycle Oscillations (LCO) of the system using two different 
approaches: the physical approach and the modal approach. The effect of such 
variations will be highlighted in order to demonstrate what are the parameters that 
influence most the blade amplitude, both for the CFD and the mechanical 
simulation. In particular, the uncertainty in the definition of the contact 
parameters at the blade root will be taken into account by varying the friction 
coefficient and the normal force distribution on the blade root joint. Finally, the 
results of the analysis will be compared with the experimental data produced with 
a cold-flow test rig to verify if the sensitivity study associated to the 
simplifications introduced in the method are compatible with the measured 
response. 
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Chapter 1 

Introduction 

1.1 ACARE goals 2020 

Aviation contributes to climate change by producing about 2% of CO2 and this 
threshold is expected to increase by up to 3% by 2050. The ACARE document 
“Vision 2020” drawn up at the beginning of the decade assigns ambitious goals 

especially to the propulsion system, hoping for a drastic improvement compared 
to the last generation of engines entered into service. These objectives can be only 
achieved through significant technological break-through for the most part of 
components of the propulsion system developing innovative and unconventional 
engine architectures. 

The main ACARE 2020 guidelines are an important reference for guiding the 
development of the next generation of engines. The general goals for the aviation 
are reported in Figure 1.1, while Figure 1.2 shows the targets assigned to the 
propulsion system. 
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Figure 1.1: ACARE 2020 goals for ‘green’ engine 

 

 

Figure 1.2: Percentage of ACARE 2020 goals assigned to the propulsion system 

The first requirement for the 2020 is the reduction of 20% of CO2. At propulsion 
system is assigned the largest share of the goal (50%) and therefore the effort in 
this direction is substantial. The main axes of technological development in this 
direction concern the development of new lightweight materials, the improvement 
of the performance of the components and thermodynamic cycle through the 
increase of by-pass ratio and compression ratio, the development of innovative 
architectures and the continuous development of optimized and integrated 
calculation systems that allow for a better understanding of the physical 
phenomena. 

The second ACARE requirement concerns with the emissions of NOX. The target 
for the propulsion system is to achieve an 80% reduction in emissions of these 
harmful compounds compared to in-service engines in 2000. This chemical 
compound has a significant environmental impact, both on the increase of “ozone-
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hole” and on the health of people. However, the increase of by-pass ratio and 
compression ratio in the engine to reduce the CO2 emissions produces an increase 
of NOX emission because higher combustion temperatures are required. To allow 
a reduction of NOX, a new configuration of combustor has to be studied. This 
configuration provides a higher ratio between air and fuel to limit the peak 
temperature and the residence time at high temperatures. 

The third ACARE requirement concerns the eco-propulsion and it is related to 
noise emissions. The goal is to reduce the noise generated by the entire aircraft by 
50%. The target for the engine is the reduction of 10dB for the three main 
operative conditions (take-off, cruise and landing). The impact of this requirement 
on the engine is significant because the engine contributes to the maximum noise 
impact in the take-off phase, while in the landing phase contributes about 50% of 
the produced noise (the rest of noise pollution is mainly caused by the auxiliary 
support systems and landing gear). New solutions, such as passive noise control 
system, but also new soundproofing techniques of structures and engine cases, are 
being studied to satisfy this requirement. 

1.2 Aero-elastic problem 

The existence of reducing fuel consumption and pollution produced by air traffic 
has so led to the need to improve the various aircraft systems, including the 
propulsion system. This improvement, in the aircraft engine, has been translated 
by the engineers in the reduction of the weight and in the increase of the 
efficiency of the turbo-machinery. To realize that, high aspect ratio airfoils have 
been developed and this means to have airfoils more slender and thinner. The 
problem links to this new architecture of blades produced a reduction of the 
natural frequency of the blade and an increase of the amplitude of the vibrations 
with a consequent reduction of fatigue life and reliability of the component in the 
engine.  

The vibrations in the turbo-machinery’s turbine are mainly caused by two factors:  

1. the excitation by time-varying forces loading turbines disks caused by the 
considerable non-uniformity of the flow of the hot gases that pass through 
the turbine blades and vanes; 

2. the self-excitation that can occur in the absence of the excitation forces 
and when the unsteady work performed by the fluid exceeds the energy 
dissipated by the material and mechanical damping in the system (flutter).  
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The problem of the self-excited vibrations is one of the most important problems 
that has been studied by aircraft structural engineers in the last decades as soon as 
the weight reduction and flight performance had to be maximized. In the turbo-
machinery area, turbine blade cascades underwent the same process in order to 
meet requirements of larger turbine disks (wider cross section) and higher rotation 
speed that means high aspect ratio and higher aerodynamic loads.  

The best effort to predict and avoid the occurrence of this problem was given in 
the fluid-dynamic physics by means of CFD calculations through the solution of 
the Reynolds-Averaged Navier–Stokes equations (RANS) with different level of 
complexity (linearized form or more complex degree of coupling between blade 
motion and unsteady pressure distribution around the airfoil) based on the 
vibrations of a structural mode shape. 

Usually the dynamics of the bladed disk is considered linear and the fluid-
structure interaction is directly linked to the natural frequencies and normal mode 
shapes of the system. However, structural designers of aircraft engines have 
introduced nonlinearities in the bladed disk structure in terms of joints that act 
also as damping systems to reduce peak stress values during the vibratory 
phenomenon caused by the external excitation forces. These damping systems are 
usually joints geometrically optimized to produce friction forces to dissipate 
energy increasing the strength and life of the blade against High Cycle Fatigue 
failure. The major sources of friction damping (Figure 1.3) in the bladed disk 
turbine are attributable to the contact between adjacent blades connected by 
interference at the tip (shrouds - Figure 1.3a), mid-span airfoil (snubber - Figure 
1.3b), underplatform dampers (Figure 1.3c) and the bladed disk interfaces (blade 
root joint - Figure 1.3d). The last joint is practically always included in the bladed 
disk design while the other types of joint may not be present. 
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Figure 1.3: Common types of friction joints: (a) shrouds, (b) snubber, (c) underplatform 
damper and  (d) root joints 

As these friction contacts limit the vibrations due to the excitation forces, they can 
be used to suppress the unstable flutter vibrations to produce a periodic motion 
called Limit Cycle Oscillations (LCO). In this condition, the amplitude and the 
frequency of the LCO is determined by the equilibrium between the energy 
introduced in the system by the flow and the energy dissipated by the friction 
contacts (Figure 1.4).  

 

Figure 1.4 – Possible energy balance between the energy 
introduced by aerodynamics (blue dashed curve) and 

dissipative energy by friction (red solid curve) 

The balance between the aerodynamic and dissipated energies provides in general 
three solutions: the solution 1 is the trivial solution where there is no exchange of 
energy because there is no vibration; besides, this is an unstable solution because 
any small perturbation of the system moves the system away from 1 and towards 
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solution 2. The solution 2 is the stable solution of the system and it will be called 
the LCO solution; in fact, any perturbation from 2 limited between the solution 1 
and the solution 3 does not change the final equilibrium ‘2’. The solution 3 is an 
unstable solution and represents the stable limit of the system because any 
perturbations bigger than this limit produces ineffective damped and uncontrolled 
self-excited vibrations. 

1.3 Thesis objectives and outline 

The work presented in this thesis has been developed in an industrial context that 
is represented by GE Avio Aero. In particular, GE Avio Aero aimed at developing 
a method for the calculation of the non-linear aero-elastic behavior of a bladed 
disk in the presence of friction contacts at a blade root-joint. Consequently, the 
method has been developed to be implemented in the industrial process and so 
changing the current design process. In fact, the current design process does not 
accept a blade array with a level of instability bigger than a fixed limit determined 
by the intrinsic material damping and this has a great impact on the performance, 
but also on the time and cost of design because an unstable blade should be 
modified or redesigned. This methodology was thought to change this practice 
and apply a design for percentage endurance limit. This is possible because the 
method allows to quantify the amplitude and the frequency of vibration of an 
unstable bladed disk for a given nodal diameter.  

The main aim of the method shown in Figure 1.5 is the reduction of the time for 
the aero-elastic calculation in the presence of non-linearities such as the friction 
joints. This method is a structural uncoupled method where the equations of 
motion are solved together to the equation of energy balance in the frequency 
domain, while the aero-elastic coefficients are pre-computed using a linearized 
solver of the RANS equations (the aero-dynamic solver is a tool of GE Avio 
Aero) and so they became the input parameters for the bladed disk equations of 
motion in the aero-elastic code.  

The reduction of the computational cost is obtained using two approaches widely 
used in the forced response calculation of components with friction contact: 

 Reduced Order Model (ROM); 
 Harmonic Balance Method (HBM). 
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Figure 1.5: block diagram of the developed method 

The present dissertation is structured as follows: 

 Chapter 2 introduces the vibrations on the turbo-machinery in terms of 
synchronous and asynchronous vibrations. The aero-elastic phenomena of 
forced response and flutter response are described and a description of the 
methods developed to study these dynamic behaviors is given.  

 Chapter 3 introduces the numerical methods that will be used to develop a 
methodology for the flutter calculation. These methods, that have been 
deeply studied by different authors, try to reduce and simplify the system 
saving the computation time. Since these numerical methods have been 
widely used in the scientific literature and have been applied in this study, 
a brief description of them and the mathematical modelling is presented 
for completeness of information. 

 Chapter 4 introduces the structural aero-elastic method and its application 
on lumped parameter models. In the first part of the chapter the study of 
the flutter phenomenon proposed by Griffin and Sinha in 1983 is first 
analyzed and replicated because this study is considered as the reference 
point for the flutter study on blades; then, a proper methodology to study 
the flutter phenomena on different systems is presented and a Parameter 
variation is performed to understand the main parameters acting on the 
flutter phenomenon. 

 Chapter 5 extends the developed methodology for a lumped parameter 
models to study the flutter behavior of a bladed disk. Two approaches are 
presented: a physical approach that uses the reduced mass and stiffness 
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matrices, and a modal approach that uses a modal base extracted by 
software FEM (Ansys). Different parameter variations are performed 
using the two approaches to study the flutter response on a bladed disk. 
Some modifications of the developed methodology are introduced to solve 
problem arising especially for the modal approach.  

 Chapter 6 presents a comparison between the numerical results and the 
experimental data obtained on the bladed disk of the project Great-2020 
funded by Regione Piemonte. The test article and the cold flow test rig and 
test campaign are presented, then the comparison is performed using 
appropriate distributions of normal forces on the contact surfaces. Two 
distributions are calculated through a non-linear static analysis at FEM 
where two different load conditions are applied. Finally, the effect of the 
geometric tolerances on the contact surfaces are considered and a new 
numerical-experimental comparison is performed. 

 Chapter 7 summarizes overall conclusions and fulfilled tasks. Possible 
future developments of this research are also presented. 



 

Chapter 2 

Vibrations of turbo-machinery 

The trend of reducing fuel consumption and pollution produced by air traffic has 
led to the need to improve the turbo-machineries up to their structural mechanical 
limits. This means a reduction of the weight and an increase of the efficient of the 
aircraft engines that means high mechanical dynamic stress during operations 
(low natural frequency and high amplitude of vibration). 

The most dangerous types of vibrations which occur inside a turbo-machinery 
assembly (see Figure 2.1) are resonant oscillations, characterized by frequencies 
that are multiples of the shaft’s rotation speed (synchronous vibrations), and 

flutter vibrations, generally occurring at a non-integral order of frequency (non-
synchronous vibrations). Flutter concerns aero-elastic instability problems that, if 
not considered during the design phase, can induce unexpected and very high 
stresses both on blades and on the entire assembly until serious high cycle fatigue 
(HCF) failure occurs.  

For these two types of vibrations, there are two main fields of dynamic 
investigations in the turbo-machinery: 

 forced response (synchronous vibrations); 
 flutter analysis (non-synchronous vibrations). 

In the first analysis, flow disturbances generated by upstream and downstream 
stages during the rotation motion are considered. Their frequencies are related to 
the number of revolutions per minute of the engine. In the second analysis, flutter 
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instabilities occur as self-excited oscillations due to an exchange of energy 
between the fluid and the structure. Usually in the flutter analysis the external 
forces are not considered since it is assumed that the vibrations due to flutter are 
much higher than the excitation produced by the aeromechanical excitation. 

 

Figure 2.1: qualitative representation of dangerous vibration on the Campbell diagram of a LP 
turbine 

It is possible to perform different types of analysis depending if the non-linearity 
of the structure and/or of the flow is considered. That is: 

1. forced response: 
(a) linear 
(b) non-linear 

2. flutter: 
(a) linear 
(b) non-linear 

In the forced response calculation the linear analysis starts with the modal analysis 
of the structure (eigenvalues and eigenvectors calculation) and calculation is made 
in the simplest way using the modal superposition method, while in the non-linear 
analysis structural and mechanical non-linearities are included, such as the 
presence of friction dampers (under-platform dampers, snubbers tip or part-span 
shrouds, snubbers, blade root joints, ring dampers). In this case, iterative 
procedures are necessary to achieve the convergence of the solution of a dynamic 
equilibrium. Different Reduced Order techniques are used to accelerate the 
calculation with an acceptable approximation of the results. Instead, in a flutter 
investigation the non-linearities can reside both in the structure (friction dampers 
in this case) and in the flow (turbulence, transonic field, shock waves, etc.). 
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Besides, the fluid-structure interaction (FSI) can be treated with different points of 
view: 

1. one-way coupled methods: 
a. in the aerodynamic field; 
b. in the structural field; 

2. two-way coupled methods. 

These two types of coupling methods indicate how the FSI is made. The one-way 
coupled methods focus their attention in one of the two fields (the aerodynamic or 
the structural fields), where they perform the FSI calculation. Instead, the results 
of the other field are only used as input to allow calculation. For example, the 
aero-elastic calculation in the aerodynamic field is made through the solution of 
the RANS equations on the base of the vibration of a structural mode shape that is 
separately calculated with a modal analysis at FEM. However, there is not a 
feedback between the aerodynamic field and the structural field, i.e. the structural 
results are not influenced by the results of CFD (see Figure 2.2a). A similar thing 
happens for the one-way coupled methods in the structural field: the flutter 
analysis is performed in the structural filed, while the aerodynamic results are 
only an input for the calculation of the flutter response of the blade (see Figure 
2.2b). Instead, the two-way coupled methods present a mutual interaction between 
the two fields (see Figure 2.2c) and give more accurate results, but they are 
computational slow. On the contrary, the one-way coupled methods are faster, but 
they give a higher approximation of the  solution of the problem to be discussed.  
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 (a)  

(b) 

(c) 

Figure 2.2: (a) one-way coupled methods in the aerodynamic field, (b) one-way coupled methods 
in the structural field and (c) two-way coupled methods 

Finally, the calculation of the forced response and the calculation at flutter can 
follow two main approaches: 

 frequency domain approach; 
 time domain approach. 

The frequency domain approach is computational fast because the equation of 
motion is algebraic and not differential, but it gives a higher approximation of the 
solution of the problem. It assumes a steady, periodical, harmonic motion of the 
blades with a constant phase shift, called Inter-Blade Phase Angle (IBPA) by 
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applying the Fourier transformation to time depending variables (displacements 
and forces). The time domain approach is slow because there is a direct time 
integration of the equations of motion and consequently the blades can have a 
non-harmonic motion. In general, it gives a detailed evolution and solution of the 
problem.  

2.1 Aero-elasticity  

Aero-elasticity is the study of the interaction between mechanical and 
aerodynamic forces acting on a body. These phenomena could be static or 
dynamic, and in this case the inertial forces should be included. The aero-elastic 
problems principally born in the aeronautic field, but they are present also in the 
mechanical and civil fields (a very popular example is the disaster of the Takoma 
bridge).  

 

Figure 2.3: Collar diagram of aero-elasticity 

Collar defined a triangle of forces [1], shown in Figure 2.3, in which inertia (I), 
elastic (S), and aerodynamic (A) forces form a triangle whose vertices represent 
the respective disciplines. From the intersection of these disciplines four new 
fields of study were born:  

 vibration mechanics (V): intersection of elastic and inertial fields; 
 flight mechanics (M): intersection of aero-dynamic and inertial fields; 
 static aero-elasticity (AS): intersection of elastic and aero-dynamic fields; 
 dynamic aero-elasticity (AE): intersection of elastic, inertial and aero-

dynamic fields. 
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In turbo-machinery, the aero-elastic problems are very important since blade 
arrays are continuously subjected to significant aero-dynamic and centrifugal 
loads, while the gravitational forces contribute to the equilibrium of blade-rows, 
but these are generally negligible. As said, the main aero-elastic phenomena of 
interest in turbo-machinery are the forced response and the flutter response that 
will be presented in more detail below. 

2.1.1 Forced response  

Forced response is a very common vibration problem that is considered during the 
development phase of a new gas turbine to prevent blade failures due to HCF. 
Although the sources of the dynamic excitation producing vibrations of the whole 
structure are many, the time-varying forces loading gas turbines of aeronautic 
engines are caused by the considerable non-uniformity of the flow of the hot gases 
that pass through the turbine blades [2]. In a regular operating condition, the 
aerodynamic excitation pattern loading the blade array can be represented as a 
combination of multiple excitations having a harmonic pattern in space along the 
circumferential direction that travel with respect to the bladed disk. This cyclic 
pattern of excitation is produced by the flow that passes through stator and rotor 
stages alternating along the axial direction (Figure 2.4). Thus, the circumference 
can be divided into an integer number of wavelengths for each travelling 
harmonic force that is called Engine Order (EO) [3]. The bladed disk is therefore 
subjected to a wide excitation spectrum and multiple excitations at resonance 
condition may occur for a given rotating speed of the rotor. The same issue occurs 
for stator vane segments as well where travelling forces are generated by the 
wakes of front and aft-rotating disks. 

The EO is defined as the ratio between the frequency of the excitation force and 
the rotating frequency of the disk. The excitation force on a bladed disk can be 
static or rotating depending on the reference system that is used, fixed in the first 
case or rotating with the disk in the second case. In case of static force, the bladed 
disk is potentially excited at resonance when the frequency of the forcing is equal 
to the natural frequency of a mode of the system. Instead, in case of rotating 
excitation force, a bladed disk is excited by two different rotating forces 
corresponding to two different EO: one agrees with the rotation speed of the disk 
(forward travelling excitation), the other opposite to the rotation of the disk 
(backward travelling force). The two travelling forces rotate with different angular 
velocities: lower for the backward excitation and  higher for the forward 
excitation.  
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Figure 2.4: Stator and rotor bladed disks of an axial 
turbo-machine. 

 

 

Figure 2.5: Campbell diagram of a bladed disk with 24 fundamental sectors 

The first work on the forced response of bladed disks that left an important tool to 
study and identify the critical resonance conditions of the turbo-machinery was 
done by Wilfred Campbell [4, 5]. The Campbell diagram (Figure 2.1 and 2.5) is a 
plot where the trends of the natural frequencies of the bladed disk (horizontal 
lines) and the trends of the frequencies of the excitation force (inclined lines) for 
different EO are reported (the higher the EO, the steeper the line in a proportional 
way), both depending on the angular velocity of the disk. In Figure 2.5, some 
intersection points between the trends of the natural frequencies and the trends of 
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the excitation frequencies are marked with a black dot. These points represent an 
effective critical resonant condition, i.e. a travelling force with defined EO can 
excite the rotor at resonant condition for particular mode shapes and a particular 
rotating speed. In general, the resonance condition on Campbell diagram can be 
identified by the following expression: 

                         (2.1) 

where ND is the nodal diameter and N is the number of blades. The nodal 
diameter is an index that indicates the number of lines crossing the center of the 
disk that have modal displacements equal to zero. If m=0, the EO excites the 
correspondent ND due to the non-orthogonality between EO and ND, while for m 
bigger than 0 the resonance conditions is due to spatial aliasing. In fact, the blade 
row is a discrete system that samples the shape of the excitation force in a finite 
number of equally spaced points corresponding to the blades location. 

Two types of forced response problems can be distinguished thanks to the 
frequency of the exciting forces: 

 high engine order forced response (HEO); 
 low engine order forced response (LEO). 

The first type is the classical forced response associated to the interactions given 
by the stator and more in general by the blade arrays close to the bladed disk that 
is studied and it is due to the excitation forces generated by the rotation of the 
bladed disk through a non-uniform pressure field. The strength of the excitation 
varies periodically with the angular position of the blades. The unsteady 
disturbances in the flow field due to the relative motion of stator and rotor stages 
can be divided in two categories: 

 Potential stator-rotor interaction: the flow disturbance is caused by an 
unsteady forcing due to the non-uniform distribution of pressure acting in 
the stator and rotor blade rows [6]; 

 Wake-rotor interaction: the wakes shedded by the stator blades are in 
general steady in the stator reference frame, but become unsteady in the 
rotor reference frame and this produces that the periodicity of forcing 
depends on the number of stator blades [7]. 
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The second type of forced response is the low engine order excitation [8, 9] that 
occurs at high speed and temperature and it is probably due to some loss of 
symmetry in the flow features. It is related to the pressure distribution in the 
region between stator and rotor stages where the unsteady aerodynamic force can 
be generated and it is composed by low-order harmonics that excite modes at low-
order nodal diameter.  

2.1.2 Flutter analysis 

Flutter oscillations are today a phenomenon among those of major concern for 
turbo-machinery designers. Flutter is an instability problem in which vibrations 
are self-excited by the motion itself of the blades through the interaction among 
the flow, the elastic response and the inertial forces. Aerodynamic forces 
continuously introduce energy in the structure and stresses grow after each 
vibration cycle reducing the fatigue life and the reliability of the structure. As said 
in the introduction of this chapter, the flutter phenomenon belongs to the family of 
asynchronous problems, i.e. it is not directly caused by the interaction between 
upstream and downstream blade-rows whose frequency is an integer number of 
times the rotating frequency of the disk. 

The first signals of presence of self-excited oscillations inside turbo-machinery 
appeared towards the mid and the end of 1940s and they are reported by Fransson 
in [10]. However, it is difficult to find information about aero-elastic failures in 
turbo-machinery, since they are considered as negative advertising and are not 
widely discussed, due to a strong competition among different companies 
producing engines. Besides, due to the complexity of aerodynamic forces and 
structural vibrations, it is difficult to distinguish interactions between blade rows 
and wakes (i.e. forced response) and self-excited vibrations (i.e. flutter). Same 
cases of flutter failures have been found in 1991 in the fourth stage turbine blades 
of the Pratt & Whitney F-100 engine produced for the McDonnell Douglas F-15 
aircraft; in the third compressor stage of the Volvo engine developed for the 
Swedish SAAB JAS aircraft and in the first stage fan blades of the General 
Electric F-101 installed on the B-1B bomber. 

In general, four types of flutter can be found in the turbo-machinery depending on 
the operating region and flow conditions. These four flutter regions are reported 
onto a compressor map (Figure 2.6) in which the engine characteristic lines are 
plotted in a pressure ratio against flow mass rate.  



18 Vibrations of turbo-machinery 

 

 

Figure 2.6: Compressor map showing the four flutter regions 

This four types of flutter are: 

 Classical flutter: this flutter can occur when the flow is attached to the 
blade with no separation and a phase lag between the aero-dynamic forces 
and the amplitudes of vibration exists. Three possible situations can be 
presented: (1) the flow introduces energy in a not damped structure 
producing uncontrolled oscillations (unstable condition); (2) the flow 
absorbs energy from the structure and this produces an always stable 
operative condition; (3) the energy introduced by the flow is balance by 
the dissipative energy of the structure producing Limit Cycle Oscillations 
(LCO). 

 Stall flutter: the operative conditions are close to the stall line on the 
compressor map. This flutter is typical of the first stage fan blades and it is 
due to an increase of incidence of the blade that can produce the flow 
separation, which seems to play an essential part of the blade flutter 
mechanism [11]. 

 Supersonic unstalled flutter: this flutter occurs when the flow acting on the 
blades is supersonic, but it is not stalled and there is not separation. The 
induced vibrations usually involve the torsional mode of the bladed disk. 
This flutter is typical of the shrouded blades of the fans. 

 Choke flutter: the operative conditions are close to the choke line on the 
compressor map. This flutter is typical of the last compressor stages and it 
is due to a decrease of incidence of the blade that can produce a flow 
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separation through a shock wave that may excite the vibrational modes of 
a blade [12]. 

The aero-elastic interactions occurring inside a turbo-machinery environment are 
a complex phenomenon that should be prevented. To build a reliable flutter 
prognostic tool is necessary to keep under control a lot of flow and structural 
parameters. An essential list of the parameters that influence the aero-elastic 
aspects of blade vibration is given by Srinivasan in [13]. The most important 
parameters are reported below:  

 Reduced frequency (k): this parameter can be interpreted as the ratio 
between the time taken for a fluid particle to flow past the length of a 
semi-chord and the time taken for the airfoil to execute one cycle of 
vibration (from [13]). The reduced frequency can be defined as: 

  
  

 
  (2.2) 

where b is the semi-chord, ω is the pulsation of vibration and V is the 
velocity of air relative to the blade. Another interpretation of reduced 
frequency was given by Platzer and Carta in [14] as the ratio of a 
circumference of a circle of radius b and the wavelength of the wake λ 
(equation (2.3) and Figure 2.7). From equation (2.3) it is possible to see 
that the bigger the wavelength λ, the smaller the reduced frequency k. For 
small values of the reduced frequency, the flow is characterized by quasi-
steady conditions, while, on the contrary, the ratio of frequency changes 
for higher values of k.  

  
   

 
  (2.3) 

 
 Inter-blade phase angle (IBPA): this parameter can be interpreted as the 

phase relationship that represents the motion difference of a blade with 
respect to the adjacent blades. The IBPA is a characteristic parameter of 
structures that present a cyclic symmetry assembly such as the turbo-
machinery where every blade of a stage is subjected to the same amplitude 
of vibration, but at different time instants. The IBPA can be defined as:  

             (2.4) 

where ND is the nodal diameter and N is the number of sectors.  
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 Mistuning: the mistuning can be natural/intrinsic (due to small differences 

between the blades with respect to the nominal geometry, material 
properties inhomogeneity, contact interfaces of joints, wear in service) or 
purposely induced (alternating mistuning where a blade cascade is made of 
two sets of blades assembled in a 01010… pattern for example). It breaks 
the cyclic symmetry that nominally characterizes the turbo-machinery and 
prevents the flutter onset. This is possible because a significant 
perturbation of the blade response in terms of amplitude uniformity in the 
blade cascade and phase shift between a blade and its neighbors can 
produce a change of the gas flow effect on the blade and, as a 
consequence, on the value of the aerodynamic damping [15-17]. 

 

Figure 2.7: reduced frequency interpretation given by Platzer and Carta 
in [14] 

2.1.2.1 Modeling aero-elastic phenomena  

The problem of the self-excited vibrations is one of the most important problems 
that has been studied by aircraft structural engineers in the last decades as soon as 
the weight reduction and flight performance increase. Aero-elasticity is a topic 
addressed by different authors, see for example [18-20]. The most effort to predict 
the occurrence of this problem was given in the fluid-dynamic field by means of 
CFD calculations ([21-24]) through the solution of the Reynolds-Averaged 
Navier–Stokes equations (RANS) with different level of complexity. The 
developed methods can be divided by the coupling with the structure in: 

 Semi-uncoupled (or one-way coupled) methods: they take into account the 
influence of blade vibration on the flow, but not vice-versa; 

 Fully coupled (or two-way coupled) methods: they take into account the 
interaction between fluid and structure and vice-versa; 

and by the level of approximation: 



2.1 Aero-elasticity 21 

 
 Linearized methods: the RANS equation are linearized and splitted into a 

steady part and a perturbation part; 
 Non-linear methods: simulate unsteady flows around vibrating blades, in 

this case the equations to solve are the unsteady RANS equations 
(URANS). 

All these approaches allow to calculate the values of the aerodynamic factors of 
damping and stiffness associated to a chosen mode shape of a blade at the 
variation of IBPA. 

The first effort to model and predict was developed at the beginning of the 1970s. 
These methods were based on a linear approach where every equation was 
linearized [25-26]. Since the 1990s new linearized methods have been developed 
that include a non-linear steady solution of the flow. These new methods have 
been solved both in time domain ([27-31]) and in frequency domain ([32-34]). 

The linearized methods are usually associated with a semi-coupled approach; this 
means that the blade vibrations derived from modal analysis whose results 
become the input data for the aero-elastic calculations. The oscillations, to be used 
in linearized method, should have determined characteristics:  

 Infinitesimal and periodic amplitude of vibrations (hypothesis of small 
perturbation); 

 Only one frequency (mono-harmonic perturbation); 
 Constant phase delay between neighbor blades (i.e. only one IBPA for 

each simulation). 

With these characteristics it is possible to define a harmonic perturbation of mesh 
of the fluid domain: 

         ̅  
      

(2.5)          ̅  
      

          ̅ 
      

where ω is the natural frequency of the blade vibration. The governing equation 
for the fluid motion is: 
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     (2.6) 

where U’ is the vector of the conservative variables (mass, momentum, energy 
and turbulence quantities when presented), Q’ is the vector of the source terms 
and F’ is the matrix of the flux functions in the three directions. 

In accordance with equations (2.5), the vector of conservative variables U’ is 
written as a sum of their mean values and their small perturbations: 

         ̅  
      (2.7) 

Equations (2.5) and (2.7) are substituted into equation (2.6) that can be so splitted 
in two governing equations: one for the mean conservative variables (the steady 
solution of the flow), and one for the perturbation variables (the perturbation 
solution of the flow). The solutions of the two governing equations are then 
combined together to obtain the instantaneous solution.  

The linearized methods are not able to include non-linear effects into aero-elastic 
analysis (if not in the steady solution); for this reason, more recently with the 
increase of the computational power, non-linear methods have been developed. 
These methods can be semi-uncoupled or fully-coupled. For the non-linear semi-
uncoupled methods [35-40] the blade vibration, pre-computed from a modal 
analysis, is only an input for the aero-elastic calculations. However, they can also 
include non-linear phenomena such as shock waves, boundary layer separations or 
shock/boundary layer interactions. Since the approach is semi-uncoupled, all the 
blades in the row should have the same dynamic behavior, i.e. each blade is 
subject at the same amplitude of vibration but with a constant phase delay respect 
its adjacent (only one IBPA). However, multiple frequencies are possible to take 
into account all time-dependent phenomena that should arise at different 
frequencies due to non-linear interactions. As the linearized methods, the blade 
vibration is also used to define a perturbation of the CFD mesh through the 
equations (2.5). However, the mesh perturbation actually deforms the grid at each 
time step, rather than to derive the linearized governing equation, i.e. the non-
linear unsteady flow equations (URANS) are integrated on the deforming mesh. 

The non-linear phenomena can be also included in the full-coupled methods [41-
42]. The full-coupled (or two-way coupled) methods consider the influence of 
vibrations on the flow and vice-versa and they are not linked to a fixed frequency 
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or IBPA. The two fields are characterized by the RANS equations (URANS if 
non-linearity are considered) for the aerodynamic and by the structural modal 
dynamic equations for the structure. These two fields can be integrated with 
different level of coupling:  

 Loose coupling: take advantage of well-established solution algorithms 
both for aero and structure dynamics through a minimization of 
unnecessary interaction; 

 Tight coupling: the equation of the two field are solved together with a 
monolithic scheme; 

In the loose coupling the interconnection between the two fields is done in the 
least extent practicable, i.e. the coupling only occurs in determinate points where 
the solution produces a relevant change. This scheme is usually used to limit the 
risk that a change made in a point produces unanticipated changes in other parts; 
however in the aero-elastic calculation the effects of the fluid-structure interaction 
could be lost. The second scheme is not a common practice because space and 
time discretization techniques strongly differ between the two domains. Besides, 
the time step for CFD computations is, generally, different orders of magnitude 
smaller than the time step of CSD solvers. Between these two extremes exist 
intermediate techniques that allow the aero-elastic calculations through an 
exchange of aerodynamic and structural information during the integration. 
Because the two solvers have different space and time discretization, the 
instantaneous solutions of the two fields should be synchronized at each step-time 
of integration. Different algorithms have been proposed; two of them are (Figure 
2.8): 

 Conventional serial staggered: it is illustrated on the left of Figure 2.8 and 
presents a time step equal for fluid and structure. At each time step the 
CFD solver computes the next pressure values which are given as inputs to 
the structural solver that provides a solution for displacements and 
dynamic variables with an accuracy of first order. However, large time 
steps can cause significant energy errors. 

 Improved serial staggered: it is illustrated on the right of Figure 2.8 and 
presents a time shift of Δt/2 between the structural displacements and the 
fluid state vector. The sequence of solution is the same of the preview 
scheme, but the time shift reduces the possibility of errors. 
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In general, these coupled methods are computationally heavy and require long 
calculation times to obtain the solution. 

 

Figure 2.8: Conventional (left) and improved (right) time-staggered algorithm (ref. [41]) 

The methods presented before give information about the aerodynamic behavior 
of the blades in terms of state variables, but they do not give information about the 
aero-elastic effects (this counts for the semi-uncoupled methods and not for the 
coupled because the structure is solve together with the aerodynamic). To quantify 
the level of aero-elastic stability it is necessary to apply an energy method, i.e. the 
unsteady pressure of the blade is integrated over the entire blade for one cycle of 
oscillation to determine the aerodynamic work.  

The aero-elastic stability is evaluated by checking the sign of the aerodynamic 
work: 

 Positive: energy is transferred from fluid to blade, i.e. self-excited 
oscillation is presented (unstable condition); 

 Negative: energy is transferred from blade to fluid, i.e. the oscillation is 
damped (stable condition).  

Finally, the work of the fluid for one cycle of oscillation is compared with the 
mean kinetic energy of vibration to obtain the aero-damping (Figure 2.9a) and 
aero-stiffness coefficients (Figure 2.9b). The aero-damping is a coefficient that 
indicates the aero-elastic stability of the blade, while the aero-stiffness is a 
coefficient that indicates the variation of blade stiffness due to the presence of the 
flow.  

The modal aero-damping coefficient of a blade array is usually characterized by 
negative/positive values for travelling mode shapes characterized by ND. As an 
example, in Figure 2.9a the negative values of aero-damping are associated to 
forward travelling wave (ND positive), while the positive values are associated to 
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backward travelling wave (ND negative). The meaning of the sign of the aero-
damping coefficient is opposite to that of the aerodynamic work, i.e. a negative 
value means that the system is unstable (self-excited oscillations are presented), 
while a positive value means that the system is naturally stable (the oscillations 
are damped by the flow). 

The aero-stiffness coefficient, instead, is always characterized by positive values 
both for positive and negative ND 

(a) 

(b) 

Figure 2.9: Typical trend of aero-damping (a) and aero-stiffness (b) coefficients at the 
variation of nodal diameters 

The calculation of the aero-damping and aero-stiffness coefficients have been 
made in this thesis using a linearized method developed by the Department of 
Industrial Engineering of University of Florence [30] that is used by GE Avio 
Aero to design the blades. 
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2.1.2.2 Suppression aero-elastic phenomena 

The effort to predict the occurrence of flutter phenomenon is only a part of the 
problem. Since the aerodynamic forces introduce energy in the structure, the 
stresses grow to each vibration cycle increasing the fatigue and reducing 
reliability of the structures. For this reason great attention should be placed on 
understanding how to avoid the insurgence of the flutter or to limit the flutter 
vibrations if this phenomenon acts on the blade. In the first case the better 
instrument is the mistuning, while in the second case the introduction of non-
linear elements in the equation of motion due to the presence of friction contact 
surfaces in determinate region of the blades is the better choice. 

2.1.2.1.1 Mistuning  

The rotating components of turbo-machinery are structures having nominally 
cyclic symmetry properties, i.e. every stage can be divided in a finite equal 
number of sectors. Usually these sectors are considered perfectly identical and 
with the same dynamic behavior; in this case the structure is said tuned. However, 
this hypothesis is not completely correct. In fact, in the reality, bladed disks 
completely tuned do not exist because imperfections of manufactory or tolerances 
produce some small difference among the components (Figure 2.10) and 
consequently also the dynamic behavior will not be the same. For these cases the 
term mistuning is used. Due to these irregularities, the rotor loses its symmetry 
and cannot be studied anymore through cyclic symmetry techniques. Although 
these imperfections are minimal, they can cause significant changes in the rotor 
behavior, producing bigger responses than those calculated in tuned conditions. 
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Figure 2.10: mistuned bladed disk 

The first studies were launched by Whitehead and Ewins [43-44] in 1960s to 
understand the mistuning phenomenon and the effects of mistuning on the forced 
response and on the aero-elastic phenomena. The study of mistuning is mainly 
divided in two different approaches: the deterministic approach [45-46] and the 
statistical approach [47-48]. The deterministic approach searches to identify the 
level of mistuning inside a bladed disk to understand the effect of this 
phenomenon on the response of the blades. The studied mistuning can be natural 
(due to small differences between the blades with respect to the nominal 
geometry, material properties and contact interfaces of joints) or purposely 
induced (alternating mistuning where a blade cascade is made of determined 
pattern). The statistical approach searches the better model to represent the effects 
of the variation of geometry, mass or stiffness on the dynamic behavior of the 
blades. Usually these models are more complex and depend on the chosen type of 
patterns and on the imposed boundary conditions. 

As said, thanks to the capability of mistuning to alter the dynamic response of the 
blades, many authors have studied this effect on the forced [43-46] and aero-
elastic [49-52] responses. The authors have placed mainly their attention on the 
effect of induced mistuning because this can be controlled and chosen to 
maximize the reduction of amplitude of vibration [84]; besides, the induced 
mistuning is also able to mitigate the effect of natural mistuning.  

The effect of mistuning in the aero-elasticity analysis is very important because it 
has a stabilizing effect on flutter stability. This happens because mistuning 
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(natural or induced) produces a non-constant IBPA among the blades that can be 
intended as a significant perturbation of the blade array response in terms of 
amplitude uniformity and phase shift between a blade and its neighbors. This is 
traduced in a change of the gas flow effect on the blade and, as a consequence, on 
the sign of the aerodynamic work.  

2.1.2.1.2 Friction contacts 

The approaches to model and avoid the flutter described in the previous sections 
consider a linear dynamic of the bladed disk and the fluid-structure interaction is 
directly linked to the natural frequencies and normal mode shapes of the system. 
However, structural designers of aircraft engines have introduced nonlinearities in 
the bladed disk structure in terms of damping systems to reduce peak stress values 
during the vibratory phenomena caused by the external excitation forces. These 
damping systems are usually friction dampers or joints that use the friction forces 
to dissipate energy increasing the fatigue life of the blade. The major sources of 
friction damping in the bladed disk turbine are attributable to the blade-disk 
interfaces (blade root joint) [53, 54], the contact between adjacent blades 
connected by interference at the tip (shrouds) or mid-span airfoil (snubber) [55] 
and the presence of underplatform dampers [56, 57].  

These friction contacts could be used to suppress the unstable flutter vibrations as 
it is usually made for the vibrations caused by excitation forces (forced response). 
The main friction dampers employed to limit the self-excited vibrations are the 
blade-disk interfaces or the underplatform dampers. These dampers are chosen 
because the blades in the tip-free condition (there is not interaction at tip between 
the blades) are more sensible at the flutter onset, while the blades with the shroud 
are often stable at flutter. The friction forces developing on damper surfaces 
produce dissipative energy that limits the self-excited vibrations and the Limit 
Cycle Oscillations is formed. In this condition, the amplitude and the frequency of 
the LCO is determined by the equilibrium between the energy introduced in the 
system by the flow and the energy dissipated by the friction contacts. However 
other two conditions may occur; in the first the aerodynamic energy is always 
bigger than the dissipative energy and as a consequence the system is always 
unstable. On the contrary, if the aerodynamic energy is always lower than the 
dissipative energy the system will be always stable. These equilibrium problems 
are qualitatively illustrated in Figure 2.11 where the aerodynamic energy is 
plotted with the blue dashed curve, while the dissipative energy is plotted with the 
red solid curve, both for one cycle of oscillation.  
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(a) (b) 

(c) 

Figure 2.11: Possible energy balance between the energy introduced by aerodynamics (blue 
dashed curve) and dissipative energy by friction (red solid curve) – (a) LCO condition; (b) always 

unstable condition; (c) always stable condition 

Only few authors have studied the LCO of the bladed disk structure in the 
presence of non-linearities as the friction contacts. Due to the complexity of the 
problem for the non-linear effects of the friction contacts, these studies have been 
usually realized considering a linearized aerodynamic and one-way coupled 
methods. 

The first studies were conducted by Griffin. and Sinha in [58, 59]. In their works 
the authors have used a lumped parameters model based on one degree of freedom 
with a friction contact and a negative viscous damping that simulates the 
aerodynamic coupling (Figure 2.12). As many following studies, the contribution 
of the external synchronous force is assumed negligible and for this reason it is 
not considered in the equation of motion. This hypothesis has an effect on the 
dynamic study of the system; in fact the problem is not well-conditioned because 
the frequency of vibration becomes an unknown of the problem. Two different 
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approaches can be applied; in the first an additional equation is introduced (this 
equation is the energy balance) and this is the case used by Griffin and Sinha, 
while in the second case a mathematical operation is applied to reduce the number 
of unknown and this is the case used by Petrov in [60]. 

 

Figure 2.12: Lumped-parameter model used by Griffin J. and Sinha A. in [58] 

The contribution of Griffin and Sinha was more important to understand the 
flutter response in terms of stable and unstable solutions and their variation if the 
aero-damping coefficient changes. In 2000s, very important are the studies of 
Corral, Gallardo and Martel. They have studied the LCO through the use of a 
lumped parameter model for the whole bladed disk sector with a blade root joint 
determining the amplitude of the blade from the equality of the energy dissipated 
at the blade root and the energy supplied from gas flow [61, 62]. Another 
important work is [63], where the authors have studied the combined effect of 
forced response and flutter phenomena identifying the fields where they act 
independently or together. Corral also proposed in [64, 65] a fully coupled method 
based on the direct time integration (DTI) of motion and RANS equations that 
solve a lumped parameter model of a bladed disk, while the non-linear equations 
characterizing the friction forces are solved using a Newton-Raphson method. 

In the same years, Petrov in [60] has developed a general method, based on the 
mathematical properties of the Harmonic Balance Method (HBM) complex 
numbers, and the mathematical homogeneity of the linearized equation of motion 
in the presence of friction contacts and flutter-induced external forces that can be 
applied to model generated with FEM. In particular, from the HBM, it is possible 
to write the displacements x(t) as: 
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        ∑    
              

             
     (2.8) 

where   
    and   

    are the harmonic coefficients, and h is the specific number of 
harmonics. If x(t) is a periodic solution of equation of motion, then also x(t+t0) is 
a solution of the same equation that can be written as: 

           ∑ (  
      (         )    

      (         ))
 
     (2.9) 

where the phase of the vibrations can be selected arbitrarily by adding any time 
shift (t0) to the time variable. Since t0 can be selected arbitrarily, it is possible to 
set an arbitrary value α for any selected harmonic coefficient that allows to reduce 

the number of unknown by one in order to have a well-conditioned problem.  

More recently, Krack et al. in [66] used a lumped parameter dynamic system to 
calculate the LCO of a cyclic symmetric structure when multiple modes with 
different values of Nodal Diameters (ND) are considered. Great attention is paid 
for the calculation of the contact forces when more unstable mode shapes exist 
since the ND associated to the natural frequencies are not commensurable. For 
this reason, simple HBM method cannot be used to solve the equilibrium 
equations in the frequency domain. In fact, bi-dimensional FFT is used in [66] to 
consider the presence of two unstable mode shapes having two different nodal 
diameters. The consequence is an extension of the calculation time that may 
become prohibitive if such method is applied to a model of a real bladed disk with 
real distributed contacts and with 4, 5 or even more unstable mode shapes with 
different ND values. Krack also presented in [67] a recent review about the aero-
elastic calculation (both forced response and flutter analysis) of bladed disk 
including the effects of friction contacts. 

2.2 Conclusion 

The flutter is an important aero-elastic phenomenon that produces, if not 
considered, a reduction of life and reliability of the blades. For this reason, the 
engineers have produced many efforts to predict, to avoid or to limit the 
occurrence of this problem developing different methods. These methods are 
based on the fluid-structure interaction between the blade rows and the hot gases 
that pass through the turbine. Two main type of coupling have been considered in 
these methods, the one-way coupled and the two-way coupled methods, with the 
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preference of the first due to the difficulty of modeling the flutter phenomenon 
when non-linearity are included. The one-way coupled methods are divided in the 
aero-dynamic methods that allow to model the phenomenon and identify the level 
of the flutter instability, and the structural methods that allow to limit and 
determinate the flutter amplitudes when these are presented. The first methods are 
well known and established in the design process, while the seconds have been 
studied by few author and do not yet used for the design. The potentiality of the 
structural methods in the design process are big. In fact, a blade, unstable at 
flutter, could be considered acceptable if the damping systems are able to limit or 
avoid the instability and as a consequence new design architectures that increase 
the performance and reduce the weight may be possible. It is in this fields, that 
this thesis will focus its attention. 



 

Chapter 3 

Reduction techniques, contact 
model and solution strategy 

In this chapter, the more important and used instruments for the future analyses 
are briefly presented. In particular the attention will be placed on the reduced 
order model (ROM) that allows to reduce the degrees of freedom to analyze and 
in this way saving computation time, and on the contact model that allows to 
calculate the friction forces acting on the contact surfaces of the blade and 
introduces the non-linear effects in the equation of motion. At last, a general 
solution strategy for the non-linear equations is also presented. 

The reduced order model and the contact model have an effect on the non-linear 
equation of motion that is here reported: 

[ ] ̈  [ ] ̇  [ ]            (3.1) 

where [M], [C] and [K] are the mass, damping and stiffness matrices,    is the 
vector of excitation forces and     is the vector of non-linear friction forces. 

3.1 Reduced order model (ROM) 

The solution of non-linear equation of motions (3.1) is realized through iterative 
numerical methods that generally lead to considerable computing times, especially 
if it is run on a normal pc. The bladed disk, object of the future analyses, has been 
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modeled on finite elements using a large number of nodes that the solution of 
equation of motions are generally not obtainable in acceptable times, even if non-
linear computation is only performed for contact nodes. Therefore, it is necessary 
to reduce the degrees of freedom of the model without losing fundamental 
information for a truthful analysis of the system. 

The ROM techniques used in this thesis are mainly four: 

 The Craig-Bampton - Component Mode Synthesis (CB-CMS); 
 Cyclic symmetry (CS); 
 Tran reduction technique; 
 Modal reduction. 

Of these techniques, the cyclic symmetry is typical of the cyclic structures as the 
bladed disk, while the other three reduction techniques are more general and they 
can be applied in many cases.  

In general the ROM techniques allow to white a rectangular reduction matrix [T] 
that reduced the size of the vectors of dofs/forces and the size of the matrices (see 
Fig. 3.1).  

 

Figure 3.1: graphical representation of application of a generic reduction matrix [T] to reduce the 
size of the stiffness and mass matrices 

The general equations, that allow the ROM, are the following: 
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  [ ]   

(3.2) 

[ ]  [ ] [ ][ ]  

[ ]  [ ] [ ][ ]  

[ ]  [ ] [ ][ ]  

   [ ]     

    [ ]      

where the capitol letters (X, M, C, K and F) represent the vectors or the matrices 
of the full system, while small letters represent the vectors or the matrices of the 
reduced system. 

3.1.1 Craig-Bampton - Component Mode Synthesis (CB-CMS) 

The CB-CMS reduction technique [68] is a common technique implemented in 
most FE softwares (Ansys, Nastran) and it is based on the definition of a set of 
master    and slave    degrees of freedom (dofs) of the physical model plus an 
additional set of slave modal dofs   . The first set is the set that remains explicit 
in the ROM while the remaining part of dofs is omitted as a function of the first 
set according to the Guyan static reduction technique formulation [69] where the 
static deflection shapes of the slave dofs are written by imposing a unitary 
displacement of each master dofs one by one. With this process the slave nodes 
are forced to move according to the deformation of the master nodes. Since the 
Guyan reduction technique is not sufficiently representative of the dynamics of 
the system, a number of slave modal shapes is added to the static deflection base 
obtained from a modal analysis where all the master dofs are constrained 
simultaneously. 

The bladed disk is reduced according to the following transformation for each 
component (blade and disk): 

  {
  

  
}  [

  
   

]  {
  

  
}  [    ]      (3.3) 
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where I is the identity matrix, G is the Guyan matrix,    is a subset of the slave 
modal matrix,    is the vector of the modal slave coordinates and [    ] is CB-
CMS reduction matrix.      is the vector of dofs remained after the reduction 
which number is much lower than the total number of dofs  . CB-CMS reduction 
matrix is applied to the equation of motion (3.1) to reduce the size of the system 
in according to the equations (3.2). 

3.1.2 Cyclic symmetry (CS) 

The bladed disk is a cyclic symmetric component that is excited by a periodic 
self-excited force, therefore each sector vibrates as the adjacent sectors but with a 
phase lag given by the IBPA (eq. (2.5)). 

The bladed disk can be reduced to a single sector by applying cyclic symmetry 
constraints [68] to its left and right interfaces (see Figure 3.2). For example, it is 
possible to write the right interface dofs depending on the left interface dofs (or 
vice-versa) in according with the travelling force that can be clockwise or 
counterclockwise with respect to a defined cylindrical reference system: 

      
       (3.4) 

where    are the dofs of the left interface while    are the dofs of the right 
interface of the disk. Equation (3.4) performs a reduction of the dofs of the 
system, in fact 

  {

  

  

  

}  [
       

  
  

] {
  

  
}  [   ]     (3.5) 

where    are the inner dofs not included in the interfaces, [   ] is the cyclic 
symmetry reduction matrix and     is the vector of the reduced dofs after 
applying the cyclic symmetric constraint. 
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Figure 3.2: application of cyclic symmetric constraints at the interface on a single bladed disk 
sector 

3.1.3 Tran reduction technique 

The Tran reduction technique is a technique developed by Tran in [70]. This 
technique is used to further reduce the master dofs remained after the CB-CMS 
reduction if these are yet too big. In particular, this technique proposes a 
methodology to reduce the interface dofs replacing them with a linear 
combination of modal shapes. 

The starting point to perform a Tran reduction is to apply the Guyan reduction at 
full component, where the considered master dofs are only the interface dofs. 
From the static reduced mass and stiffness matrices, a modal analysis is 
performed and only a small number of modes is taken into account (the modes 
obtained from the modal analysis of the reduced matrices represent the mode 
shapes of the interface dofs). In this way the modal coordinates of the considered 
mode shapes substitute the interface dofs.  

The array of the explicit dofs of the master nodes becomes: 

  {

  

  

  

  

}  [

    
  

 
 
 

 
 

   

] {

  

  

  

}  [     ]        (3.6) 
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where I is the identity matrix,    and    are a subset of the interface modal 
matrix,    is the vector of the interface modal coordinates, [     ] is the Tran 
reduction matrix and       is the vector of the reduced dofs after applying the 
Tran reduction technique.  

The Tran reduction technique can be applied after the cyclic symmetry reduction 
on the CMS dofs; in this case the equation (3.6) becomes: 

    {

  

  

  

}  [
       

   
   

] {

     

  

  

}  [     ]        (3.7) 

where       and       are respectively a subset of the interface modal matrix 
reduced in cyclic symmetry and the vector of the interface modal coordinates. 

If all three reduction techniques are applied, the whole transformation is: 

  [    ][   ][     ] {

     

  

  

}  [    ] {

     

  

  

}   (3.8) 

3.1.4 Modal reduction 

The non-linear differential equation of motion (3.1) is written in the physical 
domain and can be rewritten in the modal domain because the physical 
displacements can be approximated with a linear combination of a limited number 
of normal modes: 

  [ ]   (3.9) 

where [ ] is the modal matrix obtained from a modal analysis that includes a set 
number of modes and q is the vector of the modal coordinates. For the modal 
reduction, the modal matrix [ ] is precisely the rectangular reduction matrix [T], 
i.e. 

[ ]  [ ]  (3.10) 

that can be used to derive the equations (3.2). 
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The set of the equations of motion can be turned into a set of uncoupled equations 
in the modal form by: 

[    ] ̈  [    ] ̇  [    ]                  (3.11) 

where the modal mass is the unity matrix and the damping and stiffness matrices 
are all diagonal. 

[    ]  [ ]  

(3.12) 
[    ]  [

       
   
       

]  

[    ]  [
  

   
   
    

 
]  

In the equation (3.12) ω and ζ are respectively the natural frequency and modal 
damping of the system. 

3.2 Contact model 

In the equation of motion (3.1) the term     is a non-linear term that represents the 
friction forces produced on the contact surfaces of joints. The contact model is 
based on the Coulomb friction law where the maximum value of the generic 
friction force ft(t) occurs in case of slipping and is equal to the normal load n(t) on 
the contact multiplied by the friction coefficient μ: 

             (3.13) 

In this thesis, the Coulomb friction law is implemented in a contact model [71] 
with a normal kn and a tangential kt stiffnesses (Figure 3.3). kn allows for a 
variable normal load once a normal preload n0 is defined: 

                (3.14) 
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where v(t) is the relative normal displacement on the contact. As a consequence 
the separation occurs when v(t) is lower than a limit value: 

if          
  

  
                . (3.15) 

kt takes into account a stick state of the contact allowing the two parts moving on 
each other without slipping: 

                      (3.16) 

where u(t) is the relative displacement between the two parts, u0 and f0 are 
respectively the relative tangential displacement and tangential contact force when 
the transition between the slip state (or separation state) and the stick state occurs. 
The value of the contact parameters, friction coefficient and tangential contact 
stiffness, are generally experimentally determinate by hysteresis loop 
measurement with test rig purposely developed [72, 73, 85] or numerically 
computed, for the contact stiffnesses, by means of specific contact models [74-76]  

 

Figure 3.3: Contact model 

The hysteresis loop can assume different shapes according to the relative phase 
lag of the relative tangential displacement with respect to the normal displacement 
(see reference [83]). In Figure 3.4 three types of hysteresis loops are shown 
assuming single harmonic oscillation for u(t) and v(t): the first when u(t) and v(t) 
are in-phase, the second when lift off occurs within one cycle, the third when u(t) 
and v(t) do not vibrate in-phase. These hysteresis loop have been obtained using 
the model in Fig 3.3 and a solution method based on the prediction-correction 
method. This method is described in [80] and it is based on the prediction that the 
eq. (3.16) is initially always valid. The prediction of the stick system is valid until 
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the force (3.16) is smaller than the Coulomb limit; in the opposite, the friction 
force is corrected to the value of the Coulomb limit. In the following analyses the 
prediction-correction method will be used to calculate the non-linear forces.  

 

Figure 3.4: example of hysteresis loops at the contact 

Depending on the application and the local kinematics of the contact, the contact 
area can be discretized in a layer of contact elements in order to simulate local 
phenomena of sticking, slipping or separation. A two dimensional motion on the 
contact surface can be modeled by placing two orthogonal contact elements 
sharing the same preload n0 and normal contact stiffness kn. The orbital tangential 
motion of the two parts in contact is decoupled into two independent oscillations 
on the orthogonal planes defined by the two contact elements (Figure 3.3). 

3.3 General solution strategy for the non-linear equations  

In order to reduce the calculation time of a non-linear numerical time integration, 
the Harmonic Balance Method (HBM) is used [77] to solve the equations of 
motion (3.1) [77-79]. This is possible if the external excitation is single-harmonic 
because in this way the external force produces the periodicity of the 
displacements x and the nonlinear forces Fnl. The property of periodicity permits 
to express the time varying displacements (x) and forces (Fe and Fnl) in a 
truncated Fourier series of H orders, where H is the maximum number of 
harmonics that are considered. Consequently, displacements and forces become: 

        (∑  ̅         
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(3.17)      
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where ω is the excitation frequency, the 0 order represents the static components 
and the Fourier coefficients  ̅    e  ̅  

    are complex quantities. 

The Equations (3.19) are replaced into the equations of motion (3.1) obtaining a 
set of algebraic complex equations: 

[    ]       
   

    
   

                (3.18) 

where [    ] is the hth dynamic stiffness matrix of the system that has the 
following form: 

[    ]        [ ]     [ ]  [ ]  (3.19) 

The equation (3.18) is non-linear because contact forces    
    depend on the 

displacements of the contact dofs that are a part of the total dofs     . Since the 
equations of motion are formulated in the frequency domain while the contact 
model operates in the time domain, an Alternating Frequency Time (AFT) [80, 
81] also known as Hybrid Frequency Time (HFT) method [82] must be used in 
order to pass from the frequency domain to the time domain to calculate the 
hysteresis loop and then again to go back to the frequency domain by the Fourier 
series (Figure 3.5). In detail, the calculation procedure follows the following 
steps: 

1. Periodical relative displacements u(t) and v(t) are computed from Fourier 
coefficients      and      by Inverse Fast Fourier Transform (IFFT); 

2. Contact forces n(t) and ft(t) are computed by means of equations (3.14) 
and (3.16); 

3. The Fourier coefficients      and   
    are computed from n(t) and ft(t) 

respectively by Fast Fourier Transform (FFT). 
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Figure 3.5: AFT/HFT method 

With the Fourier coefficient of the contact forces it is possible to assemble the 
contact force vector    

   . The equations of motion (3.18) are solved using finite 
differences to compute derivatives in the Newton-Raphson method.  



 

Chapter 4 
 

Flutter analysis for a lumped 
parameter model 

In this chapter, the flutter analysis will be performed on simple systems such as 
the lumped parameter models to understand what are the properties of the flutter 
on the structures and what are the parameters that mostly influence the results. As 
first implementation, the method and the results obtained by Griffin. and Sinha in 
[58, 59] are first studied. These results, that are generically considering the base of 
the flutter analyses on the turbo-machinery, will be used to understand if the 
results obtained with a proposed method are correct in terms of typical trend. 
Three different structures will be analyzed with the method developed by the 
authors: 

 One degree of freedom system; 
 Lumped parameter model of a bladed disk; 
 Lumped parameter model of a bladed disk reduced with cyclic symmetry 

hypothesis. 

4.1 Griffin and Sinha results 

Griffin and Sinha in [58, 59] were the first authors to study the suppression of the 
flutter phenomena in the turbo-machinery using friction contacts. In their two 
works the authors have simulated a blade with a damper sliding on the ground in 
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[58] and a row of blade with two dampers in [59], one sliding on the ground and 
the other acting between the blades; in both cases they used a lumped parameter 
dynamic system. 

More attention will be placed on the results of [58] because in this work the 
authors placed the basis to understand the flutter phenomenon in the turbo-
machinery in terms of stable and unstable solutions and their variation when the 
aero-damping coefficient changes. In [58] a lumped parameter model based on 
one degree of freedom with a friction contact and a negative viscous damping that 
simulates the aerodynamic coupling was used (Figure 4.1). The contribution of 
the external aerodynamic synchronous force was assumed, at the beginning, 
negligible and taken into account afterwards. 

(a) (b) 

Figure 4.1: Lumped-parameter model used by Griffin and Sinha in [58] – (a) dimensional 
system, (b) dimensionless system 

The equation of motion associated to the dimension system in Figure 4.1a is: 

 
    

   
  

   

  
         

                   (4.1) 

that can be turned into dimensionless notation using the following equation: 

  
  

    
  

(4.2) 
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In the eq. (4.2) Fd is the force required to cause the damper to slip and x0 is the 
linear displacement when the system is stuck. 

The resulting differential equation of motion is: 

   

   
    

  

  
                   (4.3) 

where x is the displacement of the mass, y is the displacement of the damper, ζ+ is 
the viscous damping that simulates the interaction of the fluid on the structure, ε is 
an equivalent stiffness of the contact, f0 is the non-dimensional amplitude of the 
external force and ω is a non-dimensional angular frequency.  

4.1.1 No external force (f0 = 0) 

When a synchronous excitation is not present, a small perturbation produces an 
uncontrolled increase of the amplitude of vibration due to the negative viscous 
damping until the contact produces dissipative energy that balances the energy 
introduced by the fluid in the structure and the system reaches the steady state. In 
the steady state the response can be considered harmonic and a Fourier 
transformation can be applied to the equation (4.3) passing from the time domain 
to the frequency domain. Under these assumptions, the non-linear term can be 
expanded in Fourier series obtaining: 

                      (4.4) 

where a and b are the coefficients of the Fourier series: 

    [      
 ⁄         ]    

(4.5) 
        

 ⁄      



4.1 Griffin and Sinha results 47 

 
where A is the amplitude of vibration and ϑc is the phase angle that occurs in the 
transition between the stick and slip condition. 

            
 ⁄    (4.6) 

If the equation (4.4) is substituted into equation (4.3), the term a adds a 
contribution to the stiffness while the term b adds a contribution to the aero-
damping. It is important to note that the pulsation ω of the system is not known a 
priori because a synchronous periodic external force is not considered (this is an 
important aspect that will often return in this thesis). 

To solve this problem an additional equation is necessary. Since for the steady 
state response the balance of the forces acting on the system should be equal to 
zero, the balance of aerodynamic and frictional forces is: 

          (4.7) 

The equations (4.3) and (4.7) can be manipulated to obtain the amplitude and the 
frequency of the flutter response: 

  
    [   ⁄                ]   

        
  (4.8) 

             
 ⁄              (4.9) 

These two equations are solved together and iteratively for different values of ε 
and ζ+ obtaining the results shown in Figure 4.2. 
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Figure 4.2: Flutter response by varying the ε and ζ+ in terms of amplitude (left) and frequency 
(right) 

The results presented in Figure 4.2 are very important and show that for each ratio 
of ζ+ and ε two solutions exist: one is stable and the other one is unstable. The 
stable solution will be called Limit Cycle Oscillation (LCO) and is characterized 
by small amplitude and high frequency, while the unstable solution will be called 
stability limit and is characterized by big amplitude and low frequency. The 
maximum value of amplitude can be controlled by the friction damper ζ+. The 
value of ζ+ corresponding to the maximum amplitude can be inferred from eq. 
(4.8) by setting the quantity under the radical equal to zero. The obtained equation 
is the following: 

   
 

   
  (4.10) 

When ζ+ assumes this value, the amplitude A becomes a single value that 
represents an unstable solution. In fact, any perturbation from this point produces 
an ineffective damped and uncontrolled self-excited vibrations; while for value 
bigger than the maximum the system is always unstable because the damper is not 
able to limit the vibration. These considerations can be easily seen with a 
qualitative diagram of the energy balance illustrated in Figure 4.3a where three 
different ratios of ζ+ and ε have been chosen. The ratio 1 produces two points of 
intersection between the dissipative energy (red line) and the aerodynamic energy 
(blue line); the ratio 2 presents only a point that represents the tangential point 
between the dissipative energy and the aerodynamic energy (blue dash line) and 
can be seen as the limit condition to control the flutter oscillations; finally, the 
ratio 3 does not show any intersection point, i.e. the system is always unstable. 
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Figure 4.3: qualitative diagram of the energy balance for three different ratios of ε and ζ+ 

In Figure 4.2 the blue curve of the unstable solutions divides the plot in two 
regions: one stable and one unstable. These two regions have been called in this 
way because, fixed the ratio ζ+ on ε, an initial point under the blue line produces a 
controlled response at flutter (the attractor point is the stable solution), on the 
contrary, an initial point over the blue line produces uncontrolled self-excited 
vibrations. This result can be better seen through a solution of the equation (4.3) 
in the time domain. The points chosen are reported in Figure 4.4: 

 A = 5 @ ζ+/ε = 0.1 in the stable region; 
 A = 6 @ ζ+/ε = 0.1 in the unstable region; 

while the time responses are shown in Figure 4.5. In detail, Figure 4.5a shows the 
stable response where the initial point is the point 1 of Figure 4.4; while Figure 
4.5b shows the uncontrolled response from the point 2. The stable response was 
analyzed with a fast fourier transform (FFT) obtaining the same values of 
amplitude and frequency calculated in the frequency domain (Table 4.1). 

 Frequency domain Time domain 

Amplitude 1.239 1.237 

Frequency 0.9792 0.9790 

Table 4.1: comparison of the results in frequency domain with that in time 
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domain 

 

 

Figure 4.4: initial points for the direct time integration: 1 – stable point; 2 – unstable point 

 

(a) 

(b) 

Figure 4.5: time response from point (1) of figure 4.4 – figure (a); from point (2) – figure (b) 
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4.1.2 External force (f0 ≠ 0) 

In the second part of [58], Griffin and Sinha take into account the presence of a 
synchronous external force due to the pressure field caused by the presence of 
upstream static structures (stator vanes). In this case, the steady state is obtained 
when the dissipative energy balances the work of the aerodynamic and external 
forces. In this condition the response of the system is periodic, but not simply 
harmonic because two frequencies exist: one frequency for the flutter response 
and one frequency of the excitation force. 

To avoid the presence of these two frequency values, the authors have considered 
an external excitation at the natural frequency because in this way the response 
becomes simply harmonic. Mathematically, the equation (4.8) becomes: 

  
         [        

              ]   

        
  (4.11) 

while the equation (4.9) does not change. As the previous case, the equations 
(4.11) and (4.9) are solved simultaneously and the results are reported in Figure 
4.6.  

 

Figure 4.6: Flutter response at a variation of f0 

It is possible to see, that the increase of the external force produced a reduction of 
the stable region until a maximum value of f0 that the authors have identified in: 
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        (4.12) 

When f0 reaches its maximum value, the stable region disappears and the system 
is always unstable because the damper is not able anymore to dissipate the energy 
introduced by the fluid in the structure. 

This section has been introduced to give a complete description of work [58] of 
Griffin and Sinha. In this thesis, the contribution of external forces will not be 
considered because the influence of the external force on flutter phenomenon can 
be usually neglected. This is possible because the flutter onset takes place away 
from the resonance conditions (see Fig. 2.1) where the influence of external forces 
is negligible. 

4.2 One degree of freedom 

The results presented in the previous section are based on the considerations and 
equations proposed by Griffin and Sinha in [58]. From this point, a proper 
formulation of the flutter analysis has been developed for a lumped parameter 
model with one degree of freedom (dof). The model used is shown in Figure 4.7 
and it is similar to that used in [58], but for convenience of the author the names 
of the variables have changed. 

 

Figure 4.7: Lumped parameter model with one dof 

In particular m, c and k are the mass, the damping and the stiffness of the system 
and kt is the tangential stiffness of the contact model. The damping c is a viscous 
damping with negative sign to simulate a transfer of energy from the fluid to the 
structure. 
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The general equation of motion associated to this system is: 

  ̈    ̇                (4.13) 

where    is the external force and        is the non-linear friction force that is a 
function of the displacement x. 

On this system two hypotheses are made: 

1. the external force is considered negligible, i.e. only the self-excited 
vibration is considered; 

2. the motion of the system is harmonic. 

These two hypotheses yield to: 

  ̈    ̇             (4.14) 

with: 

              (4.15) 

the harmonic displacement. In order to apply the methodology developed for the 
lumped parameter model to a complex system such as a bladed disk, it is 
necessary to reduce the calculation time of a non-linear numerical time 
integration. For this reason, the Harmonic Balance Method (HBM) is used [77] to 
solve the equations of motion of the system [77-79]. This is possible due to a 
harmonic behavior of the aerodynamic forces that involves also a harmonic 
behavior of the displacement x and the nonlinear forces fnl. The harmonic behavior 
allows to write the time varying quantities in a truncated Fourier series of H 
orders, where H is the maximum number of harmonics that are considered (see eq. 
(3.17)). Consequently, the second order, differential equation of motions (4.14) in 
the time domain can be turned into a complex, algebraic equation in the frequency 
domain: 

                 ̅     ̅  
   

                (4.16) 

The solution of the equation of motion is necessary but not sufficient to determine 
the flutter response of the system. This is due to the hypothesis of the absence of 
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the external force, whereby the frequency of the system is not imposed by the 
forcing, but by the equilibrium between the aerodynamic energy introduced in the 
structure by the fluid and the dissipative energy produced on the contact surfaces. 
Since the unknowns of the problem are two (one displacement value and one 
frequency value) and the equation of motion is only one, another equation is 
necessary. The additional equation is the energy balance: 

            (4.17) 

where Eaer is the aerodynamic energy and Ediss is the dissipative energy.  

An alternative to the proposed method is the method developed by Petrov in [60]. 
It is based on a phase normalization to seek for periodic solution. These two 
methods have been used together in the first part of research to evaluate the more 
suitable to use into industrial process. In general, they are very similar and have 
shown similar results and convergence problem. However, the method of the 
energy balance has been preferred because it is more coherent with the physical 
behavior of the flutter phenomenon, but also because it is easier to use. In fact, the 
method proposed by Petrov requires more attention in the definition of the 
parameters and this is a limit into industrial process where a tool should be as 
robust as possible. Consequently, these aspects have made the decision pending 
on the method of energy balance. 

The dissipative energy can be calculated starting from the Fourier coefficients of 
the friction force  ̅  

   . Since the motion of the system has been supposed periodic, 
the approximation to the first order of the friction force is: 

                        (4.18) 

where       is the amplitude of the friction force, while   is the phase lag between 
the amplitude of x and the friction force. In a complex notation it is possible to 
write: 

                  
         (4.19) 

This means a hysteresis loop that could be substituted by a harmonic force 
oscillating with the angular frequency of the exciting force (Fig. 4.8) that can be 
seen as a complex stiffness. The nonlinear force approximated by truncating the 
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Fourier series to the first order can be divided into two components (Fig 4.9): the 
first component is proportional to the displacement x and describes an equivalent 
stiffness of the friction force; while, the second component has a phase delay of 
π/2 with respect to x and describes an equivalent damping of the friction force. 
The whole dissipative effort of the contact is held in the second component of 
complex stiffness and consequently, the dissipative energy can be easily 
calculated as the area of the ellipse. 

 

Figure 4.8: Approximation of the hysteresis loop by a harmonic force 

 

 

Figure 4.9: two components of the nonlinear force approximated by truncating the Fourier series – 
(a) equivalent stiffness of the friction force, (b) equivalent damping of the friction force 

Mathematically, the steps to obtain the dissipative energy are: 

1. First order of the friction force:    
   ; 

2. Complex stiffness:  ̅     
   

  ̅   ; 
3. Phased friction force:    

̅̅ ̅̅   ̅    ̅    ; 

Finally, the dissipative energy can be written as: 
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         ̅          ̅  
       (4.20) 

In the equation (4.20) the Fourier coefficients  ̅    and  ̅  
    are expressed for the 

first harmonic (h=1) because the major contribution at the dissipative energy is 
given by this harmonic, while for the next harmonic the contribution is negligible. 
Since the damping parameter c is considered as a negative viscous damping, also 
the aerodynamic energy can be written as the area of an ellipse, i.e. 

              ̅             ̅       (4.21) 

As the dissipative energy, the major contribution at the aerodynamic energy is 
given by the first harmonic. In the equation (4.21) it is possible to replace the 
viscous damping c with the critical viscous damping ζ that is the usual parameter 
that is obtained from the CFD flutter analyses: 

        (4.22) 

that substituted in (4.21) gives: 

        ̅               ̅       (4.23) 

The eq. (4.20) and (4.23) describe the dissipative and the aerodynamic energies 
and allow to give an explanation of the trends shown in figures 1.4, 2.11 and 4.3. 
In fact, from eq. (4.20) it is possible to see that the dissipative energy is 
proportional to the displacement x, while, from eq. (4.23) it is possible to see that 
the aerodynamic energy is proportional to the square of the displacement x (this 
link will be better seen in the eq. 4.41). 

From now, the aerodynamic critical damping ζ will be called aero-damping and its 
symbol will be ζaer. 

4.2.1 Result analysis 

To permit an easy convergence of the calculation two proper tentative points are 
defined through the energy balance between the dissipative and the aerodynamic 
energies (see for example Figure 1.4) using respectively the equations (4.20) and 
(4.23). A range of displacement x of the body is defined to obtain the two 
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intersection points, while the pulsation ω is that with the contact model in the 
stick condition. This choice of frequency has been made to be coherent with the 
flutter analysis of a bladed disk performed in the CFD domain; in fact the 
analyzed mode shape is obtained from a modal analysis of a model that has a rigid 
root joint, i.e. the nodes on the interfaces are merged with the disk slot.     

 

Figure 4.10: Flutter response of the system 

These two tentative points are used to initialize the non-linear flutter calculation 
and the results obtained are reported in Figure 4.10 where the blue ‘o’ marker is 
the stable solution, while the red ‘x’ marker is the unstable solution. These two 
points are said stable or unstable through the knowledge obtained from the results 
of Griffin and Sinha; in fact, from the Figure 4.2 it is possible to see that a stable 
solution is characterized by small amplitude and high frequency, while the 
unstable solution is characterized by big amplitude and low frequency. However, 
to be sure of the stability of these two points, a stability analysis has been 
performed through the perturbation of two equilibrium points to obtain a range of 
displacement around the two solutions. For each point in the range of 
displacements the aerodynamic and dissipative energies have been calculated and 
the results are reported in Figure 4.11 and 4.12. 
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Figure 4.11: Stability analysis of the LCO point 

 

 

Figure 4.12: Stability analysis of stability limit point 

It is possible to see in Figure 4.11 how a perturbation of the amplitude x of the 
system from the LCO point produces a return at the equilibrium point due to the 
energy balance, while in the Figure 4.12 a perturbation of the amplitude x of the 
system from the stability limit point may produce uncontrolled vibration because, 
for displacements bigger than the stability limit, the aerodynamic energy is always 
bigger than the dissipative one. 

An important result, that can be obtained  from Figure 4.10, is the comparison of 
the flutter frequency with the natural frequency of the system when the friction 
contact is in the two limit cases (free condition and stick condition). This 
comparison is made in the table 4.2 showing that the frequency of the stable 
solution (LCO) is near to the frequency of the system with the contact in stick 
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condition, while the frequency of the unstable solution (stability limit) is near to 
the frequency of the system with the contact in free condition. 

 Diff. in Frequency [%] 

Stability limit vs. free condition 0.47% 

LCO vs. stick condition 0.46% 

Table 4.2: Comparison of frequencies - Stability limit vs. free 
condition frequencies; LCO vs. stick condition frequencies 

These results are important because they show how the contact works in the two 
equilibrium points. In the LCO point, the contact element is in adherence and a 
small displacement is sufficient to produce a slip condition (dissipative energy) 
that is able to balance the aerodynamic energy. This means that the contact has a 
rigid behavior and the flutter frequency is near to the natural frequency with 
contact in stick condition. However, the slip condition is predominant on the stick 
condition and the system is damped. On the contrary, if the system was too stuck, 
the red curve of dissipative energy in Fig. 4.3 would shift on the right without 
crossing the curve of the aerodynamic energy. This effect could produce a global 
unstable condition of the system. In the stability limit point, the contact is still in 
adherence because the contact model used in this system does not include the lift-
off state, however a big x displacement produces a big aerodynamic energy when 
the contact has a large slip condition to produce the necessary dissipative energy. 
A large slip condition means that the contact is very loose and as a consequence 
the flutter frequency is near to the natural frequency with the system in free 
condition (no contact). 

The results obtained in the frequency domain through the HBM and the energy 
balance are now compared with the results calculated with the direct time 
integration (DTI) of the equation (4.14). Figure 4.13 shows the results for three 
different initial conditions: (a) time response with the initial point between 0 and 
the LCO amplitude, (b) time response with initial point between LCO and 
stability limit amplitude, and (c) time response with initial point bigger than the 
stability limit amplitude. 
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(a) 

(b) 

(c) 

Figure 4.13: Time response of the system - (a) initial point between 0 and the LCO amplitude - (b) 
initial point between LCO and stability limit amplitude - (c) initial point bigger than stability limit 

amplitude 

It is possible to see that the time responses (a) and (b) reach the limit cycle 
oscillation while the response (c) gives uncontrolled vibration according to the 
energy balance shown in Figure 1.4. For the two stable responses, the results 
obtained in the frequency domain is compared with those obtained in the time 
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domain in terms of error in amplitude and frequency (Table 4.3). It is possible to 
see that the both error in amplitude and frequency are very small proving that the 
approximated solution in the frequency domain is accurate. The small difference 
in frequency depends by the time discretization in the time domain simulation that 
has been analyzed with the FFT. 

 Error in Amplitude [%] Error in Frequency [%] 

Freq. domain vs time domain (a) 0.04 0.07 

Freq. domain vs time domain (b) 0.04 0.1 

Table 4.3: comparison results: frequency vs time domain 

4.2.4 Parameter variation 

The results presented in the preview section are important to understand if the 
methodology developed works well and gives reliable results. Now, a Parameter 
variation is performed to understand how the different parameters that enter in the 
non-linear flutter analysis influence the flutter response of the system. 

These parameters are: 

 aero-damping (ζaer); 
 friction coefficient (µ); 
 normal pre-load (n0); 

The first parameter analyzed is the variation of aero-damping (Figure 4.14). The 
results obtained are similar to those obtained with the formulation of Griffin and 
Sinha and presented in Figure 4.2, i.e. for small values of aero-damping the 
system presents small amplitudes of vibration with frequencies close to the natural 
frequency in stick condition for LCO solution and a large margin of stability. On 
the contrary, for big values of aero-damping the system presents bigger 
amplitudes of LCO than the case with small values of aero-damping, but the 
margin of stability is small. The two curves do not converge at one point because 
the solutions have difficulties of convergence in proximity of the coalescence of 
the stable and unstable solutions. This problem of convergence is due to 
numerical effect on the solver used (function fsolve of MatLab). To provide a 



62 Flutter analysis for a lumped parameter model 

 
solution of the problem, many interventions have been made such as the variation 
of the convergence tolerance, the reduction of the step of the aero-damping and 
the values of the initial solution. However, the problem remained because the 
system is near the coalescence of the stable and unstable solutions and it is 
sufficient a little perturbation in the solution to produce a fail on the search for a 
solution. 

 

Figure 4.14: variation of aero-damping 

In the Figure 4.15 the flutter response is presented by varying the friction and the 
aero-damping coefficients. For each parameter three values are considered: 

 μ1, μ2 and μ3 for the friction coefficient; 
 ζ1, ζ2 and ζ3 for the aero-damping; 

for a total of 9 points. The used nomenclature for the friction coefficient means μ1 
nominal value, μ2 = 2.5μ1 and μ3 = 3.5μ1, while for he aero-damping ζ1 is the 

nominal value, ζ2=2.5 ζ1 and ζ3=3.5 ζ1. 

This type of diagram will be widely used in the future analyses of a real bladed 
disk to understand the goodness and consistency of the results. In Figure 4.15 it is 
possible to see that, for a given value of friction coefficient, the amplitude of the 
LCO increases when the absolute value of the negative aero-damping increases 
(see for example the three grouped markers). On the contrary, the LCO frequency 
decreases. These results are consistent with the results of Figure 4.14; in fact, the 
increase of the aerodynamic energy should be balanced by the increase of 
dissipative energy that is produced with bigger amplitudes of vibration. At the 
same time, the LCO frequency decreases since the contact is less rigid when the 
amount of slip increases. Instead, if the value of the friction coefficient increases 
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for a given value of the aero-damping coefficient (see for example the blue 
markers), the LCO amplitude increases while the LCO frequency remains 
constant. Also this behavior is due to the energy balance of the system; in fact a 
large value of the friction coefficient determines a more rigid behavior of the 
contact element and, as a consequence, the necessary amplitude of vibration to 
produce the dissipative energy increases when the friction coefficient increases. 
This means that the LCO equilibrium is achieved for bigger displacement 
amplitudes. This behavior is easily identifiable in Figure 4.16 where the energy 
balance with two different values of friction coefficient (μ1  and μ3) is shown and 
produce respectively two different LCO equilibrium points. 

 

Figure 4.15: LCO response at variation of friction coefficient and aero-damping parameters 

 

Figure 4.16: energy balance with two different values of friction coefficient 
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To complete the flutter analysis by varying the friction and the aero-damping 
coefficients, in Figure 4.17 the trend of the stability limit points is presented. The 
trend of the flutter response by varying the aero-damping coefficient with a given 
friction coefficient (same type of marker) is shown in Figure 4.14 (blue line), i.e. 
the amplitude decreases and the frequency increases if the absolute value of the 
aero-damping increases. This happens because the total quantity of the 
aerodynamic energy that the contact can dissipate is lower if the aero-damping 
coefficient is big in magnitude. As a consequence, a lower amplitude of vibration 
for the stability limit point is obtained. On the contrary, the increase of the friction 
coefficient produces an increase of the vibration amplitude of the stability limit 
point while the frequency is nearly constant (see for example the blue markers). 
The physical behavior that explains this effect is the same that rules the variation 
of the friction coefficient in Figure 4.15. The increase of the dissipative energy 
with the friction coefficient can be seen with the hysteresis loops of the contact 
model (Figure 4.18a and4.18b) which represents the dissipative energy. However, 
a big dissipative energy does not mean small amplitude of vibration because this 
is the result of the equation of motion and the energy balance. 

 

Figure 4.17: stability limit response at variation of friction coefficient and aero-damping 
parameters 
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(a) 

(b) 

Figure 4.18: Hysteresis loops for two values of friction coefficient µ for the LCO response (a) 
and stability limit response (b) 

Figure 4.19 shows the flutter response in terms of amplitude and frequency for the 
LCO and stability limit points by varying the normal pre-load n0 on the contact 
element (see Figure 3.32). These responses have been obtained for given values of 
aero-damping and friction coefficients. It is possible to see that the increase of the 
normal pre-load produces an increase of the amplitudes of the flutter response 
while the frequencies remain near constant. The variation of the normal pre-load 
acts in the same way of the variation of the friction coefficient, i.e. a large normal 
pre-load determines a more rigid behavior of the contact element and, as a 
consequence, the contact element needs bigger displacement amplitude to produce 
dissipative energy because of the slip state of the contact (the hysteresis loops are 
similar of those in Figure 4.18). 
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Figure 4.19: flutter response by varying the normal pre-load N0 

4.3 Bladed disk 

The system analyzed in the previous section is a very simplified model that was 
useful to understand how the flutter response depends on the various parameters 
such as the aero-damping, the friction coefficient and the normal pre-load. 
However, this model is not able to represent the dynamic behavior of a bladed 
disk, therefore a more complex lumped parameter model, characterized by a 
cyclic symmetric structure, is necessary. These structures have been deeply 
studied in the 70s by different authors such as Thomas, Wildheim and Mead [86-
89] that have analyzed their dynamic behavior. 

Figure 4.20 shows a lumped parameter model of a bladed disk where the black 
points represent the mass of the components (disk and blade), the black lines 
represent the connection between the mass while the blue lines represent the 
sectors of the bladed disk. For each sector two mass are presented, one big and 
one small, that represent respectively the mass of the sector of the disk and the 
mass of the blade. In total, 12 identical sectors have been considered.   
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Figure 4.20: Lumped parameter model of a bladed disk 

The sector of the bladed disk is illustrated in Figure 4.21: 

 

Figure 4.21: Sector of the bladed disk 

where md and mb are the mass of the disk and the mass of the blade, kd and kb are 
the respectively stiffness of the disk and of the blade, kc is the connection stiffness 
between the sectors and cd and cb are the mechanical damping always of the disk 
and of the blade. Disk and blade are modeled as two separated bodies that are 
linked together through the contact element to form the bladed disk assembly. The 
contact element is characterized by a tangential contact stiffness kt and a normal 
pre-load n0 and simulates the root-joint interface. 
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The equation of motion (4.13) is now expressed in matrix form as: 

[ ] ̈  [ ] ̇  [ ]                     (4.24) 

where [M], [C] and [K] are the mass, damping and stiffness matrices of the bladed 
disk, x is the displacements array, Fe is the array of the periodical aerodynamic 
forces due to the architecture of the engine (number of vanes and blades of the 
turbine stages), Faer is the non-linear periodical aerodynamic force array acting on 
the system depending on the blade motion and Fnl is the array of the non-linear 
forces generated by friction contacts that also depends on the blade motion x.  

The matrices [M] and [K] are the total mass and stiffness matrices of the whole 
system in Figure 4.20. They are composed by: 

[ ]  [

[ ]     

   
  [ ]   

]  

(4.25) 

[ ]  

[
 
 
 
[ ]   [ ]  [ ] 
[ ] 
 

  
  

 
[ ] 

[ ]  [ ] [ ]   ]
 
 
 

  

where [ ]    and [ ]    are the mass and stiffness matrices of a generic sector, 
while [ ]  is the connection stiffness matrix between the sectors. These matrices 
have the following structure: 

[ ]    [
   
   

]  

(4.26) [ ]    [
       

   
]  

[ ]  [
    
  

]  

The damping matrix [C] is calculated starting from the modal damping ratio using 
the equation (4.27): 
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[ ]     [  ]        [  ]     [ ]  (4.27) 

where ζm is the structural modal damping ratio, [ωn] is the matrix of the natural 
pulsations of the system and [Ψ] is the matrix of the eigenvectors of the whole 
system. The natural pulsations and the eigenvectors are obtained from a modal 
analysis of the system where the contact works in the stick condition, i.e. disk and 
blade are joined together through a spring of stiffness kt. In this condition, the 
stiffness matrix of the sector is:  

[ ]    [
            

        
]  (4.28) 

The matrices [ωn] and [Ψ], so obtained, describe the dynamic behavior of bladed 
disk. Since each sector is identical to the other, the bladed disk is said tuned and it 
is characterized by the property of cyclic symmetry. Therefore, it is possible to 
define an IBPA that represents the phase delay between a sector and its adjacent 
(eq. 2.4). The IBPA is closely linked to the nodal diameter (ND) and in cyclic 
symmetry structure it is possible to have: 

     
 

 
                

(4.29) 
     

   

 
              

Each nodal diameter is characterized by two stationary modes with the same 
shape and the same natural frequency, but with a phase of 90 degree. The 
exceptions are the ND=0 and ND=N/2 (if exists) that are characterized only by 
one stationary mode and one natural frequency. The double modes can be 
combine together to obtain two rotational modes: 

             (4.30) 

where      is the pair of rotational modes,    and    are the double stationary 
modes and i is the imaginary unit. 

For the considered lumped parameter model of bladed disk, the number of ND is 
equal to 6 and each ND has two different mode shapes; in the first mode the 
motion of disk and blade are concord while in the second mode the motion of disk 
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and blade are opposite. In the table 4.4 the natural frequencies of the system with 
the contact in stick condition are reported for the all nodal diameters. 

  Stick condition 

ND Freq 1° mode [norm] Freq 2° mode [norm] 

0 0,441 1,125 

1 0,999 11,478 

2 0,999 22,159 

3 0,999 31,334 

4 0,999 38,374 

5 0,999 42,801 

6 1 44,310 
Table 4.4: Natural frequencies of the system in stick 

condition for the all nodal diameters 

The natural frequencies by varying the nodal diameters are usually reported in a 
ZZENF diagram (Figure 4.22) where on the Cartesian axes there are the nodal 
diameters and the natural frequencies. This graphic is useful because groups 
together the different modal families.  

 

Figure 4.22: ZZENF diagram 

The modal displacements of the first modal family for the nodal diameters 0, 1 
and 6 are shown in Figure 4.23 (only the modal displacements of the blades are 
shown). It is possible to see that for ND=0 (Figure 4.23a) the blades have the 
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same modal displacements, while for ND=6 (Figure 4.23c) the blades have a 
pattern of displacements equal to ‘maximum, minimum, maximum,…’. Instead, 

for ND=1 (Figure 4.23b) it is possible to see the two double stationary modes with 
the phase of 90 degree. 

(a) 

(b) 

(c) 

Figure 4.23: Modal displacement of the blades for (a) ND=0, (b) ND=1 and (c) ND=6 
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For each mode at every nodal diameter, the aero-elastic coefficient (ζaer and ηaer) 
can be calculated (see Figure 2.10) in CFD domain. Of these values, only the 
more unstable value will be taken into account to simplify the flutter analysis. 
This choice was made because a great attention should be taken on the calculation 
of the contact forces when more unstable ND exist. This is mainly due to the fact 
that, for a real bladed disk with many sectors (usually more than one hundred), 
unstable mode shapes are characterized by ND values close to each other and 
therefore they are not multiple of each other. For this reason, the motion of the 
blade is not more strictly periodic around one rotation of the disk and as a 
consequence a simple HBM method cannot be used. A n-dimensional FFT should 
be used to consider the presence of ‘n’ unstable nodal diameters with consequence 
extension of the calculation time that becomes critical when more than two ND 
are considered. 

Since the calculation of the aerodynamic force Faer is made through the hypothesis 
of small perturbations, the RANS equations can be linearized and the vector Faer 
can be written as:  

     [  ]   (4.31) 

where [AM] is the aerodynamic matrix that includes the aero-damping (ζaer) and 
aero-stiffness (ηaer) coefficients modeling the linearized coupling between fluid 
and structure. Besides, when self-excited vibrations occur, it is usually assumed 
that the contribution of the external excitation is negligible, for this reason Fe can 
be set to zero and the equation (4.24) can be written as: 

[ ] ̈  [ ] ̇  [ ]  [  ]          (4.32) 

The aerodynamic matrix [  ] can be defined as a hysteretic damping that has 
two components: 

 the first holds the terms that define the aero-stiffness acting on the dofs of 
the blade; 

 the second holds the terms that define the aero-damping acting on the dofs 
of the blade. 

These two components are defined in the following way: 
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[    ]        [  ]   

(4.33) 
[    ]        [  ]     

i.e. the linearized aerodynamic matrix [  ] can be written as: 

[  ]   [    ]    [    ]  (4.34) 

Usually the aero-elastic coefficients (ζaer and ηaer) are given as modal ratios, 
therefore the aero-dynamic matrix [AM] can be written in the modal domain by: 

[     ]  [  ]  [  ]  [ ]  (4.35) 

where [     ] the modal aerodynamic matrix. [     ] is in general a full 
matrix that includes two types of elements, the direct-coupling terms and the 
cross-coupling terms. The firsts are placed on the diagonal of the matrix and 
describe the aero-elastic coefficients calculated for each mode shape at proper 
aerodynamic field, while the seconds are placed out of the diagonal and describe 
the aero-elastic coefficients calculated between a mode shape and aerodynamic 
fields of the other modes. In this thesis only the elements on the diagonal will be 
considered because the used aerodynamic code is not able to calculate the cross-
coupling terms. 

For these reasons the modal matrix [     ] has a diagonal form where only the 
elements of the diagonal have a value different from zero: 

[     ]  [
      

                   

   
        

                 
]  (4.36) 

In eq. (4.36) m is modal mass and ω is the natural pulsation. 

The passage from the modal form to the physical form is easy and it involves the 
inverse operation of the equation (4.35), i.e.: 

[  ]     [  ]  [     ]     [ ]  (4.37) 
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It is possible to find a correspondence between the definition of the aerodynamic 
matrix in terms of hysteretic damping and the definition of aero-damping as 
viscous damper given in the previous section. In fact, from the equations (4.34) 
and (4.35) it is possible to write the modal aerodynamic matrix as: 

[     ]   [        ]    [        ]  (4.38) 

that matched with (4.36) and applying the definition in (4.33) gives: 

[        ]  [

     
         

   
       

       

]  

(4.39) 

[        ]  [

             

   
              

]  

Usually the modal mass is equal to 1 and the terms in [        ] become equal to 
that in the equation (4.22) obtained from a definition of aero-damping as viscous 
damper. 

As made for the one dof system, the HBM is applied and the second order, 
differential Equation of motions (4.32) in the time domain can be turned into a set 
of complex, algebraic equation in the frequency domain: 

       [ ]      [ ]  [    ]  [ ]  [    ]  ̅
    

   
   

                     
(4.40) 

Since the external force is absent, the frequency of vibration of the system is not 
known at priori, therefore the energy balance equation (4.17) is alongside the 
equation of motion to have a well-conditioned problem. In this case the 
aerodynamic energy is written as: 

           (  ̅          )        (  ̅      [  ]   ̅   )  (4.41) 
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while the dissipative energy is the sum of the structural dissipative energy 
associated with the material of the bladed disk and the energy dissipated by the 
contact elements of every sector. 

                            (4.42) 

The energy dissipated by the mechanical damping of the structure is written in the 
same way of aerodynamic energy, i.e.: 

                (  ̅        [ ]   ̅   )  (4.43) 

while the energy dissipated by the contact elements is: 

           ∑    ̅ 
          ̅    

   
 

  
      (4.44) 

where  ̅ 
    is the 1st order complex relative tangential displacement of the i-th 

contact element ( ̅ 
     ̅   

     ̅   
   ) and Nc is the total number of contact 

elements (in this case is equal to the number of sectors). As happened for the 
system at one dof, the complex coefficients of the Fourier transformation have get 
to first order in the energy balance because the most quantity of energy is linked 
to this order. 

4.3.1 Result analysis 

To permit an easy convergence of the calculation, two proper tentative points are 
defined through the energy balance between the dissipative (including friction 
forces and structural damping) and the aerodynamic energy (see for example 
Figure 1.4) using respectively the equations (4.41), (4.43) and (4.44). This 
calculation is performed varying the complex modal coordinate at first order  ̅    
that multiplies the unstable mode    of the bladed disk in according with: 

 ̅     ̅        (4.45) 

The unstable mode considered is the first mode of a fixed nodal diameter. The 
other modes are not considered in this first energy balance because it is assumed 
that the main energetic contribution to flutter is only given by the unstable mode.  
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The results have been obtained for ND=2 and they are shown in Figure 4.24 for 
all the blades. The blue ‘o’ marker represents the stable solution, while the red ‘x’ 

marker represents the unstable solution. In the next figures, only the vibration 
amplitude of the blades will be plotted. 

 

Figure 4.24: Flutter response of a bladed disk 

It is possible to see in Figure 4.24 for both solutions, stable and unstable, that the 
amplitudes |x| are not equal for all blades, but that they are grouped in three 
groups, while all the blades have two different  frequencies in according with the 
type of solution (stable or ynstable). The calculated flutter response is not correct 
because, in a cyclic symmetry structure such as the bladed disk, each sector 
should be subject to the same value of amplitude of vibration at different time 
depending by IBPA. Besides, the smaller amplitudes of the stability limit response 
have about the same value of the LCO amplitude, but at different frequency and 
this does not represent a physical behavior of the bladed disk when the self-
excited vibrations occur (if the amplitude are equal also the frequency will be 
equal). 

The problem behind this result is the type of modal base taken into account to 
build the aerodynamic matrix [AM], in fact stationary modes have been used. 
Since the flutter is a circular phenomenon that presents the traveling waves in one 
direction and in the other, the right modal base should be contained rotating 
modes to be coherent with the physical phenomena. 



4.3 Bladed disk 77 

 

 

Figure 4.25: flutter response with rotating modes 

 

 

Figure 4.26: rotation of the displacement x of the blades – right: LCO solution – left: stability 
limit solution 

 

Figure 4.27: Amplitude and phase of each sector 
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(a) (b) 

Figure 4.28: Stability analysis of LCO solution (a) and stability limit (b) 

Figure 4.25 shows the flutter response in terms of frequency and amplitude with 
the utilization of the rotating modes in the modal base. Instead, Figure 4.26 shows 
the rotation of the displacements vector x of the blades. Only 6 points are shown 
for the two solutions instead of 12 because ND=2 (for example, if the nodal 
diameter have been 1, the Figure 4.26 would have shown 12 points, for ND=3 the 
points would be 4 and etc.). This response is correct, in fact the blades are subject 
to the same value of amplitude of vibration at different time depending by IBPA 
(Figure 4.27). The stability of two solutions is then checked in Figure 4.28a for 
the LCO response and Figure 4.28b for the stability limit. 

The results obtained in the frequency domain will be now compared with the 
results calculated with the DTI of the equation (4.32). Figure 4.29a shows the time 
response that reach the limit cycle oscillations. It is possible to see that after a 
transient period all the blades reach the LCO amplitude but at different time 
(Figure 4.29b), while the Figure 4.30 shows an uncontrolled vibration. In this 
case, the starting point is an amplitude bigger than the amplitude of the stability 
limit and consequently the response of the system can be only unstable. For 
completeness of the flutter analysis, the time response with the aerodynamic 
matrix [AM] built with stationary modes is shown in Figure 4.31. This figure 
shows that the blades reach three different values of LCO amplitude instead of 
one value as well as predicted by the calculation in the frequency domain.  
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(a) (b) 

Figure 4.29: Stable time response of a bladed disk (a) and zoom (b) 

 

 

Figure 4.30: Unstable time response of a bladed disk 

 

(a) (b) 

Figure 4.31: Stable time response of a bladed disk with stationary modes (a) and zoom (b) 
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Table 4.5 shows the comparison of LCO solution in frequency and time domains. 
The comparison is performed in terms of percentage error in amplitude and in 
frequency for every blade. It is possible to see that the error in frequency is equal 
for every blade, while the error in amplitude presents small difference due to 
small numerical errors occurring in the calculation. However, the error obtained 
are overall very small and this means that the approximation solution calculated in 
frequency domain is accurate.  

Blade Error in Amplitude [%] Error in Frequency [%] 

1 0,007 0,1 

2 0,006 0,1 

3 0,005 0,1 

4 0,007 0,1 

5 0,006 0,1 

6 0,005 0,1 

7 0,007 0,1 

8 0,006 0,1 

9 0,005 0,1 

10 0,007 0,1 

11 0,006 0,1 

12 0,005 0,1 
Table 4.5: comparison of results in frequency and time domains 

4.3.2 Parameter variation 

The results presented in the previous section show properties similar to those 
obtained for one dof system and this means that the flutter phenomenon for a 
bladed disk has been correctly interpreted. Now, a Parameter variation is 
performed to see if the different parameters that enter in the non-linear flutter 
analysis influence the flutter response of the system in the same way occurring in 
the one dof system. 

These parameters are: 

 aero-damping (ζaero); 
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 friction coefficient (µ); 
 normal pre-load (n0); 

Because in the lumped parameter model of bladed disk the mechanical damping 
(ζm) has been included, the influence of this parameter on the flutter response will 
be also studied. Besides, the influence on the LCO response by varying the nodal 
diameter of the system will be also analyzed in this section.  

Figure 4.32 shows how the flutter response changes at the variation of aero-
damping coefficient. The figure shows the typical trend of flutter response at 
variation of aero-damping. In fact the stable and unstable lines tend to join in one 
point. Figure 4.33 focuses the attention on the stable line at low values of aero-
damping; in this way it is possible to see that the amplitude of the response goes 
to zero by gradually reducing the aero-damping until it is equal to the structural 
damping: in this case the only solution possible is the trivial solution because the 
energy introduced by flutter is always balanced by the dissipative energy of the 
material, i.e. the system is always stable.  

  

Figure 4.32: variation of aero-damping Figure 4.33: Stable solution at low 
values of aero-damping 

As it happened before for the same analysis, the two solutions of Figure 4.32 do 
not converge at one point because the code developed has difficulties of 
convergence in proximity of the coalescence of the stable and unstable solutions. 

Figure 4.34 shows the LCO flutter response at variation of friction and aero-
damping coefficients. The value adopted for friction coefficient are those of the 
previous section, while for the aero-damping coefficient the value are ζ1 nominal 
value, ζ2=1.67 ζ1 and ζ3=2.34 ζ1. The shown trend is the same obtained in Figure 
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4.15 where one dof system was considered, i.e. the increase of friction coefficient 
produces an increase of vibration amplitude while the frequency remains constant. 
This trend depends from the behavior of the contact elements that can be more or 
less stiff in according with its friction coefficient. In fact, the amplitude of 
vibration increases due to the aerodynamic energy introduced in the system that is 
proportional to the square of the amplitude itself, until the contact changes its state 
from the stick state to the slip state and the dissipative energy is produced. This 
change of contact state depends from the friction coefficient and in particular this 
happens for smaller amplitude if the friction coefficient is small. 

 

Figure 4.34: LCO response at variation of friction and aero-damping coefficients 

In Figure 4.35 the flutter response in terms of amplitude and frequency of 
vibration for the LCO solution by varying the normal pre-load n0 that acts on the 
contact element (see Figure 3.3 of Chapter 3) is shown. Fixed values of aero-
damping and friction coefficient have been used. As it happened for the one dof 
system, the increase of the normal pre-load produces an increase of amplitudes of 
flutter response while the frequencies remain near constant. In fact, the normal 
pre-load acts on the contact element in the same way of the friction coefficient, 
i.e. it influences the behavior of the contact. An high value of normal pre-load 
means a more rigid behavior of the contact, on the contrary a low value of the 
normal pre-load means a less stiff behavior. This influences the production of 
dissipative energy in the same way described before for the friction coefficient. 
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Figure 4.35: LCO flutter response by varying the normal pre-load N0 

 

 

Figure 4.36: LCO response by varying ζmec  (ζmec,2=0.75ζmec,nom and 
ζmec,3=1.25ζmec,nom) 

Figure 4.36 shows the influence of the mechanical damping ζmec on the flutter 
response of the stable solution where fixed values of aero-damping and friction 
coefficient have been used. It is possible to see that the increase of mechanical 
damping produces a variation of LCO solutions opposite to that of aero-damping. 
This happens because a part of aerodynamic energy is always balance by the 
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structural dissipative energy while the remaining energy is balance by the contact. 
In this condition, the bladed disk sees a total viscous damping equal to: 

                       (4.46) 

that is balanced by the friction forces. Consequently, the variation of      or the 
variation of      represent the same thing. Figure 4.37 provides the comparison 
between the LCO result of the system in nominal condition (ζaer,2 & ζmec,nom) and 
the LCO result of an equivalent system where the mechanical damping is null and 
the aero-damping is given by equation (4.46). The figure shows that the two 
results are coincident because the energy balance is not change although the 
parameters are different. 

 

Figure 4.37: the comparison between result of the system in nominal condition and the result 
of an equivalent system 

Fig 4.38 shows the variation of the LCO response by varying the nodal diameter 
of the model while the values of the friction and aero-damping coefficients have 
not changed in the different simulations. It is possible to see that, by varying the 
ND unstable at flutter from 1 to 6, the LCO response is characterized by a 
reduction of amplitude and an increase of frequency. This is due to the fact that a 
bigger ND produces a stiffening effect of the disk, while the blade sees the same 
level of instability (the aero-damping is not changed). Consequently, the relative 
displacement of the contact has a slight increase in accordance with the ND and 
this is traduced in smaller amplitudes and bigger frequencies to achieve the LCO.  
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Fig 4.38: LCO response by varying the nodal diameter 

4.4 Sector of a bladed disk in cyclic symmetry 

A real bladed disk modeled at FEM has millions of degrees of freedom and this 
involves difficulties in managing the matrices and long calculation times. For this 
reason, a common practice is to study a fundamental sector of a bladed disk 
reduced in cyclic symmetry. In this section the lumped parameter model of a 
bladed disk shown in Figure 4.20 will be reduced in cyclic symmetry and then 
flutter analyses will be performed.  

The cyclic symmetry reduction can be performed in different way. In general, the 
starting point is to consider a cyclic symmetry structure that is made from N 
sectors (Figure 4.20). If ‘x’ is the vector of the physical coordinates of each 

sector, it is possible to write, for each nodal diameter of the whole system, the 
discrete Fourier transformation (DFT) of the physical coordinates as: 

 ̅    
 

 
∑    

          
     (4.47) 

where n is the nodal diameter considered, xs is the physical displacement of a 
generic sector s and IBPA is the inter-blade phase angle. The physical coordinates 
can be obtained from the inverse discrete Fourier transformation (IDFT): 

   ∑  ̅               
         (4.48) 
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Figure 4.39: general cyclic symmetry structure 

The studied bladed disk has 12 sectors that are made of 2 components which have 
one degree of freedom. Therefore, it is possible to write a reduction matrix [Tcs] 
that links the global displacements of the bladed disk to the displacements of the 
sector as: 

  [   ] {
     

     
}  [   ]      (4.49) 

where     is the vector of dofs of the sector reduced in cyclic symmetry (      and 
      are respectively the dof of the disk and dof of the blade). The matrix [Tcs] 
can be written in according to the equation (4.47) as: 

[   ]  

[
 
 
 
 
 
 

  
  

        
        

 
             

             ]
 
 
 
 
 
 

  (4.50) 

The equation (4.49) is substituted in the equation of motion (4.32) to obtain the 
reduced matrices in according to the equations (3.2) of the Chapter 3. The 
equation of motion (4.32) becomes: 

[   ] ̈   [   ] ̇   [   ]    [    ]                 (4.51) 
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where [   ], [   ] and [   ] are the mass, damping and stiffness matrices, 
[    ] is the aerodynamic matrix and           is the vector of non-linear forces. 
All these elements are reduced in cyclic symmetry, i.e. they depend on a 
determined ND, and have a dimension 2x2 for the matrices and 2x1 for the 
vectors. 

The modal analysis of the cyclic symmetry sector allows to calculate the 
eigenvalues [     ] and the eigenvectors [   ] of the system for a given nodal 
diameter. To be coherent with the flutter analysis made in the previous section, 
the chosen ND is equal to 2. The results of modal analysis are: 

 Freq. CS / Freq. BD 

1° mode 1 

2° mode 1 

Table 4.6: ratio of natural frequencies between the 
system in cyclic symmetry (CS) and the full 

bladed disk (BD) 

 

1° mode eigenvector 2° mode eigenvector 

-7,48e-5 -1.73 

-3.73 1.62e-4 

Table 4.7: eigenvectors of the system reduced in 
cyclic symmetry 

Table 4.6 shows the ratio of the natural frequencies between the system reduced in 
cyclic symmetry and the full bladed disk. It is possible to see that the ratio is equal 
to 1, i.e. the frequencies are the same. Table 4.7 shows, instead, the modes shape 
of the reduced system with the contact in stick condition. The mode shapes of two 
systems are equal, in fact the first mode has concord displacements for the blade 
and the disk, while in the second mode the displacements are opposite. However, 
to compare the eigenvectors of two systems, the reduced eigenvectors should be 
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expanded; in this way it is possible to see the trend in the space of the 
displacements on the whole system. The expansion is performed using the 
following equation: 

[   ]  [   ][   ]   (4.52) 

where [   ] is the matrix of the expanded eigenvectors. These eigenvectors are 
rotating because the IBPA has been imposed in the construction of the matrix 
[TCS]; therefore, the comparison will be made with the rotating modes of the full 
system. If the ratio between the two modes (expanded and full) is calculated, it is 
possible to obtain for the first mode shape: 

   
‖     ‖

‖  ‖
       √    (4.53) 

that represents the classical relationship between the two modes. The same value 
is found for the second mode shape. The value of √  is obtained due to the mass-
normalization of the modes. In fact, the modes of the full system and those of the 
reduced system are mass-normalized; however, the first are normalized 
considering the mass of the full system, while the second are normalized 
considering the mass of the sector. Consequently, the expanded modes consider N 
times the mass of the sector and √  is the factor to mass-normalize these modes. 

The reduced aerodynamic matrix [    ] can be directly obtained in this form 
without any reduction; in fact, for the single sector it is possible to write: 

[        ]  [
      

                  

       
                 

]  (4.54) 

where [        ] is the reduced modal aerodynamic matrix. The equation (4.37) 
is still valid, but the modal base used is that obtained in cyclic symmetry, i.e.:  

[    ]     [   
  ]  [     ]     [   ]  (4.55) 

Since the flutter analysis is performed in this thesis in the frequency domain, the 
HBM is applied to the equation of motion (4.51) that becomes: 
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(      [   ]     ([   ]  [       ])  [   ]  [       ]) ̅  
   

 

      
   

                
(4.56) 

The equation of energy balance (4.42) is still used together the equation (4.56) to 
get a well-conditioned problem. The energy equations are those of the full bladed 
disk, but they are expressed in the cyclic symmetry form, i.e.: 

           (  ̅  
   

   [    ]   ̅  
   

)  (4.57) 

                (  ̅  
   

     [ ]   ̅  
   

)  (4.58) 

              ̅               
       (5.59) 

where  ̅    is the 1st order complex relative tangential displacement of the contact 
element ( ̅     ̅ 

     ̅ 
   ).  

4.4.1 Result analysis 

The initialization of the flutter analysis has made through the calculation of two 
initial tentative points that represent the equilibrium points of the energy balance. 
Since the first mode of the reduced system is considered unstable, the main 
energetic contribution at flutter will be given by this mode therefore the energy 
balance will be performed varying the first modal coordinate amplitude  ̅  

    that 
multiplies the first unstable mode       in according with the equation (4.45).  

To compare the results of the reduced system with those of the full system, the 
flutter analysis has been performed with the same parameters. Figure 4.40 shows 
the flutter analysis of the reduced system where the blue ‘o’ marker is the LCO 
solution, while the red ‘x’ marker is the stability limit solution. The solution 
obtained is coherent with the other types of analyses performed before, in fact the 
stable solution presents LCO a big frequency and a small amplitude of vibration; 
while, the unstable solution has a small frequency and a big vibration amplitude. 
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Figure 4.40: Flutter response of a bladed disk in cyclic symmetry 

The stability of two solutions is check in Figure 4.41a for the LCO response and 
Figure 4.41b for the stability limit. 

(a) (b) 

Figure 4.41: Stability analysis of LCO solution (a) and stability limit (b) 

The obtained results in Figure 4.40 are now compared with the results calculated 
in Figure 4.25 in terms of frequency and amplitude of vibration. This comparison 
is made in Figure 4.42 where it is possible to see a good match between the flutter 
results of the reduced system (‘o’ marker) and those of the full system (‘x’ 

marker). The figure shows a small difference in the stability limit point due to the 
numerical errors occurring in the calculation. In this case the saved computation 
time is so small that no difference is highlighted because the system is very 
simple; however, it is sufficient to increase the number of sectors from 12 to real 
number of sectors of a bladed disk to see a great saving of computation time (table 
4.8). In general, the velocity of the non-linear calculation depends on the number 
of non-linear degrees of freedom because the Newton-Raphson method needs 
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more iteration to find the displacements that give a residual equal to zero. This 
saving of time becomes important when only a sector of bladed disk is simulated 
because there is a great reduction of number of non-linear dofs to calculate (non-
linear dofs of sector and not of the whole structure).  

 

Figure 4.42: Comparison between the flutter results of the reduced system (RS) and those of 
the full system (FS) 

 

 

 Time [sec] 

Full 1 

Cyclic symmetry 150 

Table 4.8: Computation time of a 
bladed disk with 112 blades 

The obtained results in the frequency domain with the reduced system will be 
compared with the results calculated with the DTI of the equation (4.51). Figure 
4.43 and 4.44 respectively show the time response that reach the limit cycle 
oscillations and the uncontrolled response of the system. These responses have 
been obtained with two different boundary conditions, in according with the 
energy balance.  
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Figure 4.43: Stable time response of a 
bladed disk 

Figure 4.44: Unstable time response of a 
bladed disk 

At last, the comparison of the LCO solution is made in the table 4.9 in terms of 
percentage error in amplitude and in frequency. It is possible to see that the both 
the errors are very small, i.e. the solution of equation of motion in frequency 
domain produces accurate results. 

Error in Amplitude [%] 0.1 

Error in Frequency [%] 0.001 
Table 4.9: Percentage error between frequency domain 

and time domain 

4.5 Conclusion  

In this chapter the study of the flutter behavior for different lumped parameter 
models has been analyzed. From the discussion of the results obtained by Griffin 
and Sinha which have been replicated in the first section, the author has developed 
a methodology to study the flutter phenomena on different systems. For all 
systems taken into account the aero-damping parameter has been fixed a priori 
and interpreted as a viscous negative damping. Besides, the external force due to 
the engine order excitation have not been considered, i.e. only the self-excited 
vibration have been studied. This allowed to use a one-way method based on the 
resolution of the equation of motion in the frequency domain together with the 
energy balance to have a well-conditioned problem. The aerodynamic is therefore 
included in the equation of motion.  

The three analyzed systems have the same dynamic behavior (the first mode, that 
is considered unstable, has the same mode shape) and the results show similar 
trend that are in accordance with those of Griffin and Sinha. In particular, the 
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flutter analysis presents two solutions, one stable at low amplitude and bigger 
frequency, and one unstable at big amplitude and lower frequency. The Parameter 
variation shows that the behavior of the contact has a great influence on the final 
result because of the quantity of dissipative energy that can balance the 
aerodynamic energy. 

The method developed can be easily extended to a real model of a blade or a 
bladed disk because the definition of the aerodynamic matrix that contains the 
aero-damping and aero-stiffness coefficients depends on the dynamic behavior of 
the system in terms of modal analysis. This feature will be addressed in the next 
chapter. 



  

Chapter 5 

Flutter analysis of a bladed disk 

In this chapter, the flutter analyses will be performed on a FE model of a bladed 
disk developed by GE Avio Aero inside the regional project Great-2020 phase 2 
promoted by Piedmont region. The method proposed for lumped parameter 
models is extended to analyze a real sector of a bladed disk and the same 
parameters, used in the Chapter 4, have applied in the sensitivity analyses to see if 
their effects on a bladed disk are similar in terms of typical trends.  

Two different approaches have been developed: 

 a physical approach; 
 a modal approach. 

The first approach is based on the reduced matrices of mass and stiffness obtained 
by a CMS-CB reduction; while in the second approach a modal reduction is 
performed. For the physical approach, before to analyze the bladed disk, the 
blade-alone configuration will be studied to understand the effect of the flutter 
phenomenon on no cyclic symmetry structures. 

5.1 Model and case study 

The analyzed FE model of a bladed disk is that of the regional project Great-2020. 
The sector is illustrated in Figure 5.1 and it is composed of six components: the 
blade, the bar, the disk, the cone-shaft and two retainer rings. From this point to 
the end of the thesis, the assembly blade and bar will be generally called blade, 
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while the assembly disk, cone-shaft and retainer rings will be generally called 
disk. The studied bladed disk is characterized by a dove-tail attachment that will 
have an important role in the flutter analysis. In fact the system will be studied in 
tip free condition, i.e. the only source of damping, beyond the mechanical 
damping of the material, will be produced at root joint through the application of 
contact elements. 

 

Figure 5.1: CAD model of Great-2020 bladed disk 

The dynamic behavior of the bladed disk is reported in the ZZENF diagram (Zig-
zag shaped excitations in nodal diameters versus frequency) in Figure 5.2 where 
the trends of the first three modal families by varying the nodal diameters are 
shown. It is possible to see that these three modes are well separated and reach a 
constant value of natural frequency for high values of ND. The mode shapes of 
these three modes are plotted in Figure 5.3a, 5.3b and 5.3c. They are respectively 
classified as the first flap mode, the first edge wise mode and the first torsional 
mode. 
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Figure 5.2: ZZENF diagram of the bladed disk 

 

(a) (b) (c) 

Figure 5.3: mode shapes of the first three modes – (a) flap mode; (b) edge wise mode and (c) 
torsional mode 

These modes have been analyzed at flutter using the aerodynamic code LARS 
developed by the Department of Industrial Engineering of University of Florence 
[30] that is used by GE Avio Aero. The aerodynamic flutter analysis shows that 
only the first flap mode is unstable at flutter while the other modes are stable. The 
trends of the aero-damping (ζaer) and aero-stiffness (ηaer) coefficients are reported 
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in Figure 5.4. The aero-damping shows a minimum negative value for positive 
values of ND. This value can be considered the worst condition because the 
aerodynamic energy introduced in the system is maximum, i.e. it represents the 
most unstable condition of the bladed disk. For this reason, the bladed disk will be 
analyzed at flutter taken into account the value of ND that gives the minimum 
value of aero-damping.  

(a) (b) 

Figure 5.4: aero-damping (a) and aero-stiffness (b) parameters at variation of ND 

Fig 5.5 shows the aero-damping density on the airfoil for the value of ND that 
gives the minimum value of aero-damping. It is possible to see that the blade has a 
distribution of aero-damping that is stable in the tip and in the middle of the 
suction side, while the pressure side is overall unstable with a pick in the root of 
the airfoil. 

 

Fig 5.5: aero-damping density for the value of ND with the minimum value of aero-damping – a) 
pressure side, b) suction side (the scale is normalized) 
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5.2 Contact stiffnesses determination at the blade root 
joint 

To perform the aero-elastic analysis, the bladed disk sector will be modeled as 
two distinct FE models with Ansys software where the blade is initially 
unconstrained. The connection between the blade and the disk is done in the root 
joint that is characterized by a dove tail attachment. In particular, the attachment 
will be made by node-to-node contact elements that are characterized by contact 
stiffnesses. 

The values of the contact stiffnesses used in the contact model are calculated 
according to the utilization of contact wizard tool in Ansys software. In detail, a 
subpart of the blade root and disk slot was selected (Figure 5.6) and modeled at 
FEM (Figure 5.7). The elements CONTA174 and TARGE170 are applied on the 
contact surfaces and solved with a pure Lagrange method that allows to analyze 
the state of the contact without the utilization of the contact stiffnesses. To realize 
this calculation a fine mesh on the contact surfaces should be defined. Also proper 
constraints should be applied on the selected subpart of the root joint to guarantee 
a right behavior of the model and to keep in contact the two contact surface during 
the calculation. In particular on the left and right surfaces the tangential 
displacements are prevented to simulate the remaining part of the bladed disk, 
while in the bottom surface the three degrees of freedom are unable to simulated 
the rigid constraint of the shaft. Instead, on the top surface, a finite displacement δ 
is applied to allow a controlled displacement of the contact surfaces.  

The utilization of the lagrangian method has been also chosen for the geometry of 
the contact. In fact, the common methods in literature (for example the [74]) 
calculate the contact stiffnesses through a separation of the normal and tangential 
problems. However, the geometry of the root joint does not allow to divide the 
influence of the normal displacement from the influence of the tangential 
displacement due to the slope angle of the contact (Fig. 5.8). 
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Figure 5.6: selection of the subpart of the root joint for the contact stiffnesses calculation 

 

 

Figure 5.7: FE model of the subpart of the root joint for the contact stiffnesses calculation with 
definition of the constrains (green line tangential displacement unable; yellow line 3 dofs unable) 

and the finite displacement δ (red line) applied 
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Figure 5.8: blade root geometry 

A small value of δ displacement is applied and a non-linear static analysis is 
performed. The results obtained in terms of state of the contact and pressure 
distribution are presented respectively in Figure 5.9 and 5.10. It is possible to see 
that the contact is always in the slip state, while the pressure has a right 
distribution; in fact along the principal direct of slipping the pressure is 
concentrated at the borders of the contact surface. Since the contact is in the slip 
state, the tangential contact stiffness in this state has a value minor than the value 
that it would have in stick condition. For this reason, different calculations with a 
smaller value of displacement δ has been performed. However, the state of the 
contact is always slip. This happens due to the geometry of the contact that has an 
angle αcont of inclination of the contact surface bigger than 45 degree (see Fig. 5.8 
for definition of αcont). In fact, if a linear behavior is supposed, it is possible to 
write: 

  

  
 

  

  
            (5.1) 

where δT and δN are the decomposition of displacement δ in the tangential and 
normal directions, while FT and FN are the tangential and normal contact forces. 
Besides, the state of the contact is characterized by the slip condition that involves 
the following relationship: 

  

  
    (5.2) 
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If the results of the equations (5.1) and (5.2) are compared, the tangent of       
will be always bigger than friction coefficient µ and consequently the state of the 
contact can be only in the slip condition. 

 

Figure 5.9: contact state 

 

Figure 5.10: pressure distribution on the contact surface 

To calculate the real value of tangential contact stiffness, two ways are possible: 
chose a non-physical value of friction coefficient µ bigger than tan(αcont) or start 
from the deformation solution with the contact in slip condition and suppose an 
unload of the contact. Both case has been analyzed and the stick condition has 
been reached. In the first case the ratio     ⁄  will be always minor than friction 
coefficient (however this is not representative of a physical behavior); while in the 
second case an unload of the contact from the slip condition can only produce a 
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stick behavior (see in Figure 5.11 the red circle on a hysteresis loop of contact 
model where the unload of the contact from slip state occurs). 

 

Figure 5.11: hysteresis loop of contact model 

The second case has been chosen for the calculation of contact stiffnesses because 
it is physically correct. Figure 5.12 shows the contact is in stick condition, while 
the distribution of pressure is shown in Figure 5.13. More interesting is to see the 
color map of normal (Figure 5.14) and tangential (Figure 5.15) displacements 
around the contact surface. In fact, from these two figures, it is possible to see 
how the contact, beyond a normal displacement that is near constant, presents also 
a rotation. This behavior is highlighted in Figure 5.15 where it is shown a non-
constant distribution of tangential displacements. 

The contact stiffnesses can now be calculated as gradient of the unload curve 
(green line in Figure 5.9) by the following equations: 

   
   

  
 

                

            
  

(5.3) 

   
   

  
 

                

            
  

where the forces and the displacements are the differences between their values in 
slip state and their values in stick state. The values of Fz and Fx are identified as 
total reaction forces on the contact surfaces in the local reference system of the 
contact, while the displacements are obtained as difference of the mean value of 
displacements of the elements in the two yellow boxes shown in Figure 5.15: 
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(5.4) 
                          

                       

                          

These boxes have been chosen because they are placed in two areas away from 
the contact where the local deformations of this can be neglected. However, the 
selection of these areas have been made arbitrarily and consequently they are 
subject a certain level of uncertainty. 

 

Figure 5.12: contact state 

 

Figure 5.13: pressure distribution on the contact surface 
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Figure 5.14: normal displacement near the 
contact surface 

Figure 5.15: tangential displacement near the 
contact surface 

 

 

Figure 5.16: areas for the definition of displacements to use in the calculation of ‘delta’ 

displacements 

5.3 Physical Approach 

The physical approach for the calculation of the LCO response is based on the 
ROM of the mass and stiffness matrices of the bladed disk. This approach works 
with the physical coordinates of the system and the results are the frequency and 
the amplitude of flutter vibrations. 
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The physical approach is applied to two configurations: 

 the blade-alone; 
 the bladed disk. 

In the first case of study, only the blade is analyzed and as a consequence the 
cyclic symmetry is not considered, while in the second case the blade-disk 
assembly is analyzed with the cyclic symmetry hypothesis. 

5.3.1 Blade-alone 

The first case analyzed is that of the blade-alone. In this configuration the disk is 
considered infinitely stiff, i.e. the cyclic symmetry is not considered. This 
hypothesis can be considered valid because the minimum (negative) value of 
aero-damping that represents the worst condition at flutter (instability) is 
associated to a high value of nodal diameter (see Figure 5.17) where the mode 
shape is blade dominated.  

 

Figure 5.17: natural frequencies of the first modal family associated to the aero-damping by 
varying the ND. 

To validate the hypothesis of an infinitely stiff disk, it is important to verify the 
difference of the natural frequencies and mode shapes between the blade-alone 
configuration and the bladed disk. This is made in the Figure 5.18 and 5.20, where 
the eigenvalues and the MAC between the two configurations are respectively 
shown. The MAC number is the Modal Assurance Criteria and it is defined as: 
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 {   }  {   }  

 {   }  {   }  {   }  {   } 
  (5.5) 

where     and     are respectively the mode shapes of the blade-alone 
configuration and the bladed disk. The MAC is a parameter that indicates how 
much two modes are similar each other, i.e. the MAC number compares the shape 
and not the absolute value of the deformed shape. It can assume a value between 0 
and 1, where 0 indicates that the two modes are completely different while 1 is the 
opposite, i.e. the two mode shapes are the same. 

Figure 5.18 compares the natural frequencies of the blade-alone and bladed disk. 
It is possible to note that the frequencies of the blade-alone configuration are 
bigger than the natural frequencies of those of the bladed disk (the mass of the 
blade-alone is lower than the mass of the bladed disk because there is not the disk, 
and the structure is more rigid due to the lack of a flexible disk) with an error 
smaller than 5% for the most part of the modes. The exceptions are found for the 
modes eight, twelve and fifteen (see Figure 5.19). These errors are acceptable 
because the natural frequencies of these modes are away by the flutter conditions 
(only the first mode is unstable). 

In Figure 5.20 the MAC number for the first 15 modes (direct comparison – 1st vs. 
1st, 2nd vs. 2nd, etc.) is reported and shows that the most part of the modes have a 
MAC bigger than 0.9, i.e. they are very similar each other. However, it is possible 
to note that there exist modes with a MAC number smaller than 0.9; these modes 
are the eighth and the eleventh, they have a MAC number around 0.85, and the 
modes fourteen and fifteen have a value of MAC near to zero, i.e. these two 
modes in the two configurations are different. Since these modes are modes at 
high frequencies, they do not influence the dynamic behavior of the blade in the 
flutter condition because this phenomenon is dominated, in this case of study, by 
modes at low frequencies.  

Figure 5.21a and 5.21b show the MAC of all combinations of the 15 modes and 
not only the direct comparison. From the figure 5.21a it is possible to note that the 
modes 14 and 15 of the blade-alone configuration are more similar respectively at 
modes 13 and 14 of the bladed disk instead of the equivalent modes, while it is 
not possible to say anything about the mode 15 of the bladed disk because the 
mode 16 of the blade alone was not calculated. 
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Figure 5.18: comparison of natural frequencies 
between blade-alone and bladed disk 

Figure 5.19: error of natural frequencies between 
blade-alone and bladed disk 

 

 

Figure 5.20: Direct MAC number between the modes of blade-alone and bladed disk 

 

(a) (b) 

Figure 5.21: MAC number of the all combination of modes between blade-alone and bladed disk 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

Modes

Er
ro

r [
%

]



108 Flutter analysis of a bladed disk 

 
The calculation of the eigenvalues and eigenvectors was performed with the blade 
root joint fixed; for the blade-alone configuration this means that the nodes on the 
contact surfaces have been constrained in the three dofs while for the bladed disk 
the matching nodes on the contact surfaces of the blade and disk have been 
merged together. In this condition the blade root joint cannot produce dissipative 
energy because the relative displacements at the contact do not exist and as a 
consequence the LCO calculation is impossible. To allow the LCO calculation the 
blade root joint may be able to slip but also to simulate the stick condition. This 
can be modeled using the contact elements that link the blade with the ground in 
the case of the blade-alone configuration (see Figure 5.22). To model a 3D 
contact, two orthogonal 2D contact elements with the same value of normal 
contact stiffness, normal displacement and normal pre-load are used. In this case, 
the relative displacement of the slider of the contact is equal to the absolute 
displacement, i.e. 

            (5.6) 

where u is the relative displacement and    is the displacement of the contact 
nodes of the blade. 

 

Figure 5.22: contact element for the blade-alone root joint 

Since the value of the stiffnesses is limited and chosen equal to the values 
calculated in the section 5.2, the comparison of the dynamic behavior between a 
blade with fixed contact and the same blade with the contact elements should be 
similar but not equal. The differences in term of natural frequencies and mode 
shapes are reported in Figure 5.23 and 5.25. Figure 5.23 shows the trend of the 
natural frequencies of the system in the two conditions (fixed contact and contact 
elements). It is possible to see that the model with the contact elements has 
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smaller frequencies for every mode and this is correct because the contact is less 
stiff due to a finite value of the contact stiffnesses. In general, the error between 
the two configurations is smaller than 3.5% (Figure 5.22). Instead, Figure 5.25 
shows the direct MAC number (1st vs. 1st, 2nd vs. 2nd, etc.) between the first 15 
mode shapes of the blade in the two conditions and it is possible to note that for 
all the modes the value of the MAC is near to 1, i.e. the modes are very similar. 

  

Figure 5.23: comparison of the natural 
frequencies for the blade-alone between fixed 

contact and contact elements 

Figure 5.24: error of the natural frequencies of 
for the blade-alone between fixed contact and 

contact elements 

 

 

Figure 5.25: direct MAC number between the modes of the blade-alone case with fixed contact 
and contact elements 

After checking the hypothesis of the disk infinitely stiff, the FE model of the 
Great-2020 blade has been reduced with the CMS-CB technique to have an 
acceptable number of dofs and usable from a normal personal computer. The 
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 all the nodes in the contact surfaces of the blade root joint; 
 15 accessory nodes that describe the airfoil motion; 

The slave modes taken into account are 30. The reduction was performed with the 
body in free condition, i.e. no constrains are included because the contact 
elements will be simulated in MatLab. However, the effect of the centrifugal force 
was taken into account to have a better approximation of the physical behavior of 
the system in the real working condition. 

The reduced mass and stiffness matrices have been imported in MatLab where the 
contact elements have been added in stick condition to evaluate the approximation 
errors due to the reduction. Figures 5.26, 5.27 and 5.28 show respectively the 
comparison of the natural frequencies, the errors of the natural frequencies and the 
MAC between the modes of the whole system and those of the reduced system. It 
is possible to note from Figure 5.26 and 5.27 that the natural frequencies of the 
reduced system are equal to those of the full system (the errors are smaller than 
1%), while from the Figure 5.28 the MAC shows that the modes are the same. The 
errors in Figure 5.27 are negative because the frequencies of reduced system are 
slightly larger than the frequencies of the full system and this is due to the fact 
that a reduction techniques generally produces a stiffer system. 

  

Figure 5.26: comparison of the natural 
frequencies of the blade-alone between full and 

reduced systems 

Figure 5.27: error of the natural frequencies of 
the blade-alone between full and reduced 

systems 
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Figure 5.28: direct MAC number between the modes of blade-alone of the full and reduced 
systems 

The reduced mass and stiffness matrices that are used to build the damping matrix 
[C] and linearized aerodynamic matrix [  ] on the base of the equations (4.27) 
and (4.37) of the previous chapter, where modal ratios ζm, ζaer and ηaer have been 
used to assembly the modal matrices. The used eigenvectors [ ] are those of the 
system with the contact in the stick condition because these are very close to the 
dynamic behavior of the blade under the flutter condition. From the linearized 
aerodynamic matrix [  ] it is possible to derive the aero-damping and aero-
stiffness matrices ([    ] and [    ]) from equations (4.33). The equations of 
motion in the frequency domain to solve is: 

       [ ]      [ ]  [    ]  [ ]  [    ]  ̅
       

   
         

       
(5.7) 

As for the lumped parameter models, the frequency of the flutter vibration of the 
system is unknown, therefore the energy balance equation (4.17) must be taken 
into account together with the equations of motion to have a well-conditioned 
problem. Equations (4.41), (4.43) and (4.44) are used for the energy balance, 
where the parameter Nc in the equation (4.44) is the total number of contact 
elements that is equal to twice the contact nodes (every contact node is 
characterized by two 2D contact elements). 

Since the reduced matrices [M] and [K] describe a free system (no constraints 
applied during the reduction), to facilitate the convergence of the calculation a 
proper tentative solution is defined through the energy balance between the 
dissipative and the aerodynamic energy. This calculation is based on the mode 
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shape of the unstable mode, that in this case of study is the first flap mode, by 
varying a complex modal coordinate (see equation (4.45)). The intersection of the 
two energies give the tentative solution that will be near to the solution. 

5.3.1.1 Parameter variation 

The ROM of the blade is used to compute the LCO points together with the 
linearized aerodynamic matrix, similarly to what has been done for the lumped 
parameter models. A Parameter variation is performed to see if the different 
parameters in the non-linear flutter analysis influence the flutter response of the 
system similarly to the lumped parameter models. 

These parameters are: 

 aero-damping (ζaero); 
 aero-stiffness (ηaero); 
 friction coefficient (µ); 
 normal pre-load (n0); 

where the aero-stiffness coefficient is now considered. 

Since the root joint has a slope angle, the distribution of the normal pre-load on 
the contact surfaces is not uniform, but depends on the boundary conditions. 
However, to simplify the Parameter variation in this case and the future case of 
study with the bladed disk, a uniform distribution of normal pre-load was initially 
considered. To obtain this distribution, the blade is considered rigid and an 
equilibrium equation along the radial and circumferential directions is analytically 
solved in order to find the global left and right normal pre-loads that act on the 
contact nodes according to eq. (5.8): 

   
  

                              
  (5.8) 

where       is the slope of the contact surface, Ncont is the number of contact 
element and Fc is the centrifugal force. In Figure 5.29 the simplified distribution is 
shown where z is the axial direction parallel to the length of one contact and y is 
the direction parallel to the width of the contact for one root side (see Figure 
5.30). In this calculation the tangential global contact loads T acting on the two 
sides are assumed to be proportional to the normal load by means of the 
Coulomb’s limit T=μN.  
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Figure 5.29: uniform distribution of the 
normal pre-load n0 

Figure 5.30: blade root geometry 

The LCO is calculated by varying the value of the negative aero-damping 
coefficient and the friction coefficient. In the next figures the friction coefficients 
are indicated with the nomenclature μ1 (nominal value), μ2 = 2.5μ1 and μ3 = 3.5μ1, 
while the aero-damping coefficient is indicated with ζ1, ζ2 and ζ3 (ζ1 will be 
considered the nominal value, ζ2=1.36 ζ1 and ζ3=1.6 ζ1). It must be noted that the 
normal pre-load depends on the friction coefficient according to the equation 
(5.8). As a consequence, the normal preload decreases if the friction coefficient 
increases. The general tendency of a contact to slip or stick can be represented by 
the Coulomb’s limit that defines the transition between the stick and the slip state. 
Since the Coulomb’s limit      is equal to the normal pre-load multiplied by the 
friction coefficient, it can be noted that the Coulomb’s limit increases as the 

friction coefficient increases; in fact, by manipulating equation (5.8), it can be 
obtained:  

     
   

           
  (5.9) 

LCO results are shown in Figure 5.31. It is possible to see that, for a given value 
of the friction coefficient, the amplitude of the LCO calculated at the tip of the 
blade increases when the absolute value of the negative aero-damping increases 
(see for example the three grouped markers). On the contrary, the LCO frequency 
decreases. These results are consistent with expectations since the more the 
energy introduced by flutter on the blade, the higher the vibration amplitude to 
dissipate an equivalent amount of energy by friction to achieve the LCO 
equilibrium. At the same time, the LCO frequency decreases since the blade root 
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joint is less rigid when the amount of slip increases. If the value of the friction 
coefficient increases for a given value of the aero-damping coefficient (see for 
example the blue markers), the LCO amplitude increases while the LCO 
frequency remains near constant. Even in this case results are consistent with 
expectations since the higher the friction coefficient, the higher the amplitude to 
let the contact slip in order to dissipate the same amount of energy required for the 
LCO.  

 

Figure 5.31: LCO amplitude by varying the aero-damping 
coefficient and the friction coefficient 

The results plotted in Figure 5.31 show the response of the system in terms of 
frequency and amplitude, but they do not give information about the deformation 
of the blade. This information can be obtained comparing the real deformation of 
the blade in flutter condition with the modes of the system using the MAC 
number. For all the points of Figure 5.31 the MAC number between the real 
deformation and modes of the blade are equal to zero with exception of the first 
value that is equal to 0.99, i.e. the predominant mode is only the unstable mode. 
This equality can be better seen in Figure 5.32 where the the first mode shape 
(left) and the flutter deformed shape (right) are reported. 
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(a) (b) 

Figure 5.32: deformation of the blade: a) mode shape, b) flutter deformation 

A better detailed trend of the LCO is shown in Figure 5.33 where both amplitude 
(above) and frequency (below) are plotted with respect to the aero-damping 
coefficient. In particular, the amplitude of the response goes to zero by gradually 
reducing the aero-damping until it is equal to the structural damping: in this case 
the only solution possible is the trivial solution because the energy introduced by 
flutter is always balanced by the dissipative energy of the material, i.e. the system 
is always stable. On the contrary, the LCO can be found for a maximum value of 
the aero-damping coefficient after which the blade response is always unstable. 
This result agrees with the results obtained by Griffin in [58] for one dof dynamic 
system and in general with the results obtained in Chapter 4.  

 

Figure 5.33: LCO amplitude and frequency by varying 
the aero-damping parameter 
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The value of the normal pre-load depends on the centrifugal force. It is possible to 
see a linear relationship between the LCO amplitude (upper figure) and the 
normal preload, while the corresponding frequencies (lower figure) remain 
constant by varying n0 (Figure 5.34). This result is in accordance with the results 
presented by Petrov in [60] and with the results obtained in the previous chapter. 
Finally, Figure 5.35 shows the LCO amplitude when the value of the aero-
stiffness is varied of the same amount as the aero-damping coefficient. It is 
possible to see that the effect of the aero-stiffness acts only on the frequency of 
the response and not on the amplitude; in particular, the LCO frequency increases 
as expected if the aero-stiffness value increases. This happens because the aero-
stiffness is a parameter that quantifies the additional stiffness due to the 
aerodynamic flow. This effect can be seen mathematically observing the modal 
aero-stiffness matrix of equation (4.39); in fact, the general component of the 
matrix is: 

[              ]       
                          (5.10) 

where    is the modal mass,   
  is the square of the natural angular frequency and 

N is the total number of dofs. Since the modal mass is usually equal to 1 and        
is a critical modal ratio always positive, it is easy to see that the system has an 
increase of the natural frequencies equal to the equation (5.10). In fact, by 
considering only the modal stiffness matrices of equation of motion it is possible 
to see that: 

[          ]  [              ]    
                               (5.11) 

However, observing the values in Figure 5.35, the frequency variation is less than 
1% and it can be still considered negligible; for this reason, the aero-stiffness 
parameter is generally not considered as important as the aero-damping 
coefficient for the determination of the LCO. 
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Figure 5.34: linear relationship between the 
Limit Cycle amplitude and frequency, and the 

normal pre-load 

Figure 5.35: LCO response by varying the aero-
stiffness parameter for three different friction 

coefficients. 

5.3.1.2 Comparison with DTI 

The direct time integration (DTI) is the best effective method to solve the non-
linear equation of motion because it gives the right solution of the problem, but it 
involves a very long calculation time. For this reason, the presented frequency 
method has been developed. However, to understand if the frequency method is 
effective to calculate the right LCO of the system, it has been compared with DTI. 

The model used in this section slightly differs from the one used for the Parameter 
variation. In particular, a simplified model of the blade was considered to reduce 
the computation time and improve the stability of the time integration. This model 
has eight contact points, four on the left and four on the right contact surfaces 
instead of using all the nodes on the two surfaces. 

Since the model is changed, a calculation in the frequency domain is first 
performed to see if the flutter behavior of the blade has a different trend. It is 
possible to see from Figure 5.36 that the trend of the flutter response of the 
simplified system is similar to the trend shown in Figure 5.31 where the “full” 

reduced system has been analyzed. From the different combinations of aero-
damping and friction coefficient, the parameters of the central point (red ‘o’ 

marker) has been chosen and a time integration of the equation of motion was 
performed. 
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Figure 5.36: LCO flutter response of the 
simplified system in the frequency domain 

Figure 5.37: flutter response of the simplified 
system in the time domain 

Figure 5.37 shows the result of the DTI of the equation of motion in the presence 
of contact elements and negative aero-damping. It is possible to see that, after a 
transient period, the response of the system becomes periodic with a constant 
amplitude. This state describes the LCO. These responses in the time domain have 
been used to compare the results obtained in the frequency domain and so to 
evaluate the effectiveness of the frequency based method. Table 5.1 shows the 
percentage errors in amplitude and in frequency between time and frequency 
responses for a given set of aero-damping and friction coefficients. The frequency 
response was obtained considering only the first harmonic of the Fourier series 
and it is possible to note a good match between the frequency values of the two 
responses, but a significant error in amplitude (10%). It is important to note the 
difference between the comparison ‘frequency vs. time’ methods made for the 
lumped parameter models and for the blade-alone case, in fact in the first case the 
error can be considered equal to zero, while now it cannot be considered 
negligible as well. This effect is mainly due to the complexity of the blade-alone 
model compared to the lumped parameter models, and in particular the 
complexity of the contact region. 

Error in amplitude 10.2% 

Error in frequency 0.8% 

Table 5.1: Comparison time vs. frequency (1st harmonic) 
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The comparison between the frequency and the time responses shown above has 
been made by considering only the first term of the Fourier series (1st harmonic) 
and not the higher terms. If these terms are considered in the solution of the flutter 
equations (equation of motions plus energy balance) in the frequency domain, the 
flutter response will change. The results are reported in Figure 5.38, where it is 
possible to note that the increase of the number of the harmonics (the hth term of 
truncation of the Fourier series) produces a reduction of the LCO amplitude, while 
the frequency remains near constant. The reduction of the LCO amplitude 
produces a reduction of the error in amplitude until a value of error of 4% (see 
table 5.2) that can be considered acceptable. Instead the error in frequency 
remains constant. The introduction of n-harmonic produces a reduction of LCO 
amplitude because the aerodynamic forces are always introduced to the first order 
while the friction forces have the Fourier coefficients different from zero as many 
as the considered harmonics. Consequently there is not a balance of forces 
between the harmonic indices of the friction forces and the harmonic of the 
aerodynamic forces and this produces a reduction of amplitude (the system is 
more damped). 

 

Figure 5.38: LCO flutter response of the simplified system in frequency domain considering 
1, 3 and 5 harmonic 
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Error in amplitude @ Hm=1 10.2% 

Error in frequency @ Hm=1 0.8% 

Error in amplitude @ Hm=3 5.8% 

Error in frequency @ Hm=3 0.9% 

Error in amplitude @ Hm=5 4.1% 

Error in frequency @ Hm=5 0.9% 

Table 5.2: ‘time vs. frequency’ methods comparison by varying the 
number of harmonics retained in the MHBM calculations 

The two approaches, in frequency and in time, have naturally a great difference in 
the calculation time. Table 5.3 shows the values of the calculation times where it 
is significant to see that the increase of the number of the harmonics used in the 
solution of the equation in the frequency domain produces an increase of the 
computation time, but this value remains smaller than the time requested by the 
DTI. 

Domain Time 

Frequency @ Hm=1 ≈ 5 min 

Frequency @ Hm=3 ≈ 40 min 

Frequency @ Hm=5 ≈ 2 h 

DTI ≈ 120 h 

Table 5.3: Computation time in the frequency and time 
domain 
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5.3.2 Bladed disk 

The analyses on the blade-alone configuration are the first step to analyze a real 
model of a bladed disk. However, this configuration is useful to understand the 
flutter behavior of systems not in cyclic symmetry or the blades in a cascade (for 
example to make comparison with experimental results of a cascade rig). 

To simulate the real dynamic behavior at flutter of a rotor sector, a bladed disk is 
analyzed. Only a sector of the bladed disk is taken into account and analyzed in 
cyclic symmetry because the system is considered tuned, i.e. all sectors are equal 
to each other. A strong coupling between the sectors is assumed since geometric 
non-linearities that may break the cyclic symmetry behavior are not considered. 
This assumption is coherent with the calculation of the aero-dynamic coefficients 
that is based on a periodic self-excited force depending on cyclic symmetry 
conditions. 

As made for the blade-alone configuration, the analyzed bladed disk has to have a 
blade root joint able to slip and not fixed. In this case, a root joint fixed means that 
a node on the contact surface of the blade must move in the same way and of the 
same quantity of the correspondent node on the contact surface of the disk, while 
the slip condition is allowed by the contact elements. The contact element used 
(see Figure 5.39) is the same of the blade-alone configuration, but now the contact 
displacements are relative and equal to: 

         (5.12) 

where    and    are respectively the displacements of the contact nodes of the 
blade and disk. 
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Figure 5.39: contact element between the blade and the disk 

Since the contact element is characterized by contact stiffnesses with a finite 
value, the dynamic behavior of the system in the two configurations, merged 
contact and contact elements, will be similar but not equal. For this reason, how 
made for the blade-alone, a comparison of the dynamic behavior of the bladed 
disk in the two configurations of joint is performed form Figure 5.40 to Figure 
5.42. 

Figure 5.40 shows the trend of the natural frequencies of the system in the two 
conditions (fixed contact and contact elements); it is possible to see that the match 
of the frequency is good with a maximum error of 4.2%. However, at difference 
of the blade-alone where all the natural frequencies of the system with the contact 
elements were smaller than the frequencies with the root joint fixed, here only the 
modes at low frequency with the contact elements have lower frequencies, while 
for the modes at high frequency it is contrary (see Figure 5.41). This result is also 
highlighted in Figure 5.42 where the comparison of the mode shapes is presented 
with the MAC number. It is possible to see that the first nine modes are the same, 
while there is some difference from the tenth mode (the MAC number is around 
0.8). Since these modes are modes at high frequency, their influence on the 
dynamic behavior in the flutter condition will be small because the studied flutter 
phenomenon is dominated by modes at low frequency.  

  

Figure 5.40: comparison of natural frequencies 
of bladed disk with fixed contact and contact 

elements 

Figure 5.41: error of natural frequencies of 
bladed disk with fixed contact and contact 

elements 
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Figure 5.42: direct MAC number between the modes of bladed 
disk with fixed contact and contact elements 

Since the dynamic behavior of the bladed disk in the two conditions of joint is 
similar and can be considered acceptable for the study of the flutter response, the 
ROM techniques have been applied to the FE model of the bladed disk. The 
bladed disk has been reduced dividing the blade from the disk.  

The blade has been reduced with the CMS-CB technique in the same way made 
for the blade-alone configuration, while the disk has been reduced with the CMS-
CB technique using the software Ansys and then the cyclic symmetry and Tran 
reduction have been applied to further reduced mass and stiffness matrices.  

The master nodes considered for the reduction of the disk are: 

 all nodes on the contact surfaces of the blade root joint; 
 all nodes on the interface surfaces; 

while the mode slave taken into account are 30. The reduction was performed 
considering the effect of the centrifugal force to have a better approximation of 
the physical behavior of the system. After the CMS-CB reduction, the dofs of the 
interface have been further reduced with the application the cyclic symmetry and 
Tran reduction, where the modes of interface taken into account are 40. 

The reduced mass and stiffness matrices of the blade and disk have read in 
MatLab where the contact elements have been added in stick condition to evaluate 
the approximation errors due to the reduction. Figures from 5.43 to 5.45 show 
respectively the comparison of natural frequencies, the error of the natural 
frequencies and the MAC between the modes of the whole system and those of 
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the reduced system. It is possible to note from Figure 5.43 and 5.44 that the 
natural frequencies of the reduced system are slightly bigger than those of the full 
system (the errors are negative and minor of 1%). The negative error is due to the 
stiffening effect of the reduction. Figure 5.45 shows the MAC of the mode shapes. 
The values reported in the figure are equal to 1, i.e. the reduced modes describe 
well the dynamic behavior of the full system. 

  

Figure 5.43: comparison of the natural 
frequencies of bladed disk of full and reduced 

systems 

Figure 5.44: error of the natural frequencies of 
bladed disk of full and reduced systems 

 

 

Figure 5.45: direct MAC number between the modes of full and reduced system 

Blade and disk have been reduced separately for reasons of convenience. In fact in 
this way, the stiffness matrices of the two bodies remain fixed, but it is possible to 
build different stiffness matrices of bladed disk changing the values of contact 
stiffnesses. The other possibility was to reduce the full system with the root joint 
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modeled through springs which values of stiffness are equal to the contact 
stiffnesses. However, in this way two problems arise, the first is that if the contact 
stiffnesses change, a new reduction will be needed; the second is that the root 
joint is in stick condition and the method developed for flutter calculation can 
have problem to convergence. A variation of the method proposed to solve this 
last problem will be shown in the modal approach. 

The reduced mass and stiffness matrices have used to build the damping matrix 
[C] and the linearized aerodynamic matrix [  ] on the base respectively of the 
equations (4.27) and (4.37) of the previous chapter. The used eigenvectors [ ] are 
those of the system with the contact in the stick condition because these represent 
the dynamic behavior of the blade in flutter condition, but the stiffness matrix [K] 
used in the equation of motion (5.7) is that without the contact, i.e. it has the 
following form: 

[ ]  [
      
       

]  (5.13) 

This form of the stiffness matrix has been chosen because the connection between 
the blade and the disk is made by the contact elements during the calculation of 
the vector of the non-linear forces. Since blade and disk are separated, to increase 
the velocity and the stability of the calculation a proper tentative point is defined 
through the energy balance between the dissipative and the aerodynamic energy 
as done for the blade-alone analyses. 

5.3.2.1 Parameter variation 

The ROM of the bladed disk is used to perform a parameter variation of the flutter 
response. The parameters that influence the non-linear flutter analysis are: 

 aero-damping (ζaero); 
 friction coefficient (µ); 
 contact stiffness (kt); 

As made for the flutter analyses of the blade-alone configuration, an uniform 
distribution of the normal pre-load is considered to perform a LCO calculation. 
The first two parameters analyzed are the negative aero-damping and the friction 
coefficients.  
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Figure 5.46 plots the results considering the combination of friction and aero-
damping coefficients (the nomenclature used is the same of the case of study with 
the blade-alone). It is possible to see that, for a given value of friction coefficient, 
the amplitude of the LCO increases, while the frequency decreases, when the 
absolute value of the negative aero-damping increases. Also an increase of the 
friction coefficient produced an increase of amplitude while the LCO frequency 
decreases for a fixed value of aero-damping coefficient (the blue markers). These 
results can be considered consistent with expectation because the variation of the 
energy introduced by flutter on the blade produces the necessary vibration 
amplitude to dissipate an equivalent amount of energy by friction to achieve the 
LCO equilibrium. It must be noted that the variation of the LCO frequency by 
varying the friction coefficient is actually negligible since the highest variation 
with respect to the nominal point is less than 0.5%.  

 

Figure 5.46: LCO amplitude by varying the aero-damping and the friction 
coefficients 

Figure 5.47 compared the real deformation of the bladed disk in flutter condition 
with the first flap mode of the system. It is possible to note that the two 
deformations are equal and this is also highlighted by MAC number that has a 
value equal to 0.99, i.e. the predominant mode, as happens in the blade-alone 
configuration, is only the unstable mode.  
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(a) (b) 

Figure 5.47: deformation of the bladed disk: a) mode shape, b) flutter deformation 

Since the contact stiffnesses are parameters difficult to calculate, they are 
subjected to uncertainty. The used values have been obtained in Ansys software 
through the Lagrangian methods (see section 5.2) and they can be considered 
acceptable. However, it is important to evaluate the impact of the variation of the 
contact stiffnesses on the flutter response. 

Since the two analyses performed to calculate the contact stiffnesses have shown 
the same value of the normal stiffness kn, a Parameter variation was performed 
varying the value of tangential stiffness kt. Three different values of tangential 
stiffness have considered: kt,1 is the nominal value obtained in the final analysis of 
section 5.2, kt,2=kt,1/2 and kt,3=kt,1/4. Figure 5.48 shows that the variation of the 
tangential stiffness produces a reduction of the LCO frequency, while the 
amplitude has a slight increase that is minor than 0.5% and consequently can be 
neglected. 
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Figure 5.48: LCO calculation by varying the tangential contact stiffness 

Figure 5.34 and 5.48 allow to identify other two parameters, beyond the aero-
damping and the friction coefficients, that have a great influence on the amplitude 
and the frequency of the LCO points. In particular the value of normal pre-load 
acts on the amplitude, while the contact stiffnesses act on the frequency. 

5.4 Modal Approach 

The modal approach for the calculation of the LCO response is based on the 
modal reduction of the bladed disk. This approach works with the modal 
coordinates of the system and as a consequence the physical results of the system 
should be obtained through a modal transformation of equation (3.9). 

The modal base [ ] has been obtained from a modal analysis performed in Ansys 
where the effect of pre-stress due to the centrifugal force is considered. The 
modes have been then extracted from Ansys only on the more important nodes 
that are the contact nodes of the blade and disk and the 15 accessory nodes on the 
airfoil. 

The equation of motion to solve in the frequency domain is: 

(      [    ]
       ([    ]

    [        ]
   

)  [    ]
    

[        ]
   

)  ̅           
     

(5.14) 
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where[    ]

   , [    ]
    and [    ]

    are given by equation (3.12), while 

[        ]
   

 and [        ]
   

 are given by equation (4.39). 

The modal approach will be applied only to bladed disk. The solution of equation 
of motion (5.14) with the energy balance allows to calculate the flutter response. 
To realize this calculation, the non-linear contact forces should be calculated; 
however, the proposed contact model works only in physical coordinates and in 
the time domain while the equation are solved in modal coordinates and frequency 
domain. The change of domain is solved with the Alternate frequency-time 
method, while for the change of coordinates the equations (3.2) and (3.9) are 
respectively applied to the displacements and non-linear forces.  

The flutter analyses can be now performed. However, no results or incorrect 
results are obtained. This happens because, at difference of the physical approach 
where the blade and the disk are modeled separately and the contact elements are 
used to calculate the non-linear forces and so connect the two components, in the 
modal approach the blade and the disk must be connected together to have the 
right modal base. In fact, if blade and disk are separated, the modal base will be 
not representative of the dynamic behavior of the bladed disk because rigid body 

motions of the blades are found. These modes do not allow to perform the flutter 
analysis even if the contact elements are added. The problem is in the definition of 
the modal matrices of aero-damping and aero-stiffness because the aerodynamic 
coefficients are calculated on the modes of the bladed disk. If these coefficients 
are not correct, the self-excited aerodynamic force will be not correct and 
consequently the LCO calculation will be not possible.  

A solution of this problem could be to connect blade and disk in the FEM model 
through springs equal to the contact stiffnesses and then to extract the modal base. 
However, in this case the modal base describes the right dynamic behavior of the 
bladed disk, but the root joint is too rigid, i.e. it is not possible to produce the 
dissipative energy when the contact is simulate in Matlab environment. Besides, 
the contact elements are counted twice and this produce an over stiffening of the 
system. These problems in the physical approach do not appear because the aero-
dynamic matrices can be built separately using the modal base of the bladed disk 
with the contact in stick condition, while the stiffness matrix (5.13) is used in the 
equation of motion. Finally, the connection is then performed by the vector of 
non-linear forces. 
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To solve these problems and allow to calculate the flutter response with the modal 
approach, the proposed method has been opportunely modified.  

5.4.1 Application of the fictitious contact force 

The applied modification to solve the flutter calculation in modal domain allows 
to delete the dependence of the contact stiffnesses from the stiffness matrix of the 
system. However, this variation can be applied both for forced and flutter 
responses as well as for the equations both in physical and modal domains.  

The starting point is the equation of motion: 

[ ] ̈  [ ] ̇  [  ]            (5.15) 

where the stiffness matrix in stick condition [  ] is equal to: 

[  ]  [   ]  [  ]  (5.16) 

[   ] and [  ] are respectively the stiffness matrices of the bladed disk and of the 
contact. If the equation (5.16) is substituted in the equation (5.15), the system will 
be over stiffened because the contact elements appear twice. To remove the 
dependence of [  ], a fictitious contact force      should be added to the equation 
(5.15) to balance the addition of the contact stiffnesses in the stiffness matrix. The 
equation (5.15) becomes the following: 

[ ] ̈  [ ] ̇  [  ]                 (5.17) 

The vector of the fictitious contact force      describes the reaction forces that are 
produced on the contact nodes when these are linked together by means of 
springs, i.e. the contact elements are in stick condition: 

      [  ]   (5.18) 

If eq. (5.16) and (5.18) are put in the eq. (5.17), it is easy to demonstrate that the 
additional contact stiffness in [KS] is perfectly balanced by the fictitious contact 
force     . 
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In similar way the addition of the fictitious contact force can be used in the modal 
domain. In fact, the eq. (5.17) can be modalized through the modal transformation 
(3.9) and pre-multiplying the equation of motion by the hermitian of modal base 
[  ] with the contact in stick condition. The resulting equation is: 

[    ] ̈  [    ] ̇  [      ]                            (5.19) 

where the different components are: 

[    ]  [ ]  

(5.20) 

[    ]    [  ]  

[      ]  [  
 ]  

       [  ]
     

        [  ]
      

         [  ]
       

[  ]  and [  ] are the results of the modal analysis in stick condition, i.e. where 
the stiffness matrix is equal to eq. (5.16). 

This method with a fictitious contact force has been before applied to a lumped 
parameter model and then applied to a bladed disk with reduced mass and 
stiffness matrices in physical domain (see Appendices A and B) to study the 
effects of this method on the forced response and on the flutter response. Since the 
results on the lumped parameter model and on a bladed disk have shown a good 
approximation, the same method will be now applied to solve the equation of 
motions expressed in modal domain. Before, the forced response will be 
calculated and a comparison with the results obtained in physical domain will be 
done, then the flutter analyses will be performed.  

Figure 5.49 shows the forced response of a bladed disk with the contact in stick 
condition. It is possible to note that the response obtained through an iterative 
Newton-Raphson calculation is equal to the linear response (solution of equation 
of motion without the non-linear term). This result is obtained because the vector 
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of non-linear force         is equal to the vector of the fictitious contact force 
        . The comparison of forced responses in modal domain and in physical 
domain is made in Figure 5.50. The figure shows that the two responses are equal 
in terms of resonance amplitude and frequency. 

  

Figure 5.49: modal stick forced response Figure 5.50: comparison between the stick 
forced responses in the physical domain and in 

the modal domain  

More interesting is the damped forced response in modal domain and it 
comparison with the same response in physical domain. Figure 5.51 shows the 
modal damped forced response that can be considered correct because its 
resonance peak has a minor amplitude and frequency than the resonance peak in 
stick condition, i.e. the dynamic behavior of the bladed disk is rightly described. 
Instead, Figure 5.52 shows the comparison of the damped forced responses 
obtained in the two domains. It is possible to see that the damped forced response 
in modal domain goes towards the physical response with the increase of number 
of modes taken into account in the modal reduction. This behavior is correct 
because the accuracy of the modal response increases with the preserved number 
of modes in the reduction. Finally, Figure 5.53 shows the variation of damped 
forced response considering three different values of normal pre-load. Since the 
trend of resonance peak is correct at increase of normal pre-load (it goes towards 
the stick condition), the calculation of the forced response with fictitious contact 
force in modal domain can be considered correct. 
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Figure 5.51: modal damped forced response Figure 5.52: comparison between the damped 
forced responses in the physical domain and in 

the modal domain 

 

 

Figure 5.53: trend of the damped forced response 

Since the method with a fictitious contact force works well for the calculation of 
forced responses, it will be now applied for the calculation of flutter response 
using the following equation: 

(      [    ]
       ([    ]

    [        ]
   

)  [    ]
    

[        ]
   

)  ̅           
   

           
(5.21) 

The applied parameters are: 
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 contact stiffness kt,1 and kn obtained from contact analysis and used in the 

previous analyses; 
 friction contact µ3; 
 aero-damping parameter ζaero,2. 

With these parameters and using the procedure applied in the previous analyses, 
the flutter analysis is performed. The first passage is a calculation of a starting 
tentative point to initialize the flutter calculation. However, Figure 5.54 shows 
that this initial tentative point does not exist; in fact, the aerodynamic energy is 
always bigger than the dissipative energy at variation of the first modal 
coordinate. To initialize the flutter calculation a tangential point between a 
parabola with origin in the axes and the curve of dissipative energy is searched 
(Figure 5.55). This point has been chosen because it represents the maximum 
amplitude whereby exists an equilibrium point.  

From this initial point the flutter analysis is performed, but the solution obtained is 
the trivial one. This result can be foreseen because the value of aero-damping 
associate with the parabola (ζaer,par) is minor in magnitude than the value of ζaer,2. 
Besides, the dissipative energy that the system can produce is limited and linked 
to the relative displacement developed on the contact surface. However, at 
difference of the physical approach, the deformation of the bladed disk is closely 
linked to the mode shapes taken into account in the modal reduction and in 
particular to the first flap mode because this is the unstable mode at flutter. If 
modal displacements are not sufficient loose to produce the necessary dissipative 
energy to balance the aerodynamic energy, the LCO calculation is not possible 
even if the method with the fictitious contact force is applied. 

  

Figure 5.54: energy balance with kt,1, kn, µ3 and Figure 5.55: tangential point between a 
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ζaero,2 parabola with origin in the axes and the curve 

of dissipative energy 

The LCO calculation is instead possible if the initial energy balance produces a 
starting tentative point because in this case the dissipative energy is sufficient to 
balance the aerodynamic energy and the flutter calculation can continue. Two 
examples are shown in Figure 5.56 and 5.57. Figure 5.56 shows the LCO response 
with the contact stiffnesses kt,1 and kn at fixed value of aero-damping 
(ζaero,4=0.46ζaero,2) considering three values of friction coefficient (µ1,  µ2 and  µ3). 
Instead,  Figure 5.57 shows the LCO response with the contact stiffnesses equal to 
kt,3 and kn, while the values of aero-damping and friction coefficients are those 
used in the past sensitivity analyses. Both figures show a correct trend at variation 
of aero-damping and friction coefficients and this happens because the initial 
tentative point is obtained. 

A further check that the LCO response, obtained with the method with a fictitious 
contact force, is correct if an initial tentative point is predicted, is shown in Figure 
5.58. This figure shows a comparison between the LCO point calculated with a 
physical approach and the LCO responses obtained with the modal approach by 
varying the number of mode preserved during the modal reduction. It is possible 
to see that increasing the number of modes in the modal base, the LCO response 
goes correctly towards the LCO point of physical approach (in the limit case of all 
modes preserved the two solutions should be equal). 

  

Figure 5.56: LCO points with ζaero,4=0.46ζaero,2 
by varying the friction coefficient 

Figure 5.57: LCO points by varying the aero-
damping and friction coefficients using the 

contact stiffnesses equal to kt,3 and kn 
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Figure 5.58: LCO points by varying the number of modes in the modal base using  the contact 
stiffnesses equal to kt,3 and kn 

This method with a fictitious contact force can be applied for the flutter analysis, 
however it has some limitation that are due to rigidity of the modes. In the past 
figure, two examples where this method works have been presented. However, for 
a right analysis of the bladed disk of G2020 project, the values of contact stiffness 
to use are those obtained from the analysis of the contact, but these do not give 
results if not the trivial solutions. To solve this problem a compromise is reached, 
a percentage of the contact stiffnesses is given to the springs that link together 
blade and disk in the FE model, while the total value of contact stiffnesses is 
given in the contact elements simulated in MatLab environment. Naturally, the 
same percentage of stiffness used to link the blade and the disk, it is also used to 
calculate the fictitious contact force.  

This compromise can be considered acceptable because the dynamic behavior of 
bladed disk with a percentage of the contact stiffness is similar to the dynamic 
behavior of the bladed disk both with the fixed contact and with the total contact 
stiffness. These comparisons are made in Figure 5.59-5.61 for the bladed disk 
with the fixed contact and in Figure 5.62-5.64 for the bladed disk with contact 
stiffness. It is possible to note that the error in frequency increases if the values of 
contact stiffness decrease (see error in Figure 5.41 and 5.60); this happens because 
the blade root joint is less stiff. However, the mode shapes remain the same, 
especially for the modes at low frequency that are the more important in the flutter 
analyses because the unstable mode is the first. In particular, this mode has a 
MAC equal to 1 both in Figure 5.61 and 5.64, i.e. the flap mode shape is not 
changed. 
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Figure 5.59: comparison of the frequency of the 
bladed disk with fixed contact and with a 

percentage of the contact stiffness 

Figure 5.60: error in frequency of the bladed 
disk with the fixed contact and with a 

percentage of the contact stiffness 

 

 

Figure 5.61: MAC between the first 15 modes of the bladed 
disk with the fixed contact and with a percentage of the 

contact stiffness 
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Figure 5.62: comparison of the frequency of the 
bladed disk with the contact elements at root 
joint between the total value of the contact 

stiffness and with a percentage of the contact 
stiffness 

Figure 5.63: error in frequency of the bladed 
disk with the contact elements at root joint 

between the total value of the contact stiffness 
and with a percentage of the contact stiffness 

 

 

Figure 5.64: MAC between the first 15 modes of the bladed 
disk with the contact elements at root joint between the total 

value of the contact stiffness and with a percentage of the 
contact stiffness 

Since the real stick condition of the bladed disk is not represented by the modal 
base, a forced response should be before performed to obtain the real stick 
condition of the system. This calculation is performed by increasing the number 
of modes preserved in the modal reduction. In particular the forced response will 
be calculated taken into account 1, 15, 120 and 360 modes. The results are shown 
in Figure 5.65. It is possible to note that the stick frequency goes towards its right 
value by increasing the number of modes with a significant reduction of the error 
from the response with one mode to the response with 360 modes.  
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With the same number of modes preserved in the modal reduction, a LCO 
analysis has been done (Figure 5.66). How happened for the Figure 5.58 and 
Figure 5.65, the variation of number of modes produces a more accurate response. 
In particular, the LCO responses go towards the LCO point obtained with physical 
approach. If all modes were preserved, the responses of modal and physical 
approaches would be equal. 

 

Figure 5.65: modal stick forced response by varying the number of 
modes 

 

Figure 5.66: LCO calculation by varying the number of modes 

The choice of this percentage of contact stiffness is arbitrary and depends on the 
system analyzed. However, two considerations are made to choose this value. The 
percentage should be not too big (over the 50%) because the system could be still 
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rigid and consequently the flutter calculation will be difficult. On the contrary, the 
percentage should be not too small (less than 10%) because in this case the system 
will be more loose and consequently a bigger number of modes will be necessary 
to have a good approximation of the physical results. Besides, a too small 
percentage of contact stiffness could produce a modal base not representative of 
the dynamic behavior of the real system. 

5.4.2 Parameter variation 

Finally, a Parameter variation of the bladed disk with the resolution of flutter 
equations in the modal domain is performed. These analyses will be done 
considering a modal base extracted from the software Ansys where the contact is 
simulated my means of springs witch values of stiffness are equal to a percentage 
of the total value of the contact stiffnesses. The number of modes that form the 
modal base is 15 (this number has been chosen to have a fast resolution of 
equations). 

The parameters that influence the non-linear flutter analysis are: 

 aero-damping (ζaero); 
 aero-stiffness (ηaero); 
 friction coefficient (µ); 
 value of normal pre-load (n0); 
 distribution of normal pre-load (n0); 
 mechanical damping (ζm). 

To begin, an uniform distribution of normal pre-load is initially considered to 
perform a LCO calculation. The first parameters analyzed are the aero-damping 
and the friction coefficients. The values used are the same of the previous cases of 
study. Figure 5.67 shows the results of the flutter modal analysis. It is possible to 
see that the trend of LCO points is coherent with the results obtained in past 
analyses. In fact, the variation of aero-damping acts both on the frequency and on 
the amplitude in opposite mode (if the frequency decreases, the amplitude will 
increase and vice-versa), while the variation of friction coefficient acts overall on 
the amplitude. However, a small variation of the frequency is presented, but this 
can be neglected. Figure 5.68 shows the real deformation of the blade in flutter 
condition that is equal to the mode shape of the first flap mode. This equality is 
also highlighted by MAC number that has a value equal to 0.99. This value is also 
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obtained with a modal base of 360 modes, while if only the first mode is 
considered in the modal base, the MAC number is exactly 1. 

 

Figure 5.67: LCO calculation with the modal approach by varying the aero-damping and friction 
coefficients 

 

 

Figure 5.68: the real deformation of the bladed disk in flutter condition 

Figure 5.69 and 5.70 show the flutter responses calculated with the modal 
equations by varying respectively the value of the normal pre-load (n0) and the 
aero-stiffness coefficient (ηaer). The trends reported in the figures are coherent 
with the past analyses. In fact, the variation of the value of the normal pre-load 
has a linear effect on the flutter amplitude, while the aero-stiffness produces only 
a slight increase of the LCO frequency. 
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Figure 5.69: linear relationship between the 
LCO amplitude and frequency, and the 
normal pre-load in the modal approach 

Figure 5.70: LCO response in the modal domain 
by varying the aero-stiffness parameter for three 

different friction coefficients. 

5.4.2.1 Linear load on the blade root attachment 

Until now, the distribution of the normal pre-load has been considered uniform to 
simplify the calculation and the Parameter variation on the pre-load was 
performed varying the mean value n0 (eq. 5.8). However, the distribution of the 
normal pre-load can be different from the uniform one due to the boundary 
condition of the system. For example, the geometric tolerances of the root joints 
or the aero-dynamic loads can change the distribution of normal pre-load. The 
first step in the variation of distribution of normal pre-load is to consider a linear 
distribution. In this section two types of linear distributions are considered: the 
first distribution is symmetric on the two contact surfaces (it has a convergent 
trend towards the center of the blade - see Figure 5.71), the second distribution is 
asymmetric (it has a parallel trend - see Figure 5.72). For the two linear 
distributions, three different gradients are considered. 
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Figure 5.71: symmetric linear distribution Figure 5.72: asymmetric linear distribution 

All the six combinations of the linear distributions of the normal pre-load have the 
total sum of the forces equal to 

              (5.22) 

where       is the mean value of the uniform distribution given by equation (5.8), 
i.e. overall the total normal force acting on the contact surface is equal for every 
distribution. 

The two types of linear distribution have been before used to obtain a forced 
response of the bladed disk to understand the behavior of the system (see 
Appendix C). The forced response by varying the linear distributions shows a 
certain trend that is characterized by a reduction of frequency and an increase of 
amplitude if the gradient of linear distribution increases for both types of 
distribution. Now the same linear distributions will be applied to the flutter 
calculations to obtain the LCO points. The first type of linear distribution 
analyzed is that of Figure 5.71. To begin, a LCO calculation is performed by 
varying the gradient with a fixed set of aero-damping and friction coefficients. 
The result is shown in Figure 5.73, where it is possible to note that LCO response 
presents a minimum value of amplitude for the gradient 3 while the frequency has 
a decreasing trend by varying the gradients. The decrease of the LCO frequency 
by increasing the gradient of the symmetric distribution is due to a less rigid 
behavior of the contact as happened for the forced response. This condition 
produced, in these case, also a reduction of the amplitude of vibration because the 



144 Flutter analysis of a bladed disk 

 
contact dissipates more energy, while in forced response the opposite effect 
happened. These two opposite dynamic behaviors are possible because the two 
excitation forces are different; in the forced response the external force is imposed 
in terms of direction and amplitude, while in the flutter response the excitation 
depends on the displacement. In particular, there is a magnitude order of five 
times in favor of the external force. 

The reduction of the frequency and the increase of the dissipative energy means 
that in general the contact elements have a slip state more important than the other 
states, i.e. in a great part of oscillation period blade and disk are in contact and in 
the slip state. However, if the gradient is so high that some contact elements are 
always or near in separation state, the amplitude of flutter response will be bigger 
than the minimum value. This happens because the contact elements are less 
efficient (in the lift-off state there is no damping), i.e. they produce less 
dissipative energy. Consequently, to balance the aerodynamic energy, bigger LCO 
amplitudes are needed because in this way they are traduced in bigger relative 
displacements at contact that allow to the contact element to enter in contact and 
so produce dissipative energy. 

With the linear distribution 3, a Parameter variation at variation of aero-damping 
and friction coefficients is made and presented in Figure 5.74. From the figure it is 
possible to see that the trend of the LCO amplitude is the same obtained with a 
uniform normal distribution of the normal preload. Instead, the increase of the 
friction coefficient produces the increase of the LCO amplitude and a slight 
increase of the corresponding frequency. However, this variation is so small that 
can be neglected. 
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Figure 5.73: Parameter variation by varying 
the gradient of the first type of linear 

distribution with a fixed set of aero-damping 
and friction coefficients 

Figure 5.74: Parameter variation by varying the 
aero-damping and the friction coefficients for the 
first type of linear distribution with the gradient 

number 3 

Figure 5.75 shows the Parameter variation by varying the gradient of the 
asymmetric linear distribution (Figure 5.72) with a given set of aero-damping and 
friction coefficients. At difference of the LCO trend of Figure 5.73, the LCO 
points do not present a minimum value, but a reduction of frequency with an 
increase of amplitude by increasing the gradient of the linear distribution. This 
means that the contact is less efficient because it is sufficient a small gradient to 
produce a separation on the contact elements with a negative effect. Figure 5.76 
shows a Parameter variation by varying the aero-damping and the friction 
coefficients. It is possible to see that the trend of the LCO solutions is coherent 
with expectation. The slight reduction of the frequency can be neglected because 
it is minor than 0.5%. 
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Figure 5.75: Parameter variation by varying the 
gradient of the second type of linear distribution 

with a fixed set of aero-damping and friction 
coefficients 

Figure 5.76: Parameter variation by varying 
the aero-damping and the friction 

coefficients for the second type of linear 
distribution with the gradient number 3 

For completeness of analysis, the flutter results of an asymmetric linear 
distribution (Figure 5.77) with a gradient opposite to that of Figure 5.73 are 
presented in Figure 5.78. It is possible to note that, in this case of analysis, the 
LCO responses shows a minimum value of amplitude with a reduction of 
vibration frequency by varying the gradient. This means that this distribution of 
normal pre-load makes the contact elements more efficient than the distribution 
shown in Figure 5.73. 

  

Figure 5.77: asymmetric linear distribution with a 
gradient opposite to that of Figure 5.87 

Figure 5.78: Parameter variation by varying 
the gradient of the third type of linear 

distribution with a fixed set of aero-damping 
and friction coefficients 
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All these distributions are possible because the geometric tolerance of the contact 
surfaces can produce them. For this reason, a Parameter variation has been 
performed to understand how the LCO responses can change in according to the 
distribution of the normal pre-load. 

5.5 Conclusion 

In this chapter, the study of the flutter behavior of a bladed disk have been 
analyzed using two different approaches: the physical approach and the modal 
approach. Besides, for the physical approach, the blade-alone configuration have 
been also studied to understand how analyze system not in cyclic symmetry or the 
blades in a cascade. Both approaches use a ROM of the bladed disk to reduce the 
dofs to analyze and so reduce the computation time. For this scope, a resolution of 
equation of motion, plus the energy balance, is performed in the frequency 
domain. 

The two proposed approaches are both valid and have strong and weak points. 
The physical approach used the reduced matrices of mass and stiffness obtained 
by applying the CMS-CB technique plus, if it is necessary, the cyclic symmetry 
and Tran reductions. Blade and disk are separately reduced and they are linked 
together through the contact elements that are added in the resolution phase. This 
allows to reduce only once the system. In this way, the system can be used many 
times with different values of contact stiffnesses that are subject to a certain level 
of uncertainty. The sensitivity analyses on the bladed disk show coherent trends 
with the lumped parameter models by varying the different parameters taken into 
account. However, the matrices, although reduced, are still big because all master 
dofs are needed to solve the flutter problem. In fact, the dofs of the contact are 
used to calculate the dissipative energy, while the accessory nodes, that describe 
the airfoil, are used to calculate the aerodynamic energy. This involves a long 
calculation times in the frequency domain even if minor than the DTI. In general, 
the calculation time in frequency physical domain with only the first harmonic for 
a bladed disk is around the 12 hours. Naturally, if a MHBM is applied, the 
calculation time increases considerably. 

The modal approach, instead, uses a modal reduction on bladed disk, i.e. this is 
described by a modal base that represents its dynamic behavior. At difference of 
the physical approach, the flutter analysis is fast (few minutes) even if many 
modes are necessary to describe well the system. However, the description of the 
model requires many attentions; in fact the blade and the disk should be linked 
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together, but not with a fixed root joint. This is necessary for two reasons: the first 
is that the modal base should be representative of the dynamic behavior of the 
system; the second because a fixed root joint does not allow to produce the 
dissipative energy needed to balance the aerodynamic energy. To satisfy these two 
requirements for the modal approach, a modification of the proposed method for 
the flutter analysis has been applied and verified. The verification has been made 
through calculation of the forced response both in physical and modal domains 
and through calculation of flutter response in the physical domain. This 
modification sees the introduction of a fictitious contact force to balance the 
addiction of stiffness in the modal base. Although the introduction of this force 
works well in the forced response, some problems arise in the flutter analysis. In 
fact, if the displacements at contact are not sufficient to produce the necessary 
dissipative energy the flutter analyses are not possible; on the contrary, if the 
initial point exists, the LCO point is obtained and the sensitivity analyses show a 
coherent trends. To perform a flutter response with a more rigid root joint, the 
modal base has only a percentage of contact stiffnesses, while the total values are 
given during the flutter calculation. This produces a stiffer behavior of the bladed 
disk that can be reduced using more modes in modal base (in this way the LCO 
goes towards the physical point). However, the flutter behavior at variation of the 
different parameters is right. 

Both approaches show coherent trends with the lumped parameter models and 
allow to identify the parameters that mostly influence the flutter response. In 
particular the major effects on the LCO points are linked to the contact stiffnesses 
for the flutter frequency and to the value and distribution of the normal pre-load 
for the flutter amplitude. In particular, the distribution of the normal pre-load acts 
both on the frequency and on the amplitude of the flutter response producing a 
great variation of the LCO points that cannot be identified at priori. For this 
reason, a possible correct distribution of normal pre-load will be calculated by a 
non-linear static analysis in the software Ansys where the contact elements are 
added to the model to allow a numerical-experimental comparison. 



  

Chapter 6 

Numerical-experimental 
comparison 

In this chapter a numerical-experimental comparison will be illustrated to validate 
the developed method using the bladed disk of Great 2020 project. The numerical 
results will be calculated with the modal approach because it is faster than the 
physical approach and gives an acceptable level of approximation of the LCO for 
the blade root contact joint. The method with the fictitious contact force is applied 
and the modal base extracted by FEM has a percentage of the contact stiffness. 
For these reason 360 modes are retained in the modal reduction to have a good 
approximation of the physical behavior of the bladed disk. 

Experimental data have been obtained by GE Avio Aero facilities and 
details/values are restricted due to confidentiality reasons. The test article and the 
cold flow test will be first presented, then the comparison of the numerical results 
with the experimental data will be made for a selection of operative conditions. 

6.1 Test article and cold flow test rig 

The Test Article (TA) has been developed in order to have, as a fundamental 
characteristic, a great instability at flutter phenomenon. This choice has been 
made for different reasons: 

 Have a sufficiently high level of instability so that it can be detected and 
measured more easily; 
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 Mitigate the risk related to the uncertainty of the value of the mechanical 

damping; 
 Mitigate the risk related to the uncertainty of the sensitivity and reliability 

of the design tools; 
 Test the effect of the alternate mistuning on a highly unstable blade array 

configuration. 

To take into account all these reasons, different configurations of design model 
have been realized. The starting point was a preliminary configuration that was 
modified to reach a right compromise between the level of instability and a proper 
geometry of the blade representing a standard engine configuration (Figure 6.1). 

 

Figure 6.1: Evolution of the preliminary design of test articles 

For every configuration of Figure 6.1, the effect of the variation of the geometric 
variables (for example the axial chord and surface of the airfoil) on the 
aerodynamic pressure distribution and on the stresses produced by centrifugal 
force has been studied by varying the radial coordinate of the test article. In 
Figure 6.2, the comparison between the airfoil area distribution along the airfoil 
length of two configurations of the blade is reported as example. This figure gives 
information about the aspect ratio of the blades and as a consequence on their 
stiffness and stability at flutter (the blade 3 has bigger aspect ratio than blade 1 
and as a consequence is more unstable at flutter). Other analyses have been then 
performed to study the aerodynamic, dynamic and aero-elastic behaviors of each 
concept design of test article until the final design is obtained. 
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Figure 6.2: Comparison between the airfoil area distribution along the radial coordinate of TA 
AP3 and TA AP1 

The final design represents the best compromise between a high level of 
instability and a proper geometry of the blade. On this geometry, an 
interchangeable configuration of interlocking has been studied to allow the 
addition or removal of the shroud contact to simulate the blade in tight and loose 
condition, and also in alternate mistuning condition. This is possible through the 
utilization of two different bars on the tip of the blade: one produces interference 
at interlocking, the other is an additional mass that changes the natural frequency 
of the blade without producing interference at the shroud. 

The blades of the final configuration of the test article have been instrumented 
(Figure 6.3) and installed in the cold flow test rig (Figure 6.4). Ten blades have 
been instrumented with strain gauges (Figure 6.5) to measure the dynamic 
response of the bladed disk for 2 different modal families and the whole row was 
measured also with the Blade Tip-Timing measuring technique (beam shutter 
configuration was used consisting of a sender-receiver probe and a reflecting tape 
placed on the opposite side of the blade with respect to the probe). The test rig 
was also instrumented with accelerometers, thermocouple and proximity sensors 
to monitor additional possible vibration in the operative range.  
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Figure 6.3: test article bladed disk Figure 6.4: cold flow test rig  

 

(a) (b) 

Figure 6.5: description of the position of the strain gauges on the blade (a) and position of the 
instrumented blades on the bladed disk 

The cold flow test has been divided in different phases: 

1. Stair step test: during the phase of stair step seventeen operative points 
have been tested starting with low Pressure Ratio and low Mass Flow, that 
were gradually increased afterwards, in order to define the off-design test 
point for the real test matrix. In this phase the blades are tuned. 

2. Test matrix tuned: the points of the test matrix defined before have been 
tested for the tuned configuration. 
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3. Tuned disassembly / mistuned assembly: the tuned TA has been 

disassembled and the pattern 010101… of the alternate mistuning has been 

introduced in the bladed disk. 
4. Test matrix mistuned: the same points of the tuned configurations have 

been also tested for the mistuned configuration. 

The first two phases are very important because the numerical-experimental 
comparison has been made for the tuned configuration, and for this reason more 
details are presented in this study. In the stair step the values of Pressure Ratio and 
Mass Flow have been continuously increased to test more unstable points at 
flutter. This approach has been adopted for particular safety reasons in the 
operability of the rig, since the tests operate in a rotor configuration strongly 
unstable at flutter. Consequently, it was necessary to gradually increase the level 
of instability to not incur in dangerous aero-elastic vibrations; 

The test matrix has been defined on the basis of the results of stair step and ten 
Operative Conditions (OC) have been tested using an incremental logic in terms 
of pressure ratio and mass flow. The results show high vibrational peaks, due to 
asynchronous vibrations clearly related to flutter LCO. The vibrations have been 
only measured through the strain gauges because the tip-timing measurements 
have been stopped giving reliable values only on a limited range of rpm. 
However, the measurements of tip-timing, showed asynchronous vibration due to 
the more unstable Nodal Diameter. 

Figure 6.6 and 6.7 show respectively the variation of the simulated aero-damping 
(absolute values?) and the measured experimental data (minimum, maximum and 
mean values strains) for the ten operative conditions of the test matrix. It is 
possible to see that, from OC 1 to OC 10, the absolute value of aero-damping has 
an incremental trend that is linked to an increase of the pressure ratio, mass flow 
and also angular velocity of the bladed disk. An incremental trend is also shown 
by the mean value of the experimental measurements with exception of the ninth 
operative condition. Three operative conditions are analyzed for the numerical-
experimental comparison. The chosen operative conditions are OC 6, OC 7 and 
OC 8. These OC have been taken into account because they have a good level of 
instability, with a linear trend of the mean value of the experimental data.  



154 Numerical-experimental comparison 

 

 

Figure 6.6: Simulated aero-damping coefficient trend by varying the operative conditions 

 

Figure 6.7: experimental measurements of strain gauges at variation of operative conditions 
(minimum, maximum and mean values) 

The normal load distribution was updated in order to correspond to the centrifugal 
load produced at the rotation speed at which flutter conditions were met for these 
three OCs. Besides, the aerodynamic static load of the steady pressure distribution 
on the airfoils has been also considered. The corresponding simulations are shown 
in the following section. 

6.2 Non-uniform distribution of the normal pre-load on 
the blade root attachment 

In order to compare the simulations with the experimental results, the numerical 
results are performed by considering a normal load distribution calculated by 
means of a non-linear static analysis of the blade pulled by the centrifugal forces 
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during rotation and constrained to the disk by a layer of node-to-node contact 
elements. Also the static aerodynamic loads (tangential and axial forces) have 
applied in the pressure center because these can unbalance the blade and so the 
contact cannot be symmetrical for the two sides (see Figure 6.8). 

 

Figure 6.8: application of the static aerodynamic load in the pressure center 

The nonlinear analysis is performed with the software FEM Ansys and contact 
element CONTAC52 is used since this is based on the penalty method where 
contact stiffnesses and friction coefficient are required. The used contact stiffness 
are those calculated in the previous chapter in section 5.2, while the value of the 
friction coefficient is that of µ2. Two non-linear static analyses are performed: in 
the first analysis only the centrifugal force is applied, while in the second the 
steady aerodynamic loads are also considered. The two distributions of the normal 
pre-load are respectively shown in Figure 6.9 and 6.10. In Figure 6.9a it is 
possible to note that the application of the centrifugal load produces a distribution 
of normal forces coherent with the distribution of the contact pressure (see Figure 
5.8). In fact, along the principal (tangential) direction of slipping the pressure is 
concentrated at the borders of the contact surfaces and in this place the nodal 
normal forces have bigger values, while in the center smaller values are found. 
The Figure 6.9b shows the distribution of the normal pre-load along the axial 
direction where it is possible to see a linear distribution with a negative gradient. 
This happens because the conical disk supporting the blades tends to slightly open 
in ρ-z plane, i.e. the bladed disk has a radial positive displacement with a positive 
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rotation around the ϑ-axis (see Figure 6.11). The resulting contact state is locally 
characterized by a slip state. 

The Figure 6.10a shows the distribution of the normal pre-load with both the 
application of the centrifugal and the steady aerodynamic loads along the 
tangential direction while Figure 6.10b shows the same distribution along the 
axial direction. It is possible to note that this distribution has two linear trends in 
the two directions of contact. In particular, along the tangential direction an 
asymmetric linear distribution is shown, while along the axial direction a linear 
distribution with a negative gradient is found. The asymmetric distribution is due 
to the application of the tangential aerodynamic force that produces an unbalance 
of the blade and as a consequence the contact is not more perfectly conform. 
Instead, the application of the axial aerodynamic force produces a linear 
distribution with a bigger gradient than the case of Figure 9b even if the 
centrifugal load is two orders of magnitude bigger than the axial force. This is 
possible because the moment arm of the centrifugal force with respect to the blade 
root joint is smaller than the arm of the aerodynamic force. However, the bladed 
disk tends to slightly open in the ρ-z plane. With these applied loads, the resulting 
contact state is different for the right and left contact surface, in fact the contact is 
respectively characterized by a slip and a stick state. 

(a) (b) 

Figure 6.9: distribution of the normal pre-load for one contact side of the blade root joint with the 
application of the centrifugal force only – (a) tangential direction; (b) axial direction 
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(a) (b) 

Figure 6.10: distribution of the normal pre-load for one contact side of the blade root joint with the 
application of the centrifugal and steady aerodynamic forces – (a) tangential direction; (b) axial 

direction 

 

 

Figure 6.11: static deformation of the bladed disk 

For each analyzed operative condition the two distributions of normal pre-loads 
are calculated and used to determinate the numerical results. 

6.3 Numerical-experimental comparison 

The experimental data that are used for comparison purposes are obtained from 
the strain gauges placed on ten different blades. The measurements has been post-
processed (filtered and averaged) to plot the Campbell diagram. Micro-strain 
response has been detected at critical points in the Campbell diagram where LCO 
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occurs close to the mode shape characterized by the highest instability. The value 
of micro-strains of the strain gauges has been then converted in absolute 
displacements. The procedure is based on the hypothesis that the linear mode 
shape calculated by FEM does not change abruptly when the non-linear operative 
deformed shape is calculated (this hypothesis is verified in the previous chapter – 
see for example Figure 5.48). Therefore, it is possible to write the following 
relationship: 

                    (6.1) 

where x is the tip displacement to compare with simulations, εsg is the measured 
micro-strain, DFEM is the modal tip displacement obtained for the mode shape of 
interest and εFEM is the modal strains of the nodes corresponding to the strain 
gauges locations. 

The numerical results for the comparison with experimental data have been 
obtained through the application of the corresponding distributions of normal pre-
load for the chosen operative conditions. The structural data are those used in 
Figure 5.85 for the point with ζmec,nom. The friction coefficient μ2 was chosen 
because it represents an intermediate value between the low and the high values of 
μ1 and μ3.  

The numerical-experimental comparison with the distribution of normal preload 
of Figure 6.9 is reported in Figure 6.12, where the blue (circle marker) points are 
the LCO amplitude and the frequency of the simulation, while the red ones (circle 
marker) are the mean of the experimental data. In the same figure the measured 
minimum and maximum values among the ten post-processed measured values 
from the strain gauges as in equation (6.1) are also reported. The difference 
between numerical and experimental data (mean value and maximum value) is 
reported in Table 6.1.  

In Figure 6.12, it is possible to see that the numerical amplitudes are bigger than 
the maximum measured values while the numerical frequencies are smaller than 
the experimental one. If the errors are considered, it is possible to note that the 
errors in frequency are near the same for the three operative conditions and they 
can be considered acceptable because smaller than 5%. Instead, the errors in 
amplitude are definitely bigger with a range between the 8% and 104% if the 
maximum measured values are considered, and with a range between the 81% and 
148% if the mean values are considered. 
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Figure 6.12: comparison of the numerical results (obtained with application of centrifugal force for 
definition of normal pre-load) with experimental data for three OC 

 

 Error in Amplitude 
(mean) 

Error in Amplitude 
(max) 

Error in Frequency 

OC – 6 148% 104% 2.3% 

OC – 7 95% 8% 1.7% 

OC – 8 81% 30% 1.8% 

Table 6.1: LCO percentage difference between numerical results and experimental data (with 
respect to the mean value and maximum value) 

A similar comparison with the experimental data is obtained with the numerical 
results calculated with the distribution of normal preload of Figure 6.10. Figure 
6.13 and table 6.2 show respectively the graphical comparison and the errors in 
amplitude and frequency. It is possible to see that the errors in amplitude of OC-6 
and OC-7 are smaller than the correspondent errors of table 1, while for the OC-8 
the errors in amplitude are bigger. This last case is coherent with the results 
obtained in the previous chapter where the sensitivity analyses with an 
asymmetric distribution of normal pre-load is performed (see Figure 5.92) 
because the simulated aero-damping coefficient is the same (ζaer,2). Instead, the 
errors in frequency between the two analyses are near the same, with only a small 
increase as shown in Figure 6.10. 
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Figure 6.13: comparison of numerical results (obtained with application of centrifugal and 
aerodynamic static loads for definition of normal pre-load) with experimental data for three OC 

 

 Error in Amplitude 
(mean) 

Error in Amplitude 
(max) 

Error in Frequency 

OC – 6 105% 83% 2.5% 

OC – 7 85% 1% 2.1% 

OC – 8 90% 37% 2.1% 

Table 6.2: LCO percentage difference between numerical results and experimental data (with 
respect to the mean value and maximum value) 

The numerical amplitudes, as shown, are bigger than the experimental data with 
errors that cannot be neglected. These differences between the predicted 
amplitudes and the measured one could be due to different phenomena that are 
presented in real bladed disk, but not considered in the modeled system. One of 
these phenomena, for example, is the natural mistuning that breaks the cyclic 
symmetry of the bladed disk and could reduce the flutter amplitudes. In fact, the 
classical flutter is closely related to the IBPA and as a consequence to the cyclic 
symmetry. Besides, an aspect, that produces natural mistuning and acts on the 
distribution of normal pre-load, is the geometric manufacturing tolerance of the 
root joint. In fact, this tolerance could change how the contact between the 
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1 EnVIronmenTALly Friendly Aero Engine (VITAL), Project ID 12271, 
Funded under EU FP6-AEROSPACE, From 2005-01-01 to 2010-12-3. 

surfaces occurs producing a random distribution of normal pre-load. Since the 
distribution of normal pre-load is a very important parameter that influences the 
amplitude of the LCO point, the geometric tolerance on the root joint could have a 
significant impact on the calculated and measured values of the flutter amplitudes.  

A not perfect conform contact between the surface of the blade and the disk can 
be supposed by knowing the value of tolerance through an experimental test. In 
fact, usually, the value of tolerance is of the order of hundredths of mm, while the 
value of penetration (allowed by the compression of the penalty stiffness) that 
gives the mean value of the normal pre-load is usually of the order of magnitude 
of the roughness. Since these two values are very different, the geometric 
tolerance can produce a geometric contact that could improve the mitigation of 
flutter phenomenon but also the contrary. Figure 6.14 shows an experimental test 
made on a dummy blade (VITAL1 project). The root joint of the dummy blade of 
the VITAL project was designed with the tolerances of real blades. 

 

Figure 6.14: experimental test on the root joint of VITAL project 

  

The test was performed in the AERMEC laboratory of the Department of 
Mechanical and Aerospace Engineering of the Polytechnic of Turin where, on the 
root joint of a blade, a pressure sensitive film has been applied. The blade was 
then put in the disk and pushed against the contact surface of disk with a screw 
that simulates the centrifugal force. Since the applied film is sensible to the 
pressure, where the bodies are in contact, the film assumes a magenta color while 
it remains white if the bodies are in lift-off. From the Figure 6.14, it is possible to 
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see how the contact at root joint is not perfect and uniform, in fact there are parts 
of the film that have a strong magenta color surrounded by a white color.  

The geometric tolerance of the surface of the root joint is difficult to simulate 
because, in the value of tolerance, the surface can assume any form. For this 
reason, the asymmetric distribution of Figure 6.10 is initially taken as a basis and 
then a variation of this is applied to simulate the tolerance on the root joint. Since 
it is impossible to know what is the real distribution of the normal pre-load, two 
linear variations of pre-load along the mainly directions of sliding (tangential and 
axial directions) have been supposed. An example of these two linear variations 
are reported in Figure 6.15a and 6.15b, where it is possible to note that positive 
and negative values exist. This trend is always applied and it has been made this 
choice to have a constant total value of normal force, i.e. 

∑      ∑        (6.2) 

where Nasym and Ntot are respectively the vector of the asymmetric normal force 
and the vector of the normal force with the application with application of two 
linear variations (see eq. 6.4). The extreme values of two linear variations have 
been chosen as a random percentage of mean value of the asymmetric normal 
force: 

                     (6.3) 

where p is the percentage variation. In this way the distribution of the normal pre-
load can be easily obtained as:  

                          (6.4) 

where Nϑ,var and Nz,var are respectively the vectors of the tangential and the axial 
variations. Of course, a check on the possible negative values of force acting on 
the contact nodes is made and if these negative values are presented the nodal 
normal force is set to zero 
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(a) (b) 

Figure 6.15: linear variations of the pre-load along the mainly directions of sliding - (a) tangential 
and (b) axial directions 

The percentage variation p can assume any values in a fixed range [-a, a]. The 
value of a parameter was set to 50% and four values of p are randomly chosen for 
each calculation: 2 for the tangential and axial directions on the right root joint 
and 2 for the tangential and axial directions on the left root joint. In this way, the 
two contact surfaces have a different and independent distribution of the pre-load. 

Figure 6.16 shows the LCO results by varying the normal pre-load where 250 
calculation cycles are made for the OC-8. The blue diamond marker represents the 
base point (no variation is applied to the normal pre-load – this point is equal to 
the corresponding point of Figure 6.13), while the red ‘x’ points are the LCO 

solutions for each random variation of the normal pre-load. It is possible to see a 
cloud of red ‘x’ points around the base solution where better solutions exist, but 
also worse solutions in terms of flutter amplitude (the errors in frequency are 
always acceptable). The mean values and the standard deviations in frequency and 
amplitude values of the cloud of points are reported in table 6.3 for the three 
analyzed operative conditions. The values are normalized with the frequency and 
the amplitude of the base point (as a ratio). It is possible to note that the mean 
values are close to the frequency and the amplitude of the base point and this is 
logic because the starting normal distribution is that of Figure 6.10. Similar results 
are also obtained for the other two operative conditions. If the maximum and 
minimum values in amplitude are considered (see Table 6.4), the errors in 
amplitude considerably change. In particular, the minimum points are closer to the 
mean values of the experimental data with a maximum error of 53% for the OC-6. 
Instead, if the OC-7 is considered, it is possible to see a negative error in 
amplitude compared to the maximum measured value. This means that the 
minimum numerical result stays inside the range of the measured data, but this is 
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a lucky case because the range of experimental data in this operative condition is 
very large. 

 

Figure 6.16: LCO points at variation of normal pre-load with 250 calculation cycles for the third 
operative condition 

 

 Mean value Standard deviation 

 Amplitude Frequency Amplitude Frequency 

OC – 6 1.02 0.99 0.13 1.7e-3 

OC – 7 0.99 0.99 0.09 1.9e-3 

OC – 8 0.99 0.99 0.08 1.9e-3 

Table 6.3: normalized mean value and standard deviation of the LCO solutions with the variation 
of the normal pre-load for the three considered operative conditions 
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 Minimum value Maximum value 

 Error in 
Amplitude 

(mean) 

Error in 
Amplitude 

(max) 

Error in 
Amplitude 

(mean) 

Error in 
Amplitude 

(max) 

OC – 6 53% 26% 179% 130% 

OC – 7 39% -23% 120% 22% 

OC – 8 47% 6% 119% 57% 

Table 6.4: error in amplitude of the minimum and maximum LCO solutions for the three 
considered operative conditions 

6.4 Conclusion 

In this chapter a numerical-experimental comparison has been made to validate 
the developed method. Three of the ten measured operative conditions have been 
chosen and the friction coefficient μ2 and mechanical damping ζmec,nom have been 
set. The LCO calculation was performed with two types of normal distributions: 
the first obtained only from the application of the centrifugal force while in the 
second the aerodynamic static load is also applied.  

The numerical-experimental comparison shows that the numerical results show in 
general bigger amplitudes and lower frequencies than the experimental data, with 
errors that cannot be neglected for the amplitudes. On the contrary, the errors in 
frequency are around the 2% and they can be considered acceptable.  

Since the method has been developed to be implemented in the industrial process, 
the calculation of numerical amplitude bigger than the experimental one is 
positive because in this way it is possible to be conservative in the design phase. 
However, the errors in amplitude are very large, but these can be opportunely 
explained if the differences between the simulated model and the tested bladed 
disk are considered. In fact, the model of the bladed disk analyzed is considered 
tuned, while the real bladed disk has a certain level of natural mistuning. This 
property acts on the flutter instability with a benefic effect because it breaks the 
cyclic symmetry that is a fundamental parameter for the flutter onset. Besides, the 
natural mistuning acts also on the distribution of the normal pre-load that is an 
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important parameter in the prediction of the flutter amplitude. In this case, an 
important role is played by the geometric tolerance of the root joint because, in 
according with the type and shape of the contact, different distributions of normal 
pre-load could exist. Since it is not possible to predict the real contact surface, for 
each contact surface two linear variations along the tangential and axial directions 
of sliding have been considered to take into account the tolerance of the root joint. 
The results obtained are interesting because they show that the influence of the 
geometric tolerance on the normal distribution is big; in fact the errors in 
amplitude show a great reduction (also of the 50%). Of course, next to this 
reduction, an increase of errors may exist. 

Since the general natural mistuning of the bladed disk and the geometric tolerance 
on the root joint that respectively mitigate the flutter and change the distribution 
of the pre-load, the calculation methodology can be considered useful to be 
included for a preliminary check in a design process. 

 

  



  

Chapter 7 

Conclusion 

The study of the non-linear aero-elastic behavior of a bladed disk in the presence 
of friction damping is presented. To perform this study a methodology for the 
calculation of the LCO of a blade array in a tuned configuration was developed. 
This methodology is based on the mathematical formulation of the work produced 
by the airflow on the blade airfoil that induces flutter excitation. Linearization of 
the fluid-structure coupling in terms of a linearized aerodynamic parameter and 
linearized friction forces is implemented in a numerical code.  

The method for LCO calculation has been before developed and applied to three 
lumped parameter models, where different properties are studied and fundamental 
hypotheses are introduced. For all systems taken into account the aero-damping 
parameter has been fixed a priori and interpreted as a viscous damping with 
negative sign. Instead, the external force due to the engine order excitation have 
not been considered, i.e. only the self-excited vibration have been studied. This 
allowed to use a one-way method based on the resolution of the equations of 
motion in the frequency domain together with the energy balance to have a well-
conditioned problem.  

The sensitivity analyses, by varying the aero-damping and friction coefficients, 
have shown that the fluid-structure interaction at level of the structure does not 
depend on the type of structure, but from the dynamic behavior of the structure. In 
fact, the three systems analyzed have the same mode shape unstable at flutter, 
while the other modes, if presented, are stable and do not give any significant 
contribution to the solution, the results show similar trend that are in accordance 
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with those of Griffin and Sinha [58]. In particular, the flutter analysis presents two 
solutions, one stable at low amplitude and bigger frequency, and one unstable at 
big amplitude and lower frequency. The Parameter variation shows that the 
behavior of the contact element has a great influence on the final result because 
from this depends the quantity of dissipative energy that can balance the 
aerodynamic energy. 

The method developed for the lumped parameter models has been easily extended 
to study a real model of a blade or a bladed disk since the definition of the 
aerodynamic matrix depends on the dynamic behavior of the system. Following 
this method, two different approaches have been developed: 

 a physical approach; 
 a modal approach. 

The first approach is based on the reduced matrices of mass and stiffness obtained 
by a CMS-CB, cyclic symmetry and Tran reductions; while in the second 
approach a modal reduction is applied. Both approaches have been used to study 
the flutter behavior of the bladed disk of the region Piedmont project Great-2020. 

The two proposed approaches are both valid and have strong and weak points. For 
the physical approach blade and disk are reduced separately and linked together 
by means of the contact elements that are added in the resolution phase. This 
gives the advantage to reduce once the system that can be then used many time 
with different values of contact stiffnesses that are subjected to a certain level of 
uncertainty. However, the reduced matrices are still big because all master dofs 
should be solved together and iteratively to calculate the LCO response, i.e. it is 
not possible to divide the non-linear dofs from the linear dofs as it is usually made 
for the forced response. This involves a calculation time of about 12 hours to 
obtain only one LCO point, that is considered bigger if compared with the typical 
calculation time of the modal approach (few minutes), but it is smaller than DTI. 
Naturally, if the number of harmonics considered in the Fourier series is different 
from 1, the calculation time has a great increase.  

In the modal approach the description of the model requires attention since blade 
and disk should be linked together, but not with a fixed root joint. The connection 
between blade and disk in the modeled system is necessary because the modal 
base should be representative of the dynamic behavior of the system; while a not-
fixed root joint allows to produce the dissipative energy needed to balance the 
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aerodynamic energy. To satisfy these two requirements for the modal approach, 
this not-fixed connection was performed by means of spring in the FE model and 
a fictitious contact force has been introduced into the equation of motion to 
balance the additional stiffness in the modal base. The introduction of this 
fictitious contact force has been verified through calculation of the forced 
response both in the physical and modal domains and through calculation of the 
flutter response in the physical domain. The results show that the equations of 
motion so structured are able to calculate an exact forced response both in the 
physical and modal domain, but problems arise in the flutter analysis for the 
modal approach. In fact, if the displacements at the contact are not sufficient to 
produce the necessary dissipative energy the flutter analyses are not possible. For 
this reason, in order to perform a flutter analysis with the modal approach, a 
looser connection in the FE modal has been implemented by means of a 
percentage of the contact stiffness instead of the whole value. The same quantity 
of stiffness of the springs is then balance by the fictitious contact force in the 
frequency domain, non-linear simulation. 

Both approaches show coherent sensitivity analyses with the trends of the lumped 
parameter models and allow to identify the parameters that mostly influence the 
flutter response beyond the aero-damping and friction coefficients. These 
parameters are the contact stiffnesses and the value and distribution of the normal 
pre-load. In particular great attention should be paid in the definition of the 
contact stiffnesses because they do not only influence the frequency of the system 
but also the distribution of the normal pre-load. For these reason, an opportune 
calculation of the contact stiffness was performed on the basis of the geometry of 
the dovetail attachment using lagriangian method that allows to determinate the 
states of the contact without the knowledge of the stiffness itself. 

Since the distribution of the normal pre-load acts on the flutter amplitude, this has 
been calculated through a non-linear static analysis by FEM where two different 
load conditions are applied; in the first case only the centrifugal force is applied, 
while in the second case also the steady aerodynamic loads are considered. These 
distributions have been used to determinate the numerical results to compare with 
the experimental data obtained in a cold flow rig. Three operative conditions, with 
different values of aero-damping and centrifugal force, were analyzed and 
compared to experimental data in terms of errors in amplitude and in frequency. 
The results show a good comparison for the vibration frequencies (the general 
errors is about 2%), while in amplitude the errors are bigger. The usual numerical 
response compared to the mean value of the experimental data is twice this value. 
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This difference between the numerical results and the experimental data is due to 
difference between the modeled and real bladed disks. In fact, the model of the 
bladed disk analyzed by this method is considered perfectly tuned, while the real 
bladed disk has a certain level of mistuning. This property acts on the classical 
flutter with a beneficial effect because it breaks the cyclic symmetry that is a 
fundamental parameter for flutter appearance. A source of natural mistuning that 
has a great effect on the amplitude of the flutter response is the geometric 
tolerance of the root joint because, according to the type and shape of the contact, 
different distributions of the normal pre-load could exist and as a consequence 
LCO point can have different values. The effect of geometric tolerances, even if 
difficult to simulate because the contact surfaces can assume any form inside the 
value of geometrical tolerance, has been introduced in the method by considering 
two linear variations of the distribution of normal pre-load along the tangential 
and axial directions of sliding. The results show a significant influence of the 
geometric tolerance on the LCO amplitude; in fact for each random variation of 
the pre-load, a different solution has been obtained that can be better or worse in 
amplitude than the LCO point calculated with the starting distribution of normal 
force. In particular, the best points of the three operative conditions analyzed 
present a reduction of the error in amplitude of about 50%. 

For these reasons, the general natural mistuning of the bladed disk and the 
geometric tolerance on the root joint that respectively mitigate the flutter and 
change the distribution of the pre-load, the errors in amplitude, even if bigger, can 
be considered acceptable. 

7.1 Industrial impact 

The introduction of the developed method in the industrial process may have a 
positive effect since it will be possible to change the current design process. From 
a design process of the blades based on the limit of instability that restricts the 
possibility of innovative solutions, the blades could be designed according to 
design guidelines related to HCF since the instability could be quantified in terms 
of amplitude and frequency of vibration and so new design solutions could be 
possible. 

For this purpose, the presented method shows the possibility to calculate the 
vibration amplitudes in the flutter conditions through a numerical-experimental 
comparison. Instead, the sensitivity analyses for the calculation of the flutter 
response show the importance of the blade root joint in the generation of the non-
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linear contact forces when no other friction damper is presented. Besides, the 
importance of the blade root joint is not closely related to the flutter calculation, 
but it has a great effect on the resonance peak. In fact, the results show how a 
suitable distribution of the normal pre-load can reduce the resonance peaks or the 
flutter amplitudes and as a consequence an optimization process of the dovetail 
attachment may be thought to have the best dynamic behavior. 

7.2 Future developments 

Future possible extension of the friction flutter method may concern two main 
field: the inclusion of more unstable nodal diameters and the inclusion of this 
methodology in the non-linear aerodynamic analysis.  

With the inclusion of more than one nodal diameter associated to a negative aero-
damping coefficient, a more accurate dynamic behavior of the bladed disk is 
simulated. The great problem is due to the calculation of the contact forces when 
more unstable mode shapes exist since the ND associated to the unstable modes 
are not commensurable. This yields a quasi-periodic oscillation of the blades in 
the frequency domain resolution of the equation of motion. The calculation of the 
non-linear response is difficult to solve in this case since the hysteresis loop of the 
contact model is open and as a consequence the simple FFT approximation is not 
accurate. 

With the inclusion of the developed method in the non-linear aerodynamic 
analysis, a two-way coupled method is necessary. The purpose of a two-way 
coupled method is to foresee and determinate the flutter in non-linear condition as 
in the transonic flutter.  

Since the definition of the contact stiffnesses is essential to calculate the response 
of the bladed disk, both for the forced response and flutter, since they influence 
the distribution of the normal pre-load, a more accurate and general calculation of 
these parameters may be developed to have more accurate results.  
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Appendix A 

Fictitious contact force applied on a lumped parameter 
model 

The method presented in the section 5.4.1 has been initially applied to a lumped 
parameter model of 12 sectors that was reduced in cyclic symmetry considering 
ND=1. The model is described in Figure A.1. 

 

Figure A.1: lumped parameter model for the application of the fictitious contact force 

The method with the application of a fictitious contact force has been applied both 
for the forced and flutter responses. For the two analyses, the calculations have 
been performed considering only the first harmonic both in the physical and 
modal domains. The physical equations used for the forced response are: 

[ ] ̈  [ ] ̇  [   ]            (EqA.1 a) 

[ ] ̈  [ ] ̇  [      ]                  (EqA.1 b) 

while the equations in modal domain are: 
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[    ] ̈  [    ] ̇  [    ]                   (EqA.2 a) 

[    ] ̈  [    ] ̇  [      ]                            (EqA.2 b) 

Figure A.2 shows the forced response of the system solving the equations 
(EqA.1). The forced response was calculated with the contact in stick condition 
and it is possible to see that the linear response, the solution of eq. (EqA.1a) and 
the solution of eq. (EqA.2b), where the fictitious force is used, are perfectly 
overlapped. The same thing happens with the resolution of equation EqA.2 (see 
Figure A.3).  

 

Figure A.2: forced response of a lumped parameter model with the solution of the equations in the 
physical domain: blue line – linear free response; red line – linear stick response; green line – 

Newton-Raphson resolution of eq. (EqA.1a) in stick condition - Newton-Raphson resolution of eq. 
(EqA.1b) in stick condition 
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Figure A.3: forced response of a lumped parameter model with the solution of the equation in the 
modal domain: blue line – linear free response; red line – linear stick response; green line – 

Newton-Raphson resolution of eq. (EqA.2a) in stick condition - Newton-Raphson resolution of eq. 
(EqA.2b) in stick condition 

The solution of the equation of motions (EqA.1) and (EqA.2) with the contact in 
stick condition is easy because the behavior of the system in this case is linear. 
More complex is the calculation of forced response if the contact can slip. Figure 
A.4 shows the damped forced responses of lumped parameter model in the 
physical domain for three values of normal pre-load (N1=100 N, N2=200N and 
N3=500N). It is possible to note that the solutions of eq. (EqA.1a) and (EqA.1b) 
are exactly the same for three values of normal pre-load and also the trend of the 
forced responses are right. In fact, the resonance peak goes from the free 
condition to the stick condition passing for a minimum value of resonance 
amplitude. Similar solutions are obtained from the solution of eq. (EqA.2a) and 
(EqA.2b). The comparison of the four solutions (2 in physical domain and 2 in 
modal domain) is shown in Figure A.5 for the normal pre-load N2. 
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Figure A.4: damped forced responses obtained by solution of 
eq. (EqA.1a) and (EqA.1b) for three different values of 
normal pre-load (N1=100 N, N2=200N and N3=500N) 

 

 

Figure A.5: comparison of damped forced responses with normal pre-load N2 obtained by 
resolution of eqs. (EqA.1a), (EqA.1b), (EqA.2a) and (EqA.2b) 

The equation of motions (EqA.1) and (EqA.2) for the forced response can be 
easily modified for the calculation of the flutter response. In fact it is sufficient to 
remove the external synchronous force Fe and to add the aero-damping and the 
aero-stiffness matrices. In this way the equation of motions for the flutter analyses 
are:  
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[ ] ̈  [ ] ̇  [    ] ̇  [   ]  [    ]        (EqA.3a) 

[ ] ̈  [ ] ̇  [    ] ̇  [      ]  [    ]              (EqA.3b) 

in physical domain, while in modal domain the equations are: 

[    ] ̈  [    ] ̇  [        ] ̇  [    ]  

[        ]            
(EqA.4a) 

[    ] ̈  [    ] ̇  [        ] ̇  [      ]  

[        ]                     (EqA.4b) 

Figure A.6 and A.7 show the flutter responses of the lumped parameter model 
respectively in physical domain and in modal domain. From these two figures it is 
possible to see that the flutter responses of eq. (EqA.3a) and (EqA.3b), and 
(EqA.4a) and (EqA.4b) are practically the same. 

  

Figure A.6: LCO calculation in the physical 
domain obtained from the solution of eq. 

(EqA.3a) and (EqA.3b) 

Figure A.7: LCO calculation in the modal 
domain obtained from the solution of eq. 

(EqA.4a) and (EqA.4b) 

The results obtained for a lumped parameter model are very important because 
show adding a fictitious contact force to balance a stiffness matrix in stick 
condition is possible to obtain the right dynamic behavior of the system using 
both the physical and the modal domains. These results are used as starting point 
to apply this method to FE model such as the model of Great-2020 blade.  
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Appendix B 

Physical approach with a fictitious contact force applied 
on a bladed disk 

In the Appendix A, the fictitious contact force has been applied to a lumped 
parameter model showing good results. In this section, the same method is applied 
to FE model of the bladed disk of G2020 project using physical matrices. 

The calculation of the forced and flutter response of a bladed disk with a physical 
approach can be easily done using the equation of motions (Eq.A1a) and (Eq.A3a) 
because the blade and the disk can be separately modeled and then linked together 
with the contact elements. However, to demonstrate the potentiality and 
correctness of the method with the fictitious contact force, the equations (Eq.A1b) 
and (Eq.A3b) will be now applied.  

The forced responses in physical domain are reported in Figure B.1 and B.2. 
Figure B.1 shows the forced response in stick condition, while the Figure B.2 
shows the damped forced response. Both figures show that the solution of eq. 
(Eq.A1b) gives the same results of eq. (Eq.A1a), i.e. the two methods are 
interchangeable for the calculation of the forced response.  

  

Figure B.1: stick forced response in the physical 
domain 

Figure B.2: damped forced response in the 
physical domain 
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Figure B.3 shows instead the flutter response using the equation (Eq.A3a) and 
(Eq.A3b) by varying the friction and the aero-damping coefficients. The results 
with the fictitious contact force have the correct trend at variation of the two 
parameters, but more important the results obtained from the two equation of 
motions are the same. 

 

Figure B.3: LCO calculation in the physical domain using the eq. (Eq.A3a) and (Eq.A3b) 
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Appendix C 

Forced response with a linear distribution 

The two linear distribution of Figure 5.71and 5.72 are used in this appendix to 
calculate the forced response of the system. This is made to understand the effect 
of linear distribution in a simpler and well-known case such as the forced 
response. Figure C.1 shows the forced responses where the linear distributions of 
Figure 5.71 are applied. It is possible to note that the forced response with 
uniform distribution has the minor amplitude of resonance, while with the 
increase of the gradient the resonance peak presents a reduction of the frequency 
and an increase of the amplitude. This dynamic behavior of bladed disk is due to 
the efficiency of the contact elements. In fact, with the increase of the gradient of 
the symmetric distribution there is a reduction of stiffening effect of the contact 
elements and consequently the resonance frequency decreases; while the 
resonance amplitude increases because the contact loses effectiveness. For 
example, the increase of gradient produces a hysteresis loop of the contact 
elements with lift-off state more important than the slip state and consequently the 
contact produces less dissipative energy. Similar forced responses are shown in 
Figure C.2 where the asymmetric linear distributions of Figure 5.72 are applied. 
Also in this figure, the minimum value of resonance amplitude is reached for the 
uniform distribution, while the increase of the gradient produces a reduction of the 
frequency and an increase of the amplitude.  

  

Figure C.1: forced responses with the symmetric Figure C.2: forced responses with the 
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linear distributions asymmetric linear distributions 

Both Figure C.1 and C.2 show that the uniform distribution represents the optimal 
condition to reduce the amplitude of vibration of the system. This involves that a 
variation of the distribution of the normal pre-load produces an increase of 
amplitude vibration. Figures C.3 and C.4 show instead the damped forced 
response of the bladed disk where the uniform distribution produces a response of 
the system out of the optimal condition (blue line). This response has been 
obtained considering a mean value of the normal distribution four times bigger 
than the mean value used in Figure C.1 (or C.2). From the uniform distribution, 
six linear distribution (three symmetric and three asymmetric) has been calculated 
with the same gradients of Figure 5.71 and 5.72 and then applied to calculated the 
damped forced responses. The obtained results are very interesting and show a 
reduction of the resonance frequency by increasing the gradient of the linear 
distribution. This is due to a reduction of stiffening effect of the contact elements 
that has a benevolent effect on the resonance frequency. 

  

Figure C.3: off-optimal forced responses with the 
symmetric linear distributions 

Figure C.4: off-optimal forced responses 
with the asymmetric linear distributions 
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