
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

IoT Notifications: from disruption to benefit - Architectures for the future of notifications in the IoT / Montanaro, Teodoro. -
(2018 Sep 10).

Original

IoT Notifications: from disruption to benefit - Architectures for the future of notifications in the IoT

Publisher:

Published
DOI:10.6092/polito/porto/2712588

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2712588 since: 2018-09-11T09:56:41Z

Politecnico di Torino

Doctoral Dissertation

Doctoral Program in Computer and Control Engineering (30thcycle)

IoT Notifications: from disruption to
benefit

Architectures for the future of notifications in the
IoT

By

Teodoro Montanaro

Supervisor(s):
Fulvio Corno, Supervisor

Pino Castrogiovanni (TIM), Co-Supervisor

Doctoral Examination Committee:
Prof. Franceschinis G. A., Referee, Univ. Piemonte Orientale “Amedeo Avogadro”
Prof. Bernardos Ana M., Referee, Universidad Politecnica De Madrid - Etsidi
Prof. Torchiano M., Politecnico di Torino
Prof. Servetti A., Politecnico di Torino
Prof. Gena C., Università degli Studi di Torino

Politecnico di Torino

2018

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Teodoro Montanaro
2018

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

I would like to dedicate this thesis to my parents, my brother, and all the people
(uncles, aunts, cousins, friends and grandmother) who believed in me.

Acknowledgements

I know that it is not a good practice to use emoticons in a doctoral thesis, but I think
I can do it in the acknowledgments paragraph.

As almost everyone knows, I love to speak :-). I’m not as good as my brother to
establish a conversation with every person, animal or object present on the earth XD,
but I cannot declare that I can stay more that a minute without speaking. Now that
it is clear, I will use the same approach I usually use when I am near a person (and
I am not tired, this is the only situation in which I could be a silent person) to say
thanks to the people who helped me during my Ph.D.

At first, I want to thank all the people that guided me and “walked” near me
during the Ph.D.! Specifically, I want to thank Fulvio Corno and Luigi De Russis,
my mentors. Their patience and support allowed me to grow, improve my skills,
and, most important, arrive at the end of the Ph.D. :-) In addition, I would like
to thank them, together with Laura Farinetti, a teacher of rare goodness, for the
opportunity they gave me to discover my passion in teaching. They involved me
in the teaching activities of the two courses “Ambient Intelligence” and “Social
Networking: technologies and applications” letting me improve my teaching skills
and, maybe, find my future way.

Then, I would like to thank all the other members and alumni of the e-Lite
research group for their support: Sebastian Aced Lopez, who convinced me to
continue my training with a Ph.D., Alberto Monge Roffarello and Juan Pablo Sáenz
that started their Ph.D. in our research group one year before my departure, and
Fabio Ballati who started a few days before my last day.

Moreover, I’m indebted with all the TIM members: Pino Castrogiovanni, my
industrial tutor and Claudio Borean who guided me in cooperating within the JOL
Swarm team. Also, I would like to thank Dario, Ennio, Roberta, Giuseppe and

v

Alfonso who cooperated with me in some projects and that taught me a lot of
industrial tricks that I am appreciating now in my new job.

Furthermore, I want to thank all the people I have met in these years, even if only
for a few moments, in the department, in the laboratory (“lab6” has been my second
house during the Ph.D., so Alessandro, Andrea, Francesco, Roberta, Alberto and
Giuseppe were my second family) and also all around the Politecnico.

And it is not finished: I would like to thank Andrea Marcelli for involving
me in some of his projects and supporting me in almost all the machine learning
experiments, and also, Edoardo Fadda, Giovanni Zenezini, Maliheh Ghajargar and
Rosario Scatamacchia for their patience in the collaborations we made during some
extra projects carried on during the Ph.D.

I’m proud of have been part of the DAUIN department at Politecnico di Torino
but also of the TIM JOL Swarm team and I hope to continue to meet all of you in
the future! ;-)

Finally, I would like to thank all the people who helped me by testing the
XDN framework: Alberto Monge Roffarello, Luca Venturini, Alberto Cannavò,
Fabio Ballati, Federica Bazzano, Federico Salaroglio, Gianpaolo Paterno, Giovanni
Piumatti, Giuseppe Ministeri, Juan Pablo Sáenz, Luca Mannella, Orazio Scivolone,
Tamer Saadeh and Mohammad Ghazi Vakili.

Ok, if you arrived here and you are not yet in the list, the answer to your question
is: NO, I did not forget you. However, I wanted to leave you at the end to oblige you
to read everything XD!

I am forever grateful to my parents, Rosario and Francesca, my brother Andrea,
all the members of my big family (aunts, uncles, cousins, and grandma) and all
my friends (you are too many to be mentioned in a few lines, so I will thank you
personally after the discussion XD) who have always supported and encouraged me.

And last, but not the least, I would like to thank the reviewers of this thesis: even
though I will discover who you are only when I will have finished to write the thesis,
I would like to thank you for your work and your suggestions.

Abstract

The growing number of mobile and IoT devices able to generate and show incoming
notifications is fostering the spread of notifications in people lives. Nonetheless,
although users are getting used to them, their presence is not always perceived as a
benefit by recipients. With the aim of improving user experience with notifications,
two different approaches are presented in this dissertation. The former acts at the
distribution level, i.e., notifications are intercepted and then a system decides if, when,
and how to show them; while the latter acts at the design level, i.e., notifications and
their distribution strategies are designed with the aim of reducing user disruption and
exploiting all the benefits that the availability of multiple devices could bring.

An IoT architecture is proposed for each approach: the Smart Notification Sys-
tem that relies on machine learning algorithms to adequately manage incoming
notifications, and the XDN (Cross-Device Notification) framework that assists devel-
opers in creating cross-device notifications by scripting. The modular nature of both
architectures allowed the simultaneous development and test of different indepen-
dent but compatible subsystems and their exploitation in preliminary deployment
sessions. The results, feedbacks and lessons learned from such sessions can foster
the development of future solutions in the IoT notifications field and related domains.

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Overview . 1

1.1.1 Internet of Things (IoT) 2

1.1.2 IoT building blocks . 3

1.1.3 IoT applications . 4

1.1.4 IoT notifications . 6

1.2 Thesis Motivation . 7

1.3 Goal . 9

1.4 Thesis organization . 10

1.5 Original contribution . 10

2 SNS (Smart Notification System) 12

2.1 Introduction and Motivation . 12

2.2 Background . 13

2.2.1 Machine Learning Approach 13

2.2.2 REST API . 17

2.3 Related works . 18

viii Contents

2.4 Scenario . 24

2.5 Architecture . 24

2.6 Prototypes: design, implementation and preliminary deployment . . 29

2.7 Decision Maker . 31

2.7.1 Preliminary experiments and results 31

2.7.2 Preliminary Evaluation and Conclusion 38

2.8 Collectors . 38

2.8.1 IoT Collector server . 42

2.8.1.1 Data structure: ER model 42

2.8.1.2 REST API . 45

2.8.1.3 Prototype Implementation 47

2.8.1.4 Preliminary Deployment Session 47

2.8.2 Mobile Collector . 48

2.8.2.1 How to collect user reactions to notifications . . . 48

2.8.2.2 Dataset definition 54

2.8.2.3 Prototype implementation 55

2.8.2.4 Preliminary Deployment Session and Results . . . 58

2.8.3 SmartHome Collector . 60

2.8.3.1 Prototype implementation 62

2.8.3.2 Preliminary Deployment Session and Results . . . 64

2.8.4 SmartCity Collector . 65

2.8.4.1 Architecture . 67

2.8.4.2 Prototype . 70

2.8.4.3 Preliminary Results 73

2.8.5 Final Performed Experiments 75

2.9 Context Analysis . 79

2.9.1 Location Estimation . 80

Contents ix

2.9.1.1 Method . 80

2.9.1.2 Data collection 81

2.9.1.3 Meaningful places estimation 83

2.9.1.4 Features selection and Pre-processing 84

2.9.1.5 Cross validation 85

2.9.1.6 Results evaluation 86

2.9.1.7 Related works 90

2.9.1.8 Conclusions and future work 91

2.10 Discussion and Conclusion . 92

3 The XDN (Cross-device Notification) Framework 94

3.1 Introduction . 95

3.2 Background and Motivation . 97

3.2.1 Scenario: Messaging Application 97

3.2.2 Frameworks for customizing notifications and/or designing
notification strategies . 100

3.2.2.1 Frameworks and tools for developers for manag-
ing notifications 102

3.2.2.2 Cross-device interactions 105

3.3 Requirements . 108

3.4 Framework . 111

3.4.1 XDN GUI . 113

3.4.2 XDN library . 114

3.4.3 XDN runtime environment 119

3.4.4 XDN IoT/mobile library 119

3.5 Implementation . 120

3.5.1 Implementation details . 120

3.6 Evaluation . 121

x Contents

3.6.1 Tests’ goal . 121

3.6.2 Scenarios for tests . 122

3.6.2.1 Scenario 1: Smart Fridge 122

3.6.2.2 Scenario 2: messaging application 123

3.6.3 Test Deployment . 124

3.6.3.1 Task 1 . 125

3.6.3.2 Task 2 . 126

3.6.4 Results . 126

3.7 Discussion . 129

3.7.1 Successes . 129

3.7.2 Challenges . 130

3.8 Conclusions . 131

4 Conclusions and Future Developments 134

4.1 Summary of contributions . 134

4.2 Results . 136

4.3 Future works . 137

References 138

Appendix A Detailed SmartBike Survey Results 145

Appendix B Publications 149

List of Figures

2.1 Different ways of showing notifications. Image from [1] 20

2.2 The resulting C4.5 decision tree obtained by Poppinga et al. [2].
It consists of 20 elements and 11 leaves. It classified whether a
notification should be issued (true) or not (false) with an accuracy of
77.85 percent. Image from [2] . 22

2.3 Architecture design . 25

2.4 Simplified version of the SNS Architecture with additional informa-
tion about the developed contribution 30

2.5 Steps followed in test the first prototype of the Dispatcher module . 32

2.6 Possible future scenario . 39

2.7 Architecture design . 40

2.8 ER diagram representing the data structure implemented on the IoT
Collector server . 43

2.9 Temporary App1: Survey to acquire User Reaction to Notifications . 50

2.10 Experiment to investigate on the best way of acquiring user reaction
to notifications . 51

2.11 ER diagram representing the data structure implemented on the
Mobile Collector . 54

2.12 Screenshots of the implemented Mobile Collector application 57

2.13 Power consumption of the Notification Collector app on the two
involved smartphones . 58

xii List of Figures

2.14 Age of participants . 59

2.15 Employment of respondents . 59

2.16 Devices chosen for developing the SmartHome Collector prototype . 63

2.17 High level architecture design of the SmartBike platform 68

2.18 The SmartBike device prototype 72

2.19 Screenshots of the designed prototypal application 73

2.20 The position of the bike can be remotely visualized on a map with
the traveled route . 74

2.21 Map of the area of Turin (Italy) monitored within the test 74

2.22 Model that describes the estimation process performed for each user 81

2.23 Absolute locations recorded for user 5 84

2.24 Absolute locations recorded for user 11 85

3.1 Notification strategy implemented by the Slack team 101

3.2 Architecture of the XDN framework 111

3.3 Screenshot of the XDN GUI . 132

3.4 Class diagram that shows the structure of the xdn.notification Object 133

3.5 Class diagram that shows the structure of the xdn.device Object . . . 133

A.1 User Survey: age distribution . 146

A.2 User Survey: frequency of bicycle usage 146

List of Tables

2.1 Results obtained in the example used to present the accuracy paradox 16

2.2 Results obtained by the “dumb” classifier in the example used to
present the accuracy paradox . 16

2.3 Summary of features provided by related works 19

2.4 Summary of related works’ features 19

2.5 Context information . 27

2.6 “Converted Notifications” information 27

2.7 Simplified version of Context information: for the prototype 32

2.8 Simplified version of Notifications information: for the prototype . . 33

2.9 Dimension of used dataset . 34

2.10 Percentage of correct predictions obtained with used algorithms . . 36

2.11 CPU time for a training phase with 33058 samples 37

2.12 Average CPU time for each notification classification 37

2.13 Information identified for creating pilot dataset 41

2.14 HTTP Verbs available in the IoT Collector Server 45

2.15 IoT Collector Server: API Specification - part 1 46

2.16 IoT Collector Server: API Specification - part 2 47

2.17 Preliminary results with real data 79

2.18 Collected data . 82

2.19 Legend of considered features . 87

xiv List of Tables

2.20 First part of experimental results (Accuracy, Precision and Recall) -
all values are percentages . 88

2.21 Second part of experimental results (Accuracy, Precision and Recall)
- all values are percentages . 89

3.1 Summary of features provided by related works 102

3.2 Summary of related works’ features 102

3.3 Notification properties . 115

3.4 Device properties (above) and statuses (below) 116

3.5 Device actions . 117

3.6 XDN: final survey proposed to users 127

A.1 List of possible technological bike improvements with percentage of
users that selected each of them . 148

Chapter 1

Introduction

1.1 Overview

Thanks to the continuous introduction of new devices and services, technology has
become part of citizens’ lives during the last decades and it is really difficult to
think at any moment of the day in which it has not been transferred. Thanks to the
useful services that they provide, in fact, tablets, smartwatches, smartphones, smart
TVs, smart fridges, smart washing machines and other common devices became
part of our lives and changed our habits and behaviors. Indeed, for example, since a
few decades ago, no one would have imagined at the possibility of controlling the
house heating system by her voice except in science fiction. In addition, since a few
decades ago, our parents used to consult a paper map before every travel, while now
we are accustomed to real-time positioning systems able to suggest the shortest path,
also depending on the current traffic condition.

All these examples are only some of the innovations that are fostering the spread
of one of the most pronounced concept of the last decades: the Internet of Things
(IoT). It is the network of physical objects that are always connected to the Internet
with the aim of sharing services and information with other connected “things”.

The next paragraphs present some details about this innovative network of objects
also reporting the most important elements that constitute an IoT system and some
example of application of the IoT.

2 Introduction

1.1.1 Internet of Things (IoT)

One of the hottest topic of the last decade is certainly the Internet of Things (IoT).
Its spread is demonstrated by the huge number of different synonyms that were
already introduced to represent the same concept. Internet of Everything (IoE),
Industrial Internet, Pervasive Computing, Pervasive Sensing, Ubiquitous Computing,
Cyber-Physical Systems (CPS), Wireless Sensor Networks (WSN), Smart Objects,
Cooperating Objects, and Machine-to-Machine (M2M) are only a minimal part of
the list of synonyms that compose the so called “terminology zoo” surrounding IoT.

Cisco, one of the biggest companies that is investing in IoT in recent years,
declares that one of the first use of the term “IoT” dates back to 19991. In fact, in
a 1999 article for the RFID Journal, Ashton Kevin wrote the following visionary
paragraph: If we had computers that knew everything there was to know about things
using data they gathered without any help from us, we would be able to track and
count everything, and greatly reduce waste, loss and cost. We would know when
things needed replacing, repairing or recalling, and whether they were fresh or
past their best. We need to empower computers with their own means of gathering
information, so they can see, hear and smell the world for themselves, in all its
random glory. RFID and sensor technology enable computers to observe, identify
and understand the world without the limitations of human-entered data.2

Due to the early implementation of some technologies and the absence of some
others, this declaration only represented the visionary point of view of a society
that was starting to think at the possibility of exploiting the Internet to develop new
devices and services. Although, since then, a lot of obstacles have been solved and,
thanks to the rapid proliferation of connectivity and the introduction of sensors and
actuators in everyday physical devices, the Internet of Things (IoT) is becoming
reality in recent years [3].

As described by Cisco, IoT represents systems in which “things” (i.e., objects
in the physical world) are connected to the Internet via wireless and wired Internet
connections with the aim of collecting and sharing data and services. To better
understand this definition, the next paragraphs present both the essential blocks that
compose an IoT object/system and some examples of application in the IoT domain.

1https://www.cisco.com/c/dam/en_us/solutions/trends/iot/introduction_to_IoT_november.pdf
2http://www.rfidjournal.com/articles/view?4986

1.1 Overview 3

1.1.2 IoT building blocks

This section presents the main building blocks that an object, a sensor, or a system
should possess to act in the IoT domain. They are presented with the aim of helping
readers in understanding what the IoT is.

As effectively summarized by Atzori et al. [4], the actualization of the IoT
concept into the real world is possible through the integration of several enabling
technologies:

• Identification, sensing and communication technologies; they represent all the
components that are encouraging the adoption of new objects in people daily
routine actually leading to the IoT concept.

– Identification: as declared by Al-Fuqaha et al. [5], it is essential for every
IoT object to be uniquely identified within a communication network.
For this purpose, two different properties may be exploited: the “object
ID”, that represents the name assigned to the object and allows humans
to identify the object, and the “object address”, that allows to reach the
object and its exposed services within the network in which it is installed.

– Sensing: another important property that could be adopted by an IoT
object resides in the possibility of gathering data from related objects
within the network and sending it back to a data warehouse, database, or
cloud. In general, the collected data is analyzed to take specific actions
based on required services. The sensors can use various types of local
area connections (e.g., RFID, NFC, Wi-Fi, Bluetooth, and Zigbee) or
wide area connectivity (e.g., GSM, GPRS, 3G, and LTE) to transmit or
receive data to/from the connected other things. In addition, due to the
high variability of both data and connectivity used to transmit it, such
data differs from traditional computing ones because of their small size
and the high frequency used for its transmission.

– Communication: as declared by Al-Fuqaha, the IoT communication
technologies connect heterogeneous objects together to deliver specific
smart services. Typically, the IoT nodes should operate using low power
in the presence of lossy and noisy communication links.

4 Introduction

• Middleware; it represents a software layer that hide the details of different
technologies that act behind the scene. It aims at abstracting the devices
functionalities and communications capabilities, providing a common set of
services. As summarized by Atzori et al. [4], it relies on 5 main components.

– “Applications”: this component represents all the elements that export
the system’s functionalities to the final user and let her interact with
them. These elements include both software elements, e.g., graphical
user interfaces or notifications, and physical devices, e.g., smart lamp or
interactive touch screen that let the user interact with the system.

– “Service composition”: it represents all the functionalities aimed at the
composition of single services offered by networked objects then used
to build specific applications. At this level, there is no notion of devices
and the only visible assets are services.

– “Service management”: it includes all the functions that are expected
to be available for each object and that enable their management in IoT
scenarios.

– “Object abstraction”: IoT relies on a vast and heterogeneous set of
objects, each one providing specific functions accessible through its own
dialect. Thus, there is the need to harmonize the access to the different
devices with a common language and procedure.

– “Trust, privacy and security management”: the deployment of automatic
communication of objects represents a danger for people future. The mid-
dleware must consequently include functions related to the management
of the trust, privacy and security of all the exchanged data.

Even though, in some situations, these elements could be distributed among
different devices, they represent the essential requirements for an object or a system
that acts in the IoT domain.

1.1.3 IoT applications

In recent years, the interest in IoT is growing and the range of domains in which it
is applied is raising in parallel. This subsection presents an updated list of some of
the most explored areas in which IoT has been fostered up to the moment of writing.

1.1 Overview 5

It is inspired by the two works proposed by Kamilaris et al. [3] and by Rehman et
al. [6]. The first is mainly focused on mobile phones, but considering that the IoT
and mobile domains are strictly related, the contained information are used to enrich
the effective analysis proposed by Rehman et al. [6].

• Participatory Sensing: it represents all the activities and the projects that
encourage users to record and share information with the aim of cooperating to
a general public shared objective. An example in such domain is represented
by the use of bikes as IoT probes to collect data for monitoring the city air
quality.

• Eco-Feedback: this category represents all the projects in which technology
is used to give users a feedback about their personal impact on public envi-
ronmental phenomena or events. For instance, the user personal smartwatch
could be used to understand how much time the user usually spends in driving
and how this time is influencing the city air quality.

• Actuation and Control: it represents cases in which technology is used to
control physical devices. A smart home heating system is the most common
example of such domain: the user, for instance, can set the system to have a
constant temperature in the house.

• Health: it represents all the circumstances in which electronic devices are used
to monitor the user’s health. All the modern smart bracelets and smartwatches
are, for example, designed to monitor user heart rate or sleep quality. Such
information can be used to feed a smart system able to suggest which is the
best moment to drink or to have a rest.

• Sports: This domain represents all the systems that use a combination of
various sensors (e.g., heart rate, foot counter, etc.) during sport activities to
record various information and help users to improve their performance.

• Agriculture: it is related to smart farming practices aiming at improving
productivity, management of livestock and increase consumer satisfaction and
transparency.

• Gaming: this area is about virtual games which foster the physical presence or
status of the user to enhance the gaming experience.

6 Introduction

• Transportation: it represents all the projects in which sensing features are
harnessed to foster and improve user driving experience and/or parking.

• Interaction With Things: this category represents all the efforts focused on
interacting with physical entities that are located near the user. An example of
such area is a smart exhibition area like the one we presented in [7] that, for
instance, allows visitors to interact with exposed innovative IoT devices (e.g.,
car robot).

• Social Interactions With People: this area groups all the projects that foster
data extracted from online social networks or similar platforms to provide
innovative services that, for example, are able to predict a user behavior.

• Security and Surveillance: security has been underestimated for a lot of years
but, recently, it has become one of hottest topic treated in both research and
industry sectors. Technologies proposed by the IoT domain, in fact, provide
new ways and opportunities to adopt security measures in different domains.
As an example, IoT can be applied to a house door by the use of IoT door
locks to allow users to close the door remotely, but also by the use of smart
power appliances that can avoid fire in case of user oversights (e.g., coffee pot
forgotten on the stove).

1.1.4 IoT notifications

Since the early introduction of mobile devices in our society, notifications have
earned an important role in providing to users the needed information in the right
moment (e.g., the reminder of a business call sent 10 minutes before the call).
However, since the introduction of IoT, their role has been changing.

In this thesis, the terms “common notifications” and “mobile notifications” will
be used as synonyms to indicate notifications usually generated and/or notified on
the devices used before the advent of IoT (e.g., smartphones or PC), while the term
“IoT notifications” will be used to indicate the notifications usually generated and/or
notified on all the existing IoT devices, in addition to all the devices already used by
“common notifications”.

1.2 Thesis Motivation 7

The term notification is usually used to depict all the messages and actions sent
or performed to notify useful information to a receipt (e.g., a user or a system). Each
notification is mainly composed by four important components:

• the source of the notification;

• the destination of the notification;

• the content of the notification;

• the modality used to show the arrival of the notification.

The differences among “common” and “IoT” notifications are equally distributed
in all the components.

At first, the introduction of IoT added a huge number of heterogeneous sources
and destinations for notifications. New devices and services are in fact introduced
every day with the aim of helping people in their daily activities and almost all
of them are able to generate and/or receive notifications. A smart toothbrush, for
example, can generate a notification about its battery status or also the high pressure
that the user is putting on her teeth. And, at the same time, it could vibrate as soon
as a new notification arrives to the user while the user is cleaning her teeth.

In addition, also the content of the notification has drastically changed with
the introduction of IoT. Looking at the previous example, in fact, the notifications
generated by the smart toothbrush are really different from the ones generated before
the advent of the IoT (e.g., a calendar reminder).

Finally, IoT has also introduced new ways of notifying people about incoming
notifications. As an example, the red color of a smart lamp can now be used to warn
the user about an event that requires her maximum attention (e.g., alarms).

1.2 Thesis Motivation

As depicted in the previous section, one of the main IoT enabling technologies is the
middleware that is mainly exposed to end users through the “Applications”, specific
features, devices or services with which user can interact.

8 Introduction

One of the features provided by almost all the IoT devices is the possibility to
generate notifications and, in some cases, to receive and show notifications sent
by other services/devices. As a consequence, the number of notifications received
every day by users is raising together with the growth of services (e.g., instant
messaging apps, cloud services) able to send and/or receive notifications in almost
every moment of the day. As declared by Weber et al [8], in fact, “the ongoing wave
of smart devices makes it possible to reach the user through multiple devices at once”
increasing the number of notifications received by each user.

Such a widespread use of notifications can be perceived both as an advantage or a
disadvantage: users can appreciate or criticize the arrival of a notification depending
on different factors.

Several researches investigated the effects of notifications on users: almost all of
them reveal that the first sensation that people feel thinking at notifications is often
frustration. As declared by [9], in fact, notifications often arrive at inconvenient
moments causing user frustration and/or annoyance.

Bailey et al. [10], for example, demonstrate that interruptions, e.g., those caused
by notifications, have a disruptive impact on completion time and error rate for
primary tasks. The conducted experiment uses a sample of primary and peripheral
tasks representative of those often performed by users and measures the effects of
interruption on task completion time, error rate, annoyance, and anxiety. In addition,
Kushlev et al. [11] demonstrate that higher levels of user inattention and hyperactivity
is mainly revealed when alerts are on than when alerts are off. Their work, in
fact, investigates inattention and hyperactivity possibly caused by smartphones’
interruptions. In the performed experiments, participants were asked to maximize
phone interruptions for a week (by keeping notification alerts on and their phones
within their reach/sight) and then minimize phone interruptions for another week
(by keeping alerts off and/or their phones away). As additional contribution, the
study reveals one of the first (and easiest) solutions that would solve the problem:
the manual deactivation of notifications. Nonetheless, nowadays, notifications are
essential for users and, in fact, other existing studies demonstrate that this solution is
not applicable. In this context, Iqbal et al. [12] investigate how user task-execution
patterns can be affected by email notifications. Results obtained by their field study
in the workplace mainly show, again, that user focus on primary tasks is largely
unaffected if notifications are disabled. However, the most important result is that

1.3 Goal 9

the value that users assign to the awareness provided by notifications is enough
to let them declare that they are willing to incur some disruption to maintain that
awareness. Similarly, Adamczyk et al. [13] present another work that analyzes
effects of interrupting a user at different moments within task execution in terms
of task performance, emotional state, and social attribution. Results confirm that a
system should enable a user to maintain a high level of awareness while mitigating
the disruptive effects of interruption.

1.3 Goal

The research goal of this dissertation regards the investigation of the intelligence
component in Internet of Things (IoT) architectures and applications. The research
activity aimed at the study, definition, and prototyping of intelligent distributed
architectures, and their main software components that may extract additional value
and intelligent behaviors for end users.

Specifically, the distribution and customization of notifications in the IoT domain
has been treated as an example of possible future IoT scenarios.

With the aims of reducing the disruption caused by notifications to end-user and,
at the same time, allowing developers to exploit the spread of notifications to enhance
their services, tools and applications, in this research, two different approaches have
been adopted to reduce the disruption caused by notifications.

The first one focuses on users’ needs and, by acting at the distribution level
(i.e., notifications are intercepted and then the system decides if, when, and how to
show them) investigates techniques and methodologies able to directly enhance user
experience with notifications (e.g., through Machine Learning techniques).

Instead, the second one focuses on developers’ needs and acts at the design level,
i.e., it allows developers to design notifications and their distribution strategies with
the aim of reducing user disruption and fully exploiting the advantages brought by
the possibility of distributing them among different devices.

Two innovative independent IoT architectures are proposed as solutions for
the approaches: the SNS (Smart Notification System) system [14] that is able
to manage notifications using machine learning algorithms, and the XDN (Cross-

10 Introduction

Device Notification) framework [15] that assists developers in creating cross-device
notifications by scripting.

The user-centered design methodology is adopted in the design of such architec-
tures: it is a problem-solving process that involves users in all the design phases. In
fact, it not only requires designers to analyze and envision the way users are likely
to consume a product, but also to validate their assumptions with regard to the user
behavior in real world tests.

Such methodology, together with the modular nature of both architectures al-
lowed the simultaneous development of the two architectures and the different
independent but compatible submodules that compose them. Within the whole work,
different simultaneous tests and preliminary deployment sessions were organized
with the aim of a) collecting data for future experiments, b) verify the feasibility of
the system, c) receive users’ feedback about the designed system, and, finally, d)
foster the development of future solutions in the IoT notifications’ field and related
domains. Obtained results and feedbacks demonstrate the effectiveness and the
usefulness of the proposed approaches and pose the basis for future works in such
domain.

1.4 Thesis organization

The remainder of the thesis is organized as follows. Chapter 2 presents the SNS
system, with all its related works and the details of the independent but compatible
internal modules. Then, Chapter 3 presents the XDN Framework and the results
obtained by testing the system with real users. Finally, Chapter 4 concludes the
thesis and discusses future developments.

1.5 Original contribution

Part of the work described in Section 2 has been previously published in [14, 16, 17],
however it was revised and extended in the present dissertation. Specifically, the
architecture of the Smart Notification System (presented in Section 2.5) and the
initial experiments with the prototype of the Decision Maker module (presented in
Section 2.7) were already described in [14]. In addition, the SmartCity Collector

1.5 Original contribution 11

contribution (described in section 2.8.4) and the Location Estimation extra work
(presented in Section 2.9.1) were already described in [16, 17]. Instead, the IoT Col-
lector Server (presented in Section 2.8.1), the Mobile Collector module (presented
in Section 2.8.2), and the SmartHome Collector module (presented in Section 2.8.3)
are original contributions of the present thesis.

Furthermore, part of the work described in Section 3 has been also published
in [15], but it was revised and extended in the present dissertation: all the tests
with real users and the corresponding results, reported in Section 3.6 are original
contributions of this thesis.

Chapter 2

SNS (Smart Notification System)1

2.1 Introduction and Motivation

As already depicted in the Introduction Chapter, notifications are overwhelming
people lives and the benefit of receiving them on almost every mobile and IoT device
has slowly became a problem for almost every user.

Such a problem is supported by different studies. One of them is the study
conducted by Church et al. [18] on the reasons and perceptions of WhatsApp, a
popular mobile messaging application, in which some interviewees declared they
were annoyed with the amount of notifications received by mobile messaging ap-
plications in general. Moreover, the large-scale assessment of mobile notifications
made by Sahami et al. [19] demonstrates that, even though not all the notifications
are equally valued by users, they are becoming invasive and sometimes they reduce
users’ overall performance distracting them from other tasks. Furthermore, they
observed that the users’ reaction to notifications changes according to what she was
doing before it (e.g., during a voice chatting the notification is temporarily ignored),
the context in which the user was involved (e.g., if the user was at work, she used
notifications to keep in contact with everything she did) and obviously on her habits.

1Part of the work described in this chapter has been previously published in [14, 16, 17]. Specifi-
cally, the architecture of the proposed system was revised to introduce new, more detailed, components
and allow the simultaneous development of preliminary prototypes. In addition, in this thesis, the
preliminary implementation of the most important modules of the SNS system are presented and the
results obtained through some preliminary deployment sessions are discussed.

2.2 Background 13

This chapter presents the Smart Notification System (SNS), a modular archi-
tecture that was designed to deal with notifications at the distribution level, i.e.,
notifications are intercepted and then the system decides if, when, and how to
show them. It uses machine learning algorithms to manage incoming notifications
according to context awareness and users habits.

The SNS system is based on supervised machine learning algorithms and is
composed of different modules that cooperate to monitor both environment and
users to make decisions on a) who should receive an incoming IoT notification; b)
what is the best moment to show the notification to the chosen user(s); c) on which
device(s) the chosen user(s) should receive the notification; d) which is the best way
to notify the incoming notification (e.g., vibration, light, sound). With the aim of
obtaining incremental preliminary results and feedbacks, the system is designed as a
group of collaborative but independent modules aiming at fostering the simultaneous
independent design and implementation of each single module and, in the meantime,
generating initial results and feedbacks.

For this reason, the remainder of the chapter will be organized as follows. The
first four Sections describe the whole SNS Architecture: the Related works Sections
present all the works that inspired its design; the Architecture Section introduces
all the details of the designed Architecture. Then, the following Sections, i.e.,
Prototypes: design, implementation and preliminary deployment with its Decision
Maker, Collectors, and Context Analysis subsections, present all the independent but
compatible modules that were designed and prototyped within the present work. At
the end of each subsections the results and feedback obtained by the independent
experiments performed for each submodule are discussed and, finally, the Discussion
and Conclusion concludes the chapter.

2.2 Background

2.2.1 Machine Learning Approach

As already depicted, SNS is based on machine learning algorithms.

Machine learning is based on algorithms able to learn from and make predictions
on data: they use sample inputs, called training sets, to build a model that is then

14 SNS (Smart Notification System)

exploited to make predictions [20]. Two different main machine learning algorithm
categories can be identified: supervised learning and unsupervised learning algo-
rithms. The difference between them is in the used dataset: supervised learning
algorithms use data that have already been classified and to which labels have already
been assigned. This kind of data are called labeled data and helps the algorithm to
make the same prediction in similar situations. Unsupervised learning algorithms,
instead, try to find hidden structure in unlabeled data by creating groups of data with
similar properties.

Among the two different existing machine learning algorithm categories, SNS is
based on supervised machine learning algorithms.

In addition, as effectively described by Gareth et al. [21], two main phases
characterize the creation of a machine learning model: the training and the validation
phases. As the names suggest, in the training phase the model is created, while in
the validation phase, it is tested and validated through the analysis of some measures
(that will be discussed at the end of this paragraph) representative of the effectiveness
of the obtained model.

The most important element of machine learning approaches is the data: as
already discussed, in fact, the algorithm learns from existing data to predict future
behaviors. To be sure that the model is properly trained and that predictions are
enough accurate as needed, the data used to train the model should not be the same
used for the tests. However, considering that it is not always possible to have two
separate datasets for the two phases, typically, the same dataset is used for both
phases but it is randomly divided into two parts, a training set and a validation set.
Thus, the model is fit on the training set, and the obtained fitted model is, then, used
to predict the responses for the observations in the validation set.

Different techniques exists to divide the dataset into two parts. One of the most
used [21] is the k-fold cross-validation technique. This approach involves the ran-
dom division of the set of observations into k groups, or folds, of approximately equal
size. The first fold is treated as a validation set, and the model is fit on the remaining
k-1 folds. A measure representative of the effectiveness of the obtained model is
then computed on the observations contained in the validation fold. This procedure
is repeated k times; each time, a different group of observations is treated as a
validation set and finally a mean value of the k validations’ measure is reported [21].

2.2 Background 15

The most used measures to represent the effectiveness of the model are the
“accuracy”, the “precision” and the “recall” values [22]. The following description
presents such values in a “single class” model, a model in which the Machine
Learning algorithm makes predictions by choosing among only two possible values
(also called “labels”): positive and negative (e.g., in medical domain, the algorithm
could have to decide if the patient is affected or not by a specific illness). However,
the explanation can be extended to cases with more labels: usually, a weighted value
of repeated single class classification is computed.

As accurately described by Bužić et al [23], the calculation of the accuracy,
precision and recall is based on four main parameters that are extracted from each
validation phase:

• true positive (TP),

• true negative (TN),

• false positive (FP),

• false negative (FN).

As the names suggests, they represent the effectiveness of the model in predicting
the corresponding labels: all the correct (True) estimations of a Positive label are
counted in the TP value, while all the correct (True) estimations of a Negative label
are counted in the TN value, and so on. From such values it is possible to estimate
the accuracy, precision and recall:

• Accuracy, that represents the percentage of correct estimations, can be calcu-
lated through the following formula:

Accuracy =
(T P+T N)

(T P+T N +FP+FN)
(2.1)

• Precision, that is a measure of the ability to detect positive cases (i.e., the result
relevancy), can be calculated through the following formula:

Precision =
T P

(T P+FP)
(2.2)

16 SNS (Smart Notification System)

Classified positive Classified negative

Positive class 10 (TP) 15 (FN)

Negative class 25 (FP) 100 (TN)
Table 2.1 Results obtained in the example used to present the accuracy paradox

Classified positive Classified negative

Positive class 0 (TP) 25 (FN)

Negative class 0 (FP) 125 (TN)
Table 2.2 Results obtained by the “dumb” classifier in the example used to present the
accuracy paradox

• Recall, that is a measure of the ability to avoid incorrect detection of negative
cases (i.e., the result sensitivity), can be calculated through the following
formula

Recall =
T P

(T P+FN)
(2.3)

Analyzing the reported formulas and description it could be deducted that the
accuracy measure is enough to estimate the effectiveness of a machine learning
model: the higher the accuracy value, the more the model is able to correctly make
predictions. However, it is common to fall into the “accuracy paradox”. To explain
such concept an example is introduced: a classifier is trained to do spam filtering and,
after a training and validation phases the results reported in table 2.1 are obtained.

In this case, accuracy is equal to 73.3% and could lead to the conclusion that
the classifier is working fine. However, by comparing it with a dumb classifier that
always says “no spam” and returns the results reported in table 2.2, it could be
deducted that the second one is better than the first one.

This phenomena is called “accuracy paradox”: when TP < FP, then accuracy
will always increase when a “always output negative” classification rule is choosen.
For this reason the “precision” and“recall” values are introduced. In fact, as already
discussed, they are respectively representative of the result relevancy and the result
sensitivity and are complementary: by increasing one measure it is likely to decrease
another (or, at best, another will remain the same) [23]

2.2 Background 17

In the ideal case, if the classifier does not make mistakes, then precision = recall
= 1. But in real world it is almost impossible to achieve. Even though, in fact, it
would be easy to construct a completely useless classifier which would classify all
cases as positive, making the recall measure perfect 1, this will, in turn, make the
precision be very small.

In addition to the “accuracy paradox”, another phenomenon could be lead in
training the model: the “overfitting”. It is defined as the “production of an analysis
that corresponds too closely or exactly to a particular set of data, and may therefore
fail to fit additional data or predict future observations reliably”2. Therefore, even
though the results of the validation phase reports good values for accuracy, recall
and precision, the model is actually only too close to the data used in the training
phase and it will not work effectively in real cases. The presented k-fold cross
validation technique, is one of the techniques commonly used in literature to avoid
this situation.

All the experiments performed within the current dissertation use the k-fold
cross-validation technique to validate the designed and implemented models. In
addition, the accuracy, precision and recall measures are used as representative of
the effectiveness of the model.

2.2.2 REST API

In the following paragraphs the architecture of the SNS system will be presented
and all the details of the modules that compose it will be discussed. One of the
characteristics that is shared among almost all the modules that compose the SNS
system is the design style used to design the interaction among all the modules: the
REpresentational State Transfer (REST) architectural style [24].

As described by Costa et al [24], it consists of a set of constraints applied to
elements within the architecture itself:

• Client–server

The uniform interface separates clients from servers. This separation means
that, for example, clients are not concerned with data storage, which remains

2https://en.oxforddictionaries.com/definition/overfitting, last visited on July 10, 2018

https://en.oxforddictionaries.com/definition/overfitting

18 SNS (Smart Notification System)

internal to each server and servers are not concerned with the user interface or
user state, which remains internal to each client.

• Stateless

It means that the necessary state to handle the request is contained within the
request itself, whether as part of the URI, query-string parameters, body, or
headers.

• Cacheable

As on the World Wide Web, clients can cache responses. Responses must
therefore, implicitly or explicitly, define themselves as cacheable, or not,
to prevent clients reusing stale or inappropriate data in response to further
requests.

• Layered system

A client cannot ordinarily tell whether it is connected directly to the end server,
or to an intermediary along the way. Intermediary servers may improve system
scalability by enabling load-balancing and by providing shared caches. Layers
may also enforce security policies.

• Uniform Interface

The uniform interface constraint defines the interface between clients and
servers. It simplifies and decouples the architecture, which enables each part
to evolve independently.

• Code on demand (optional)

Servers are able to temporarily extend or customize the functionality of a
client by transferring logic that it can execute to it. Examples of this may
include compiled components such as Java applets and client-side scripts such
as JavaScript.

2.3 Related works

This section discusses the related works referred to the whole SNS system leaving
the discussion about the single independent modules to each dedicated section.

2.3 Related works 19

Feature Description

F1 Exploit user information and/or habits in decision process
F2 Exploit user preferences in decision process
F3 Exploit context information in decision process
F4 Distribute notifications to multiple devices
F5 Distribute notifications to multiple users
F6 Threat heterogeneous notifications
F7 Exploit ML algorithms in decision process
F8 Support IoT notifications
F9 Exploit notification receipt time in decision process
F10 Exploit notification effects (e.g., notification, sound) in decision process

Table 2.3 Summary of features provided by related works

Related work F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Bohmer et al. [1] N N N N Y N N N N N
Ardissono et al. [25] Y Y Y N N N N N N N
Roecker et al. [26] N Y Y Y N N N N N Y
Leonidis et al. [27] N Y Y N N N N N N N
Banerjee et al. [28] Y Y Y N N Y N Y Y N
Etter et al. [29] N Y Y N N Y N N Y N
Poppinga et al. [2] Y Y N N N N Y N Y N
Arlein et al. [30] N Y Y Y N Y Y Partially Y N
Mehrotra et al. [31] Y Y N N N Y Y Partially Y N

Table 2.4 Summary of related works’ features

Intrusive, annoying and repetitive notifications have been treated in several
existing works and projects and several specific solutions acting at the distribution
level can be found in literature. However, only a few of them uses machine learning
(ML) to approach the problem.

A comparison of all the contributions presented in this section is reported in
Table 2.4 that summarizes all the presented related works with respect to the exposed
features and services reported in Table 2.3 (these features are extracted from the
presented related works).

One of the first works to propose a solution to address the disrupting notification
problem is the one proposed by Bohmer et al. [1]. In their work an initial introduction
carefully explains how the abrupt full-screen notifications used since a few years ago
to alert user(s) about incoming calls forcibly interrupted whatever activity the user

20 SNS (Smart Notification System)

Fig. 2.1 Different ways of showing notifications. Image from [1]

was already engaged in. They compare three different ways of notifying the user
about an incoming call.

Figure 2.1 shows all the three modalities: a and b represent abrupt full-screen
notifications with different proposed actions, while c shows the proposed multiplex
UI, a smaller partial-screen notification. Even though their solution does not use
any machine learning approach, the proposed multiplex UI is very similar to the
one that was, then, introduced in all the smartphones’ operating systems and that is
currently used by every people all around the world. Moreover, Ardissono et al. [25]
propose a notification model to reduce the disruptive effect of notifications on user
attention. Their model predicts user activities using information received by different
heterogeneous Web applications and uses these predictions to decide whether to
show, postpone or delete received notifications based on user preferences. Even
though this work does not use machine learning techniques to manage incoming
notifications, it follows an approach that is similar to the one presented in this thesis:
user and environment context information are used to distribute notifications.

In addition, some other related projects could inspire or may be integrated in
the next versions of our system, however, only few of them uses machine learning
techniques due to the reported description. Roecker et al. [26], for instance, explore
alternative approaches and strategies for email filtering and notification with the

2.3 Related works 21

rationale of developing an unobtrusive notification interface that can be adapted to the
user’s context. Their goal was to continuously inform the user about relevant emails
while trying to minimize the distractions through the use of peripheral interfaces
that are more manageable and effective than traditional desktop pop-up windows.
They act into two different ways: by distributing notification effects among differ-
ent devices and interfaces (e.g., PDAs and ambient displays) and by categorizing
incoming emails according to their importance. They demonstrate that notification
effects can be distributed among different devices due to their importance to enhance
user experience. Leonidis et al. [27] present a semantics-based, context-aware noti-
fication system that provides personalized university alerts (e.g., reminders about
timetable) to graduate students based on their preferences. The “AlertMe” system
takes advantage of semantic technologies in order to make context-dependent and
policy based decisions. The available context information is modeled through an
ontology and the final decision is drawn by a reasoner, a rule engine that is based
on policies expressed as a set of SWRL rules. Banerjee et al. [28] present a UNS
(Universal Notification System) that provides a framework to developers that want
to develop an app that should be able to distribute notifications based on context
information. The presented UNS provides to registered applications information
about connected solutions, context awareness, and user preferences and let them
generate and distribute smart city notifications. Even though this work would be
used as starting point for our SNS system, unfortunately, no source code was found
and it was only used as inspiration for the design of our architecture. Etter et al. [29]
propose a similar service: the Awareness and Notification Service (ANS), that makes
applications aware of context changes by notifying them with appropriate rendering
of intensity. ANS takes a rule based approach based on the event-condition-action
pattern: users specify when and what should be notified to them by using a con-
venient ANS rule language. This flexible mechanism, that demands decisions to
users, allows to rapidly develop applications that provide context-aware notifications
without the need to write programming code to activate rules, nor to implement
personalized notifications. Furthermore, some commercial products have already
been developed: one of them is Google Inbox3 that scans user email accounts to
identify important and similar information aiming at presenting what it considers the
most important parts of the email first and group similar emails.

3http://www.google.com/inbox/, last visited on March 22, 2017

http://www.google.com/inbox/

22 SNS (Smart Notification System)

Fig. 2.2 The resulting C4.5 decision tree obtained by Poppinga et al. [2]. It consists of 20
elements and 11 leaves. It classified whether a notification should be issued (true) or not
(false) with an accuracy of 77.85 percent. Image from [2]

Moreover, Poppinga et al. [2] conducted a large-scale, longitudinal study, collect-
ing 6,581 notifications from 79 different users over a 76-day time period, aiming at
developing a model for predicting suitable moments for issuing notifications.

By using a machine learning approach based on decision tree algorithm they
derived the model reported in Figure 2.2. As shown in the reported figure, it exploits
user context information and notification receipt time to predict opportune moments
to issue notifications with approximately 77 percent accuracy. Even though they
declare that their findings could lead to intelligent strategies to issue unobtrusive
notifications on today’s smartphones at no extra cost, unfortunately, the collected

2.3 Related works 23

notifications dataset contains only information about users reaction to a notification
(immediately answer or not) without any information about the type of received
notification and/or the user that received it.

Finally, two works that are very similar to our SNS system are the ones proposed
by Arlein et al. [30] and Mehrotra et al. [31]. Arlein et al. [30] propose a notifi-
cation framework architecture that is similar to our SNS system: in fact, it allows
notifications to be efficiently and effectively distributed and displayed in diverse new
environments. However, it is different from our work due to a different approach
to the problem. The first assumption that they do is related to the replication of the
system: they assume that the system should be replicated for each user considering
only devices in the decision process instead of the combination of both users and
devices. Moreover, even though both the architectures accept notifications over
multiple protocols, the architecture proposed by Arlein uses a deterministic approach
to make decisions: a sequence of conditions are evaluated and, consequently, the
system does not learn behaviors from previous detections (like we do by using
machine learning algorithm). In addition, they do not consider context aware and
user habits: contexts are only handled in the adaptation process in which the system
chooses to adapt the notification as a summary or a complete notification.

Moreover, Mehrotra et al. [31], based on results of their previous works [32, 9, 33]
design, implement and evaluate PrefMiner, a novel interruptibility management
solution that learns users’ notification preferences based on automatic extraction of
rules. Rules are mined through a machine learning approach based on Association
Rules and are able to evaluate user interaction with mobile phones to determine a
behavior that users usually perform when a notification arrives. Such rules are then
shown to users who might decide to accept or discard them at run-time and, only if
the rule is accepted, it is then applied whenever a new notification arrives. This work
is different from our work for two main reasons. The first one regards the involved
notifications: their work consider only mobile notifications, while the SNS system
is designed to work with both mobile and IoT notifications. In addition, their work
does not consider context information about the environment and/or the user except
the ones that can be collected through the user smartphone.

24 SNS (Smart Notification System)

2.4 Scenario

A typical intended usage of the SNS system is described in the following scenario,
that will be used as a running example: a user (let’s call her Maria) is in her
house and it is 10 o’clock in the morning. She owns a smartphone, a smart washing
machine, a smart fridge and a smart TV. While Maria is having a shower, the washing
machine ends its washing cycle and sends a notification to Maria. Considering that
she is involved in an activity that does not let her use any available device, the system
decides to postpone the notification of the message by 15 minutes, the predicted
moment in which she will exit the bathroom and take her smartphone (the prediction
of the delay time is based on her habits: the activities performed in the bathroom
usually last 15 minutes). Furthermore, due to the current time and the available
notification modes, a sound and a message on the phone are chosen as methods to
deliver the notification. Therefore, the smartphone is chosen as the receiver of the
notification and the end of the shower is chosen as the right moment to notify it with
a sound and a message on the phone.

2.5 Architecture

The SNS system is a modular architecture that deals with notifications at the distri-
bution level and uses machine learning algorithms to adequately manage incoming
notifications according to context awareness and users habits.

Figure 2.3 shows the architecture of the proposed system: it accepts notifications
from different external sources through its Notification Collector module that is
also responsible for the conversion of the incoming notifications into a common
format containing the information discussed in the following paragraphs. Converted
notifications are then sent to the Decision maker that is aware of environment status
(e.g., weather information, current date and time), user context (e.g., location, status,
current activity), and user habits and uses them to choose the best devices and the best
ways (e.g., vibration, sound, or a light signal) to present the received notifications.
The decision is then attached as an additional information to the notifications and the
result (called “Converted Notifications + LABELS” in Figure 2.3) is finally sent to
the Dispatcher module that adapts the notifications to the chosen target devices and
actually sends them.

2.5 Architecture 25

Fig. 2.3 Architecture design

The following description depicts the details of the most important architectural
elements.

The Environment Context Collectors and User Context Collectors modules
are responsible for retrieving information shown in the following Table 2.5 about
environment and user context, but also about the status of the involved devices.
These data are acquired from external blocks such as sensors, cloud services (e.g.,

26 SNS (Smart Notification System)

calendar), and IoT devices. Then, the Environment Context Analysis, the User
Context Analysis and the User Habits modules are responsible for elaborating the
information retrieved by the two Collectors to support the Decision maker in making
decisions.

The Decision maker is the core of the system being responsible for all the
decisions: every time it receives a notification, it takes the information from the two
context analysis components and from the habits module, and decides:

• who should receive the incoming notification (one or more users);

• what is the best moment to show the notification to the chosen user(s) (i.e.,
a notification can be postponed or ignored if it does not contain important
information);

• on which device(s) the chosen user(s) will receive the notification;

• which is the best way to notify the incoming notification.

The most important characteristic of this module is the way used to make de-
cisions: a supervised learning classification algorithm is responsible for all the
described choices.

As already explained, supervised machine learning algorithms are trained through
labeled datasets, so we defined the essential characteristics and information that the
system should manage to make the right decision:

• Table 2.5 shows the list of context information needed by the algorithm to
make decisions, such as information related to available IoT devices (such as
device owner, device current location and device current status), user context
and environment context (e.g., user current position or current timestamp);

• Table 2.6, instead, lists the information related to both incoming (i.e., the
“Converted Notifications” of Figure 2.3) and outgoing notifications (i.e., the
“Converted Notifications + LABELS” of Figure 2.3).

Every time a notification arrives, the Decision maker collects available context
data and, using the trained algorithm, considers incoming information to make a
decision.

2.5 Architecture 27

User
context

Current activity

Current location

User preferences

Personal user information

Environment context

Current timestamp

Weather condition

Number of people present in involved buildings/rooms

Status of involved buildings/rooms (e.g., temperature)

Other static information (e.g., information about the
involved building)

Available
IoT devices

informa-
tion

Owner

Current location

Current status (e.g., on, off, standby)

Available modes
Table 2.5 Context information

Information about incoming notification

Sender

Receiver

Type of notification

Timestamp of receipt

Contained message/information

Assigned labels to outgoing notifications

Target devices

Chosen mode

Delivery timestamp
Table 2.6 “Converted Notifications” information

28 SNS (Smart Notification System)

As a running example, the following paragraph will report the information that
the dataset would contain in the situation described in the scenario presented at the
beginning of the section. Only key information are reported to let readers better
understand the behavior of the Decision maker:

• User context information

– user: Maria

– current activity: having a shower

– current location: house - bathroom

– user habit: activities performed in the bathroom usually last 15 minutes

• Environment context information

– current timestamp: 2015-06-11T10:00:30

– involved building: user house

– involved rooms: bedroom, kitchen, bathroom

– people in the bedroom: 0

– people in the kitchen: 0

– people in the bathroom: 1

• Available IoT devices information

– Smartphone

* current location: bedroom (home)

* current status: on

– Smart TV

* current location: kitchen (home)

* current status: off

• Information about incoming notification

– Sender: washing machine

– Receiver: every family member

– Type of notification: service message

2.6 Prototypes: design, implementation and preliminary deployment 29

– Timestamp of receipt: 2015-06-11T10:00:15

– Message: washing cycle ended.

The Decision maker uses this dataset to make the following decision (the follow-
ing information will be contained in the outgoing notification):

• target devices: smartphone

• chosen mode: sound + message

• delivery timestamp: 2015-06-11T10:15:30.

Moreover, as depicted in Figure 2.3, the Decision maker is supported by other
modules. The first one is the Notification Collector that is responsible for retrieving
any kind of notification generated or arrived from every external service and IoT
device. It is also responsible for the conversion of the incoming notifications into a
common JSON format containing the information reported in Table 2.5 and Table 2.6.

Secondly, the Dispatcher module is responsible for the distribution of the noti-
fications: it adapts the notifications generated by the Decision maker (“converted
notifications + labels) according to the output methods supported by each device
and to the method selected by the Decision maker. Then, it sends them to the right
device.

2.6 Prototypes: design, implementation and prelimi-
nary deployment

The modular nature of the SNS system architecture inspired the design and the
prototyping of three main groups of contributions provided as first outcome of the
present dissertation:

• The Decision Maker contribution, that presents all the experiments performed
with the objective of validating the role of the Decision maker module and to
test its feasibility;

30 SNS (Smart Notification System)

Fig. 2.4 Simplified version of the SNS Architecture with additional information about the
developed contribution

• The Collectors group of contributions, that gathers all the work performed
to validate and test a) the Environment Context Collectors and the User
Context Collectors modules responsible for collecting real context data, and b)
the Notification Collector module responsible for retrieving the notifications
generated by or arrived from external service and IoT device.

• The Context Analysis group of contributions, that gathers all the work per-
formed to validate and test the Context Analysis module responsible for pro-
viding additional information, i.e., information extracted from the raw data
received from the collectors.

Each contribution may have multiple roles with respect to the modules of the
architecture: Figure 2.4 reports a simplified version of the already presented SNS
architecture on which some graphical signs help to identify the role of each contri-
bution. Specifically, a colored and numbered circle is assigned to each contribution
and, as a consequence, each circle is replicated near the architectural modules at
which it actually contributes. As can be depicted in the Figure, each contribution can
be involved in more than one architectural module: for instance, the IoT Collector
server acts in both the Environment and User Context Collectors modules because it
is used to collect data from both contexts. In addition, each architectural module can
be implemented in different contributions: for instance the User Context information
(gathered by the User Context Collectors module) can be gathered through different
contributions (e.g., the IoT Collector server and the Mobile Collector).

2.7 Decision Maker 31

The details of such prototypal contributions are discussed in the following sec-
tions together with the data and results obtained from the preliminary deployment
sessions already performed.

2.7 Decision Maker

The first contribution provided as part of the SNS system regards the development of
a prototype of the Decision maker module with the aim of obtaining some preliminary
results and feedbacks about the feasibility of the proposed approach.

As already depicted in the previous sections, the Decision maker module is
responsible for all the decisions regarding a) who should receive the incoming
notification (one or more users), b) what is the best moment to show the notification
to the chosen user(s), c) on which device(s) the chosen user(s) should receive the
notification, and d) which is the best way to notify the incoming notification.

The most important characteristic of the Decision maker module is the way used
to make decisions: a supervised learning classification algorithm is responsible for
all the described choices.

2.7.1 Preliminary experiments and results

Figure 2.5 shows all the steps followed in developing and testing a prototype of the
Decision maker module. In this preliminary prototype implementation the work of
the Decision maker was simplified with respect to the one presented in the previous
Section by:

• choosing only one device as receiver of the notification instead of more than
one;

• assuming that only one user is involved in the system;

• assuming that each device has only one available mode to show the notification;

• ignoring the decision related to the best time to deliver the notification.

Therefore, due to this simplification, the first step in developing such prototype
regards the identification of a reduced set of information needed by the Decision

32 SNS (Smart Notification System)

Fig. 2.5 Steps followed in test the first prototype of the Dispatcher module

maker module to make predictions in such simplified version. In fact, starting from
the discussion conducted in Section 2.5, a simplified list of needed information was
extracted from Table 2.5 and Table 2.6. The result is reported in Table 2.7 and
Table 2.8 and represents the data that the prototype of the Decision Maker module
will use in this preliminary evaluation.

Then, the second step in developing such prototype regards the identification of
an existing dataset to be used by the Machine Learning algorithm(s) that will be then
tested. The main requirement of the searched dataset regards the contained data: the

User
context

Current activity

Current location

Environment context Current timestamp

Available
IoT devices

informa-
tion

Owner

Current status (e.g., on, off, standby)

Table 2.7 Simplified version of Context information: for the prototype

2.7 Decision Maker 33

Information about incoming notification

Sender

Receiver

Type of notification

Timestamp of receipt

Assigned labels to outgoing notifications Target devices
Table 2.8 Simplified version of Notifications information: for the prototype

chosen dataset should contain as much information as possible with respect to the
just reported tables (Table 2.7 and Table 2.8).

Therefore, the dataset collected within the MIT Media Laboratory Reality Mining
project [34] was chosen as the basis dataset for our experiments: even though
only mobile notifications are collected in such a dataset, it contains most of the
information to be used (in some cases after some adaptation/elaboration) by the
Decision Maker module to make decisions. Specifically, MIT researchers used
mobile phones to collect data about call logs, Bluetooth devices in proximity, cell
tower IDs, application usage, and phone status. 94 people over 9 months were
monitored and the collected data were, then, used to infer different user information
including location.

As a third step, with the aim of adapting the MIT dataset to our needs, a simplified
version of the MIT dataset was created by using a Python script that removed all the
useless information and added the absent information as synthetic information.

The following list summarizes the data contained in the resulting dataset with
the details on the origin of each data:

• Sender; it was randomly generated among 4 possible senders.

• Receiver; it was extracted from the MIT dataset: it is the owner of the moni-
tored device.

• Type of notification; it was randomly generated among 5 possible types.

• Timestamp of receipt; it was generated based on the available information
contained in the MIT dataset.

• User current activity; it was randomly generated among 7 possible activities.

34 SNS (Smart Notification System)

Information # of elements Used values

senders 4 /

users (possible receivers) 94 /

personal devices per user 2 /

overlapping
activities 7

working, sleeping, cooking, break
from work, having a shower,

programming, surfing the Internet

notification
types 5

social network, security alarm,
personal health, temperature
notification, wearable fitness

tracker notification

available user
locations 3 work, house, elsewhere

Table 2.9 Dimension of used dataset

• User current location; it was generated by taking into account the other already
generated or extracted information (e.g., if the user was having a shower it is
at home).

• Available devices for the user; there are only 2 devices per user: the first one’s
status was extracted from the MIT dataset, while the second one was randomly
generated.

In addition, for the purpose of training, a label was programmatically assigned to
each sample representing the chosen device: considering that there were 2 devices per
user, if the first one was available it was always selected as target device, otherwise,
the second one was chosen. If also the second device was not available, no device
was chosen. The case in which both devices were selected was not considered as a
possibility. The label is a text label assuming multiple values: 3 for each user.

Table 2.9 summarizes the dimensional details of the used dataset containing
165,289 samples.

As already discussed, machine learning algorithms differently handle labeled
and unlabeled data, however another distinction between input data is needed. Input
data can be divided into two main groups:

2.7 Decision Maker 35

• related data, that is represented by an ordinal value [35], possessing the
properties of ordering and proximity. An example of related data is the receipt
time of a notification: the proximity of one hour to another one (1 o’clock
is nearer to 2 o’clock than to 4 o’clock) represents a useful information for
every algorithm dealing with such information. In fact, for instance, if an
algorithm has to predict an action based on the current date and time it could
be important to know if the current time is nearer or not to a specific decision
already taken in the past;

• unrelated data, that is data in nominal scale, i.e., data with equality property
and without the ordinal and proximity ones [35]. An example of unrelated
data could be the user name: if we assume that an identification number is
assigned to each user, the proximity of one user to another one could not be
as useful as it is with related data. Thus, for instance, a machine learning
algorithm that makes a prediction based on user name, would not actually
take advantage from knowing the proximity of the present user identification
number to another one associated to an information acquired in the past.

In our situation all the information contained in the simplified dataset can be
considered as unrelated data except the receipt timestamp.

Each machine learning algorithm deals differently with related and unrelated
data, so we decided to compare three different machine learning algorithms for this
preliminary implementation: Support Vector Machine (SVM) [36], Gaussian Naive
Bayes (GNB) [37] and Decision Trees (DT) [38]. The first two algorithms try to find
a correlation between inserted data in order to classify them and so they work better
with related data. Instead, the DT algorithm tries to create a flowchart-like structure
in which each internal node represents a test on an attribute, each branch represents
the outcome of the test, and each leaf node represents a label. The paths from root
to leaf represents classification rules and, as can be understood, it does not look for
relations between data.

Two different experiments were conducted with each algorithm, one with only
unrelated data and another one with the addition of related data (the receipt times-
tamp): we expected that SVM and GNB would work worse with unrelated data than
with related one and that DT would work better with unrelated than with related.

36 SNS (Smart Notification System)

ML
Algo-
rithm

Percentage of
correct predictions
with unrelated data

Percentage of
correct predictions
with related data

Accuracy Precision Recall Accuracy Precision Recall
% % % % % %

Support
Vector
Machine

81.60 99.89 82.40 96.10 84.32 96.90

Gaussian
Naive
Bayes

51.30 99.80 51.30 83.40 95.25 83.40

Decision
Trees

99.90 97.06 99.90 93.90 92.76 93.90

Table 2.10 Percentage of correct predictions obtained with used algorithms

The three algorithms were implemented using the Python programming language
through the Anaconda distribution4 and the Scikit-learn tool [39]. We used the
10-fold cross-validation technique to build the model. Specifically, 80% of the data
was used as training dataset and the other 20% for tests over 165,289 samples.

A notebook with the following characteristics was used for running all the
experiments:

• CPU: Intel Core i7-4800MQ

• RAM: 16GB PC3-12800 (800MHz)

• OS: Windows 7 Student Edition

• Python version 2.7.9

• Anaconda version 3.7.3

Table 2.10 shows the prediction results obtained by testing the three algorithms
with both related and unrelated data in terms of accuracy, precision and recall. As

4https://store.continuum.io/cshop/anaconda/, last visited on March 22, 2017

https://store.continuum.io/cshop/anaconda/

2.7 Decision Maker 37

ML Algorithm CPU time with
unrelated data

CPU time with related
data

Support Vector Machine 5296.1 s 5801.1 s
Gaussian Naive Bayes 1.2 s 12.9 s

Decision Trees 15.5 s 13.9 s
Table 2.11 CPU time for a training phase with 33058 samples

ML Algorithm CPU time with
unrelated data

CPU time with related
data

Support Vector Machine 40.19 ms 40.22 ms
Gaussian Naive Bayes 0.29 ms 0.31 ms

Decision Trees 0.001 ms 0.001 ms
Table 2.12 Average CPU time for each notification classification

expected, SVM and GNB seem to work worse with unrelated data than with related
one, while the DT algorithm works exactly in the opposite way, reporting better
values with unrelated data. However, it can be observed that the DT algorithm is
the only one that obtains a high value for all the reported metrics: while in both
experiments (with unrelated and related data) an high value (higher than 90%) of
the accuracy and recall falls in a lower value (lower than 90%) of the precision
and viceversa, with the DT algorithm the values obtained for all the three measures
is always high (higher that 90%). Moreover, through the analysis of each wrong
decision (the detailed list of all the made decision is not reported in this dissertation
for shortness needs), it can be noticed that all the errors made by DT in the second
experiment were related to combination of attributes that were not present in the
training set, implying that DT do not work very well with unknown notifications
contained in related data.

The CPU time was collected and the obtained values are reported in Table 2.11
and Table 2.12. Table 2.11 reports the CPU time needed to train the machine learning
algorithms with the selected dataset. While, Table 2.12 reports the CPU time needed
to make prediction about the best device on which the notification would have been
sent (the time reported in the table is a mean value: it is computed dividing the
execution time for making a prediction on all the notifications, for the total number
of notifications). Confidence intervals are not presented in the tables since all the

38 SNS (Smart Notification System)

calculations occur for a single run of each ML algorithm. As can be seen, the
SVM algorithm is the slowest algorithm between the analyzed ones, however, the
classification time is acceptable for real situations. Consequently, considering the
accuracy percentage obtained with related data (that are the most complete) and
the obtained CPU time, DT is the most promising machine learning algorithm for
notification classification and so it will be at the core of our future work.

2.7.2 Preliminary Evaluation and Conclusion

The previous paragraphs discussed preliminary experiments conducted with the aim
of evaluating the best machine learning approach applicable to manage overwhelming
notifications. The implemented prototype was tested using a dataset derived from
real data provided by the MIT Media Laboratory Reality Mining project, enriched
with additional synthetic information. Three different machine learning algorithms
were used and results show that the DT algorithm is the most promising algorithm
for our purposes in terms of balanced prediction accuracy, precision and recall and,
so, it will be at the core of our future efforts. Future work would extend the dataset to
include all the information discussed in the Architecture and the real data collected
using the modules presented in the next chapters will be used. Furthermore, a careful
evaluation of the machine learning algorithms would be performed and the possibility
of using different algorithms after other ones would be evaluated. Figure 2.6 shows
a possible future scenario in this direction: it exploits a subset of input features to
predict an intermediate value through one algorithm (e.g., the SVM one) while it
exploits another algorithm (e.g., the DT one) to predict the final expected output by
using both the intermediate prediction and the remaining input values.

2.8 Collectors

The second group of contributions provided as part of the Smart Notification System
is gathered in the Collectors group.

All the contributions discussed in this section are mainly implementation of the
following list of abstract architectural modules reported in the architecture presented
in Section 2.5):

2.8 Collectors 39

Fig. 2.6 Possible future scenario

• the Environment Context Collectors and the User Context Collectors mod-
ules responsible for collecting real context data,

• the Notification Collector module responsible for retrieving the notifications
coming from external services and/or IoT devices.

The main objective of these contributions is the design and the development of a
Collectors subsystem able to: a) collect and expose real user and environment context
data to be also used in experiments with the other blocks of the Smart Notification
System Architecture, and b) collect and expose real IoT and mobile notifications,
with the corresponding user reaction, to be used by the Machine Learning approach
proposed in the previous section.

Aiming at satisfying such requirements and looking at the information needed by
the Smart Notification System to enhance the experience of Maria, the stakeholder of
the running example presented in the 2.5 Section, three main source of information
were identified as main inputs for our architecture:

• the city source, that gathers all the information that can be collected in a town
related to the environment status, e.g., air quality, level of pollution, or level of
traffic;

• the home source, that gathers all the information that can be collected in a
house, e.g., house temperature, house humidity, the light, the noise, or the
number of people that are currently present in a room;

40 SNS (Smart Notification System)

Fig. 2.7 Collector Architecture design

• the user source, that groups all the status information that can be gathered from
a person, e.g., her position, her current activity, or the incoming notifications.

Four different independent prototypes were designed with the aim of fostering
the collection of an initial dataset able to cover all the three identified source of
information.

Figure 2.7 summarizes the four designed prototypes. Except from the IoT
Collector Server that acts as an aggregator, each of the other prototypes is responsible
for collecting data from at least one of the three presented source of information, as
shown by the connection among the contexts and the three prototypes.

The names are representative of the target infrastructure on which they were
supposed to be installed.

The IoT Collector server is the core of the Collectors subsystem. It acts as a data
collector that receives new acquired data through the exposed API and stores them
in an internal database. The Mobile Collector represents a mobile component that
should be installed on the user smartphone(s) to collect a) user context information,
b) every received mobile and IoT notification, and c) the user reaction to new

2.8 Collectors 41

Source Information Collectors

City

CO2 SmartCity Collector

Temperature
SmartHome

Collector
Humidity
Pressure

Home

Temperature

SmartHome
Collector

Humidity
CO2

Pressure
Noise

luminescence
User presence

User

Activity

Mobile
Collector

Location
Personal information

Notification information (reported in
Table 2.5 and in Table 2.6)

Table 2.13 Information identified for creating pilot dataset

received notifications. The SmartHome Collector represents all the modules that
are physically installed in the user house and that are responsible for collecting
home context information, notifications generated by the available IoT devices, and,
in addition, the outdoor information (temperature, humidity, pressure) acquirable
through the home IoT devices (e.g., IoT thermostat with an outdoor submodule).
Finally, the SmartCity Collector groups all the modules that are physically placed in
the city and are responsible for collecting city related environment information.

As detailed in the following subsections, the first implementation of the proto-
types are mainly dedicated to the collection of a reduced set of information for each
source.

Table 2.13 summarizes the list of the data that are collected in this initial imple-
mentation of the prototypes: the first column reports the source from which each
information (reported in the second column) are extracted. In addition, the third
column provides the name of the prototypes that were designed and implemented to
collect the related information.

42 SNS (Smart Notification System)

The following subsections discuss all the details of the four implemented pro-
totypes and present the experiments performed with each prototype and the corre-
sponding results.

2.8.1 IoT Collector server

The IoT Collector server is the core of the Collectors subsystem that acts as a
data storage. Its main objectives are summarized in the following four high level
requirements:

• accept registration of new devices/systems able to send data to be stored;

• accept registration of new users as owner of one or more devices and as receiver
of the incoming notifications;

• store all the incoming information in a database to be reused in future experi-
ments;

• allow registered devices/systems to access stored data.

To satisfy the exposed requirements, a data model and some APIs were defined.

2.8.1.1 Data structure: ER model

An entity relationship diagram, also called an entity-relationship (ER) model, is a
graphical representation of entities and their relationships, typically used to represent
the organization of data within databases or information systems. In this section
it is used to represent the data that the IoT Collector server will store and their
relationships.

Figure 2.8 reports the ER diagram that was designed to collect all the data coming
from the envisaged prototypes and other future Collectors modules.

The main entities are described in the following list.

• The Device entity represents each device registered to the system as a data
collector. It can be associated to one or more user(s) (e.g., a smart TV can be
associated to all the people that usually live in the house in which it is installed)

2.8 Collectors 43

Fig. 2.8 ER diagram representing the data structure implemented on the IoT Collector server

and contains the static properties related to the Device (e.g., type, category,
MAC address). Its dynamic properties (e.g., current power consumption) are
stored in the Device Status entity.

• The Device Status entity stores all the dynamic properties of a Device, e.g., the
network SSID at which it is currently connected. Its properties are split into 2
different groups: the IoT Device Status group that gathers all the information

44 SNS (Smart Notification System)

coming from IoT devices (e.g., the smart fridge) and the Personal Device
Status group that gathers all the information arriving from personal devices
(e.g., the user smartwatch).

• The User entity represents each user registered to the system as owner of a
device or as a recipient of a notification. It stores all the static information
related to a user and is associated to one or more User Status that stores
user dynamic properties (e.g., user current heart rate). In addition, it can be
associated to one or more Device actually owned by the user.

• The Activity entity stores the temporal sequence of user activities.

• The AbsLocation entity stores the temporal sequence of user locations in terms
of raw latitude and longitude.

• The Place entity represents a logical place, e.g., user house, in which the user
would be in a specific moment. Through the Attend relationship, in fact, it
allows to know, when it is available, where the user is in a specific moment.

• The Network entity represents the known networks at which a user or a device
could be connected. It can be associated to a place in which the specified
network is available.

• The Connected Devices entity stores the list of the devices that are connected
to a router/gateway even though they were not yet registered to the system. In
fact, some IoT systems allow to know how many devices are connected to the
network with some other possible additional information.

• The Notification entity stores all the incoming notifications. It can be associated
to a) one or more User as receiver, b) one or more Device at which the
notification was directly sent (e.g., in the case in which a service is already
using a notification strategy to send the notifications to specific devices), c) a
Sender with the additional information about its relationship with the receiver
of the notification.

• The Sender entity represents a sender of a notification. Each sender is uniquely
identified by a SenderName that is unique for each receiver: the real name of
the sender (present in the mobile Contact list) is cyphered so that the same
sender has always the same senderName, but her real name is not anymore

2.8 Collectors 45

Verb Description

GET
Used to retrieve resources (i.e., devices used as

collectors) and their status or description or more
other information

POST Used to create resources, or performing custom actions
PUT Used to update or insert resources
DELETE Used to delete resources

Table 2.14 HTTP Verbs available in the IoT Collector Server

accessible. Consequently, if the same person sends a notification to two
different users registered to the system, two different senders will be stored,
while, if the same person sends more notifications to the same user, only one
sender is registered and the sent notifications are registered as sent by him.

2.8.1.2 REST API

As the name suggests, the IoT Collector Server REST API is an implementation of
the REpresentational State Transfer (REST) architectural style [24] (presented in
Section 2.2.2).

Thus, all the consumers of IoT Collector Server API are able to use GET, POST,
PUT, and DELETE verbs. These verbs greatly enhance the clarity of what a given
request should do, as described in Table 2.14.

The IoT Collector Server RESTful API allows to:

• register new devices/systems able to send data to be stored;

• register new users as owner of one or more devices and as receiver of the
incoming notifications;

• accept incoming information from registered users and/or devices;

• query the server to obtain stored information

To summarize, Table 2.15 and Table 2.16 report a function summary that shows
the correspondence between URL and resources exposed by the system. The terms in
“{...}” are parameters needed by the specific function associated to the corresponding
resource. A parameter is usually a unique identifier for a device, a user, or a place.

46 SNS (Smart Notification System)

Resource path Available methods

/users/{username}
POST: Add a new user
PUT: update user information

/users/{username}/status
GET: Get last user status
PUT: Update user status

/users/{username}/location
GET: Get last user location
PUT: Update user location

/users/{username}/activity
GET: Get last user activity
PUT: Update user activity

/devices
GET: List all available devices
related to the authenticated user
POST: Add a new device

/devices/{device-id}
GET: Retrieve description of the specified device
PUT: Update device information

/devices/{device-
id}/deviceStatus

POST: Add a list of device statuses to the device
specified by {device-id}

/devices/{device-
id}/absLocation?start={start-
Timestamp}&end={end-
Timestamp}

GET: Return the list of absolute location related to
the specified device received within the specified
interval (if not specified only the last inserted
absLocation is returned)

/devices/{device-
id}/absLocation

POST: Add absolute locations to the device
specified by {device-id}

/devices/{device-
id}/deviceStatus?start={start-
Timestamp}&end={end-
Timestamp}

GET: Return the list of device statuses related to
the specified device within the specified interval
(if not specified only the last inserted deviceStatus
is returned)

Table 2.15 IoT Collector Server: API Specification - part 1

All the resources that expose a POST or a PUT method accept as input a list of
parameters formatted in JSON format. The details of such list are not reported in
this thesis for brevity reasons, however the required parameters mainly reflect the list
of attributes of the corresponding entities reported in Figure 2.8 (e.g., the parameters
required for the place resource are the attributes of the Place entity).

2.8 Collectors 47

Resource path Available methods
/devices/{device-
id}/notification?start={start-
Timestamp}&end={end-
Timestamp}

GET: Return the list of notifications related to the
specified device within the specified interval (if
not specified only the last inserted notification is
returned)

/devices/{device-id}/notification
POST: Add some notifications (attached to the
request in JSON format) to the list of notifications
received on the device specified by {device-id}

/places POST: Add a new place

/places/{place-id} PUT: Update place information

/places/{place-id}/networks POST: Add the list of Wi-Fi networks achievable
in the specified place

/places/{place-id}/users POST: Add an “inhabitant” to the specified place

/places/{place-id}/devices POST: Add the provided list of devices as present
in the specified place

Table 2.16 IoT Collector Server: API Specification - part 2

2.8.1.3 Prototype Implementation

A prototypal implementation of the IoT Collector server was developed using the
Java programming language. Specifically, a RESTful web service was implemented
to expose the APIs using the Jersey framework5. It is a framework for developing
RESTful web services in Java and provides support for JAX-RS6 (Java API for
RESTful Services). In addition, the web service interacts with a MySQL database
that reflects the data structure reported in Figure 2.8.

2.8.1.4 Preliminary Deployment Session

From the 1st of January 2016 and the 30th of June 2016, an instance of the IoT
Collector server was run on a desktop PC with the following characteristics:

• CPU: Intel Core i5-750

• RAM: 8GB PC3-12800 (800MHz)
5https://jersey.java.net/, last visited on March 01, 2018
6https://github.com/jax-rs, last visited on March 01, 2018

https://jersey.java.net/
https://github.com/jax-rs

48 SNS (Smart Notification System)

• OS: Windows 7 Student edition

• Java version 7

It was deployed to support all the experiments conducted with the other proto-
types presented in the following sections.

2.8.2 Mobile Collector

The Mobile Collector represents a mobile application to be installed on the user
smartphone(s) with three main objectives:

• collect user context information (e.g., location and activity);

• collect all the mobile and IoT notifications received on user smartphone;

• collect the user reaction to the received notifications.

The development of the proposed application was divided into three main steps.
At first, an experiment was conducted to understand which is the best way to collect
user reaction to incoming notifications. Secondly, a set of information to be collected
through the Mobile Collector was defined and, finally, the application was actually
designed and developed.

2.8.2.1 How to collect user reactions to notifications

As the first step in developing the Mobile Collector, an experiment was conducted to
investigate which is the best method to collect user reaction to notifications among
two identified alternatives:

• ask users to fill in the survey shown in Figure 2.9 every 4 hours asking if the
notifications received after the last survey were a) received at the right moment
and b) in the right location;

• register the user touch gesture performed as reaction to the received notification.
It is possible through the technique already used by Mehrotra et al [31]: if the
user clicks on the notification, it means that the notification was appreciated,
otherwise, if it was swiped away, it means that it was not.

2.8 Collectors 49

Both methods have some limitations. The technical problems are discussed with
respect to the Android operating system, but can be replicated for other existing
mobile operating system.

• The “survey” approach is mainly affected by the following limitation:

– the amount of time that lasts since the actual receipt of the notification.
In fact, considering that the user is asked to fill the survey after a period
of 4 hours it may happen that she does not remember the feeling felt
when a 4 hour before notification arrived.

• The “user touch gesture” approach is affected by the following limitations:

– the human errors. If, in fact, a user accidentally swipes away a notification
instead of clicking on it, a non adequate reaction is registered;

– the lack of a support for registering user reactions to notifications pro-
vided by the operating system. For example, Android API does not
provide specific methods to understand the user reaction to notification
(swipe/click). As a consequence it is necessary to adopt a “trick” for such
an observation: Android API expose the onNotificationRemoved method7

that is invoked every time a notification is removed from the Notification
bar of a smartphone that runs Android. Then, to acquire user reaction it is
necessary to monitor which is the foreground application in the moment
in which it is invoked: if the user clicked on the notification, the applica-
tion that generated the notification is on the foreground, otherwise she
swiped it away. Such technique is only a “trick” that is not documented
in any official documentation, so, some reliability evaluations may be
needed, also to understand what happens in stressed conditions;

– the possibility that the smartphone operating system has to group notifi-
cations of the same type. For example, in some version of Android, the
operating system allows to group notifications of the same type and in
that case, the onNotificationRemoved method (discussed in the previous
point) should be invoked a number of times corresponding to the number
of condensed notifications.

7https://developer.android.com/reference/android/service/notification/
NotificationListenerService.html#onNotificationRemoved(android.service.
notification.StatusBarNotification), last visited on March 01, 2018

https://developer.android.com/reference/android/service/notification/NotificationListenerService.html#onNotificationRemoved(android.service.notification.StatusBarNotification)
https://developer.android.com/reference/android/service/notification/NotificationListenerService.html#onNotificationRemoved(android.service.notification.StatusBarNotification)
https://developer.android.com/reference/android/service/notification/NotificationListenerService.html#onNotificationRemoved(android.service.notification.StatusBarNotification)

50 SNS (Smart Notification System)

Fig. 2.9 Temporary App1: Survey to acquire User Reaction to Notifications

Within this experiment, the first exposed limitations was managed by adopting
the following measures: in the “Survey” approach, only a subset of the collected
notifications were shown to the user. Specifically, the notifications that arrived
from the same person, while she was performing the same activity, within a minute
were grouped in a single question showing the information related to the first of the
grouped notifications.

Instead, for all the other limitations a more detailed investigation was needed to
estimate the feasibility of the approaches and the reliability of the used techniques.

Consequently, the aims of the experiment presented in this section were two: a)
the collection of user opinion about the two alternatives and b) the analysis of the
feasibility and reliability of both approaches.

2.8 Collectors 51

Fig. 2.10 Experiment to investigate on the best way of acquiring user reaction to notifications

Two ad-hoc Android “temporary” applications were developed for this experi-
ment:

• the first one (“temporary App1”) a) intercepted every incoming notification
and b) every 4 hours showed the survey presented in Figure 2.9 to collect
reaction to notifications;

• the second one (“temporary App2”) a) intercepted notifications and, b) imme-
diately, registered the gestures performed as a reaction to them.

Figure 2.10 shows all the steps that compose the performed experiments with
such applications (in each block there is an indication about the application used
within each step):

• In the first part, five volunteers were asked to install separately (in different
moments) the two ad-hoc Android applications to collect user feedbacks about
the two modalities;

• In the second part, due to the novelty of the approach used in the second
application (i.e., the one that registers user gestures), the same volunteers were
asked to test the feasibility of the proposed approach through some ad-hoc
tests.

Specifically, in the first part of the experiment the five volunteers were asked to
perform the following actions:

52 SNS (Smart Notification System)

• for one initial week, install the first Android application and fill the provided
survey every 4 hours. During the night the survey was automatically discarded
by the system and the user reaction to notifications was, so, not collected. In
this first phase, almost 10000 reactions were collected among all the users;

• for another week, install the second Android application and behave as usual
(i.e., swipe useless notifications and click on interesting ones) every time a
new notification arrived.

At the end of this first part of the experiment each user was asked to express her
opinion about the two alternatives, and, as expected, the second approach (i.e.,
register user gesture) was the most appreciated mainly because it did not require any
explicit user intervention.

In the second part of the experiment, instead, the five volunteers were asked to
participate to the following activities with the aim of estimating the reliability of the
trick used to collect user reactions through gestures:

• reject all incoming notifications in normal conditions. In this phase, users
were asked to swipe (to indicate the inutility) on all incoming notifications for
3 days;

• accept all incoming notifications in normal conditions. In this phase, users
were asked to click (to indicate the utility) on all incoming notifications for 3
days;

• reject all incoming notifications in stressed conditions. In this phase, within
an interval of 20 minutes, 1000 notifications were programmatically sent to
users and she was asked to reject all of them through a swipe gesture;

• accept all incoming notifications in stressed conditions. In this phase, within
an interval of 20 minutes, 1000 notifications were programmatically sent to
users and she was asked to accept all of them through a swipe gesture;

The first two activities aimed at estimating the reliability in normal conditions
(i.e., when a user receives a mean of 1 notification per minute), while the last two
aimed at evaluating it in stressed conditions (i.e., when a user receives a mean of 50
notifications in a minute).

2.8 Collectors 53

The most problematic situation revealed by the experiments was the one in which
users were asked to accept all the notifications in stressed conditions: the accuracy
of the collected feedback was 90%. The errors were mainly caused by two different
problems.

• The time between a click and another: most of errors were generated because
of the process of storing feedbacks and its slowness with respect to the user
reaction. The user is, in fact, faster than the operating system, so the app is not
always able to register the right performed action. The following scenario will
clarify the problem: in the notification bar there are a) a Telegram condensed
notification that groups 3 Telegram notifications (from 3 different senders),
b) a Whatsapp condensed notification that groups 2 Whatsapp notifications
(from 3 different senders) and c) a single notification from Hangouts. The user
clicks on the Telegram condensed notification, so the onNotificationRemoved
method is invoked 3 times, one for each of the 3 grouped notifications. In the
meantime, while only the first instance of the method was completed, the user
clicks on the Whatapp condensed notification and, even if the storing process
was not yet completed, Whatsapp is brought to the foreground. So, the next
2 instances of the method still related to Telegram notifications will not find
Telegram as foreground process, but Whatsapp, so they will assume that the
user swiped the notifications.

• Accidental unwanted swipes on notifications.

In all the other circumstances the percentage of accuracy was between 99% and
100%.

After the analysis of strengths and weaknesses of both presented methods, even
though the “gestures” method can register wrong feedbacks it was selected to acquire
user reaction to incoming notifications for two main reasons: a) due to the absence
of any user effort, it was chosen as the most appreciated by involved users, and b)
in any case, the reported problems are mostly relegated to stressed conditions that
rarely occur in real life.

54 SNS (Smart Notification System)

Fig. 2.11 ER diagram representing the data structure implemented on the Mobile Collector

2.8.2.2 Dataset definition

Starting from the data structure defined for the IoT Collector Server in Paragraph
2.8.1.1, a similar data model was designed for the Mobile Collector to store all the
information that the Mobile Collector would collect.

The ER model reported in Figure 2.11 represents the data model designed for the
Mobile Collector. The main entities are:

• the User entity that represents the user with her static information (e.g., name,
gender);

• the Sender entity that represents the sender of a notification. It is related to the
User with a relation that contains information about the relationship among
the receiver (User) and the sender, i.e., friend, work or family relationship
are the three available possibilities; Each sender is uniquely identified by a
SenderName that is unique for each receiver: the real name of the sender
(present in the mobile Contact list) is cyphered so that the same sender has
always the same senderName, but her real name is not anymore accessible;

• the Notification entity that stores all the incoming notifications. It is linked to
the Device entity with a multi-to-multi association: even though on each single

2.8 Collectors 55

device there is only information about that specific device, it was mapped with
such an association to reflect the same structure used on the IoT Collector
Server. In addition, the Notification entity is also linked to the Sender entity:
the relation stores, also, the information about user reaction;

• the Device entity that represents the up-to-date information related to the
device (e.g., current status and current battery level). As can be observed in the
diagram, heterogeneous data can be stored in the Device entity: considering
that data comes from the device, we preferred to store data as related to
the device that generated it instead of associate them to the user or to the
location or anything else. The currentActivity property was designed to store
the information that the modern mobile operating systems provide about the
device current activity. For instance, Android is able to distinguish 8 activities:
IN_VEHICLE, ON_BICYCLE, ON_FOOT, RUNNING, STILL, TILTING,
UNKNOWN, and WALKING. The Device can also be connected to one or
more users: if, for instance, a person borrow her smartphone to a friend it is
possible to store the data separately for the two users.

• the Device Status entity that stores all the dynamic properties of a Device,
e.g., the network SSID at which it is connected. This entity mainly stores the
history of the current status of a device;

• the AbsLocation entity that stores the temporal sequence of user locations in
terms of raw latitude and longitude.

2.8.2.3 Prototype implementation

A prototypal implementation of the Mobile Collector was developed for the Android
operating system. The main requirements of the developed mobile application are
reported in the following list:

• collect all the information reported in the ER diagram presented in the previous
paragraph;

• send collected data to the IoT Collector Server at least one time a day and, in
any case, every time a new Wi-Fi connection is available and the battery is not
in critical status (i.e., under 15%);

56 SNS (Smart Notification System)

• provide statistical information about the Notification received within the day,
week or selected date interval;

• do not consume too much battery.

With the aim of satisfying all the requirements, an Android application was
developed.

Among existing mobile operating systems Android was selected due to its dif-
fusion and also for the low required costs for developers: as declared by IDC
(International Data Corporation8) in 2015 Android was the most spread mobile
operating system all around the world. Moreover, we concentrated our effort only
on devices with Android 5.0 (Lollipop) or higher, due to new features introduced to
manage notifications.

The developed application implements different background services registered
as listeners of operating system messages and/or signals to collect needed data.
Furthermore, every time the user enables GPS and/or network positioning services
(for example, when she uses mapping services) the application registers available
absolute location that will be used as features in the training phase of the Machine
Learning algorithm.

The application was designed to work silently in the background, however, after
the installation it asks people to insert a) some statistical information (age, gender,
employment) and b) the relationship with the most important contacts present in
their contact list. Such a second request was asked to understand the correlation
among the behavior of the user with respect to notifications and the sender of a
message/notification. After inserting such information, users were not asked to
perform any other particular action: the first screenshot reported in Figure 2.12, in
fact, present the message shown to the user after the application installation. It is
representative of the absence of disruption caused to users. Nonetheless, as shown
by the other two screenshots, after a few days of usage, the app was able to show
statistics about the received notifications, but only after the user request about such
functionality. Finally, it is possible to change settings and relationship with contacts
present in the contact list.

8http://www.idc.com/prodserv/smartphone-os-market-share.jsp, last visited on March
22, 2017

http://www.idc.com/prodserv/smartphone-os-market-share.jsp

2.8 Collectors 57

Fig. 2.12 Screenshots of the implemented Mobile Collector application

As already depicted in the first part of this subsection, the reaction of users to
notification was collected through the onNotificationRemoved method9 provided by
the Android API. It was invoked every time a notification was removed from the
Notification bar of the Smartphone.

Furthermore, with the aim of reducing battery consumption, only the “battery
saving” mode10 was used to acquire GPS locations: it is a modality that uses only
network information (i.e., Wi-Fi, Bluetooth or mobile network”) to determine the
location; even though its accuracy is lower than the one obtained with the “high
accuracy” mode, it is enough accurate for our experiments (our experiments revealed
that the location is provided within a radius of 100 meters).

Finally, to obtain detailed information about the battery consumption of our
application, 2 users were asked to test the application consumption for one week
through the “GSam Battery Monitor” application11. The test was performed on one

9https://developer.android.com/reference/android/service/notification/
NotificationListenerService.html#onNotificationRemoved(android.service.
notification.StatusBarNotification), last visited on March 01, 2018

10https://support.google.com/pixelphone/answer/6179507, last visited on March 14,
2018

11https://play.google.com/store/apps/details?id=com.gsamlabs.bbm, last visited on
March 26, 2018

https://developer.android.com/reference/android/service/notification/NotificationListenerService.html#onNotificationRemoved(android.service.notification.StatusBarNotification)
https://developer.android.com/reference/android/service/notification/NotificationListenerService.html#onNotificationRemoved(android.service.notification.StatusBarNotification)
https://developer.android.com/reference/android/service/notification/NotificationListenerService.html#onNotificationRemoved(android.service.notification.StatusBarNotification)
https://support.google.com/pixelphone/answer/6179507
https://play.google.com/store/apps/details?id=com.gsamlabs.bbm

58 SNS (Smart Notification System)

Fig. 2.13 Power consumption of the Notification Collector app on the two involved smart-
phones

“OnePlus One”12 and one “Karbonn Sparkle V”13 smartphones. As shown in Figure
2.13, on both smartphones, our application consumed only from 0.5% to 1% of
battery a day with the “battery saving” mode always enabled for the whole day.

2.8.2.4 Preliminary Deployment Session and Results

With the aim of collecting an initial dataset containing a) real user context data
and b) real IoT and mobile notifications, with the corresponding user reaction, a
preliminary deployment session was organized. Specifically, from the 1st of January
2016 and the 30th of June 2016, the “Notification Collector” Android application
was published on the Google Play Store14 and 37 users installed it to help us in
collecting data. During the preliminary deployment session, 37 people installed the
“Notification Collector” Android application on their smartphones, with 6 females

12https://oneplus.net/it/one, last visited on March 26, 2018
13https://www.gsmarena.com/karbonn_sparkle_v-6687.php, last visited on March 26,

2018
14https://play.google.com/store, last visited on March 14, 2018

https://oneplus.net/it/one
https://www.gsmarena.com/karbonn_sparkle_v-6687.php
https://play.google.com/store

2.8 Collectors 59

Fig. 2.14 Age of participants

Fig. 2.15 Employment of respondents

and 31 males. 8 of them (1 female and 7 males) used the application for less than
5 days, while, the others, allowed us to collect data for a mean of 78 days (with a
standard devation of 48.38). As already depicted, after the installation, the Android
application asked users to insert some statistical information to identify their age and
employment.

As shown in Figure 2.14, most of the participants were aged in the interval “25
- 35” and, as shown in Figure 2.15 they were mainly employed in University as
students.

In addition, collected data reveals that:

60 SNS (Smart Notification System)

• users receives an average of 247 notifications a day (with a standard deviation
of 185);

• users are almost always in the same 3 or 4 places; even though we did not
collect information about the meaning of each place, we suppose they are
workplace, home, and some other places in which they usually go in their
week routine;

• users receive most of the notifications from non-important contacts than from
important ones. Unfortunately, considering that the name of the senders were
crypted, we considered as “non-important person” all the senders that the users
did not mark as friends, family or work related people. Consequently, all the
social groups (e.g., Whatsapp/Telegram groups) that are, obviously, not saved
in the contact list and people that users did not select as “important” were
considered “non-important persons”;

• users often disable positioning features even though, sometimes, they activate
it again in a few minutes;

• users are usually not aware of the existence of different modes to acquire their
current location (Android, for example, has three different modalities: “high
accuracy”, “battery saving”, and “device only”15).

2.8.3 SmartHome Collector

The SmartHome Collector represents all the modules that are physically installed in
the user house with the aim of collecting home context information, notifications
generated by the available IoT devices, and, in addition, the outdoor environment
information (temperature, humidity, pressure) acquirable through the home IoT
devices (e.g., IoT thermostat with an outdoor submodule).

The first step in designing the SmartHome Collector prototype regarded the
identification of all the information that are both valuable for the experimentations
with the Smart Notification System and easily acquirable through common IoT
devices. The following list presents all of them. The SmartHome Collector should
be able to collect data related to:

15https://support.google.com/pixelphone/answer/6179507, last visited on March 14,
2018

https://support.google.com/pixelphone/answer/6179507

2.8 Collectors 61

• user presence in the monitored house;

• presence of other persons in the monitored house;

• turned on devices in the monitored house;

• home environment information (i.e., temperature, humidity, noise and CO2);

• outdoor conditions information (i.e., external temperature and humidity);

• all the generated IoT notifications.

As second step in designing the SmartHome Collector prototype, the most
common strategies and technologies usually adopted to acquire the information
described in the previous paragraph were evaluated. As a result of such analysis, a
list of different possible strategies were identified to collect each reported information.
To collect user presence in the monitored house and presence of other persons
in user house, the following alternatives were identified:

• an IoT presence detector (e.g., a Z-Wave presence detector) could be placed in
the most attended places;

• a single-board computer (e.g., a Raspberry Pi16) could be configured to monitor
the devices connected to the house Wi-Fi connection in specific moments of
the day;

• a smartphone application could be installed on each user smartphone to collect
both user position and current used Wi-Fi network;

• an IoT indoor weather station could monitor the temperature, humidity, CO2,
level of noise and pressure of the house/room to understand if anyone is present
in a room at specific moment of the day;

• some power outlets connected to the most used devices (e.g., TV, hifi, and
microwave) could monitor appliances’ usage and, consequently, the users
presence in a room.

To collect information about turned on devices in monitored house, the fol-
lowing alternatives were identified:

16https://www.raspberrypi.org/, last visited on March 22, 2017

https://www.raspberrypi.org/

62 SNS (Smart Notification System)

• a single-board computer (e.g., a Raspberry Pi) could be configured to monitor
the devices connected to the house Wi-Fi connection in specific moments of
the day;

• some power outlets connected to the most used devices (e.g., TV, hifi, and
microwave) could monitor appliances’ usage and, consequently, their status
(turned on or off).

To collect information about home environment information (i.e., tempera-
ture, humidity, noise and CO2), only one feasible alternative was identified:

• an IoT indoor weather station could monitor the temperature, humidity, CO2,
level of noise and pressure of the house/room;

To collect information about outdoor conditions information (i.e., external
temperature and humidity), only one feasible alternative was identified:

• an IoT weather station with an external module could monitor the external
temperature and humidity;

To collect all the generated IoT notifications, only one feasible alternative was
identified:

• considering that, nowadays, all the IoT notifications mainly arrive on the
user smartphone, a smartphone application could be installed on each user
smartphone to collect both user position and current used Wi-Fi network;

2.8.3.1 Prototype implementation

With the aim of providing a reusable component to be used in multiple houses
simultaneously, the most feasible alternatives presented in the previous section were
selected. Consequently, the following list of devices, also shown in Figure 2.16,
were identified to monitor all the presented activities.

• One Netatmo personal weather station17 with an additional indoor module was
chosen to monitor a) the ambient external temperature, humidity and CO2,

17https://www.netatmo.com/en-US/product/weather/, last visited on March 11, 2018

https://www.netatmo.com/en-US/product/weather/

2.8 Collectors 63

Fig. 2.16 Devices chosen for developing the SmartHome Collector prototype

and b) the room temperature, humidity, noise, and pressure and CO2. One
Netarmo personal weather station is supposed to be installed in each room of
the involved houses.

• One Z-Wave Everspring presence detector (SP814 Z-Wave Lens Changeable
PIR Detector)18 was chosen to monitor the presence of people in a room. One
presence detector is supposed to be installed in each room of the involved
houses.

• One Z-Wave power outlet (Everspring AN158 - Wireless On/Off Plug with
Power Metering)19 was chosen to monitor the status of each appliance installed
in the house. One power outlet is supposed to be connected to each appliance
present in the involved houses.

• One Raspberry Pi was chosen to monitor the devices connected to the house
Wi-Fi network. In addition, every Raspberry Pi is equipped with a RaZberry

18http://www.everspringindustry.com/SP814.aspx, last visited on March 11, 2018
19http://www.everspring.com/portfolio-item/an158-onoff-and-metering-plug/, last

visited on March 11, 2018

http://www.everspringindustry.com/SP814.aspx
http://www.everspring.com/portfolio-item/an158-onoff-and-metering-plug/

64 SNS (Smart Notification System)

card20 to interact with all the other devices that uses the Z-Wave protocol to
exchange information.

With the exception of the Raspberry Pi, this group of devices constitute a set of
appliances that should be installed in every room of the house to be monitored.

The software running on the Raspberry Pi to monitor the devices connected
to the Wi-Fi network was developed in the Python21 programming language and
the SQLite22 SQL database engine was used to store data locally: the collected
information are, in fact, sent to the server only once a day. Furthermore, the interval
among each single acquisition was set to 5 minutes.

2.8.3.2 Preliminary Deployment Session and Results

Due to the already discussed role of context information in the SNS architecture, with
the aim of collecting an initial dataset containing real user and environment context
data, a preliminary deployment session was organized for the SmartHome Collector.
It was performed during the last month of the deployment session organized for the
Mobile Collector (June 2016) to obtain a complete dataset (containing almost all the
information required by the SNS to make decisions) for future experiments. The
developed prototype was installed in the kitchen of a house located in Torino, Italy
and monitored the occupant behaviors for 30 days. In the house lived 2 housemates
and the only shared ambient was the kitchen, in which all the shared activities (e.g.,
watch TV) were performed. Unfortunately, only one of the house occupants, was
also involved in the “Mobile Collector” experiment. The information about such
persons are listed below:

• the person also involved in the Mobile Collector experiment was 28 years old,
male and employed as a Ph.D. student;

• the other person was 23 years old, male, and engaged as university student.

Collected data demonstrates that:
20https://z-wave.me/products/razberry/, last visited on March 11, 2018
21https://www.python.org/, last visited on March 11, 2018
22https://www.sqlite.org/index.html, last visited on March 11, 2018

https://z-wave.me/products/razberry/
https://www.python.org/
https://www.sqlite.org/index.html

2.8 Collectors 65

• depending on the person present in the house, the temperature of the kitchen
was different: maybe one of them preferred lower temperatures than the other;
this information could be used by the SNS to predict the present of one of the
house occupants in the house;

• when both people were present in the house, more noise was revealed espe-
cially during lunch and dinner time; by detecting the presence of both the
housemates, for example, the SNS could establish which is the best moment
to read loudly notifications that can be useful for both of them (for instance,
the absence of gas during the next weekend due to a scheduled maintanance
intervantion);

• the TV was mainly used when only one person was in the house and was off
every time more than 3 people were present in the house (maybe for parties);
this information could be used by the SNS to avoid some kind of notifications
that are usually preferred when only the housemates are present in the house
(e.g., reading loudly that the toilet paper finished);

• the outdoor weather conditions did not affect the usual behavior of the two
housemates.

2.8.4 SmartCity Collector

The SmartCity Collector groups all the modules that are physically located or moving
in the city and are responsible for collecting city related environment information.

With the aim of providing a first prototype to collect an initial dataset of real
city context data, an IoT Crowd Sensing platform that offers a set of services
to citizens was designed and prototyped: the SmartBike platform. Due to the
extensive use of bicycles observed in literature for monitoring smart cities ([40–
44]), the bicycle was selected as a crowd sensing probe for monitoring the city
environment and, at the same time, provide services to involved citizens. In fact,
based on a survey conducted to identify the most interesting bike-enabled services,
the SmartBike platform provides: real time remote geo-location of users’ bikes, anti-
theft service, information about traveled route, and air pollution monitoring. The
proposed SmartBike platform is composed of three main components: the SmartBike
mobile sensors for data collection installed on the bicycle; the end-user devices

66 SNS (Smart Notification System)

implementing the user interface for geo-location and anti-theft; and the SmartBike
central servers for storing and processing detected data, providing a web interface for
data visualization and interacting with the IoT Collector server to provide collected
data once a day.

The development of the proposed platform was divided into four main steps. At
first, even though the main objective of such work was the collection of city context
data, a survey was conducted to identify the most interesting bike-enabled features
for users and the most important context information valuable for citizens. This
step is based on the observation reported by Alam et al. [45] about the usefulness of
involving users in designing new services: authors demonstrate that user involvement
in designing new services facilitates the development of better and differentiated
new services that match exactly customer needs. As a result, in the second phase,
the four most preferred features emerging from the survey results were selected
to inform the definition of the services provided by the platform. The selected
features are the following: a) real time remote geo-location of user bikes, b) anti-
theft service, c) information about traveled route (distance, duration, and rise), and d)
air pollution monitoring. Except from the anti-theft service, all the features constitute
the most valuable context data for citizens and represent the main contribution of
the SmartCity Collector to the SNS system. Based on the extracted features, in this
phase, the architecture of the SmartBike IoT crowd sensing platform was designed.
After that, an initial prototype of the presented platform was implemented in the
third phase and used in the forth phase to test the feasibility of the approach and the
suitability of the platform.

The SmartBike platform has been designed within the OpenAgorà project23,
one of the proposals selected by the city of Turin for the Torino Living Lab Campi-
doglio experimentation24. Involving different partners (Turin TIM Joint Open Lab,
Politecnico di Torino, and two startups, Move Plus25 and Ponyzero26), the Open
Agorà project aims at developing and testing solutions for helping people to make
their mobility behavior more sustainable. In addition, it aims, at the same time, at
providing data and tools that can be used by the city institutions to enhance the
overall quality of life of their citizens.

23http://openagora.it/index-en.html, last visited on March 22, 2017
24http://torinolivinglab.it/bandi/tllcampidoglio/, last visited on March 01, 2018
25http://www.moveplus.it/, last visited on March 22, 2017
26http://www.ponyzero.com/, last visited on March 22, 2017

http://openagora.it/index-en.html
http://torinolivinglab.it/bandi/tllcampidoglio/
http://www.moveplus.it/
http://www.ponyzero.com/

2.8 Collectors 67

2.8.4.1 Architecture

After the first phase dedicated to the identification of the most interesting bike-
enabled features for users and the most important context information valuable
for citizens (more details are reported in Appendix A), in the second phase of the
SmartBike platform development, the four most requested features resulting from
the survey were selected. Based on them, two different services were, then, designed
and the architecture of the platform was devised. The selected features are: a) real
time remote geo-location detection of the users’ bikes; b) anti-theft; c) information
about traveled route (distance, duration, and rise); d) air pollution monitoring.

Except from the anti-theft service, all the features constitute the most valu-
able context data for citizens and represent the main contribution of the SmartCity
Collector to the SNS system.

2.8.4.1.1 Provided services Looking at the results of the survey, the follow-
ing two main services were identified as the ones that should be provided by the
SmartBike platform:

a) the “city monitoring” service gathers the features (a, c and d of the list reported
in the previous paragraph) aimed at collecting and showing air pollution information
of areas traveled by involved cyclists. Considering that air pollution can be influenced
by temperature, relative humidity and barometric pressure, those data should be
acquired through appropriate sensors in addition to the air pollution information.
The collected data should be geo-located and periodically sent to SmartBike central
servers able to store it. Likewise, the platform should provide a web map showing
the traveled routes and the level of pollution of the areas of the city monitored by
available bikes. These services should be accessible into two different modes: a
“personal” mode showing only user related information to logged users (e.g., the
position of the owned bikes) and a “public” mode showing aggregated information
obtained by merging data collected by each user;
b) the “anti-theft” service, instead, gathers the anti-theft feature (b of the list

reported at the beginning of this section). The SmartBike platform should allow
an authenticated user to enable/disable an anti-theft service that, by monitoring
movements of the bike, should generate a notification whenever a thief tries to steal
the bike. In addition, the platform should provide real time information about the
bike location and the device status (e.g., battery level).

68 SNS (Smart Notification System)

Fig. 2.17 High level architecture design of the SmartBike platform

Figure 2.17 shows the designed logical architecture of the SmartBike platform. It
is composed of three main components: the SmartBike devices, the end-user devices
(e.g., smartphones and tablets), and the SmartBike central servers.

2.8.4.1.2 Architecture design The SmartBike devices block represents the IoT
objects that are mounted on the bicycles. They should be autonomous (i.e., always
active and connected to the Internet even when the user smartphone/tablet is not
close to them) and should provide the following functionalities to support the two
services described in Section 2.8.4.1.1:

• environmental monitoring functionality able to collect data about air pollution,
temperature, relative humidity and barometric pressure;

• bike status monitoring functionality able to detect any movement of the bike
while the anti-theft service is enabled;

• data synchronization functionality able to periodically send acquired data to
the SmartBike central servers. When the anti-theft service is enabled the
information should be sent in real time to the SmartBike central servers;

• location functionality used to geo-tag acquired information and locate the bike
in case of theft or loss;

• communication functionality used to provide interactions with end-user de-
vices.

The end-user devices block represents the smartphones or tablets on which
a dedicated SmartBike application is installed. This app permits the following
functionalities with the SmartBike devices and the SmartBike central servers:

2.8 Collectors 69

• authenticate the user and enable interactions with her own SmartBike devices;

• enable/disable anti-theft service;

• generate theft alert notifications whenever it is informed about a theft by the
SmartBike central servers;

• present the current status information (i.e., gas concentration, temperature,
relative humidity, barometric pressure and battery level) about all SmartBike
devices owned by the user;

• visualize the location of the device on a map;

• show information about traveled route.

Finally, the SmartBike central servers represent one or more back-end servers
that provide four different kinds of functionalities as parts of both the two described
services:

• a data collection functionality, able to periodically receive data sent by Smart-
Bike devices owned by different users. These data are useful for both final
users and city institutions;

• a web interface similar to the one provided by the app run on end-user devices
to supply a) a map to geo-locate in real time the user bikes, b) a map based
on historical information to show the air pollution conditions of the areas
traveled by involved cyclists, c) information about personal traveled route.
This interface, and specifically, the functionalities described in b) and c) will
be interesting for both cyclists and city institutions;

• an anti-theft functionality that a) redirects theft notifications sent by SmartBike
devices to the right end-user devices and b) sends an anti-theft notification if
no data are received from a SmartBike device for a certain amount of time;

• a synchronization functionality that redirects all the received data to the IoT
Collector Server.

70 SNS (Smart Notification System)

2.8.4.2 Prototype

In order to evaluate the suitability of the platform, an initial prototype of the presented
architecture has been implemented. As an initial prototype, the main assumption
considered in the following description is that a user owns only one bike and one
end-user device (e.g., smartphone and tablet). However, the prototype can be easily
extended to cases in which a single user owns more than one bicycle and/or more
end-user devices. In addition, in this prototype, the air pollution was monitored
through the carbon monoxide concentration, only.

The following subsections illustrate the details of the components that compose
the presented platform.

2.8.4.2.1 SmartBike devices Figure 2.18 shows the implemented SmartBike
device prototype.

It was implemented using the STM32 Nucleo L476RG board 27 equipped with the
ARM mbed 3.0 Operating System 28 as control board. The board contains the basic
components (i.e., the CPU, memory and some ports) but it can be easily extended
with a large number of specialized application hardware add-ons and shields. In this
work it was expanded by adding the following shields:

• Adafruit FONA808 29, as GSM/GPRS and GPS module for transmitting data
to the SmartBike central servers and provide the location of the bikes;

• ST X-Nucleo-IDB05A1 30, as Bluetooth Low Energy 4.1 shield for providing
connections with near end-user devices;

• ST XNucleo-IKS01A1 31, as environmental and motion sensor shield for
acquiring temperature, humidity, pressure and motion (acquired through the
accelerometer);

27http://www.st.com/content/st_com/en/products/evaluation-tools/
product-evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/
stm32-mcu-nucleo/nucleo-l476rg.html, last visited on March 01, 2018

28https://www.mbed.com/en/platform/mbed-os/, last visited on March 01, 2018
29https://www.adafruit.com/product/2542, last visited on March 01, 2018
30http://www.st.com/en/ecosystems/x-nucleo-idb05a1.html, last visited on March 01,

2018
31http://www.st.com/en/ecosystems/x-nucleo-iks01a1.html, last visited on March 01,

2018

http://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/stm32-mcu-nucleo/nucleo-l476rg.html
http://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/stm32-mcu-nucleo/nucleo-l476rg.html
http://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/stm32-mcu-nucleo/nucleo-l476rg.html
https://www.mbed.com/en/platform/mbed-os/
https://www.adafruit.com/product/2542
http://www.st.com/en/ecosystems/x-nucleo-idb05a1.html
http://www.st.com/en/ecosystems/x-nucleo-iks01a1.html

2.8 Collectors 71

• Nemoto NAP-505 32 with Texas Instruments LMP91002 Analog Front End
(AFE) 33, as electrochemical CO sensor chosen for its low power consumption
and good reading accuracy at a reasonable cost.

The device is autonomous: a battery guarantees its power supply and the GSM/GPRS
module guarantees its connectivity functions even when it is not connected to a
smartphone/tablet. As a requirement of this prototype, a 10 Ah LiPo battery was
chosen to let the device be active for 48 hours while collecting data with an interval
of 12 seconds.

2.8.4.2.2 End-user devices Figure 2.19 shows two screenshots of the designed
end-user prototype application. The application was developed for Android devices
running at least Android 5.0 and was developed using the Android Studio IDE. The
implemented user interface is minimal and is composed of two activities providing
different functionalities. The main activity is shown in Figure 2.19a. It implements
the following functionalities:

• it provides a button to connect the end-user device to the hardware device via
a Bluetooth Low Energy connection;

• if connected to the hardware device, it provides the current status of the
hardware device showing the revealed carbon monoxide, temperature, relative
humidity and pressure;

• if connected to the hardware device, it provides a button to activate or deacti-
vate the anti-theft service.

The second activity, i.e., the map activity, is shown in Figure 2.19b and provides
a map showing the current location of the bike.

In addition, two background services were implemented: the first one provides
an interface for receiving notifications from the SmartBike central servers in case
of theft, while the second one manages the connections needed to periodically send
collected data to the SmartBike central servers.

32http://www.nemoto.eu/nap-505.html, last visited on March 01, 2018
33http://www.ti.com/product/LMP91002, last visited on March 01, 2018

http://www.nemoto.eu/nap-505.html
http://www.ti.com/product/LMP91002

72 SNS (Smart Notification System)

Fig. 2.18 The SmartBike device prototype

2.8.4.2.3 SmartBike central servers To provide the designed services, a solu-
tion integrating a back-end and a front-end platform was adopted in implementing the
SmartBike central servers block. SiteWhere34, an open source IoT server platform,
was used as back-end to collect and store all the data sent by both SmartBike devices
and end-user devices and to provide this data to the mobile and the web applications.
It collected: a) air pollution information, b) location information, c) bike motion
(acquired through accelerometer), d) SmartBike devices’ statuses.

The web application, acting as front-end platform, was implemented based on
Meteor 35, a full-stack JavaScript platform for developing modern web and mobile
applications. The implemented Meteor application grants a) access to a map showing

34http://www.sitewhere.org/, last visited on March 01, 2018
35https://www.meteor.com/, last visited on March 01, 2018

http://www.sitewhere.org/
https://www.meteor.com/

2.8 Collectors 73

Fig. 2.19 Screenshots of the designed prototypal application

traveled routes and the level of pollution of the areas of the city monitored by
available bikes, and b) the generation of all the notifications sent to users to report
theft attempts. The solution was deployed on a free Amazon EC2 36 instance.

Figure 2.20 shows the map reported in the web interface to let the user know her
bike current location and the recently traveled route.

2.8.4.3 Preliminary Results

To evaluate the feasibility of the SmartBike platform, its suitability and the accuracy
of the implemented prototype, the whole prototype has been subjected to a test
phase. A volunteer cyclist was invited to bike for 30 minutes: the implemented
prototype of the SmartBike device was placed inside the basket of his bike and
the Android application was installed on his smartphone running Android 6.0.1 (a
Karbonn Sparkle V smartphone).

36https://aws.amazon.com/ec2/?nc1=h_ls, last visited on March 01, 2018

https://aws.amazon.com/ec2/?nc1=h_ls

74 SNS (Smart Notification System)

Fig. 2.20 The position of the bike can be remotely visualized on a map with the traveled
route

Fig. 2.21 Map of the area of Turin (Italy) monitored within the test

The experiment was conducted on the 26th of May 2016 for 30 minutes between
14:00 and 14:30. The user went through the area of Turin (Italy) shown in Figure
2.21 and located near Politecnico di Torino.

Air pollution information were collected simultaneously using a) the imple-
mented platform prototype and b) the closest ARPA (Italian acronym of “Regional
Environmental Protection Agency”) city monitoring station situated about 3 km far
from the area of experiment (it is precisely located in Via della Consolata in Turin,
Italy).

Moreover, at the end of the experiment, the anti-theft service was tested by trying
to move the parked bike to simulate a theft attempt without the presence of the bike
owner.

2.8 Collectors 75

The analysis of collected data actually demonstrated that the implemented proto-
type was able to provide all the services described in the previous sections:

• the CO value measured by the SmartBike device was compatible with the
one measured by the ARPA station. The average value of carbon monoxide
acquired by the SmartBike device and calculated over 180 samples (1 every 12
seconds) is 1.2±0.5 ppm (part per million). Instead the one monitored by the
ARPA station37, calculated as the average value of the two measures acquired
at 14:00 and 15:00, is 0.892 ppm (1.1 mgm−3) and the two measurements are
compatible;

• a notification arrived on the user smartphone after a few seconds from the
beginning of the theft attempt.

2.8.5 Final Performed Experiments

With the aim of validating the Machine Learning approach described in the 2.7
Section, the same experiment was repeated with the real data collected in the parallel
Collectors’ deployment sessions described in the 2.8.2.4 and 2.8.3.2 subsections.
Specifically, the experiments aimed at testing the effectiveness of the model (in terms
of accuracy, precision and recall) and comparing them with the results obtained
with the MIT dataset to understand if the promising adoption of machine learning
approach in such domain is actually feasible and, eventually, continue experiments
by involving real users in the evaluation.

Considering that the software responsible for interacting with the dataset was
implemented through the Java programming language and with the aim of reusing
existing code, the present experiments were performed using the Weka [46] work-
bench for Machine Learning for Java. As already done in the evaluation phase of
the 2.7 Section, the k-fold cross validation technique was used to train the machine
learning algorithms and then test them.

As already explained, the k-fold cross validation method is a technique used to
validate a built machine learning model: the dataset is divided into k subsets and,
then, the training and test phases are repeated k times, such that each time, one of

37Actual values acquired through the ARPA monitoring station were taken from the ARPA official
website38.

76 SNS (Smart Notification System)

the k subsets is used as the test set and the other k-1 subsets are put together to form
a training set.39.

Within this experiment the k value was set to 10.

Unfortunately, at the time of the experiment, the “Support Vector Machine”
(SVM) algorithm was not working properly in the Weka workbench: it crashed
after a few seconds of running reporting generic Java exceptions that, after several
tests, the author of this thesis reported to the Weka devolepers without receiving
any feedback. Consequently, experiments were only performed with the “Gaussian
Naive Bayes” (GNB) and the “Decision Trees” (DT) algorithms.

The following list summarizes the information used as machine learning features.
Each record in the dataset corresponds to an incoming notification and contains all
the listed information.

• Notification type: it distinguishes mobile notifications from IoT ones.

• Generating service: it represents the service that generated the notification
(e.g., Telegram);

• Ringtone mode: it represents the mode that was set at the moment in which
the notification arrived (possible value: Silence, Vibration, Sound).

• Notification sender: it represents the sender of the notification.

• Sender-Receiver FAMILY relationship: it is set to true if the sender and the
receiver of the notification are family related persons.

• Sender-Receiver FRIEND relationship: it is set to true if the sender and the
receiver of the notification are friends.

• Sender-Receiver WORK relationship: it is set to true if the sender and the
receiver of the notification are colleagues.

• Day of the week in which the notification was received; Considering that
Monday is near Sunday and we wanted to infer such an information to the
machine learning algorithm, it was splitted into 2 different values:

39https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f,
last visited on March 28, 2018

https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f

2.8 Collectors 77

– Sine of day of week; it is calculated with the following formula:

sin(
2∗π ∗day

7
) (2.4)

– Cosine of day of week; it is calculated with the following formula:

cos(
2∗π ∗day

7
) (2.5)

• Day of the month in which the notification was received. Considering that the
1st day of the month is near the last day of the previous month and that we
wanted to infer such an information to the machine learning algorithm, it was
splitted into 2 different values:

– Sine of day of the month;

– Cosine of day of the month;

• Month in which the notification was received; Considering that January is near
December, it was splitted into 2 different values:

– Sine of month;

– Cosine of month;

• Time at which the notification was received. Considering that the time is a
periodic function, it was splitted into 2 different values:

– Sine of time; it is calculated with the following formula:

sin(
2∗π ∗ time
24∗60∗60

) (2.6)

– Cosine of time; it is calculated with the following formula:

cos(
2∗π ∗ time
24∗60∗60

) (2.7)

• User location expressed in Longitude and Latitude.

• Activity performed at the time of receipt; Possible values are IN_VEHICLE,
ON_BICYCLE, ON_FOOT, RUNNING, STILL, TILTING, UNKNOWN,
WALKING.

78 SNS (Smart Notification System)

• Battery level at the time of receipt.

• Battery status (charging or not charging).

• Connection type; possible values are Wifi, network, NoConn.

• Wifi SSID.

Maybe due to the lack of services directly provided to participants and the users’
concern on user privacy (even though we provided all the needed information to
reassure users about our effort in making anonymous all collected data, some users
declared that they were yet worried about their privacy), only 14 users allowed to
collect all the reported information for a meaningful number of days (at least 15
days): Android allows to disable specific services or access to specific data at runtime,
so, even though the app was installed on the users’ smartphones, some information
were not collected for all the day in which the application was installed. Furthermore,
even though experiments were independently performed for each involved user, to
obtain reliable results, the same period was considered for all the users: considering
that some users uninstalled the application after a few weeks of usage, only 20 days
(the ones in which all the 14 users were active: from 1st of February 2016 to 20th of
February 2016) were used fot the experiments.

Table 2.17 reports the results obtained by using the machine learning algorithm
to estimate if the arriving notification would be appreciated or not by the user.

The table shows prediction accuracy results obtained with both GNB and DT al-
gorithms. Even though the mean values would suggest to trust both algorithms, some
observations are required. Looking at the percentage of the appreciated notifications
reported in the second column of the table, it is clear that the highest accuracy is
obtained with users that have a highest percentage of accepted notifications: it is
evident that for the users with a high percentage of accepted notification (higher
than 70%) the algorithm fell in overfitting case. Consequently, only users with a
percentage of appreciated notifications that is included in the interval 50%-70% can
be considered in the evaluation of the technique. However, excluding the 4 users that
brought the algorithm in overfitting (i.e., Users 3, 5, 10, and 14) the accuracy remains
high (mean: 73%) and the two algorithms seems to be equiparable (the number of
users that obtain an higher accuracy with the first algorithm is almost the same of
users that obtain an higher accuracy with the second one). Future development will

2.9 Context Analysis 79

User

% of
appreci-
ated
notifica-
tions
over all

Naïve Bayes J48 (Decision Trees)

accuracy precision recall accuracy precision recall

User 1 62% 75% 75% 75% 69% 69% 69%
User 2 70% 94% 94% 94% 99% 99% 99%
User 3 96% 92% 91% 92% 95% 91% 95%
User 4 63% 60% 63% 60% 68% 68% 68%
User 5 81% 92% 94% 92% 92% 91% 92%
User 6 65% 58% 56% 58% 58% 53% 58%
User 7 54% 78% 78% 78% 83% 83% 83%
User 8 72% 72% 78% 72% 70% 65% 70%
User 9 57% 67% 68% 67% 60% 59% 60%
User 10 77% 72% 75% 72% 70% 64% 70%
User 11 66% 70% 70% 70% 74% 81% 74%
User 12 61% 82% 82% 82% 91% 92% 91%
User 13 53% 78% 82% 78% 88% 88% 88%
User 14 87% 74% 76% 74% 89% 80% 89%

Mean 76% 77% 76% 79% 77% 79%

Standard
deviation

11% 11% 11% 13% 13% 13%

Table 2.17 Preliminary results with real data

test the algorithms with more extended dataset and the SVM algorithm will be also
included as third alternative.

2.9 Context Analysis

The data collected through the Collectors and exposed in the previous section,
highlighted some significant habits usually maintained by users and already discussed
in the previous section. One of them was particularly interesting from our point
of view: the one related to the location estimation and its battery consumption.
Specifically, even though we asked people to bring location features always activated
and in “battery saving” mode, they usually disabled it due to their fear of consuming

80 SNS (Smart Notification System)

too much battery power. Such an observation together with the fact the users
usually stay in no more than 3 or 4 significant places during their weeks, inspired
the design of the following work. The proposed method is able to estimate user
presence in meaningful places without energy expensive methods, like GPS or
network positioning techniques and could be, also, used by the SNS to infer user
current location when needed to make decisions on the distribution of notifications
(e.g., a notification could be shown only when the user enters her house).

The term “meaningful place” used within this section represents a place in which
a user recurrently stays for a certain period of time [47]: it is a group of near locations
that can be considered as a unique place, such as home, school or the workplace.

2.9.1 Location Estimation

The remainder of the section is organized as follows: Section 2.9.1.1 explains
the proposed method, Section 2.9.1.2 describes the data selection and collection
process, Section 2.9.1.3 describes the method used to identify the 2 most attended
meaningful places, and Section 2.9.1.4 shows the operations performed on data to
obtain useful features for the cross validation phase presented in Section 2.9.1.5.
Finally, Section 2.9.1.6 evaluates results obtained by using a Machine Learning
classification algorithm based on Decision Trees, Section 2.9.1.7 reports the related
works and Section 2.9.1.8 presents some concluding considerations and discusses
possible future works.

2.9.1.1 Method

As declared by Chon et al. [48], people usually spend 85 ± 3% of their time staying
in a place, while they spend 13 ± 3% of their time on the move. Based on this
knowledge, in this section a method that is able to establish user presence in the 2
most attended meaningful places is evaluated. Specifically, it is demonstrated that it
is possible to estimate where the user is in a certain moment of the day with high
accuracy and without using energy expensive methods. In order to demonstrate
such an assumption, a method that uses Machine Learning supervised classification
algorithms based on Decision Trees is proposed for predicting user presence in a
meaningful place.

2.9 Context Analysis 81

Fig. 2.22 Model that describes the estimation process performed for each user

The Decision Tree algorithm has been evaluated according to the work-flow
shown in Figure 2.22. After an initial phase in which data are collected through the
Android application presented in Section 2.8, the 2 most attended meaningful places
are identified in the “Meaningful places estimation” phase and labels are assigned
to collected data. In addition, collected items are filtered in the “Features selection
& Pre-processing” phase: it is dedicated to a) remove useless information from
the collected data and b) encode data for better performance of the classification
algorithm. The dataset resulting from these three phases is used as input for the 10-
fold cross validation process that produces accuracy, precision and recall measures
as method estimation results.

Due to the different daily routine of each user, the shown steps are replicated
for every user involved in the study and, at the end, a mean value is calculated for
each computed measure. The following subsections describe each phase with more
details explaining the contribution of each step to the whole accuracy estimation.

2.9.1.2 Data collection

As presented in the previous section, the first step in evaluating the proposed method
is the “Data collection” phase. For our purpose, the data collected by the Android
application developed as part of the Collectors was used.

Table 2.18 shows the information chosen among all the collected one that do
not require extra energy to be retrieved and that is collected through the Android
application. The table shows 4 main categories of information: the “Time informa-
tion” represents the moment in which the estimation is performed. It is expressed
by three different fields: the time of day, in seconds, the date (that contains the
day of the month (1-31), the month and the year), and the day of the week. These

82 SNS (Smart Notification System)

Time information

Time

Date

Day of the week

Notification information

Type

Generating service

Sender-receiver relationship

Device state

Battery level

Charging state

Ringtone mode

User information
Current activity

Absolute location
Table 2.18 Collected data

values are always available on all smartphones and do not require any extra energy
consumption to be retrieved. Moreover, “Notification information” represents the
data contained in a notification, such as a) the type of the notification (e.g., message,
email, ... etc), b) the generating service (e.g., Telegram, Whatsapp, Snapchat, ...),
and c) the relationship between the sender and the receiver of the notification. The
sender-receiver relationship is expressed by one of the following values: “family”,
when the sender and receiver are relatives, “friend”, when the sender is a friend of
the receiver, and “work”, when the sender works with the receiver. This information
is asked to the user at the first application installation for only the most important
persons present in her contact list. On Android smartphones, every time a notification
is received, a broadcast message with all available information related to the just
received notification is sent to all registered apps. Consequently, the exposed means
of information are acquired without consuming extra energy. Furthermore, “Device
state” indicates the values related to battery level, charging status (i.e., charging/non
charging) and selected ringtone mode (i.e., silence, vibration, and sound). As de-
clared in the Google documentation40 these values do not require a lot of energy if
they are acquired with the right frequency. In addition, 2 more pieces of information
about user are collected: user current activity and user current absolute location.

40http://developer.android.com/training/monitoring-device-state/
battery-monitoring.html, last visited on March 22, 2017

http://developer.android.com/training/monitoring-device-state/battery-monitoring.html
http://developer.android.com/training/monitoring-device-state/battery-monitoring.html

2.9 Context Analysis 83

User current activity is retrieved using the Google Activity Recognition service: the
activities are detected by periodically waking up the device and reading short bursts
of sensor data. The Google documentation41 reports that the activity recognition
process “only makes use of low power sensors in order to keep the power usage to a
minimum”.

Apart from these features, for meaningful places estimation, user current absolute
location is collected. It can be acquired through 2 different methods: using the GPS
module or using network positioning techniques. In both cases extra energy is
needed, but within this study the absolute location is needed only to establish label
(meaningful places) for the training of the Machine Learning algorithm, so, it is
acquired only whenever the user enables GPS and/or network positioning services
for her purposes (for example, when she uses mapping services).

Only one portion of data acquired through the Android application presented in
the Collectors Section were useful for the purpose of estimating user presence in
meaningful location: only the data collected by the 14 most collaborative users (that
turned on the GPS for more than 15 days and did not deactivate any service used by
the application) was used. Consequently, data collected by 14 users were used and
20 days (the ones in which all the 14 users were active) were considered.

To preserve user privacy, all collected information were anonymous: all sensible
pieces of information present in the shown list were anonymized using an hash
function.

2.9.1.3 Meaningful places estimation

The second phase in evaluating the proposed method is related to “Meaningful places
estimation” step: the 2 most attended meaningful places for each user were identified
using the unsupervised machine learning algorithm known as K-means algorithm:
as declared by Zhou et al. [49] it is one of the most known and used partitioning
clustering algorithm for detecting user meaningful places.

As samples of collected data, Figure 2.23 and Figure 2.24 show the absolute
locations stored for 2 different users. The round points represent all the unique
absolute locations stored for the single user, instead the cross points are the centers of

41https://developers.google.com/android/reference/com/google/android/gms/
location/ActivityRecognitionApi#public-methods, last visited on March 22, 2017

https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionApi#public-methods
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionApi#public-methods

84 SNS (Smart Notification System)

Fig. 2.23 Absolute locations recorded for user 5

the 2 meaningful places identified by the K-means algorithm. As can be seen, in both
cases the 2 meaningful places identified by the algorithm are actually representative
of most of the recorded absolute locations. The user location was within 1 km from
either cluster centers in 64.26% of the samples.

2.9.1.4 Features selection and Pre-processing

Another phase in evaluating the proposed method is related to the “Features selection
& Pre-processing” step. It refers to every operation performed on the data in order
to remove useless information from the collected items and encode data for better
performance of the classification algorithm. In this work, three main operations were
performed during this phase:

• date and time information were further splitted in 4 main items: time (seconds
since midnight), day (number of days since the 1st day of the month), month,
year;

2.9 Context Analysis 85

Fig. 2.24 Absolute locations recorded for user 11

• time, day, month, and day of the week fields were splitted in aggregated fea-
tures; in order to consider the periodicity of time (i.e., 23.59 is near 00.01), in
fact, we exctracted 2 different values for time instead of only one: sin(2·π·time

24·60·60)

and cos(2·π·time
24·60·60), where the denominator represents the seconds contained

in a day and “time” represents the number of seconds since midnight. The
same split was performed for the month, the day and the day of the week but
substituting the components of the formula with the right values.

• considering that experiments were performed in the same year, the “year”
information was removed from the selected features.

2.9.1.5 Cross validation

After filtering data collected trough the Android application presented in Collectors
Section (with Features selection, Pre-processing and Meaningful places estimation),

86 SNS (Smart Notification System)

an off-line evaluation of our method was performed through a 10-fold cross validation
process over the collected dataset.

In the presented work, the Weka [46] workbench for Machine Learning was
used for all the experiments and all the evaluations were done using the k-fold cross
validation method with k set to 10.

The dataset used for experiments performed in this study is composed of 27142
samples (a mean of 1507± 970 samples per user) labeled with user meaningful
places; user presence in a meaningful place was estimated every time a new notifi-
cation is received, consequently each dataset sample represents data stored at the
moment of a notification reception.

For each experiment 3 measures are reported:

• Accuracy, that represents the percentage of correct estimations.

• Precision, that is a measure of result relevancy.

• Recall, that is a measure of how many truly relevant results are returned.

The precision and recall values reported in this section are calculated as weighted
values of repeated single class classification. In our work, in fact, we have 2 classes
(location 1 and location 2) data label, so Weka repeats the prediction 2 times: the
first time it estimates precision and recall predicting class 1, instead at the second
one it estimates precision and recall predicting class 2. Then, it calculates a weighted
value considering the class size.

14 users were involved in the study and, considering that each user has her own
habits and attends different meaningful places, the model was evaluated separately
for each user. Then, a mean value is calculated for each measure over all 14 users.

2.9.1.6 Results evaluation

Collected data (Table 2.18) is converted into features suitable for the classification
algorithm, as shown in Table 2.19, that contains further details on feature representa-
tion.

The first considered feature category (A) is related to time information. As
already discussed, all the data were collected at each notification reception, con-

2.9 Context Analysis 87

Feature ID Feature Type

A

Time INTEGER

Month INTEGER (1-12)

Day INTEGER (1-31)

Day of the week Class(Monday, ...)

B

Type Class(msg, email, ...)

Generating service STRING (e.g., Telegram)

Sender-receiver Class(family,
relationship friend, work)

C
Battery level INTEGER

Charging state
Class(charging/
not charging)

D Ringtone mode
Class(silence,

vibration, sound)

E Current activity

Class(in vehicle,
on bicycle, on foot,

running, still,
tilting, unknown,

and walking)
Table 2.19 Legend of considered features

sequently, this data represents the time, date and day of the week at which the
notification was received.

The second feature category (B) is related to notification information: it repre-
sents the type of the notification, the service that generated it and the relationship
among the owner of the smartphone and the sender of the message.

Furthermore, features related to device status (battery information (C) and se-
lected ringtone mode (D)) were considered in addition to the revealed user activity.
The activity (E) is acquired through the Google Activity Recognition API and can
assume one of the following values: a) in vehicle, b) on bicycle, c) on foot, d)
running, e) still, f) tilting, g) unknown, and h) walking.

88 SNS (Smart Notification System)

Exp. A B C D E Accura-
cy

Accura-
cy St.
Dev.

Precisi-
on

Precisi-
on St.
Dev.

Recall
Recall

St.
Dev.

1 Y Y Y Y Y 89.40 8.27 89.04 8.63 89.40 8.27

2 Y Y Y Y - 89.31 8.50 88.83 9.13 89.31 8.50

3 Y Y Y - Y 89.01 8.46 88.59 8.95 89.01 8.46

4 Y Y Y - - 89.12 8.51 88.64 9.13 89.12 8.51

5 Y Y - Y Y 89.17 8.41 88.66 8.85 89.17 8.41

6 Y Y - Y - 89.27 8.23 88.66 8.91 89.27 8.23

7 Y Y - - Y 88.73 8.39 88.15 8.85 88.73 8.39

8 Y Y - - - 88.96 8.39 88.35 9.03 88.96 8.39

9 Y - Y Y Y 90.19 7.81 89.96 7.90 90.19 7.81

10 Y - Y Y - 90.11 7.94 89.83 8.13 90.11 7.94

11 Y - Y - Y 89.52 8.11 89.18 8.38 89.52 8.11

12 Y - Y - - 89.61 8.01 89.23 8.40 89.61 8.02

13 Y - - Y Y 89.82 8.39 89.34 8.76 89.82 8.39

14 Y - - Y - 90.08 7.83 89.72 8.05 90.09 7.83

15 Y - - - Y 89.38 8.37 88.67 9.06 89.38 8.37

16 Y - - - - 89.90 7.78 89.51 8.01 89.90 7.78
Table 2.20 First part of experimental results (Accuracy, Precision and Recall) - all values are
percentages

Finally, the target class used as label for the Machine Learning algorithm training
is the “Meaningful Place” that can assume one of the 2 values “locationClass1” and
“locationClass2”.

Aiming at studying the importance of each selected features 31 different experi-
ments were performed: the Decision Tree model was cross-validated on the collected
dataset with different combinations of the presented features.

Table 2.20 and Table 2.21 show the list of performed experiments: in every
row we report the features selected for each experiment and the obtained accuracy,
prediction, and recall mean values with corresponding standard deviation. The
legend of feature IDs is contained in Table 2.19.

2.9 Context Analysis 89

Exp.A B C D E Accura-
cy

Accura-
cy St.
Dev.

Precisi-
on

Precisi-
on St.
Dev.

Recall
Recall

St.
Dev.

17 - Y Y Y Y 86.92 8.56 86.65 8.76 86.92 8.56

18 - Y Y Y - 86.94 8.02 86.71 8.20 86.94 8.02

19 - Y Y - Y 86.03 8.69 85.80 8.85 86.03 8.69

20 - Y Y - - 86.01 8.29 85.81 8.45 86.01 8.29

21 - Y - Y Y 78.89 10.91 78.76 10.98 78.89 10.91

22 - Y - Y - 77.89 11.10 77.75 11.12 77.89 11.10

23 - Y - - Y 76.67 11.89 76.56 11.99 76.67 11.89

24 - Y - - - 75.50 12.36 75.59 12.20 75.50 12.36

25 - - Y Y Y 87.57 8.01 87.31 8.22 87.57 8.01

26 - - Y Y - 87.68 7.48 87.49 7.64 87.68 7.48

27 - - Y - Y 87.26 8.23 86.98 8.51 87.26 8.23

28 - - Y - - 86.98 8.08 86.74 8.36 86.98 8.08

29 - - - Y Y 75.59 11.69 75.56 11.62 75.59 11.69

30 - - - Y - 73.44 11.88 73.10 12.29 73.44 11.88

31 - - - - Y 72.92 12.49 72.24 12.95 72.93 12.49
Table 2.21 Second part of experimental results (Accuracy, Precision and Recall) - all values
are percentages

The first 16 experiments reported in Table 2.20 show the importance of timing
information in predicting presence in meaningful places, especially when coupled
with other device or user-related features. The importance of this feature was
expected to be strictly related to user habits and results demonstrate an obtained
accuracy between 88% and 91%.

Moreover, results show that the “Current activity” (E), the only feature that
consumes extra energy, is not necessary: when it is considered, the accuracy changes
only of less than 1%. Consequently, it can be removed from the used features
bringing the proposed method to a zero-energy method.

90 SNS (Smart Notification System)

2.9.1.7 Related works

User location estimation has been subject of extensive studies in the literature,
nonetheless, location information is usually retrieved through energy expensive
methods like GPS or network positioning techniques. Therefore, considering that the
utility of smartphones is limited by their battery life (as declared by Metri et al. [50]),
there is a growing interest in the problem of reducing power consumption without
giving up the benefits of using location information. Most of related works focus on
how to reduce the frequency or decrease the duration of GPS usage: Kjaergaard et
al. [51], for example, propose a system that, based on the estimation and prediction of
system conditions and mobility, schedules position updates to both minimize energy
consumption and optimize robustness. The developed system calculates the optimal
plan for power-on and power-off times of device sensors and peripherals, such as the
GPS module. Furthermore, Xu et al. [52] proposed a hybrid method for semantic
location recognition, which combines k-NN (the k-nearest neighbors algorithm is one
of the most used machine learning algorithms for pattern recognition) and multiple
decision tree models to effectively recognize the location both in outdoor and indoor
environments. To reduce battery consumption, they use a decision tree model to
check if the user is moving and only when the user stays in a place for a significant
time period, the recognition procedure is performed. A similar approach was used
by Ryoo et al. [53]: they designed a geo-fencing framework able to determine when
users check in or out of a specific area in an energy efficient way, so that appropriate
Location Based Services (LBS) can be triggered. In addition, their study is based on
the observation that users usually move from one place to another and then stay at
that place for a while. This observation is supported by Klepeis et al. [54] and is the
basis of several other works related to energy consumption reduction in smartphone
location prediction. As demonstrated by Klepeis, in fact, people spend approximately
87% of their daily time in enclosed buildings, so it is possible to identify some user
meaningful places in which user spends most of their daily time. This property is
also used by Chon et al. [47], that proposed a system able to reduce smartphone
battery consumption switching from a high-level to a low-level sensing mode; the
two different modes differ in the sensors used to evaluate location. The system
assumes that, when a user stays at a place for a certain period of time, she is in a
“meaningful place”. Consequently, when these places are recognized, the system
saves a location signature (i.e., internet connectivity, visiting time, residence-time,

2.9 Context Analysis 91

and Wi-Fi signature) for future prediction. Therefore, whenever a user enters a place,
at first the system tries to identify the location using location signature (this step is
called low-level sensing step) and then, only if it is not able to identify the place, it
activates the more energy hungry high-level sensing.

The same property is used in the work described in this section of the thesis, but
aiming at using new methods and sources of information to estimate users’ mean-
ingful places: we present a technique for applying Machine Learning classification
algorithms based on Decision Trees on data available on the smartphone that do not
require extra energy to be retrieved.

New methods for obtaining a smartphone location estimation have already been
presented in some works found in the literature. Paek et al. [55], for example,
propose a system that leverages Cell-ID transitions and a history of GPS readings
obtained within a cell to provide an accurate estimation of user current location. The
paper demonstrates that the proposed system achieves reasonable accuracy while
keeping a low energy overhead. Furthermore, Garbe et al. [56] present a system
for mobile devices able to determine user’s location when neither GPS nor network
positioning information is available. The proposed system uses information coming
from 3 different sensors: a gyroscope, a magnetometer that measures the Earth’s
magnetic field and a barometer that estimates the user’s altitude based on air-pressure
readings.

Moreover, another useful work is the one presented by Qin et al [57]: the main
issue that authors address is how predictable individuals are in their mobility. They
use the raw cell ID timestamps combined with the smartphone location (i.e., its
coordinates) to calculate and estimate patterns (i.e., the days are classified for each
person into regular, personal patterns) and “life” entropy, used then for meaningful
places (that they call “persons important locations”) estimations.

2.9.1.8 Conclusions and future work

This section proposed a new energy efficient method to estimate user presence in
a meaningful place. In this study we presented results obtained from the analysis
of data acquired through an Android application installed on 14 user smartphones
for 20 days. We demonstrated that it is possible to use a method that applies a
Machine Learning algorithm based on Decision Trees, to predict the user presence in

92 SNS (Smart Notification System)

a meaningful place by collecting and analyzing: a) user activity, b) information from
received notifications (receipt time, generating service, sender-receiver relationship),
and c) device status (battery level and ringtone mode). A 10-fold cross-validation
process was used to evaluate the method estimating user presence in a meaningful
place every time a notification is received.

In order to identify the best combination of features for our purposes 31 experi-
ments were performed. Results demonstrate that the most important features among
the considered ones are related to time information. In fact, when timing features
are considered, the best obtained accuracy value (percentage of correct predictions)
is 89.40% (standard deviation: 8.27%) with a precision of 89.04% and a recall of
89.40%.

In the future we plan to repeat experiments with a larger dataset: more users will
be involved in the study for a larger observation period. Moreover, more Machine
Learning algorithms will be tested for estimation in order to determine if it is possible
to obtain better results with different algorithms.

2.10 Discussion and Conclusion

In this chapter, we presented the SNS system, a modular architecture that uses
machine learning algorithms to manage incoming notifications. According to context
awareness and user habits, the presented architectural system is able to decide who
should receive the incoming notification, on which device(s), in which moment
and with which mode(s) (e.g., vibration, sound, light signal). A simplified version
of the different modules that constitute the architecture has been prototyped and a
preliminary deployment session has been performed with the aim of collecting real
data and perform some validating experiments.

The data obtained from the preliminary deployment sessions and the results
obtained from the evaluation of the machine learning approach applied to notifica-
tions can foster future development in such fields, as already done in the proposed
inspired extra experiment that mainly present methods to estimate user presence in
meaningful locations.

Future works will extend the implemented prototypes to allow the collection
of more accurate and complete set of real data. In addition, the Decision maker

2.10 Discussion and Conclusion 93

prototype will be enhanced and other machine learning algorithms will be evaluated
for letting it make all the four designed decisions: a) who should receive an incoming
notification; b) what is the best moment to show the notification to the chosen user(s);
c) on which device(s) the chosen user(s) should receive the notification; d) which is
the best way to notify the incoming notification (e.g., vibration, light, sound).

Furthermore, the possibility of using different algorithms after other ones will be
evaluated. Finally, a more complete implementation of the whole SNS system will
be implemented and will be evaluated by an adequate number of people aiming at
obtaining structured information about the accuracy of predictions made by it and a
more completed dataset for the system training.

Chapter 3

The XDN (Cross-device Notification)
Framework1

As already depicted in the Introduction Section of this thesis, during the last decade,
the presence of notifications in people’s routines has grown. Although people are
becoming accustomed to them, the usefulness and the importance of each notification
often depends on various factors that can influence the reaction and the disruption of
recipients. The information contained in notifications, or the device(s) on which they
are presented, are only a few examples of factors that can influence the user reaction
and disruption caused by notifications.

As already discussed, two main approaches were identified in this thesis to im-
prove user experience with notifications. In this chapter, the approach that acts at the
design level is presented. Specifically, while the previous chapter presents a work
that provides a solution that directly influences users’ behaviors with respect to noti-
fications, the present chapter proposes a framework that allows developers to define
their strategies to let their software, then, influence users’ behaviors with respect
to notifications. In addition, developers are encouraged to exploit the advantages
provided by the cross-device approach to design notifications and their distribution
strategies.

1Part of the work described in this chapter has been previously published in [15]. Specifically, the
architecture of the proposed solution was revised to introduce new, more detailed, components. In
addition, as an original contribution of this thesis, with the aim of evaluating the feasibility and the
effectiveness of the framework, the preliminary prototype of the XDN framework was tested by 12
volunteers and the results are presented in the last section of this chapter.

3.1 Introduction 95

The chapter presents the architecture of the proposed solution together with the
preliminary test session performed with 12 volunteers (developers) and the results
obtained from such tests.

3.1 Introduction

As declared by Seshadri et al. [58] about notifications, even though providing indi-
viduals with relevant information is an essential element in facilitating their activities,
the challenge for developers is “to provide information in a desired manner notwith-
standing vast differences in individuals’ information and delivery preferences”. Con-
sequently, developers should create applications that “deliver timely and personalized
information on whatever suitable device is available and accessible” [58].

In addition, due to the growing importance of the Internet of Things (IoT) in the
notification context and the increasing spread of IoT devices, as declared by Weber
[8], “the ongoing wave of smart devices makes it possible to reach the user through
multiple devices at once, amplifying the effects of notifications”. Nonetheless, in
recent years, this possibility has not been fully exploited by developers: most existing
applications mainly duplicate the same notification on all the available supported
devices.

While it is necessary to personalize notifications according to their importance,
the developed notification strategies (i.e., algorithms for distributing notifications)
should exploit the possibility of reaching the same user through different devices.
As already proposed [59, 60], a possible contribution entails the adoption of a cross-
device approach [61] to notifications, a growing trend of the last decades that consists
of extending an application user experience across multiple devices. By applying the
cross-device approach to notifications, in fact, developers could distribute different
“signals” related to the same notification on different devices. For instance, a warning
sound could be sent to the smart Hi-Fi, while vibration could be activated on the
personal smartphone and the notification content could be shown on the smart TV.

Developers should therefore focus on both personalizing notifications to differ-
entiate the presentation of important and unimportant information, and designing
cross-device notifications strategies responsible for informing users without causing
too much disruption and involving mobile and IoT devices. Nonetheless, as high-

96 The XDN (Cross-device Notification) Framework

lighted by related works, developers are not yet supported in implementing solutions
that respect both needs in all their aspects.

This chapter presents XDN (Cross Device Notification), a framework that allows
developers to create, by scripting, cross-device notifications. Inspired by the Chord
framework [62]2, a framework for cross-device interactions between mobile devices,
and with the aim of contributing to its future development (if the project will be
revived), XDN assists developers in a) designing personalized notifications, and
b) designing, implementing and testing notification strategies able to distribute
notifications among mobile and IoT devices using a cross-device approach. The
framework architecture is composed of four main parts:

• the XDN library, that implements a set of high-level APIs to let developers a)
handle incoming notifications and their properties (i.e., content, receipt date/-
time, generator, and icon), b) select devices to be involved in the notification
distribution, and c) separately perform different actions on selected devices
(e.g., play a sound, activate the vibration, or show the notification content);

• the XDN runtime environment, that is a service supposed to be run on a
server and that is able to a) accept notifications from IoT/mobile devices,
b) process them by running the deployed notification strategy(ies) and c)
distribute processed notifications to available devices through its dispatcher
module. It is also responsible for d) registering new devices and e) storing
device status updates;

• the XDN GUI that provides a) an editor for allowing developers implement
and debug their notification strategies and b) a simulator that shows how the
predefined devices will behave when a new notification arrives by simulating
the runtime environment;

• the XDN IoT/mobile library that will be imported in every application/service
that uses XDN to generate and distribute notifications. It allows developers to
a) generate notifications compatible with the format supported by XDN, and b)
send the generated notifications to the XDN runtime environment. In addition,
it is also able to autonomously c) receive commands from the XDN runtime
environment, and d) execute them.

2https://github.com/google/chord, last visited on July 10, 2017, last updated on December
5, 2015

https://github.com/google/chord

3.2 Background and Motivation 97

A first prototype of the XDN framework, that implements only the XDN library
and the XDN GUI was developed in the Node.js3 framework. Consequently, the
methods, classes and objects provided by the XDN library are provided for JavaScript
applications. Furthermore, the feasibility of the framework and the fulfillment of
all the requirements presented in Section 3.3 were verified through a test session in
which 10 real users were asked to design and develop two different scenarios in a
limited time.

The main contribution of this chapter is a) a new cross-device proposal for
customizing and distributing notifications among ad-hoc networks of end-user mobile
and IoT devices; b) the XDN framework, that provides the APIs, the GUI, the
runtime enviroment, and the IoT/mobile library for developers that would develop
their algorithms respecting the cross-device approach; c) two different scenarios
used within a test session in which 10 users to verify the feasibility of the framework
and the fulfillment of all the requirements.

3.2 Background and Motivation

To better appreciate the contribution of our work with respect to the literature, the
following Section 3.2.1 presents a motivational example inspired by an existing one.

3.2.1 Scenario: Messaging Application

With the aim of helping readers in understanding the situations in which the XDN
framework would help developers, this section presents a sample notification strategy
that will be also used as a running example through the remainder of the chapter.
Three different specific scenarios, inspired by the motivating scenarios presented by
Campbell et al. [60] will be used to extract the final general strategy.

Ashley is a developer, working on a messaging application that should differ-
ently disrupt users depending on their current activity and location. She identified
three sample situations that should be handled by her algorithms, considering some
hypothetical users of her application.

3https://nodejs.org/, last visited on January 15, 2017

https://nodejs.org/

98 The XDN (Cross-device Notification) Framework

• The user is at his business location, is wearing a smartwatch and is using his
desktop computer. Unfortunately, his smartphone went out due to low battery
and, suddenly, an important personal message arrives. The user should be
warned about that message as soon as possible by showing it on the desktop
computer that he is using and by making the smartwatch vibrate. In addition,
no other persons should be disrupted (e.g., by playing a warning sound for
more than one time on other devices).

• The user is at home and his smart TV is playing a movie. The user owns one
smartphone. It is supposed that the user is relaxing, so the system should not
cause any disruption to him. In this situation, a notification should be shown
on the smart TV, while the smartphone vibration should be also activated just
because the user could not be actually in front of her TV.

• The user is driving. The car is equipped with an IoT Hi-fi system, i.e., an
Hi-fi that is connected to the Internet to provide different services. One of
these services consists of loudly reading incoming notifications. While the
user is driving, he receives two notifications on his smartphone: one is from
his daughter who is waiting her in front of the school, while the other one
is an advertisement. The system should a) generate a textual notification on
user smartphone for both received messages, b) activate the vibration on the
smartphone to inform the user about the daughter’s message, only, and c) read
the daughter’s message on the car Hi-fi.

The above situations are not exhaustive, for this reason, in all the situations that are
not covered by the described ones, the smartphone will be used as the preferred de-
vice: the notification content will be shown on the smartphone display, the vibration
will be activated and the smartphone led will be made blink.

Ashley identified the following notification strategy expressed in term of general
rules that she will implement. In the following list the adjective “available” will be
used to indicate a device that is turned on and connected to the internet.

• If a message is received from a service that inserted the words “@important”
and “@personal” in the notification metadata4 and the user is working (i.e., no

4ït is supposed that the documentation of the used operating system reports that these words are
usually inserted in the notification metadata to distinguish incoming notifications

3.2 Background and Motivation 99

smart Tv and/or Hi-Fi and/or car Hi-Fi is available, while a PC is available),
the message should be notified by showing the notification content on all the
available PCs and tablets and the vibration should be activated only once and
on all the available devices that support it;

• If a message is received when the user is relaxing in her house (i.e., one smart
TV or one Hi-Fi system is available and is playing music/video), the notifica-
tion content should be shown on all the available TVs, the vibration should be
activated on all the available devices that support it and the notification content
will be also shown on all the available smartphones (in case the user cannot
see it when it is shown on the TV);

• If a message is received when the user is driving (i.e., a car Hi-Fi system is
available and playing music), the system should distinguish useful and useless
messages. It is supposed that the app generating the message inserts the word
“@unimportant” in the notification metadata, when needed. If the message is
not important, only a textual notification will be shown on the user smartphone.
Otherwise, the following actions will be performed: a) a textual notification
will be generated on all the available smartphones, b) the vibration will be
activated on all the available smartphones, c) the notification content will be
read on the car Hi-fi system.

• In all the cases that are not covered by the previous ones, a) a textual notifi-
cation will be shown on all the available smartphones, b) the vibration will
be activated on all the available smartphones, c) the smartphones led will be
made blink.

In addition, Ashley must be able to develop the just described rules without
moving from her workplace (e.g., to test the situation in which the user is driving)
and to test them without actually owning the involved devices. Consequently, she
needs a tool to: a) design and develop the notification strategies able to manage the
described situations, b) simulate the behavior of devices that she does not actually
own by simulating the arrival of notifications in all the presented realistic situations.

The following subsections will discuss the drawbacks and problems of the related
works with respect to the presented notification strategy.

100 The XDN (Cross-device Notification) Framework

3.2.2 Frameworks for customizing notifications and/or design-
ing notification strategies

As already discussed in previous sections, due to the increasing presence of notifica-
tions in people’s lives, user frustration and/or disruption caused by notifications have
been examined in the literature [10–13]. Some works also proposed solutions to miti-
gate the negative effects that notifications cause on user attention [63, 32, 31, 30, 62].
Almost all these solutions rely on the customization of notification strategies at the
distribution level (i.e., notifications are intercepted and then systems decide if, when,
and how showing them). Instead, in our opinion, another approach is also feasi-
ble: the customization of notification strategies at the design level (i.e., notification
strategies are designed with the aim of reducing user disruption).

Specifically, nowadays, developers misuse notifications and generate/show them
on almost every available device and in every moment of the day, with no uni-
form mechanism for considering the importance of the notification and/or the user
availability. For this reason, we believe that developers should design their algo-
rithms so that notifications could be distributed according to a well-designed and
accurately tested strategy. Different works [32, 62, 64], for example, as a result of
their experiments report some issues about user attention and/or preferences that
developers could consider in implementing their notification strategies with the aim
of reducing the overall user disruption. Likewise, some commercial systems have
already improved notification distribution strategies at the design level: Slack5, a
cloud-based team collaboration tool that generates a huge number of notifications
a day, for instance, already implemented a notification strategy6, shown in Figure
3.1, that “smartly” distributes notifications to a cleverly chosen subset of available
devices.

However, the complexity of such techniques could cause different problems in
managing and testing them without a dedicated tool.

The community of developers needs a framework that allows developers to design,
develop and finally test their own algorithms to generate customized notifications
and distribute them among available mobile and IoT devices using a cross-device
approach.

5https://slack.com/, last visited on July 10, 2017
6https://slack.engineering/reducing-slacks-memory-footprint-4480fec7e8eb#

8c3c, last visited on July 10, 2017

https://slack.com/
https://slack.engineering/reducing-slacks-memory-footprint-4480fec7e8eb#8c3c
https://slack.engineering/reducing-slacks-memory-footprint-4480fec7e8eb#8c3c

3.2 Background and Motivation 101

Fig. 3.1 Notification strategy implemented by the Slack team

To the best of our knowledge, no work provides such a similar support, conse-
quently, the analysis of related works is split in two different topics: Section 3.2.2.1
treats the development of applications, services, or systems able to generate and/or
distribute cross-device notifications among available mobile and IoT devices, while
Section 3.2.2.2 treats the development of a framework for developers for customizing
notifications and/or their distribution.

Both subsections discuss the drawbacks and problems of the related works with
respect to the notification strategy presented in the previous Section 3.2.1. In addition,
Table 3.2 summarizes all the presented related works with respect to the exposed
features and services reported in Table 3.1.

102 The XDN (Cross-device Notification) Framework

Feature Description

F1 Design and develop notification strategies
F2 Support IoT devices as receipt of notifications
F3 Simulate selected device(s) (not owned)
F4 Simulate more than one device at a time
F5 Multi-device
F6 Multi-platform
F7 GUI for developers
F8 Support cross-device approach

Table 3.1 Summary of features provided by related works

Related work F1 F2 F3 F4 F5 F6 F7 F8

meSchHub [65] Yes Yes No No Yes Yes No No
Seshadri et al. solution [58] Yes No No No No No Yes No
Apple Framework Yes Partially Yes No No No Yes No
Google Framework Yes Partially Yes No No No Yes No
Apache Cordova Framework Yes Partially Yes No No Yes Yes No
Panelrama [66] No Partially No Yes Yes Yes No Yes
XDStudio [67] No Partially Yes Yes Yes Yes Yes Yes
Connichiwa [68] No Partially Yes Yes Yes Yes No Yes
Notification Platform [59] No No No No Yes Yes No No
Campbell et al. solution [60] No No No No Yes Yes No No
Chord [62] No Yes Yes Yes Yes Yes Yes Yes
XD-Testing [69] No Yes Yes Yes Yes Yes Yes Yes

Table 3.2 Summary of related works’ features

3.2.2.1 Frameworks and tools for developers for managing notifications

As already mentioned, notifications have been extensively examined in the literature,
but only a few works provide developers with aids for customizing notifications
and/or their distribution. The main characteristics that distinguish almost every pre-
sented work from XDN are related to the absence of a simulator or the impossibility
of supporting cross-device interactions.

An interesting work specifically proposed for designing and deploying notifica-
tion strategies is presented by Kubitza et al. [65]. They describe an infrastructure for
homes and offices that allows designers and web developers to design and deploy
context sensitive notification strategies using arbitrary things and smart home prod-

3.2 Background and Motivation 103

ucts connected to their meSchHub gateway, such as TVs, tablets, projections, lamps,
speakers and many more. In the proposed infrastructure, the notifications received
on the user smartphone are sent to the meSchHub gateway that forwards them to
available IoT devices according to interaction scripts pre-defined by developers. One
gateway can be set up per each smart space (e.g., office, flat, house) and, in the
proposed architecture only a single smartphone can be connected to a single gateway.
When a smartphone leaves the range of a certain smart space (e.g., out of home
WiFi) and comes into the range of another known smart space (e.g., office WiFi) the
app automatically discovers the local meSchHub gateway and starts working with
the interaction scripts that are defined for that space. According to the description
of the system, the meSchHub system lacks a simulator: Ashley, the developer of
the “Messaging Application” scenario, in fact, would not be allowed to test her
notification strategies on devices that she does not actually own. In addition, the
meSchHub system is limited to the environment in which the gateway is installed
and in which the user is currently present.

Another interesting related work is the patent proposed by Seshadri et al. [58]
that presents a system and a methodology to facilitate the development, debug, and
deployment of a notification platform application. The whole system is based on an
Application Definition File (ADF) which describes all the components that interact to
perform notification services, wherein the components are often in various languages
and formats. In their proposal, a visual user interface is provided to facilitate efficient
design, debug, management and deployment of an ADF and related configuration file
(and other related files) when developing notification applications. Developers are, in
fact, directed through visual diagrams and processes leading to the development and
ultimately deployment of a notification application. However, the proposed system
does not provide any simulator to test the designed algorithms. In addition, according
to the description of the system, it does not support any cross-device interaction (e.g.,
activate the vibration on a device and make the led blink on another device at the
same time).

Moreover, in addition to the solutions found in the literature, developers are
supported by all the existing commercial frameworks and/or APIs used in the de-
velopment of mobile and/or IoT applications. The following analysis will focus
on the three most used frameworks/tools for mobile devices development, but the
reported observations also apply to other existing solutions that provide the same or
similar features: a) the frameworks proposed by Apple for managing notifications

104 The XDN (Cross-device Notification) Framework

within iOS, tvOS, watchOS or macOS applications, b) the framework proposed
by Google for the customization and distribution of notifications within Android
applications, c) the framework proposed by Apache Cordova (formerly PhoneGap)
for the distribution of notifications accross multiple platforms (i.e., Amazon Fire OS,
Android, BlackBerry 10, Browser, Firefox OS, iOS, Tizen, Windows Phone 7 and 8,
Windows). All of them provide support for managing a single device at a time, thus
it is not possible to develop cross-device strategies nor to simulate more than one
device at a time.

Apple provides two different frameworks for customizing notification in the
development of mobile applications: the User Notifications framework that mainly
handles the content of the notifications, and the User Notifications UI framework,
available only in the iOS SDK (i.e., currently it is not usable for the development
of tvOS, watchOS, and macOS apps), that mainly handles the appearance of the
notifications. Even though, in some cases, the notification appearance can be cus-
tomized, developers can only choose how the user should be notified by selecting
one of the following options for delivering the notification: a) an onscreen alert or
banner, b) a badge on the app’s icon, c) a sound that accompanies an alert, banner, or
badge. On the other hand, Google provides a similar solution for Android devices
but allows more customization7. In the development of Android applications, in fact,
it is possible to personalize: a) the notification content, b) the notification icon, and
c) the notification priority. In addition, in the upcoming “O” release of Android, the
following customizations will be added: a) specify the notification channel at which
the notification belongs, b) remove or update a snoozed notification, c) set a timeout
for creating a notification after a specified time, d) set and enable a background color
for a notification, e) add some style to the notification, and f) know the user reaction
to a notification (i.e., dismissed or not).

Finally, Apache Cordova (formerly PhoneGap)8, one of the most used frame-
works for building cross-platform applications, provides the “cordova-plugin-dialogs”
plugin9 for customizing notifications. The supported methods mainly provide the
following customizations: a) specify the message of the notification, b) specify the
title of the notification, c) specify the function that should be invoked when the user

7https://developer.android.com/guide/topics/ui/notifiers/notifications.html, last vis-
ited on March 22, 2017

8https://cordova.apache.org/, last visited on May 02, 2017
9https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-dialogs/, last

visited on May 02, 2017

https://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://cordova.apache.org/
https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-dialogs/

3.2 Background and Motivation 105

presses on the notification, d) specify the function that should be invoked when the
user presses on a button present within the notification. In addition, it is possible
to play a sound when the notification arrives on all the supported platforms except
Firefox OS and Windows (it is possible only on Windows 8).

The provided description of such solutions highlights that it is already possible
to personalize notifications, even though some limitations can be revealed with
respect to the customization we are proposing (e.g., it is not possible to activate only
the vibration). However, the main disadvantage of such solutions is that it is not
possible to develop notification strategies implementing the cross-device approach.
Likewise, some other drawbacks emerge from this brief analysis. First of all, the
first two presented commercial frameworks are strictly limited to the development of
applications for specific devices and/or platforms. Thus, if a notification strategy is
developed for a platform (e.g., Android) it is not easy, then, to export and use it in
other platforms (e.g., iOS). In addition, the available developer tools (e.g., Android
Studio10 for the development of Android applications, XCode11 for the development
of iOS, tvOS, watchOS and macOS applications) and the PhoneGap Developer App
do not allow the simultaneous simulation of different devices to test the designed
notification strategy on all target devices.

3.2.2.2 Cross-device interactions

A growing trend in ICT is the use of the cross-device approach in the development
of applications [61]. It consists of extending an application user experience across
multiple devices. The development of cross-device applications has already been
applied in different domains to solve different problems, but only a limited num-
ber of works are devoted to the generation and/or the cross-device distribution of
notifications among different devices.

Three of the most popular frameworks that facilitate the creation or the conver-
sion of cross-device applications do not, in fact, support notifications at all. One of
them is presented by Yang et al. [66]: Panelrama. It is a framework that facilitates
the creation and the easy conversion of existing web applications to enable cross-
device interaction. In brief, an application is decomposed in a set of panels, that are
distributed among all available devices and properties and statuses are synchronized.

10https://developer.android.com/studio/index.html, last visited on March 22, 2017
11https://developer.apple.com/xcode/, last visited on March 22, 2017

https://developer.android.com/studio/index.html
https://developer.apple.com/xcode/

106 The XDN (Cross-device Notification) Framework

The main advantage of Panelrama is that applications can be tested, and also de-
ployed on every available device that is equipped with a browser. However, a) it is not
possible to test the designed application on not owned devices, b) until the moment of
writing, neither the simulation of IoT devices nor the management of IoT-dedicated
properties and/or hardware accessories (e.g., the vibrator) are supported by existing
browsers and, consequently, by Panelrama. Moreover, as already mentioned, accord-
ing to the provided description, Panelrama is not designed to manage or customize
notifications. A possible solution to the absence of a support for notifications could
resort to the use of Web Push Notifications inside the browsers by using standard
Web Notifications12, proprietary APIs (like Mozilla Notification API13) or public
libraries (like Roost 14 or Push.js15), but, in this way the notifications could not be
received when the browser is closed.

The second and the third frameworks able to facilitate the development of cross-
device applications are XDStudio [67] and Connichiwa [68], but, unfortunately,
they lack support for notifications. XDStudio provides a GUI builder designed to
support interactive development of cross-device web interfaces. The most important
advantage with respect to Panelrama is the presence of a simulation tool that allows
developers to design algorithms for a multi-device environment and test them on
devices that are not owned by the developer. Connichiwa [68], instead, is a versatile
framework for creating web applications across multiple devices. It is based on
an event-based mechanism to imperatively show and hide content on devices upon
connection or disconnection of other devices [69]. Both of them are designed to
mainly support the development of user interfaces and do not handle notifications,
too.

Consequently, the considerations reported for Panelrama could be extended for
XDStudio and Connichiwa, too: a) notifications could not be used when the browser
is closed, and b) XDStudio and Connichiwa are not able to manage IoT-dedicated
properties and/or hardware accessories (e.g., a led or a vibrator).

Two works that are specifically designed for notifications are described in the
following. Although the authors declare that their proposals are designed to support

12https://www.w3.org/TR/notifications/, last visited on March 22, 2017
13https://developer.mozilla.org/en-US/docs/Web/API/notification, last visited on

March 22, 2017
14https://goroost.com/, last visited on March 22, 2017
15https://nickersoft.github.io/push.js/, last visited on March 22, 2017

https://www.w3.org/TR/notifications/
https://developer.mozilla.org/en-US/docs/Web/API/notification
https://goroost.com/
https://nickersoft.github.io/push.js/

3.2 Background and Motivation 107

cross-device notifications, the description does not provide any evidence of it. In
fact, to the best of our knowledge, both works provide only support for multi-device
notifications, but do not support developers in distributing different “signals” related
to the same notification on different devices.

First, Horvitz et al. [59] present the Notification Platform, a cross-device mes-
saging system that modulates the flow of messages from multiple sources to other
devices by performing ongoing decision analysis. Specifically, it balances the costs
of disruption with the value of information from multiple message sources. The
system employs a probabilistic model of attention and executes ongoing decision
analyses about ideal alerting, fidelity, and routing. The main drawback of this work
is that the developer would not be allowed to modify in any way the predicted model.
In fact, it is not possible to customize the notification distribution strategies. In
addition, according to the provided description, they apply the cross-device approach
to mobile devices only, without considering IoT devices.

Second, Campbell et al. [60] present some techniques for cross-device notifica-
tions. They start from the consideration that a notification could be missed for any
reason (e.g., because the smartphone is in a bag) and, even though other devices are
in use, the user remains unaware about it. Consequently, they propose a solution that
involves available devices to allow user to be warned about arriving notifications.
They provide a solution to handle the receipt of a notification from a device different
from the one that received it but does not allow to customize the notification or its
distribution. Consequently, with respect to the “Messaging Application” scenario,
in which Ashley would like to personally design the strategy for distributing the
notification and/or its properties, this solution lack of the possibility to do both
actions. In addition the proposed technique does not support IoT devices.

More interestingly, Chi et al. [62] present Chord (previously known as “Weave”),
a framework for developers to create cross-device wearable interaction by scripting.
According to the supplied description, it provides a set of high-level APIs, based
on JavaScript, for developers to easily distribute UI output and combine sensing
events and user input across mobile and wearable devices. It also contributes an
integrated authoring environment for developers to program and test cross-device
behaviors, and when ready, deploy these behaviors to its runtime environment on
users’ ad-hoc network of mobile devices. The main characteristic of Chord is that it
is designed to assist the implementation of cross-device interactions. Thus, it does

108 The XDN (Cross-device Notification) Framework

not treat at all notifications and/or features that are essential to adequately reduce
user disruption caused by them. First of all, in fact, in Chord only two characteristics
are provided as output of the available devices: the display and the speaker (with
a corresponding show and play method), while some other features like vibration
and light and the corresponding methods (i.e., vibrate, on, off, blink, ... etc) are not
provided. In addition, it is not possible to manage notification properties like the
notification content, the notification arrival date, the notification generator.

Finally, Husmann et al. [69] present XD-Testing, a library for testing web-based
cross-device applications quite similar to Chord. In facts, it provides a similar data
structure and similar related methods, but, in addition, provides a mechanism for
specifying formal tests and automating their execution. Furthermore, XD-Testing
introduces concepts for implicitly and explicitly selecting devices that are needed,
respectively to address specific devices or to dynamically choose the appropriate
devices for each command that is executed on them. The absence of an explicit
support for notifications is the main drawback of XD-Testing.

In this work we decided to develop XDN to be a) inspired by Chord, mainly due
to its cross-device nature, its ease of use and its linear data structure, b) compatible
with Chord to be integrated in its future extensions.

3.3 Requirements

This section presents the design-time requirements devised for the XDN framework:
they were designed by analyzing both the shortcomings and the successes of existing
solutions discussed in the Background and Motivation section of this chapter.

(R1) API for selecting available devices and executing specific actions

The two most complete cross-device solutions found in literature are the Chord
framework and the XD-Testing library. Even though they do not provide support to
manage notifications, they introduce some useful methods and functions that allow
developers to easily select available devices and then execute specific actions (e.g.,
activate the screen). This model was really appreciated by developers that tested their
solutions, consequently it will be used as inspiration for providing similar methods
and classes in XDN. Specifically, XDN will provide APIs to:

3.3 Requirements 109

• select available mobile/IoT devices based on their specific properties and
status;

• perform specific actions on selected devices (e.g., turn on a LED or make it
blink);

• manage notification properties (e.g., arrival time, notification content).

As already done in Chord [62], XDN will be implemented following the “object-
oriented event-driven paradigm”. Specifically, inspired by Chord and popular
JavaScript libraries such as jQuery16, XDN will provide a high-level abstraction for
programmers to manipulate notifications and device’s properties and actions.

(R2) GUI

One of the most important features provided within existing works is a Graphic
User Interface (GUI) that support developers in a) implementing their algorithm-
s/code, b) visualize the current status of available devices, c) visualize/simulate
the behavior of the designed algorithms/strategies. Its presence in almost all the
discussed related works, in fact, confirms that it is essential in development tools
like the one we are going to develop. Therefore, XDN should provide a GUI to a)
develop notification strategies and, then, b) monitor the behavior of the simulated
devices performed when one or more new notification is delivered to users.

(R3) Notification strategies simulation on not owned devices

A limitation of some existing works (e.g., [65]) able to simultaneously distribute
notifications across multiple devices is the absence of a simulator for testing notifica-
tion strategies on not-owned devices. Considering that the number of IoT and mobile
devices is growing day by day, in fact, developers could not be asked to own every
existing device to test their algorithms on them. Therefore, XDN should support the
simulation of developed notification strategies on devices that are not actually owned
by developers.

(R4) Simulation of the designed notification strategies

The example reported in the Background and Motivation section, i.e., the notifi-
cation strategy developed by the Slack platform (that is able to distribute notifications
across multiple devices) demonstrates that the complexity of notification strategies

16https://jquery.com/, last visited on January 15, 2017

https://jquery.com/

110 The XDN (Cross-device Notification) Framework

is growing. In addition, by introducing the cross-device approach, they will become
more complex in the next years and a graphic simulator able to simultaneously show
the behavior of more than one device could be really appreciated by developers.

Unfortunately, the existing solutions that allow developers to define notification
strategies (i.e., the work of Seshadri et al. [58], or commercial solutions like Android
Studio or Apple XCode) do not provide any graphic simulator for visualizing such
behaviors. Consequently, XDN should provide a simulator able to show the behavior
of more than one device performed when a new notification arrives.

(R5) Multi-platform

Although different existing works propose some solutions to let developers design
cross-device applications and algorithms, they have two main drawbacks related to
the distribution of such applications/algorithms. Specifically, at first, most of the
discussed solutions propose web-based applications able to distribute notifications
within a browser. However, this solution has a main shortcoming: users cannot be
reached when the device is not in use and when a browser is not running. Second,
the solutions that support the distribution of notifications outside the browser (e.g.,
development of Android app through Android Studio) mainly allow the creation
of software that is strictly limited to some specific devices (e.g., Android devices).
Instead, XDN should allow the development of notification strategies that could be
easily exported on different platforms and run without using additional tools like a
browser.

(R6) Support for IoT devices

Nowadays, with the increasing spread of the IoT, new smart devices and ap-
pliances are developed everyday with the ability not only to generate but also to
show notifications. Consequently, in addition to existing mobile devices, the XDN
framework should support existing IoT devices to let developers test their notification
strategies.

(R7) JavaScript

As already discussed, the two most complete cross-device existing solutions
found in literature are the Chord framework and the XD-Testing library. Due to its
ease of use and its linear data structure, and considering that we are going to use the
same design pattern (as declared in R1), XDN will be designed to be compatible
with Chord. Consequently, XDN will provide JavaScript methods and classes to let

3.4 Framework 111

Fig. 3.2 Architecture of the XDN framework

developers implement their strategies using the JavaScript programming language
and let them reuse the implemented code in future version of Chord.

3.4 Framework

The architecture of the XDN framework was designed to satisfy all the reported
requirements. XDN was designed to be compatible with the architecture of the
Chord framework [62], therefore the syntax of the Chord APIs has guided the design
of the XDN APIs.

As shown in Figure 3.2, the architecture of the framework is composed of four
main blocks: the XDN library, the XDN GUI, the XDN runtime environment
and the XDN IoT/mobile library.

The XDN library implements a set of high-level APIs to perform the following
actions: a) handle incoming notifications and their properties (i.e., content, receipt
date/time, generator, and icon), b) select devices to be involved in the notification
distribution, and c) separately perform different actions on selected devices (e.g.,
play a sound, activate the vibration, or show the notification content). It is mainly
designed to be integrated in the XDN runtime environment module and its simulator.

112 The XDN (Cross-device Notification) Framework

The details of the XDN library will be discussed in the following XDN library
sub-section.

The XDN runtime environment is a service that is run on a server and is
always available (i.e., turned on and connected). In fact, it is able to a) accept
real notifications, b) process them by running the deployed script and c) distribute
processed notifications to available devices through its internal dispatcher module.
In addition, it is responsible for d) registering new devices and e) storing device
status updates. The details of the XDN runtime environment will be discussed in the
following XDN runtime environment sub-section.

Moreover, developers will mainly interact with the XDN GUI module. It pro-
vides a) an editor to implement and test notification strategies and b) a simulator to
test them. Specifically, the editor provides support to write JavaScript notification
strategies or load them from an existing developer script. Meanwhile, the simulator
is able to simulate the arrival of notifications by permitting to:

• define or load a device set (better explained in the following description) to be
used during the simulations;

• define or load a list of notifications used during the simulation as arriving
notifications;

• run the simulation, to actually simulate the arrival of notifications and visualize
the behavior (only related to the arrival of a notification) of all the loaded
devices.

As can be observed in the architecture shown in Figure 3.2, the simulator relies on
simulated notification sets and simulated device sets. The simulated notification sets
block represents the list of notifications that will be “sent” during the simulation.
While, the simulated device sets block represents the group of devices that will be
simulated: their behavior corresponding to the arrival of a new notification will be
shown during the simulation. A single simulated device set is composed of a) some
devices’ properties that are static and represent the device capabilities, and b) the
corresponding current devices’ statuses, that represent the current values for each
device’s property. The details of the XDN GUI module will be discussed in the
following XDN GUI sub-section.

3.4 Framework 113

Finally, the XDN IoT/mobile library is the module that is supposed to be
imported in every application/service that uses XDN to generate and distribute
notifications. It allows developers to a) generate notifications compatible with
the JSON format supported by XDN, b) send the generated notifications to the
XDN runtime environment. In addition, it is also able to autonomously c) receive
commands from the XDN runtime environment, and d) execute them.

The details of the presented modules will be discussed in the following sub-
sections, where the “Messaging Application” scenario will be used as a running
example.

3.4.1 XDN GUI

Figure 3.3 shows a screenshot of the XDN GUI. It is composed of four different
main parts:

• the script editor (letter A), that allows developers to develop their notification
strategies in JavaScript. It integrates graphic warning signals to inform the
developer of any syntax error in the implemented code;

• the device set column (letter B), that shows the behavior of each loaded device
during the simulation of a notification arrival. It also allows to save and load
sets of devices to use during the simulation;

• the notification set column (letter C), that shows the list of notifications that
will be “sent” during the simulation. It also provides two buttons to respectively
save and load a list of notifications;

• the log (letter D), that shows developers any error and warning generated
during the simulation and, also, shows the list of all the actions performed on
the available devices. Thus, it actually acts as a storyboard of the behaviors of
the devices loaded in the device set.

To better clarify the role of each presented component, the “Messaging Appli-
cation” will be used as a running example to explain the actions that a developer
should perform to use the XDN GUI to design, implement and test her notification
strategies.

114 The XDN (Cross-device Notification) Framework

As already presented in the “Messaging Application” example, Ashley is devel-
oping a messaging application that should differently notify users depending on their
current activity and location (acquired by analyzing the available devices and their
statuses). As a first step, Ashley connects to the web-based XDN GUI and starts
from the selection of the devices a user will supposedly own and use. She can choose
between two options: select one of the existing set of devices provided in the XDN
GUI or create a new custom set of devices. She decides to choose the first option and
she selects and loads the predefined set of devices (i.e., a smartphone, a smartwatch,
a smart TV, a PC, and a car Hi-Fi). Loaded devices appear in column “Device Set”
(B).

Now it is time to write the code she will load on the runtime environment. She
can write it by using the editor present in the GUI, located in the left column (A).

The details of the algorithm will be discussed in the following Section 3.4.2.

After creating the algorithm, Ashley tests it using the simulator. To do it she has
to perform three actions: a) load the initial status of the available devices by using
the buttons present at the top of column B, b) load the notifications set that will be
sent during the simulation, by using the buttons present at the top of column C and,
c) run the simulation using the Run code button located at the top of the editor (A).

When all these actions are performed, Ashley will see all the updated statuses in
column B and will be able to analyze the list of all the performed actions in the log
section (D).

3.4.2 XDN library

The XDN library provides a set of APIs that clearly define methods to customize
and distribute cross-device notifications by reducing repetitive code. They are based
on two main objects: xdn.notification and xdn.device.

The xdn.notification object is responsible for all the interactions with the noti-
fications and their properties. The class diagram reported in Figure 3.4 shows its
structure. As shown in the diagram, the xdn.notification object provides only the
onNotification function. It allows developers to attach an event handler to the arrival
of a notification. In fact, whenever a new notification arrives, the handler function is
called. Thus, developers can implement their notification strategies inside a function

3.4 Framework 115

Property Type

dateTime date and time at which the notification was received
content the content of the notification
generator meta-data associated with the notification, inserted by the generating

app
icon the icon associated to the notification, if available

Table 3.3 Notification properties

that should be, then, passed as input parameter of the onNotification method. Notifi-
cation properties can be accessed by the NotificationObject object accepted as input
parameter of the handler function. It represents a single notification and contains the
properties reported in Table 3.3. As an example, the code for logging the content of
the received notification is:

①❞♥✳♥♦t✐❢✐❝❛t✐♦♥✳♦♥◆♦t✐❢✐❝❛t✐♦♥✭❢✉♥❝t✐♦♥✭♠②◆♦t✐❢✐❝❛t✐♦♥✮ ④

✈❛r ❝♦♥t❡♥t ❂ ♠②◆♦t✐❢✐❝❛t✐♦♥✳❝♦♥t❡♥t❀

①❞♥✳❧♦❣✭❝♦♥t❡♥t✮❀

⑥✮

The xdn.device object implements all the classes, sub-objects and methods
needed by developers to interact with available devices. The class diagram reported
in Figure 3.5 shows its structure. It is only an abstract object that exposes the methods
implemented by the DeviceSelection sub-object. The provided methods can be used
to a) search and filter across a set of devices, and b) perform actions on one or more
selected devices. The list of all the registered devices is stored inside the private
devices object with their properties, sub-properties and statuses. Each property is
assigned to each device depending on its nature: every time a new device is registered
to the system (through the XDN runtime environment), only the properties that are
supported are specified. As an example, if Ashley is using a smartphone, it has for
sure a display and a speaker, consequently the properties display and speaker will be
available.

All possible properties and sub-properties of a device are listed in Table 3.4 in
the Property and Sub-Property columns. The lower part of the table lists the status
properties and sub-properties.

Before interacting with devices it is necessary to select them by using one of the
methods listed below. According to the specified criteria they return a DeviceSelec-
tion object containing the selected devices.

116 The XDN (Cross-device Notification) Framework

Property SubProperty/[value] Note

name - unique identifier
deviceType [smartphone, smartwatch,

bracelet, smartLight, tablet,
PC, fridge, hi-fi, smartTv,
carHi-fi, smartToothbrush]

-

display size, privacy: [high, normal,
low], touch: [true, false],

privacy = indicate if the mes-
sage could be read from only
the recipient or also by others

speaker privacy: [high, normal, low] privacy = indicate if the mes-
sage could be read from only
the recipient or also by others

light colors, intensity: [true, false],
frequency: [true, false], blink:
[true, false]

it indicates both the light of a
bulb or the light of a led (e.g.,
the status led of a smartphone)

vibration [true, false] -
os - -

isAvailable [true, false] it is set to true if the device is
turned on and connected

display currentStatus: [on, locked,
off]

-

speaker currentVolume, currentStatus:
[playing, off]

-

light currentStatus: [on, off, blink-
ing], currentIntensity, current-
Color

-

vibration currentStatus -
Table 3.4 Device properties (above) and statuses (below)

• xdn.device.select: selects the devices that satisfy the specified criteria (e.g., the
code ①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡❂❂✧s♠❛rt✇❛t❝❤✧✬✮ returns a list
of all the smartwatches, that are all the devices with the “deviceType” property
set to “smartwatch”);

• xdn.device.selectWith: selects the devices that has the specified property (the
property is set as input parameter);

• xdn.device.selectAll: selects all the devices registered to the system;

3.4 Framework 117

Enabling property Action

display .show
speaker .play, .ring
light .on, .off, .changeColor, .changeIntensity, .blink
vibration .vibrate

Table 3.5 Device actions

• xdn.device.getDeviceByName: selects a single device, the one with the speci-
fied name (deviceName property set to the specified name)

• xdn.device.not: selects the all the devices that do not satisfy the specified
criteria. This method is used to exclude one or more devices, e.g., if Ashley
wants to exclude all the smartwatches: ①❞♥✳❞❡✈✐❝❡✳♥♦t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂

✧s♠❛rt✇❛t❝❤✧✬✮.

These methods can be concatenated with a “fluent” programming pattern, so
that only the Device objects satisfying all the specified criteria are selected. Thus, if
Ashley wants to select all the available smartphones, she can use the following code:

①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧ s♠❛rt♣❤♦♥❡✧✬✮✳s❡❧❡❝t✭✬

✐s❆✈❛✐❧❛❜❧❡ ❂❂tr✉❡✬✮

Table 3.5 summarizes all the actions that it is possible to perform on each selected
device. It is important to note that the available methods can be used only if the
corresponding property (reported in the column “Enabling property”) is defined for
the specific device. For example, it is possible to turn the light on with the action .on
only if a light property is specified for the device. Otherwise, a warning message is
shown in the log section.

Finally, Listing 3.1 shows the final complete algorithm written by Ashley to
implement the designed behavior of her “Messaging Application” system.

①❞♥✳♥♦t✐❢✐❝❛t✐♦♥✳♦♥◆♦t✐❢✐❝❛t✐♦♥✭❢✉♥❝t✐♦♥✭♠②◆♦t✐❢✐❝❛t✐♦♥✮ ④

✈❛r ❝♦♥t❡♥t ❂ ♠②◆♦t✐❢✐❝❛t✐♦♥✳❝♦♥t❡♥t❀

✈❛r ❣❡♥❡r❛t♦r ❂ ♠②◆♦t✐❢✐❝❛t✐♦♥✳❣❡♥❡r❛t♦r❀

✈❛r s❡❧❡❝t❡❞❙♠❛rt❚❱P❧❛②✐♥❣ ❂ ①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧

s♠❛rt❚✈✧✬✮✳s❡❧❡❝t✭✬✐s❆✈❛✐❧❛❜❧❡ ❂❂tr✉❡✬✮✳s❡❧❡❝t❲✐t❤✭✬s♣❡❛❦❡r

✬✮✳s❡❧❡❝t✭✬s♣❡❛❦❡r✳❝✉rr❡♥t❙t❛t✉s ❂❂✧ ♣❧❛②✐♥❣✧✬✮❀

✈❛r s❡❧❡❝t❡❞❍✐❋✐P❧❛②✐♥❣ ❂ ①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧❤✐✲

❢✐✧✬✮✳s❡❧❡❝t✭✬✐s❆✈❛✐❧❛❜❧❡ ❂❂tr✉❡✬✮✳s❡❧❡❝t❲✐t❤✭✬s♣❡❛❦❡r ✬✮✳

s❡❧❡❝t✭✬s♣❡❛❦❡r✳❝✉rr❡♥t❙t❛t✉s ❂❂✧ ♣❧❛②✐♥❣✧✬✮❀

118 The XDN (Cross-device Notification) Framework

✈❛r s❡❧❡❝t❡❞❈❛r❍✐❋✐P❧❛②✐♥❣ ❂ ①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧

❝❛r❍✐ ✲❢✐✧✬✮✳s❡❧❡❝t✭✬✐s❆✈❛✐❧❛❜❧❡ ❂❂tr✉❡✬✮✳s❡❧❡❝t❲✐t❤✭✬

s♣❡❛❦❡r ✬✮✳s❡❧❡❝t✭✬s♣❡❛❦❡r✳❝✉rr❡♥t❙t❛t✉s ❂❂✧ ♣❧❛②✐♥❣✧✬✮❀

✐❢ ✭❣❡♥❡r❛t♦r✳t♦▲♦✇❡r❈❛s❡ ✭✮✳✐♥❝❧✉❞❡s✭✬❅✐♠♣♦rt❛♥t ✬✮ ✫✫

❣❡♥❡r❛t♦r✳t♦▲♦✇❡r❈❛s❡ ✭✮✳✐♥❝❧✉❞❡s✭✬❅♣❡rs♦♥❛❧ ✬✮✮ ④

✈❛r s❡❧❡❝t❡❞❙♠❛rt❚❱ ❂ ①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧

s♠❛rt❚✈✧✬✮✳s❡❧❡❝t✭✬✐s❆✈❛✐❧❛❜❧❡ ❂❂tr✉❡✬✮❀

✈❛r s❡❧❡❝t❡❞❍✐❋✐ ❂ ①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧❤✐ ✲❢✐✧✬✮

✳s❡❧❡❝t✭✬✐s❆✈❛✐❧❛❜❧❡ ❂❂tr✉❡✬✮❀

✈❛r s❡❧❡❝t❡❞❈❛r❍✐❋✐ ❂ ①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧❝❛r❍✐

✲❢✐✧✬✮✳s❡❧❡❝t✭✬✐s❆✈❛✐❧❛❜❧❡ ❂❂tr✉❡✬✮❀

✈❛r s❡❧❡❝t❡❞P❈ ❂ ①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧P❈✧✬✮✳

s❡❧❡❝t✭✬✐s❆✈❛✐❧❛❜❧❡ ❂❂tr✉❡✬✮❀

①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧ s♠❛rt♣❤♦♥❡✧✬✮✳s❤♦✇✭

❝♦♥t❡♥t✮✳✈✐❜r❛t❡ ✭✮❀

①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧❝❛r❍✐ ✲❢✐✧✬✮✳♣❧❛②✭❝♦♥t❡♥t ✱

✬✺✵✬✮❀

✐❢ ✭s❡❧❡❝t❡❞❙♠❛rt❚❱✳❧❡♥❣t❤ ✭✮ ❁ ✶ ✫✫ s❡❧❡❝t❡❞❍✐❋✐✳❧❡♥❣t❤ ✭✮ ❁

✶ ✫✫ s❡❧❡❝t❡❞❈❛r❍✐❋✐✳❧❡♥❣t❤ ✭✮ ❁ ✶ ✫✫ s❡❧❡❝t❡❞P❈✳❧❡♥❣t❤

✭✮ ❃❂ ✶✮ ④

s❡❧❡❝t❡❞P❈✳s❤♦✇✭❝♦♥t❡♥t✮❀

✈❛r s❡❧❡❝t❡❞❚❛❜❧❡t ❂ ①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧

t❛❜❧❡t✧✬✮✳s❡❧❡❝t✭✬✐s❆✈❛✐❧❛❜❧❡ ❂❂tr✉❡✬✮❀

s❡❧❡❝t❡❞❚❛❜❧❡t✳s❤♦✇✭❝♦♥t❡♥t✮❀

⑥

⑥

❡❧s❡ ✐❢ ✭s❡❧❡❝t❡❞❙♠❛rt❚❱P❧❛②✐♥❣✳❧❡♥❣t❤ ✭✮ ❃❂ ✶ ⑤⑤

s❡❧❡❝t❡❞❍✐❋✐P❧❛②✐♥❣✳❧❡♥❣t❤ ✭✮ ❃❂ ✶ ✮ ④

s❡❧❡❝t❡❞❙♠❛rt❚❱P❧❛②✐♥❣✳s❤♦✇✭❝♦♥t❡♥t✮❀

①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧ s♠❛rt♣❤♦♥❡✧✬✮✳s❤♦✇✭❝♦♥t❡♥t✮

❀

①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t❆❧❧ ✭✮✳s❡❧❡❝t❲✐t❤✭✬✈✐❜r❛t✐♦♥ ✬✮✳✈✐❜r❛t❡ ✭✮❀

⑥

❡❧s❡ ✐❢ ✭s❡❧❡❝t❡❞❈❛r❍✐❋✐P❧❛②✐♥❣✳❧❡♥❣t❤ ✭✮ ❃❂ ✶✮ ④

✐❢ ✭❣❡♥❡r❛t♦r✳t♦▲♦✇❡r❈❛s❡ ✭✮✳✐♥❝❧✉❞❡s✭✬❅✉♥✐♠♣♦rt❛♥t ✬✮✮ ④

①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧ s♠❛rt♣❤♦♥❡✧✬✮✳s❤♦✇✭

❝♦♥t❡♥t✮❀

⑥

❡❧s❡

④

①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧ s♠❛rt♣❤♦♥❡✧✬✮✳s❤♦✇✭

❝♦♥t❡♥t✮✳✈✐❜r❛t❡ ✭✮❀

3.4 Framework 119

①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧❝❛r❍✐ ✲❢✐✧✬✮✳♣❧❛②✭❝♦♥t❡♥t ✱

✬✺✵✬✮❀

⑥

⑥

❡❧s❡

④

①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧ s♠❛rt♣❤♦♥❡✧✬✮✳s❤♦✇✭

❝♦♥t❡♥t✮✳✈✐❜r❛t❡ ✭✮✳❜❧✐♥❦ ✭✶✴✻✵✮❀

⑥

⑥✮❀

Listing 3.1 Messaging Application system script

3.4.3 XDN runtime environment

The XDN runtime environment is a service that is run on a server. Developers
can configure its behavior through the notification strategies’ scripts, so that every
arriving notification will be treated respecting the defining strategies. The XDN
runtime environment interacts with the XDN library to:

• accept registration requests from a device. Every time a new device should be
registered to the system, it has to contact the runtime environment providing
information about its properties and statuses (Table 3.4);

• accept update requests arriving from registered devices to inform the system
about the changes in their statuses;

• accept new notifications generated by the registered devices. The notification
will be accepted in the JSON format, with the fields listed in Table 3.3;

• customize and dispatch the notifications according to the notification strategy
defined by the developer.

3.4.4 XDN IoT/mobile library

The XDN IoT/mobile library is the module that developers should integrate in their
applications and services for IoT/mobile device to:

• generate notifications as presented in the previous sub-section;

120 The XDN (Cross-device Notification) Framework

• send the generated notifications to the XDN runtime environment;

• receive commands from the XDN runtime environment, in JSON format
containing the properties of Table 3.5;

• execute the received commands.

Considering that this module should be integrated in almost every existing
IoT/mobile application, it is supposed to be developed in different programming
languages and for different platforms.

3.5 Implementation

To demonstrate the feasibility of the proposed XDN framework and the fulfillment
of all the requirements (Section 3.3), a prototypical version of the XDN framework
was implemented. The implemented XDN prototype, currently, integrates the XDN
GUI and the XDN library, only.

3.5.1 Implementation details

The implemented prototype consists of a backend server and a frontend user interface.
The backend server is a web application based on Node.js and jQuery17 and was
packaged by NW.js18 to become a native application. It serves different purposes: a)
it maintains and exposes the XDN library with its methods and classes, b) it hosts
the predefined simulated notification sets and the predefined simulated device sets, c)
it provides the methods needed to load and/or store developer-defined scripts, device
sets and notifications, and d) it provides the methods used by the GUI to simulate
the arrival of a notification.

A developer interacts with the frontend application which implements the XDN
GUI. The GUI is composed of an editor, and a simulator which includes a log and two
modules for loading the device sets and the notifications. The frontend application
was built upon ace19, an embeddable code editor. When a developer edits the script

17https://jquery.com/, last visited on January 15, 2017
18https://nwjs.io/, last visited on January 15, 2017
19https://ace.c9.io/, last visited on January 15, 2017

https://jquery.com/
https://nwjs.io/
https://ace.c9.io/

3.6 Evaluation 121

algorithm, after pressing the “Run code” button, the frontend app automatically
stores the last version of the code and then interprets the developer’s code executing
the specified operations. In the current prototypical implementation, the simulated
runtime environment adopts JavaScript eval() function to interpret developer’s code.

Finally, the xdn class was implemented as a JavaScript object literal providing
the notification, device and log objects.

3.6 Evaluation

XDN has been evaluated with a small group of volunteers to demonstrate the fulfill-
ment of all the requirements (Section 3.3) and collect a feedback about both the XDN
framework APIs and the XDN GUI. Twelve participants used XDN for one hour,
performing two tasks each. The first task regarded the alteration of a notification
strategy already implemented by the author of this work implementing a simple
scenario reported in the following Scenario 1: Smart Fridge subsection. While
the second task regarded the design and development of the notification strategy
implementing the simple scenario reported in the following Scenario 2: messaging
application subsection.

The feedback received by participants allowed qualitative analysis and helped
the authors in identifying strong and weak points of the framework.

3.6.1 Tests’ goal

The main objective of this test session is to demonstrate that the XDN framework
is actually useful for developers in developing new applications able to generate
notifications. Specifically, the tests aimed at answering the following research
questions:

• Demonstrate the perceived usefulness of XDN:

– Do developers find XDN useful in developing algorithms that implement
the proposed use cases?

– Would developers use XDN in developing algorithms that can customize
and/or manage notifications?

122 The XDN (Cross-device Notification) Framework

– Would developers use XDN in developing the applications/services they
usually develop?

• Demonstrate that the XDN APIs are easy to use from developers:

– Is it easy to use the methods, classes and objects provided by XDN to
implement the proposed use cases?

• Verify that the XDN GUI is easily interpretable and usable:

– Is it easy to understand how to use the various components available in
the XDN GUI to implement the proposed use cases?

– Is it easy to implement the proposed use cases? Is it possible to implement
them in the required time?

– Are the status log and the simulation useful for identifying problems/er-
rors/incompatibilities? And to correct them?

3.6.2 Scenarios for tests

As already discussed, during the tests, participants were asked to perform two
different tasks. The first one regarded the alteration of a notification strategy already
implemented by the author of this work and implementing the following Scenario
1: Smart Fridge simple scenario. While the second task regarded the design and
development of the notification strategy implementing the following Scenario 2:
messaging application simple scenario.

The following subsections report all the details of the designed Scenarios.

3.6.2.1 Scenario 1: Smart Fridge

This scenario presents the details of the notification strategy that the involved partici-
pants were asked to modify in the first task.

Katie is implementing a smart fridge that can send a notification every time the
expiration date of a contained product is reached. Consequently, the system should
be able to warn the user in two situations:

• when 3 days are left to the expiration date;

3.6 Evaluation 123

• when 1 day is left to the expiration date.

In the first circumstance, the notification should be shown on the screen of all the
fridge that has a display; while in the second case, the notification should be shown
on all the available smartphones. In addition, in both cases, if no fridge has a display,
the screens of all the available smartphones will be used instead.

3.6.2.2 Scenario 2: messaging application

While the first scenario was designed as simple as possible to allow developers
understand how the XDN framework works and what it can offer, this second
scenario was designed as representative of a real application that developers could
develop.

Ashley is a software developer who is working on a messaging application. The
application should be able to generate notifications that disturb the user in different
ways depending on its current position and its current activity. Ashley identified the
following notification strategies. In the following list the adjective "available" will
be used to indicate a device that is switched on and connected to the internet.

• If an important message 20 is received and the user is working 21, then the
message should be notified with the following actions:

– the notification content should be shown on all available PCs and tablets;

– the vibration should be activated on all devices available and equipped
with a vibrator.

• In all other cases:

– the notification content should be shown only on the screen of all avail-
able smartphones;

– the vibration should be activated on all available smartphones;

– the led of all smartphones should be made blink with a blue light.
20Important notifications can be identified by the presence of the “@important” strings immediately

after the application name in the “generator” field of the notification
21The user is supposed to be working if the following conditions are met: a) none of the following

devices is available: smart TV and/or Hi-Fi and/or car Hi-Fi; b) at least one PC is available

124 The XDN (Cross-device Notification) Framework

3.6.3 Test Deployment

A total of 12 volunteers were asked to participate in this evaluation, with ages ranging
from 24 to 34 years, 11 males and 1 female. All the participants were selected among
the master’s and Ph.D. students of the “Politecnico di Torino” studing “Control and
Computer Engineering”. As a first evaluation of the framework aiming at validating
the approach and evaluate the effectiveness of the proposed solution, only people that
had already experience in developing using the JavaScript programming language
were selected: 5 people over 12 declared that they had among 5 months and 1
year of experience in developing JavaScript applications; 2 people over 12 declared
that they had already developed JavaScript application for 2 years; and the other 5
people developed JavaScript application since more than 3 years. This requirement
assures that the evaluation is not affected by problems in learning the JavaScript
programming language or the concepts on which it is based.

In addition, we asked participants a self evaluation, over a scale that goes from
1 to 5, about their experience with JavaScript. The average value obtained from
answers is 3. Specifically, 3 people declared that at least 2 years had passed since
their last experience in programming using JavaScript.

Furthermore, we asked participants if they had already developed any application
or service able to generate notifications and 10 of the 12 involved people declared
that they had.

Finally, we asked if they had never used a JavaScript framework and only 4
people declared that they had: 3 of them had already used AngularJS22, while only
one Node.js.

For each participant, after a short introduction to the test and the collection of
demographic data, the XDN framework was presented through the documentation
reported in Section 3.4. Then, the first task was presented.

Participants never met during the evaluation: every volunteer independently
participated to the test.

22https://angularjs.org/, last visited on January 15, 2017

https://angularjs.org/

3.6 Evaluation 125

3.6.3.1 Task 1

With the aim of introducing the framework and presenting an example of the typical
usage of XDN, the first scenario was introduced to volunteers and, consequently,
the first task was presented. It required to modify the notification strategy already
developed by the author of this work for the Scenario 1. It is reported in Listing 3.2.
The modification should have been done in less than 5 minutes aiming at:

• substituting the fridges’ display with the screens of all the available TVs;

• substituting the smartphones with the tablets.

①❞♥✳♥♦t✐❢✐❝❛t✐♦♥✳♦♥◆♦t✐❢✐❝❛t✐♦♥✭❢✉♥❝t✐♦♥✭♠②◆♦t✐❢✐❝❛t✐♦♥✮ ④

✈❛r ❝♦♥t❡♥t ❂ ♠②◆♦t✐❢✐❝❛t✐♦♥✳❝♦♥t❡♥t❀

✈❛r ❣❡♥❡r❛t♦r ❂ ♠②◆♦t✐❢✐❝❛t✐♦♥✳❣❡♥❡r❛t♦r❀

✐❢ ✭❣❡♥❡r❛t♦r✳t♦▲♦✇❡r❈❛s❡ ✭✮✳✐♥❝❧✉❞❡s✭✬❅✸❞❛②s❧❡❢t ✬✮✮ ④

✈❛r ❢r✐❞❣❡s ❂ ①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧ ❢r✐❞❣❡✧✬✮

✳s❡❧❡❝t✭✬✐s❆✈❛✐❧❛❜❧❡ ❂❂tr✉❡✬✮✳s❡❧❡❝t❲✐t❤✭✬❞✐s♣❧❛② ✬✮❀

✐❢ ✭❢r✐❞❣❡s✳❧❡♥❣t❤ ✭✮ ❃❂ ✶✮

④

❢r✐❞❣❡s✳s❤♦✇✭❝♦♥t❡♥t✮❀

⑥

❡❧s❡

④

✈❛r s♠❛rt♣❤♦♥❡s ❂ ①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧

s♠❛rt♣❤♦♥❡✧✬✮✳s❡❧❡❝t✭✬✐s❆✈❛✐❧❛❜❧❡ ❂❂tr✉❡✬✮✳

s❡❧❡❝t❲✐t❤✭✬❞✐s♣❧❛② ✬✮❀

s♠❛rt♣❤♦♥❡s✳s❤♦✇✭❝♦♥t❡♥t✮❀

⑥

⑥

❡❧s❡

④

✐❢ ✭❣❡♥❡r❛t♦r✳t♦▲♦✇❡r❈❛s❡ ✭✮✳✐♥❝❧✉❞❡s✭✬✶❞❛②s❧❡❢t ✬✮✮

④

✈❛r ❢r✐❞❣❡s ❂ ①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧

❢r✐❞❣❡✧✬✮✳s❡❧❡❝t✭✬✐s❆✈❛✐❧❛❜❧❡ ❂❂tr✉❡✬✮✳s❡❧❡❝t❲✐t❤

✭✬❞✐s♣❧❛② ✬✮❀

❢r✐❞❣❡s✳s❤♦✇✭❝♦♥t❡♥t✮❀

✈❛r s♠❛rt♣❤♦♥❡❙ ❂ ①❞♥✳❞❡✈✐❝❡✳s❡❧❡❝t✭✬❞❡✈✐❝❡❚②♣❡ ❂❂✧

s♠❛rt♣❤♦♥❡✧✬✮✳s❡❧❡❝t✭✬✐s❆✈❛✐❧❛❜❧❡ ❂❂tr✉❡✬✮✳

s❡❧❡❝t❲✐t❤✭✬❞✐s♣❧❛② ✬✮❀

s♠❛rt♣❤♦♥❡❙✳s❤♦✇✭❝♦♥t❡♥t✮❀

126 The XDN (Cross-device Notification) Framework

⑥

❡❧s❡

④

❧♦❣✭✧❞♦✥♥♦t❤✐♥❣✧✮❀

⑥

⑥

⑥✮❀

Listing 3.2 Smart Fridge

3.6.3.2 Task 2

After presenting the second scenario, then, the second task was also presented to
participants. It required to develop the notification strategy that would satisfy the
requirements of the second Scenario by starting from an empty editor. However, the
code developed during task 1 was provided in a printed version to all participants
and a copy of the documentation discussed in Section 3.4 was also provided.

Each participant had at maximum 25 minutes to perform the task and no sugges-
tions were allowed from the organizers.

3.6.4 Results

The results of the experiments revealed that 7 participants over 12 were able to
complete all the tasks in the required time: all of them had already developed
JavaScript applications for more than 2 years. However, 2 of the remaining people
were facing only one last problem in coding when the time finished: one of them
was having trouble in understanding that the “blink” command also turned the
light on, while the other did not notice that the tablets were selected instead of the
smartphones.

Finally, at the end of the experiments, participants were asked to answer to
11 questions to understand what was the general satisfaction in using the XDN
framework and an open discussion was also promoted to collect extra feedback.

Table 3.6 summarizes the survey that was proposed to each participant with
the corresponding average results. As can be observed in the reported table and
as also declared by the participants in the open discussion, all the participants

3.6 Evaluation 127

Question
Average result (1-5)

Was it easy to develop the proposed strategies 3.75

How useful the EDITOR was to identify errors? 3.25

How useful the EDITOR was to fix errors? 3.25

How useful the LOG was to identify errors? 4.25

How useful the LOG was to fix errors? 4.00

How useful the whole XDN framework was to develop the
2nd scenario?

4.16

How understandable the XDN API was? 4.08

How complete the XDN API was? 4.00

How useful the EDITOR was? 3.64

How useful the API was? 4.42

How useful the Simulator was? 4.67

How useful the DEBUG function (that was not present)
would be?

3.92

Will you use the XDN framework for implementing a
notification strategy in the future?

4.25

Will you use the XDN framework in your usual
development?

2.00

Table 3.6 XDN: final survey proposed to users

128 The XDN (Cross-device Notification) Framework

expressed a positive impression in the usage of the XDN framework and in its
usefulness. Almost all participants declared that the documentation is clear and the
API actually simplifies the selection of devices and their properties. In addition, they
appreciated the simulator that allowed to see the behavior of the devices when a new
notification arrived and the way by which XDN allows to distribute notifications
among heterogeneous devices. However, some issues were also identified and
some suggestions were consequently provided. The following list presented all the
suggestions/issues provided by the volunteers.

• It would be useful to directly access devices’ property (e.g., “device.light.status”).

• The “select” instruction could be improved by setting a default behavior that
always selects available devices; in fact, the most common usage of the select
is to select available devices, thus it would be better to select all the available
devices by default and specify other options in other cases.

• It would be necessary to improve the selection options: it would be nice to
specify a list of conditions within a single select instead of only one.

• The quotes used to specify conditions are, sometimes, annoying and introduce
errors.

• Simulated devices should be organized in a better way: if a lot of devices will
be involved, it will be difficult to see the behavior of all of them.

• The DEBUG function is sometimes necessary to identify errors.

• The LOG would allow different level of logging (e.g., WARNING, ERROR,
etc.).

• The EDITOR had some problems with suggestions: it is not possible to obtain
suggestions when a variable is used to contain all the selected devices.

• The select working with variables (e.g., select(“isAvailable == true”) should
also work without “== true”).

• It would be nice to integrate such framework in existing IDE.

3.7 Discussion 129

3.7 Discussion

This section presents a preliminary analysis of the actual contribution brought by the
XDN framework in supporting developers in designing algorithms able to customize
and distribute cross-device notifications.

Starting from the observation, supported by related works, about the lack of
support for the customization of notifications and the development of cross-device
notification strategies, the emphasis of the analysis has been put on the actual
advantages and challenges that the XDN framework could provide to developers.
This analysis was conducted through the test session discussed in the previous
Section.

3.7.1 Successes

In Section 3.3, seven different requirements were presented.

The first one regarded the need of APIs to support developers in: a) selecting
available mobile/IoT devices based on their specific properties and status, b) per-
forming specific actions on selected devices (e.g., turn on a LED or make it blink),
and c) manage notification properties (e.g., arrival time, notification content). We
can claim that the methods and classes provided by the XDN library in conjunction
with the services provided by the XDN runtime environment satisfy R1.

In addition, R2 regarded the need of a graphical interface. The designed GUI
is able to satisfy all the low-level described requirements: helping developers in
implementing the notifications strategies’ scripts, b) visualizing the current status of
available devices, c) visualizing/simulating the behavior of the designed algorithm-
s/strategies.

Furthermore, the presence of an editor, a log, a module to load devices’ portfolios
and statuses, a module to load notifications and the possibility of running the simula-
tion satisfy R3 and R4 requirements regarding the necessity of a device simulator
that is also able to simulate more than one devices at the same time.

The use of JavaScript, one of the most commonly used programming language,
satisfies R7 and makes XDN compatible with Chord. Moreover, the use of Javascript
merged with the presence of the XDN runtime environment and the presence of the

130 The XDN (Cross-device Notification) Framework

XDN IoT/mobile library also satisfies R5 that regarded the possibility of distributing
notification strategies among multiple platforms. The spread of such programming
language, in fact, guarantees an high compatibility with most of existing mobile
and IoT systems and motivate developers in using the XDN framework for their
applications.

Finally, R6, that regarded the support for IoT devices, is satisfied by the two
modules that allow to load and manage IoT devices and their properties.

3.7.2 Challenges

Thanks to the volunteers’ feedbacks reported in Section 3.6.4, some challenges were
identified while using this preliminary implementation of the XDN framework for
developing the notification strategies described in the scenarios.

The first challenge regards the XDN GUI and specifically, the editor. Even
though, in this initial implementation, the editor recognizes JavaScript syntax errors,
it is not yet possible to recognize errors in using the XDN API. For example, if the
developer writes “DeviceType” instead of “deviceType” the editor does not recognize
it as an error. Although the log helps developers identifying such errors, such a
feature would be really appreciated by developers.

In addition, another issue regards the XDN APIs: a lot of suggestions reported
by testers regarded the way used to select devices. These suggestions reveals that the
way proposed by Chord and, then, reproduced in XDN to select devices has some
unresolved problems mainly related to the usage of strings to select properties. This
behavior has some limitations mainly related to the impossibility of using variables
and/or complex conditions defined by developers. Consequently, a better solution
should be proposed to address this issues.

Furthermore, another challenge regards the interaction with the available de-
vices. With the current version of the XDN framework it is possible to customize
notification strategies and graphically simulate the behavior of the devices when a
new notification arrives. However, the current implementation does not treat the
possibility of performing specific actions due to the reaction of users to notifications.
So, for example, it is not possible to capture the user disruption to notifications
and, in consequence, implement some extra code to perform new actions after a

3.8 Conclusions 131

predefined time from the one at which, for instance, the user swiped a notification
away.

In addition, the absence of a DEBUG was recognized by almost every participant
as an important issue to be solved in the next developments.

Finally, the last challenge regards the absence of the XDN runtime environment
in the developed prototype: even if the simulator helped the test volunteers in testing
their notification strategies, the lack of the XDN runtime environment did not allow
them to test their strategies in the wild with real devices.

3.8 Conclusions

This chapter proposed a framework for developers to create and distribute cross-
device notifications by scripting. The XDN architecture includes a) an XDN library
to assist developers in designing personalized notifications to be distributed among
ad-hoc networks of mobile and IoT devices, b) an XDN GUI to assist developers
in implementing notification strategies and testing them by simulating the arrival
of notifications, c) an XDN runtime environment for receiving notifications from
IoT/mobile devices, executing the deployed notification strategies, and sending
commands to be executed on the devices, and d) an XDN IoT/mobile library to both
generate notifications compatible with XDN and execute the commands received by
the XDN runtime environment.

Using one simple scenario as a running example, the major components of the
framework were presented and explained. To demonstrate the feasibility of the
framework and the fulfillment of all the presented requirements, a prototypical
version of the XDN framework was implemented. Then, 12 volunteers were asked
to implement the notification strategies able to implement two different realistic
scenarios: results demonstrate that XDN framework is a promising technology.

In addition, assessment revealed some challenges that will be addressed in future
works. As a future work, the prototype will be enhanced by adding other functions
that developers suggested during the performed test sessions.

132 The XDN (Cross-device Notification) Framework

Fig. 3.3 Screenshot of the XDN GUI

3.8 Conclusions 133

Fig. 3.4 Class diagram that shows the structure of the xdn.notification Object

Fig. 3.5 Class diagram that shows the structure of the xdn.device Object

Chapter 4

Conclusions and Future
Developments

The research goal of this dissertation regarded the investigation of the intelligence
component in Internet of Things (IoT) architectures and applications. The research
activity aimed at the study, definition, and prototyping of intelligent distributed
architectures, and their main software components that may extract additional value
and intelligent behaviors for end users.

Specifically, the distribution and customization of notifications in the IoT domain
has been treated as an example of possible future IoT scenarios.

4.1 Summary of contributions

The research has been focused on developing two different architectures that deal
with notifications through two different approaches:

• the first one acts at the distribution level, i.e., notifications are intercepted and
then the system decides if, when, and how to show them;

• the second one acts at the design level, i.e., developers design notifications and
their distribution strategies with the aim of reducing user disruption and fully
exploit the advantages brought by the possibility of distributing them among
different devices.

4.1 Summary of contributions 135

An IoT modular architecture is proposed for each approach and each architecture
was designed as a group of collaborative modules: the user-centered design method-
ology was adopted in the design and the prototyping of the most important group of
their modules and it allowed the simultaneous design and development of the most
important modules of each architecture.

The first architecture regards the Smart Notification System that aims at reduc-
ing the disruption caused by notifications to end-user through a modular architecture
that uses machine learning algorithms to adequately manage incoming notifications.
According to context awareness and user habits, the system decides: a) who should
receive an incoming notification; b) what is the best moment to show the notifica-
tion to the chosen user(s); c) on which device(s) the chosen user(s) should receive
the notification; d) which is the best way to notify the incoming notification (e.g.,
vibration, light, sound).

Aiming at fostering the simultaneous independent design and implementation
of each part of the architecture and, at the same time, generating initial results and
feedbacks, the modular nature of the Smart Notification System architecture inspired
the design and the prototyping of three main groups of contributions: the Decision
Maker contribution, the Collectors group of contributions, and the Context Analysis
group of contributions.

On the other hand, the XDN (Cross-Device Notification) framework aimed at
assisting developers in creating cross-device notifications by scripting. Inspired by
the Chord framework [62]1, and with the aim of contributing to its future development
(if the project will be revived), XDN was designed to assist developers in a) designing
personalized notifications, and b) designing, implementing and testing notification
strategies able to distribute notifications among mobile and IoT devices using a
cross-device approach.

The framework architecture is composed of four main parts: the XDN library,
the XDN runtime environment, the XDN GUI, and the XDN IoT/mobile library.

Finally, some tests and preliminary deployment sessions were organized for
both the proposed architectures with the aim of a) collecting data for future experi-
ments, b) verify the feasibility of the system, c) receive users’ feedback about the

1https://github.com/google/chord, last visited on July 10, 2017, last updated on December
5, 2015

https://github.com/google/chord

136 Conclusions and Future Developments

designed system, and, finally, d) foster the development of future solutions in the
IoT notifications’ field and related domains.

4.2 Results

The solutions that were presented in the previous chapters and the experiments
and tests performed to validate each approach facilitated the identification of two
different kind of results.

The first one regards the direct outcome of the presented experiments: they
demonstrated the actual feasibility of the proposed approaches and the efficacy of the
proposed solutions to enhance both user experience with notifications and developers
that want to design, develop and test their own notification strategies. As expected, in
fact, the results obtained from the tests of the first approach acting at the distribution
level demonstrates the adequacy of the application of machine learning techniques to
the notification domain. While the feedbacks obtained from the volunteers involved
in the test sessions performed to validate the approach acting at the design level,
prove the needs of a tool for developers of notification strategies, and, in addition,
highlight the usefulness of the designed system.

Moreover, the second kind of results regards the lesson learned from the per-
formed activities. As already discussed, notifications are overwhelming people lives
and they are introducing both advantages and disadvantages. In fact, although, on one
hand some activities and tasks have been facilitated and improved, on the other hand
some other situations have been complicated by the combination of notifications’
and IoT domains (e.g., notifications cause disruption in workers’ activity). As a
contribution to this scenario, this dissertation proposed two different approaches to
transform the disadvantage of receiving the same notification on different devices,
with different modalities, and in different moments, into a challenge that could be
also transformed into a future opportunity. From our point of view, it is exactly what
people expect from research: the proposal of innovative solutions that can allow
community to transform the disadvantages get from the introduction of innovative
techniques into challenges and, finally, in advantages.

In addition, the good results, in terms of incremental feedbacks obtained by
the adoption of the user-centered design methodology, confirm the efficacy of the

4.3 Future works 137

application of such technique in projects that require, and allow, the simultaneous
design and development of independent but cooperative modules.

4.3 Future works

As discussed in the previous chapters, the two approaches proposed within this
dissertation to deal with notifications and their related disruptions, have been evalu-
ated through validating experiments and specific user test sessions. The results and
feedbacks obtained through such validation revealed some weaknesses and open
challenges with respect to both approaches. Thus, for all the two cited approaches,
more exploration is possible and desirable.

At first, all the prototypes developed within the Smart Notification System
architecture could be enhanced to collect more accurate information. In addition,
the performed tests could be repeated by involving more people. Furthermore,
performed machine learning experiments could be repeated by introducing new
algorithms and/or considering the possibility of using different algorithms after other
ones could be evaluated.

Moreover, the XDN framework could be enhanced with the implementation of
the XDN runtime environment and considering the suggestions provided by users,
like the addition of a debug inside the GUI.

Finally, the two approaches could foster the design and the development of a
complete architecture that merges the contribution of the two approaches in a “macro”
system. It could, for example, a) allow developers to personalize notifications and
design specific notification strategies, b) foster the application of machine learning
techniques to smartly manage incoming notification, and c) let developers and/or
end-users decide whether apply the notification strategies (designed by developers)
before or after the machine learning approach intervention.

References

[1] M. Böhmer, C. Lander, S. Gehring, D. P. Brumby, and A. Krüger. Interrupted by
a Phone Call: Exploring Designs for Lowering the Impact of Call Notifications
for Smartphone Users. In Proceedings of the 32Nd Annual ACM Conference
on Human Factors in Computing Systems, CHI ’14, pages 3045–3054, New
York, NY, USA, 2014. ACM.

[2] B. Poppinga, W. Heuten, and S. Boll. Sensor-Based Identification of Opportune
Moments for Triggering Notifications. Pervasive Computing, IEEE, 13(1):22–
29, Jan 2014.

[3] A. Kamilaris and A. Pitsillides. Mobile Phone Computing and the Internet of
Things: A Survey. IEEE Internet of Things Journal, 3(6):885–898, Dec 2016.

[4] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Computer
Networks, 54(15):2787 – 2805, 2010.

[5] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. Inter-
net of Things: A Survey on Enabling Technologies, Protocols, and Applications.
IEEE Communications Surveys Tutorials, 17(4):2347–2376, Fourthquarter
2015.

[6] H. U. Rehman, M. Asif, and M. Ahmad. Future applications and research
challenges of IoT. In 2017 International Conference on Information and
Communication Technologies (ICICT), pages 68–74, Dec 2017.

[7] F. Corno, L. De Russis, T. Montanaro, and P. Castrogiovanni. IoT Meets
Exhibition Areas: A Modular Architecture to Improve Proximity Interactions.
In 2015 3rd International Conference on Future Internet of Things and Cloud,
pages 293–300, Aug 2015.

[8] D. Weber, A. S. Shirazi, and N. Henze. Towards Smart Notifications Using
Research in the Large. In Proceedings of the 17th International Conference
on Human-Computer Interaction with Mobile Devices and Services Adjunct,
MobileHCI ’15, pages 1117–1122, New York, NY, USA, 2015. ACM.

[9] A. Mehrotra, M. Musolesi, R. Hendley, and V. Pejovic. Designing Content-
driven Intelligent Notification Mechanisms for Mobile Applications. In Pro-
ceedings of the 2015 ACM International Joint Conference on Pervasive and

References 139

Ubiquitous Computing, UbiComp ’15, pages 813–824, New York, NY, USA,
2015. ACM.

[10] B. P. Bailey and J. A. Konstan. On the need for attention-aware systems:
Measuring effects of interruption on task performance, error rate, and affective
state. Computers in Human Behavior, 22(4):685 – 708, 2006. Attention aware
systemsSpecial issue: Attention aware systems.

[11] K. Kushlev, J. Proulx, and E. W. Dunn. "Silence Your Phones": Smartphone
Notifications Increase Inattention and Hyperactivity Symptoms. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems, CHI
’16, pages 1011–1020, New York, NY, USA, 2016. ACM.

[12] S. T. Iqbal and E. Horvitz. Notifications and Awareness: A Field Study of
Alert Usage and Preferences. In Proceedings of the 2010 ACM Conference on
Computer Supported Cooperative Work, CSCW ’10, pages 27–30, New York,
NY, USA, 2010. ACM.

[13] P. D. Adamczyk and B. P. Bailey. If Not Now, when?: The Effects of Inter-
ruption at Different Moments Within Task Execution. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’04, pages
271–278. ACM, 2004.

[14] F. Corno, L. De Russis, and T. Montanaro. A context and user aware smart
notification system. In 2015 IEEE 2nd World Forum on Internet of Things
(WF-IoT), pages 645–651, Dec 2015.

[15] F. Corno, L. De Russis, and T. Montanaro. XDN: Cross-device Framework
for Custom Notifications Management. In Proceedings of the ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, EICS ’17, pages
57–62, New York, NY, USA, 2017. ACM.

[16] F. Corno, L. De Russis, and T. Montanaro. Estimate user meaningful places
through low-energy mobile sensing. In 2016 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pages 003039–003044, Oct 2016.

[17] F. Corno, T. Montanaro, C. Migliore, and P. Castrogiovanni. SmartBike: an IoT
Crowd Sensing Platform for Monitoring City Air Pollution. INTERNATIONAL
JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 7(6):3602–
3612, December 2017.

[18] K. Church and R. de Oliveira. What’s Up with Whatsapp?: Comparing Mobile
Instant Messaging Behaviors with Traditional SMS. In Proceedings of the 15th
International Conference on Human-computer Interaction with Mobile Devices
and Services, MobileHCI ’13, pages 352–361, New York, NY, USA, 2013.
ACM.

[19] A. Sahami Shirazi, N. Henze, T. Dingler, M. Pielot, D. Weber, and A. Schmidt.
Large-scale Assessment of Mobile Notifications. In Proceedings of the SIGCHI

140 References

Conference on Human Factors in Computing Systems, CHI ’14, pages 3055–
3064. ACM, 2014.

[20] P. Harrington. Machine Learning in Action. Manning Publications Company,
2011.

[21] G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to statistical
learning, volume 112. Springer, 2013.

[22] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel. Performance Measures
For Information Extraction. In In Proceedings of DARPA Broadcast News
Workshop, pages 249–252, 1999.

[23] D. Bužić and J. Dobša. Lyrics classification using Naive Bayes. In 2018
41st International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), pages 1011–1015, May 2018.

[24] Costa, P. F. Pires, F. C. Delicato, and P. Merson. Evaluating a Representational
State Transfer (REST) Architecture: What is the Impact of REST in My
Architecture? In 2014 IEEE/IFIP Conference on Software Architecture, pages
105–114, April 2014.

[25] L. Ardissono, G. Bosio, A. Goy, G. Petrone, and M. Segnan. Managing
Context-Dependent Workspace Awareness in an e-Collaboration Environment.
In Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology - Volume 03, WI-IAT ’09,
pages 42–45, Washington, DC, USA, 2009. IEEE Computer Society.

[26] C. Roecker, V. Bayon, M. Memisoglu, and N. Streitz. Context-dependent email
notification using ambient displays and mobile devices. In Active Media Tech-
nology, 2005. (AMT 2005). Proceedings of the 2005 International Conference
on, pages 137–138, May 2005.

[27] A. Leonidis, G. Baryannis, X. Fafoutis, M. Korozi, N. Gazoni, M. Dimitriou,
M. Koutsogiannaki, A. Boutsika, M. Papadakis, H. Papagiannakis, G. Tesseris,
E. Voskakis, A. Bikakis, and G. Antoniou. AlertMe: A Semantics-Based
Context-Aware Notification System. In Computer Software and Applications
Conference, 2009. COMPSAC ’09. 33rd Annual IEEE International, volume 2,
pages 200–205, July 2009.

[28] S. Banerjee and D. Mukherjee. Towards a Universal Notification System.
In Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2013
IEEE/WIC/ACM International Joint Conferences on, volume 3, pages 286–
287, Nov 2013.

[29] R. Etter, P.D. Costa, and T. Broens. A Rule-Based Approach Towards Context-
Aware User Notification Services. In Pervasive Services, 2006 ACS/IEEE
International Conference on, pages 281–284, June 2006.

References 141

[30] R. M. Arlein, S. Betgé-Brezetz, and J. R. Ensor. Adaptive notification frame-
work for converged environments. Bell Labs Technical Journal, 13(2):155–159,
Summer 2008.

[31] A. Mehrotra, R. Hendley, and M. Musolesi. PrefMiner: Mining User’s Pref-
erences for Intelligent Mobile Notification Management. In Proceedings of
the 2016 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, UbiComp ’16, pages 1223–1234, New York, NY, USA, 2016.
ACM.

[32] A. Mehrotra, V. Pejovic, J. Vermeulen, R. Hendley, and M. Musolesi. My
Phone and Me: Understanding People’s Receptivity to Mobile Notifications.
In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, CHI ’16, pages 1021–1032, New York, NY, USA, 2016. ACM.

[33] V. Pejovic and M. Musolesi. InterruptMe: Designing Intelligent Prompting
Mechanisms for Pervasive Applications. In Proceedings of the 2014 ACM Inter-
national Joint Conference on Pervasive and Ubiquitous Computing, UbiComp
’14, pages 897–908, New York, NY, USA, 2014. ACM.

[34] N. Eagle and A. (Sandy) Pentland. Reality Mining: Sensing Complex Social
Systems. Personal Ubiquitous Comput., 10(4):255–268, March 2006.

[35] S. S. Stevens. On the Theory of Scales of Measurement. Science, New Series,
103(2684):677–680, June 1946.

[36] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[37] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson
Education, 2 edition, 2003.

[38] J. R. Quinlan. Induction of Decision Trees. Mach. Learn., 1(1):81–106, March
1986.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[40] X. Liu, B. Li, A. Jiang, S. Qi, C. Xiang, and N. Xu. A bicycle-borne sensor
for monitoring air pollution near roadways. In Consumer Electronics - Taiwan
(ICCE-TW), 2015 IEEE International Conference on, pages 166–167, June
2015.

[41] F. Zeiger and M. Huber. Demonstration Abstract: Participatory Sensing En-
abled Environmental Monitoring in Smart Cities. In Proceedings of the 13th
International Symposium on Information Processing in Sensor Networks, IPSN
’14, pages 337–338. IEEE Press, 2014.

142 References

[42] X. Liu, C. Jiang, B. Li, and A. Jiang. Collaborative Bicycle Sensing for Air
Pollution on Roadway. In 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence
and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted
Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Commu-
nications and Its Associated Workshops (UIC-ATC-ScalCom), pages 316–319,
Aug 2015.

[43] C. Vagnoli, F. Martelli, T. D. Filippis, S. D. Lonardo, B. Gioli, G. Gualtieri,
A. Matese, L. Rocchi, P. Toscano, and A. Zaldei. The sensorwebbike for air
quality monitoring in a smart city. In Future Intelligent Cities, IET Conference
on, pages 1–4, Dec 2014.

[44] Y. Taniguchi, K. Nishii, and H. Hisamatsu. Evaluation of a Bicycle-Mounted
Ultrasonic Distance Sensor for Monitoring Road Surface Condition. In Compu-
tational Intelligence, Communication Systems and Networks (CICSyN), 2015
7th International Conference on, pages 31–34, June 2015.

[45] I. Alam. An exploratory investigation of user involvement in new service
development. Journal of the Academy of Marketing Science, 30(3):250–261,
2002.

[46] G. Holmes, A. Donkin, and I. H. Witten. WEKA: a machine learning work-
bench. In Intelligent Information Systems,1994. Proceedings of the 1994
Second Australian and New Zealand Conference on, pages 357–361, Nov 1994.

[47] Y. Chon, E. Talipov, H. Shin, and H. Cha. Mobility Prediction-based Smart-
phone Energy Optimization for Everyday Location Monitoring. In Proceedings
of the 9th ACM Conference on Embedded Networked Sensor Systems, SenSys
’11, pages 82–95. ACM, 2011.

[48] Y. Chon, H. Shin, E. Talipov, and H. Cha. Evaluating mobility models for
temporal prediction with high-granularity mobility data. In Pervasive Comput-
ing and Communications (PerCom), 2012 IEEE International Conference on,
pages 206–212, March 2012.

[49] C. Zhou, D. Frankowski, P. Ludford, S. Shekhar, and L. Terveen. Discovering
Personally Meaningful Places: An Interactive Clustering Approach. ACM
Trans. Inf. Syst., 25(3), July 2007.

[50] G. Metri, A. Agrawal, R. Peri, and W. Shi. What is eating up battery life on my
SmartPhone: A case study. In Energy Aware Computing, 2012 International
Conference on, pages 1–6, Dec 2012.

[51] M. B. Kjærgaard, J. Langdal, T. Godsk, and T. Toftkjær. EnTracked: Energy-
efficient Robust Position Tracking for Mobile Devices. In Proceedings of the
7th International Conference on Mobile Systems, Applications, and Services,
MobiSys ’09, pages 221–234, New York, NY, USA, 2009. ACM.

References 143

[52] H. Xu and S. B. Cho. Recognizing Semantic Locations from Smartphone Log
with Combined Machine Learning Techniques. In Ubiquitous Intelligence
and Computing, 2014 IEEE 11th Intl Conf on and IEEE 11th Intl Conf on
and Autonomic and Trusted Computing, and IEEE 14th Intl Conf on Scalable
Computing and Communications and Its Associated Workshops (UTC-ATC-
ScalCom), pages 66–71, Dec 2014.

[53] J. Ryoo, H. Kim, and S. R. Das. Geo-fencing: Geographical-fencing based
energy-aware proactive framework for mobile devices. In Quality of Service
(IWQoS), 2012 IEEE 20th International Workshop on, pages 1–9, June 2012.

[54] N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer,
J. V. Behar, S. C. Hern, and W. H. Engelmann. The National Human Activity
Pattern Survey (NHAPS): a resource for assessing exposure to environmental
pollutants. Journal of Exposure and Environmental Epidemiology, May-Jun
2001.

[55] J. Paek, K.-H. Kim, J. P. Singh, and R. Govindan. Energy-efficient Positioning
for Smartphones Using Cell-ID Sequence Matching. In Proceedings of the
9th International Conference on Mobile Systems, Applications, and Services,
MobiSys ’11, pages 293–306, New York, NY, USA, 2011. ACM.

[56] L. Garbe. System Identifies User Location without GPS or Wi-Fi. Computer,
44(11):15–17, 2011.

[57] S.-M. Qin, H. Verkasalo, M. Mohtaschemi, T. Hartonen, and M. Alava. Patterns,
Entropy, and Predictability of Human Mobility and Life. PLoS ONE, 7:e51353,
December 2012.

[58] P. Seshadri, S. Abileah, N. Nilakantan, H. Knight, S. Pather, R.H. Gerber, C.T.
Mensa-Annan, P. Garrett, M.A. Faoro, and D.O. Lavery. User interface system
and methods for providing notification(s), april 2008. US Patent 7,360,202.

[59] E. Horvitz, C. Kadie, T. Paek, and D. Hovel. Models of Attention in Comput-
ing and Communication: From Principles to Applications. Commun. ACM,
46(3):52–59, March 2003.

[60] M. C. Koss, J. Dewitt, K. J. Messerly, and D. Titov. CROSS-DEVICE NOTIFI-
CATIONS, December 2015. Patent US 2015/0373089.

[61] P. Hamilton and D. J. Wigdor. Conductor: Enabling and Understanding Cross-
device Interaction. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’14, pages 2773–2782, New York, NY,
USA, 2014. ACM.

[62] P. Chi and Y. Li. Weave: Scripting Cross-Device Wearable Interaction. In Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, CHI ’15, pages 3923–3932. ACM, 2015.

144 References

[63] S. T. Iqbal and B. P. Bailey. Effects of Intelligent Notification Management on
Users and Their Tasks. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’08, pages 93–102, New York, NY, USA,
2008. ACM.

[64] D. Weber, A. Voit, P. Kratzer, and N. Henze. In-situ Investigation of Noti-
fications in Multi-device Environments. In Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing, Ubi-
Comp ’16, pages 1259–1264, New York, NY, USA, 2016. ACM.

[65] T. Kubitza, A. Voit, D. Weber, and A. Schmidt. An IoT Infrastructure for
Ubiquitous Notifications in Intelligent Living Environments. In Proceedings
of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous
Computing: Adjunct, UbiComp ’16, pages 1536–1541, New York, NY, USA,
2016. ACM.

[66] J. Yang and D. Wigdor. Panelrama: Enabling Easy Specification of Cross-
device Web Applications. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’14, pages 2783–2792, New York, NY,
USA, 2014. ACM.

[67] M. Nebeling, M. Husmann, C. Zimmerli, G. Valente, and M. C. Norrie. XD-
Session: Integrated Development and Testing of Cross-device Applications. In
Proceedings of the 7th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS ’15, pages 22–27, New York, NY, USA, 2015. ACM.

[68] M. Schreiner, R. Rädle, H. Jetter, and H. Reiterer. Connichiwa: A Framework
for Cross-Device Web Applications. In Proceedings of the 33rd Annual ACM
Conference Extended Abstracts on Human Factors in Computing Systems, CHI
EA ’15, pages 2163–2168, New York, NY, USA, 2015. ACM.

[69] M. Husmann, M. Spiegel, A. Murolo, and M. C. Norrie. UI Testing Cross-
Device Applications. In Proceedings of the 2016 ACM on Interactive Surfaces
and Spaces, ISS ’16, pages 179–188, New York, NY, USA, 2016. ACM.

Appendix A

Detailed SmartBike Survey Results

Based on the observation reported by Alam et al. [45] about the usefulness of involv-
ing users in designing new services, as the first step in developing the SmartBike
platform presented in Section 2.8.4, an online survey was conducted with the aim of
identifying the most interesting bike-enabled features. 288 persons were involved
among Politecnico di Torino students and TIM employees that usually move around
the city of Turin (Italy) riding their bikes. The survey has been accessible for two
months and consisted of 10 questions divided into three main sections. The first
section aimed at acquiring user demographic and habits information. The second
section, instead, had the objective of analyzing user preferences for the future design
of aesthetic characteristics of the proposed solution. The questions asked users to
express their preferences about the preferred type of bike (e.g., mountain bike, city
bike, etc.) and the most desired bike accessories (e.g., basket, baggage holder, etc.).
Finally, the third section was related to the identification of the most interesting
services for cyclists in the context of a smart city. The language used within the
survey was Italian, results were then translated for the purposes of this thesis.

Demographic information about interviewees

Aiming at recruiting users that usually move around the city of Turin (Italy) riding
their bikes, 500 promotional tags with a printed QR code (which pointed to the
survey’s link) were attached to the bikes parked in the Politecnico di Torino courtyard.
Moreover, an email promoting the survey was sent to TIM employees. A population

146 Detailed SmartBike Survey Results

Fig. A.1 User Survey: age distribu-
tion

Fig. A.2 User Survey: frequency of
bicycle usage

of 288 people replied to the study, with 221 males and 67 females. Most participants
were aged in the interval “36 - 50” (Figure A.1).

Furthermore, Figure A.2 shows the frequency with which users declared to use
their bicycles: most of the interviewees (81%) commonly use their bikes several
times a month, and 50% at least weekly.

Preferred type of bike and most used bike devices

In the second section of the survey, respondents were asked to select the preferred
type of bike among the following four types:

• budget bike

• city bike

• mountain bike

• racing bike.

Results reveals that the most preferred type of bike is the city bike (45.8%), followed
by the mountain bike (26.7%), the racing bike (22.0%) and, finally the budget bike
(5.5%).

147

Most interesting bike-enabled features

In the final section of the survey, users were asked to select up to six possible future
high tech bike improvements out of those listed in Table A.1. The reported values
represent the percentage of users that selected each feature.

As can be observed from table A.1, the six most requested features are: real time
geo-location detection of the bike in case of loss or theft, anti-theft service which can
send notifications to an end-user device, information about traveled route (traveled
distance, duration, difference in altitude), air pollution level of traveled roads, GPS
navigation device, and information about the speed.

148 Detailed SmartBike Survey Results

Table A.1 List of possible technological bike improvements with percentage of users that
selected each of them

Feature Percentage of selections
(over 288 users)

Real time remote geo-location detection of the
bike in case of loss or theft

67.72%

Anti-theft feature which can send notification to
an end-user device

64.67%

Information about traveled routes (traveled
distance, duration, difference in altitude)

47.48%

Air pollution level of traveled roads 42.07%

GPS navigation device 31.49%

Average, minimum, and maximum speed 30.25%

Automatic call for assistance in case of accidents
(e-call)

29.70%

Bicycle maintenance status 23.79%

Information about high injury risk roads 22.28%

Burned calories 13.09%
Traffic information 13.05%

Audio instructions about navigation 11.81%

Heartbeat monitoring 9.69%

Reminders based on location on the route 7.98%

Point of interest 7.42%

Information about not accessible roads 6.93%

Appendix B

Publications

• Corno, F and De Russis, L. and Marcelli, A. and Montanaro, T. An Unsu-
pervised and Non-Invasive Model for Predicting Network Resource De-
mands. In IEEE Internet of Things Journal.

• Cagliero, L. and De Russis, L. and Farinetti, L and Montanaro, T. Improving
the effectiveness of SQL learning practice: a data-driven approach. In
2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC).

• Corno, F and Montanaro, T., Migliore, C. and Castrogiovanni, P. Smart-
bike: an IoT Crowd Sensing Platform for Monitoring City Air Pollution.
INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER EN-
GINEERING, 7(6):3602–3612, December 2017.

• Corno, F and De Russis L. and Montanaro, T. XDN: Cross-Device Frame-
work for Custom Notifications Management. In Proceedings of the ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, EICS
’17, pages 57–62, New York, NY, USA, 2017. ACM.

• Corno, F and De Russis L. and Montanaro, T. Estimate User Meaningful
Places Through Low-Energy Mobile Sensing. In 2016 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pages 003039–003044,
Oct 2016.

150 Publications

• Ghajargar, M and Zenezini, G. and Montanaro, T. Home delivery services:
innovations and emerging needs. In IFAC-PapersOnLine, Volume 49, Issue
12, 2016, Pages 1371-1376.

• Montanaro, T. 2015. SWARM joint open lab Politecnico Di Torino, Italy.
XRDS 22, 2 (December 2015), 70-71.

• Corno, F and De Russis L. and Montanaro, T. A Context and User Aware
Smart Notification System. In 2015 IEEE 2nd World Forum on Internet of
Things (WF-IoT), pages 645–651, Dec 2015.

• Corno, F and De Russis L. and Montanaro, T. and Castrogiovanni, P. IoT
Meets Exhibition Areas: A Modular Architecture to Improve Proximity
Interactions. In 2015 3rd International Conference on Future Internet of
Things and Cloud, pages 293–300, Aug 2015.

• Atzeni, A. and Su, T. and Montanaro, T. (2014) Lightweight Formal Verifi-
cation in Real World, A Case Study. In: Iliadis L., Papazoglou M., Pohl K.
(eds) Advanced Information Systems Engineering Workshops. CAiSE 2014.
Lecture Notes in Business Information Processing, vol 178. Springer, Cham

Submitted - under revision

In addition, the following list reports the paper that was already submitted and is yet
under revision.

• Corno, F. and De Russis, L. and Montanaro, T. XDN: Cross-Device Frame-
work for Custom Notifications Management In Springer COMPUTING
Journal

