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Reduction of Torque Ripple in Synchronous
Reluctance Machines through Flux Barrier Shift

Simone Ferrari, Student Member, IEEE, Gianmario Pellegrino, Senior Member, IEEE,
Matteo Davoli and Claudio Bianchini

Abstract—Synchronous Reluctance (SyR) machines are a
viable alternative to other kinds of electrical machines in many
fields. The simple rotor structure allows a high efficiency level
with low manufacturing costs and higher safety in high-speed
operations. However, one of the main problems of the SyR
machines is the torque ripple generated by the interaction of
the stator and rotor Magneto-Motive Force harmonics. Many
design solutions have been proposed to date, but heavy torque
ripple reduction has only been achieved with long optimizations
runs or with complex machine structures. This paper presents
an easy and effective method to reduce torque ripple through
flux barrier shift. Two machines were designed in order to
compare the proposed design with a state-of-the-art procedure.
The machines designed with flux barrier shift presents similar
performances to the optimized machine, with a lower design
time and a more general design method.

Index Terms—Electric Motor, Rotating Machines, AC Motor,
Synchronous Reluctance Machine, Torque Ripple

I. INTRODUCTION

In recent years, Synchronous Reluctance (SyR) machines
have been established as a viable alternative to other kind
of electrical machines in many different fields. The main
advantages of this technology are the manufacturing easiness
and the absence of Permanent Magnets (PMs) and rotor
conductor. These features fit with the different requirements
in most of the technological areas where electrical machines
are used. In industrial applications, SyR machine features
means low manufacturing costs and high efficiency, required
by new regulations [1]. In transportation electrification, SyR
machines guarantee high efficiency, good flux-weakening
properties and safe against faults at high speed [2], [3]. On
the other side, one of the main drawback of SyR machines
is the torque ripple, that can be high if wrong design choices
are followed. Torque ripple in this kind of machine is caused
by the interaction of stator and rotor high order unwanted
harmonics [4]. Many papers deal with the definition of a
standard design procedure for low-torque-ripple machines. In
[4] the torque ripple problem was formalized, and a general
procedure to design symmetric rotor was presented. The high
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harmonic interaction between stator and rotor were avoided
using a proper rotor “’slot” number. The designed machines
have symmetrical rotor, but the results can be not optimal. A
similar approach was followed in [5], where a stator with odd
number of slots per pole pairs ng was coupled with an even
number of rotor “slots” per pole pairs n,. Also following
this methodology, the designed machines are symmetrical,
but the unconventional stator can be more difficult to manage.
Staying on symmetrical machines, a third approach, is the use
of optimization tools for the SyR machines design, as [9].
With this method, the obtained solution can be considered
as optimal (after some optimization runs), but the generality
of the results is lost, and the computational time can be
very long. A different approach to the low-torque-ripple SyR
machines design is the use of asymmetrical rotors. One
of the first attempts in this field was [7], where a 3 pole
pairs machine (p = 3) was analyzed and different versions
(both symmetric and asymmetric) were compared. At the
end, the results were good, but no relation with the torque
ripple harmonics was found, and no general procedures were
suggested. A further improvement in this field was done
in [8], where a 2 pole pairs machine with 2 flux barriers
was designed using a complete asymmetric structure (i.e.
each rotor pole different from the others). Good results were
achieved with this work, but also many problems were high-
lighted, as the necessity to maintain a sort of symmetry in the
machine to avoid unbalanced radial forces. Also in this case,
no general procedures, suitable for any pole pairs number or
any flux barriers number were proposed. A different approach
were presented in [6], where a 2 pole pairs low-torque-ripple
machine were designed as a fusion of two high-torque-ripple
machines. The results were interesting: the designed rotor
was characterized by two big poles and two small poles. The
pole displacement was studied in order to avoid unbalanced
rotor forces by placing the equal poles on the opposite sides
of the rotor. By the way, the proposed procedure was based
on the torque ripple analysis of a big number of machines,
and it is hardly applicable to other geometries. In [10], a
general procedure to design asymmetric rotor was introduced
and Finite Elements Analysis (FEA) results were presented
for three machines (with 2, 3 and 4 pole pairs). The method,
called Flux Barrier Shift (FBS), is based on the spatial shift of
the d-axes of the machine, with a symmetry on half machine.
The shift angle is computed starting from the unwanted
torque ripple harmonic that should be deleted. A possible
improvement of this technique is on the mean torque: the



change of the span between two consecutive g-axes cause a
slightly reduction of the output torque of the shifted machine.
This effect takes place only if p > 2.

In this paper, the FBS concept is studied and slightly
modified, in order to overcome the associated torque reduc-
tion and generalize the method to any number of pole pairs.
The main contributions are:

o Apply the same FBS shift angle to each pole pair. This
approach is independent from the number of poles and
tends to overcome the torque reduction;

o Provide a theoretical interpretation of such FBS ap-
proach;

o Embed the FBS methodology in a general design pro-
cedure;

o Validate the proposed design flowchart against a state-
of-the-art design, where torque ripple was minimized
through an optimization algorithm.

The proposed FBS procedure is embedded in SyR-e [14],
a Matlab-based tool for the design, optimization and FEA
evaluation of SyR and SPM machines.

II. TORQUE RIPPLE IN SYNCHRONOUS RELUCTANCE
MACHINES

A. Simplified torque ripple model

According to [5] and [11], torque ripple in SyR machines
is caused by the interaction of the stator Magneto-Motive
Force (MMF) f, with the rotor MMF f,. at high harmonic
orders. Assuming n stator slots per pole pair, fs will contain
the fundamental and all the odd harmonics with order h =
i-ngs £ 1, where ¢ = 1,2,3,.... The even harmonics are
not present because of the f; symmetry along the d- and
g-axis. About f,., it can be obtained by sampling f; with
a pattern equal to the rotor slots distribution. Assuming n,
equally spaced rotor slots per pole pair, f,. will contain the
fundamental and all the odd harmonics with order k = i -
nyxh, withi = 1,2, 3, ..., and h equal to the stator harmonic
that created the rotor one. Once the stator and rotor MMF
are defined, it is possible to compute the airgap flux density
as:

By =2 (f.— f) Q)

g

where (1 is the magnetic permeability of the air and g is the
airgap length. The flux density spectrum will contain all the
high order harmonics of the two MMF distribution. The B
harmonic content is increased by two sources: the slot effect
and the rotor anisotropy. The slot effect can be modeled as
a function defined equal to zero where the stator slots are
opened and the rotor ribs are saturated and one elsewhere.
The effect on the airgap flux density is to increase the
harmonics amplitude related to the stator (h = i-ngs+1). The
effect of the rotor anisotropy is more difficult to model. It will
be shown in the following that the rotor anysotropy, joined to
the stator higher harmonic content, induces a variation of the
B, harmonic components depending on the rotor position.

TABLE 1
MAIN DATA OF THE BENCHMARK MACHINE

Pole pairs P 3

Number of stator slots per pole pair  ng 12 -
Stator outer radius R 87.5 [mm)]
Rotor outer radius r 59.7 [mm)]
Airgap length g 0.33 [mm]
Stack length l 110 [mm)]
Rated current (peak) 20 15.15 [A]

(a)

Fig. 1. Cross-sections of one pole pair of MotA

This fluctuation has a heavy effect on the torque ripple.
Torque can be obtained as:

2m
10) = [ Byc.0 T @
£=0 £

It must be remarked that the integral is done on the spatial
coordinates, so only the orders contained both in B, spectrum
and in fg spectrum contribute to machine torque. Torque
ripple harmonics is related only to ns because of fs spectrum,
despite the higher B, harmonic content. The fluctuation effect
introduced by the rotor anisotropy increase the torque ripple,
but only if it affects a common order.

B. FEA analysis of a regular machine

The design of regular machines can be based on simple
analytical models. According to [11], SyR machines design
must be focused on the minimization of the torque ripple and
the iron loss. These objectives are pursued by selecting the
number of rotor slots starting from the stator slots. The golden
rule to correctly relate these two parameters is n, = ns + 4.
Table I reports the main data of an induction machine stator
[12] that will be used as a benchmark to design and compare
different SyR rotor geometries. First, a regular rotor (called
MotA) is designed for this stator, following the procedure
described in [4]. The number of rotor slots is set equal
to n, = ns +4 = 16, with three flux barriers per pole,
and constant permeance. The final design obtained with the
analytical design tool embedded in SyR-e [14] is shown in
Fig. 1.

Fig.2 reports the torque waveform and the related spec-
trum of MotA, at the rated current in the Maximum Torque
Per Ampere (MTPA) condition. The torque ripple harmonics
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Fig. 2. Rated torque waveform of MotA (a) and torque ripple spectrum (b)
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Fig. 3. Spectrum of By of MotA for different rotor positions: max values

in red and min values in blue. The subplot shows the amplitude of the 11"
and 13" harmonic amplitude versus the rotor position

are all related to n, as explained above. Fig. 3 shows the B,
spectrum for the same working point. The analysis is done for
several rotor position, and the variation of the amplitudes is
reported in red. In the subplot of Fig. 3, the harmonic orders
that produce the main torque ripple component (h = 12) are
plotted versus the rotor position #. As addressed above, the
oscillations are caused by the interaction of the main stator
harmonics and the rotor anisotropy. The main oscillation is
for h = 13, with 12 periods in 360°elt.

III. FLUX BARRIER SHIFT
A. Shift angle tuning

As explained in the previous section, the variation of B,
spectrum with the rotor position is one of the torque ripple
sources. A modification of the rotor anisotropy periodicity
can reduce the B, harmonics fluctuation, reducing the torque
ripple. Flux Barrier Shift (FBS) implements this modification
by changing the pole pitch of two consequent poles of a
well defined angle 6rpg. Fig.4 shows one rotor pole pair
(i.e. one electrical period) of MotA (Fig.4a) and its shifted
version MotA-FBS (Fig.4b), with s = 5°mech. The
rotor electrical period of MotA-FBS is 120°mech, and the
pitch between the g-axes of the two poles is 60°mech, as the
standard version of the machine (black dashed lines). The d-
axes of the shifted machine are reported in blue and red,

(®)

Fig. 4. One pole pair of MotA (a) and MotA-FBS (b). The shifted d-axes
of MotA-FBS are highlight in red, and the shift angle is 0ppg = 5°.

because they have different properties. The blue d-axis is
locked, in the same position of the regular machine, while
the red d-axes are moving of #rpg. This movement cause
the pole deformation: one is reduced of the shift angle, and
the other is increased of the same quantity. The rotor ribs
moves according to their d-axis, as underlined by the color
used in the picture.

The tuning of frpg can be performed using (3), where
Orps is expressed in mechanical degree and h is the highest
torque harmonic order, equal to the harmonic order of the
main oscillation of the B, amplitudes.

360
2ph

The ribs shift of this quantity leads to a reduction of the
h harmonic order, in a similar way as [10]. Starting from a
regular machine, the barrier end positions are shifted by the
angle fppgs as show in Fig. 4. Both the regular and shifted
rotors can be designed automatically using SyR-e.

3)

OrBs =

B. FEA analysis of a shifted machine

The effect of FBS is noticeable in regular machines.
For MotA, the shift angle computed with (3) results in 5
mechanical degree, that correspond to one half of the stator
slot pitch. Fig.5 shows MotA-FBS. From this picture is
evident that the alignment with the rotor d-axes and the stator
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Fig. 5. Cross-section of one pole pair of MotA-FBS, obtained by the
implementation of FBS on MotA.
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Fig. 6.  Spectrum of By of MotA-FBS for different rotor positions:
maximum values in red and minimum values in blue. The subplot shows
the amplitude of the 11** and 13*" harmonic versus the rotor position.

teeth is changed from MotA. The extreme d-axes of the figure
are aligned with the stator teeth, as for MotA in Fig. 1, while
the central d-axis is aligned with the slot. Fig. 6 shows the B
spectrum of MotA-FBS, in different rotor positions and in the
same working point of the analysis of MotA. The shift angle
strongly reduces the oscillation of the harmonics with the
rotor position, reducing the torque ripple. A side effect is the
rise of the even harmonics, due to the asymmetric geometry
in the electrical period. Moreover, they does not affect the
output torque because they are present only in B, spectrum
and not in f, spectrum. The torque waveform and spectrum
of MotA-FBS are compared with MotA performances in
Fig.7. According to B, analysis, the 12" torque harmonic
is strongly reduced, causing a smoother torque waveform,
compared to MotA.

C. FBS-based design procedure

After the FBS definition, it is possible to embed the
method in a complete design procedure. The proposed design
flowchart is summarized in Fig.8 and it consist of two
steps. First of all, a standard SyR machine must be designed
in order to fulfill the specifications of the problem. Good
references for this stage are [4], [11] and [14]. Then FBS
must be applied to reduce torque ripple. The main torque
ripple harmonic can be evaluated with fast FEA simulation
or with analytical model. At the end, a FEA validation can

T [Nm]

5k —— MotA
0 H H H H —— MotA-FBS

0 60 120 180 240 300 360
6 [°]
(@)

10 . . . . : TV
8t B Mot A-FBS
IS8
=6t ]

2L

L I | I

6 12 18 24 30 36 42 48
harmonic order

(®)

Fig. 7. Torque waveform (a) and harmonic spectrum (b) of MotA (blue)
and MotA-FBS (red) at the rated current, along the MTPA

be performed to verify the effective torque ripple reduction.
An example of this design procedure is MotA-FBS. MotA is
the results of the first design step, and MotA-FBS is the final
design.

IV. FEA RESULTS

In this section, FEA simulations are used to compare the
results of the proposed design flowchart and an optimization-
based design procedure. The analysis will involve three
machines: MotA and MotA-FBS, that represent the first step
and the final design of the FBS-based procedure, and MotB
[12], that has the same stator of the other machines and the
rotor designed using Multi Objective Differential Evolution
(MODE) algorithm (embedded in SyR-e). The objectives
during the optimization run were maximize the torque and
minimize the torque ripple. Fig.9 shows the cross-section of
one pole pair of this machine.

A first comparison between the design procedures can
be done on the computational time. The FBS procedure
takes few minutes to be completed and most of the time
is taken by the FEA simulations used to compute the torque
waveform. On the other hand, MODE takes about 6 hours
to finish a optimization run, using the parallel computation
on four CPU. The computer used for the design processes
is a standard workstation with a quad-core CPU Intel Core
17-4770 and 16 GB RAM. Fig. 10 compares the machines
performance in therms of mean torque and torque ripple at
the rated (1x) and overload (2x) current. MotA and MotA-
FBS presents the same mean torque, that is slightly lower
than MotB. About torque ripple, MotA is the worst machine,
with a torque ripple around 25% at the rated current. MODE
reduces torque ripple at circa 18%, but FBS works even
better, reducing the torque ripple until 10%. Considering also
the heavy differences in the computational time, the powerful
of FBS and the proposed design method is evident.
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Fig. 8. Flowchart of the proposed FBS-based design procedure

A. Torque and Power Factor

The comparison can be extended on the full operating
area. Fig. 11 shows the torques of the three machines versus
the current along the MTPA (black lines), with a colored band
that represents the peak-to-peak torque ripple. The results
obtained for the rated performances holds in all the current
range of the machines. The mean output torque of the three
motors is similar, the only substantial difference is the torque
ripple. Another important performance figure is the power
factor cosp. Fig. 12 shows the power factor versus the peak
current along the MTPA. The three machines presents similar

Fig. 9. Cross-section of one pole pair of MotB
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Fig. 10. Torque - torque ripple tradeoff between FBS and optimization
algorithm at rated and overload condition
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Fig. 11. Torque versus peak current along the MTPA of the three machines
involved in the comparison: MotA (a), MotA-FBS (b) and MotB (c). The
colored band represent the peak-to-peak torque ripple.
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Fig. 12. Power factor versus MTPA current: MotA (a), MotA-FBS (b) and
MotB (c)

cosp curves, with a little disadvantage of MotB. This analysis
tells that FBS doesn’t change the magnetic model of the
machine, and so, the flux linkages maps.
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Fig. 13. Absolute value of the peak-to-peak torque ripple contour in the
iq — iq plane: MotA (a), MotA-FBS (b) and MotB (c). MTPA reported in
solid red lines and iso-current contours in dashed black lines

B. Torque ripple map

Flux Barrier Shift deformation affects only the torque
ripple, with no penalization of the other performance figures,
as pointed out from the previous analysis. To carry out a
complete analysis on this feature, the torque ripple is mapped
on the full ¢q — 74 plane, covering all the possible working
points. Fig. 13 shows the torque ripple maps of the three
machines involved in the comparison. The MTPA trajectory
is reported in red for all the machines, and the current levels
are reported in dashed black lines. MotA presents the higher
torque ripple, with an evident increase of the amplitude with
the mean torque. The shifted machine (MotA-FBS) presents
a valley in the torque ripple surface, around the MTPA curve.
This shape is due to the harmonic reduction given by FBS:
the main ripple harmonic along the MTPA is the same, at
all the current level. About MotB, the shape of the torque
ripple surface is similar to MotA, but with lower values. The
advantage given by FBS is confirmed with this analysis: the
torque ripple is reduced in all the practical working point of
the machine.

V. EXPERIMENTAL RESULTS

Experimental validation is carried out only on MotB. The
validation of MotA and MotA-FBS is ongoing. At this stage,
experiments confirm the precision of the software tools used
during the design process. Two tests are proposed in the next
section: the torque waveform test and the torque ripple map
test.

A. Experimental Setup

Fig. 14 shows the test rig for the torque ripple measure-
ment. The prototype is current controlled, and the speed
is kept constant by a driving machine and a gearbox. An
HBM Gen3i data logger system is used to collect the values
measured during the test. They are both electrical (phase cur-
rent and line voltages) and mechanical (torque and position)
quantity. The driving machine and the gearbox permits to
keep constant the prototype speed at 10 rpm. This value
allows a precise measurement of the torque ripple waveform
on one mechanical revolution of the rotor. The gearbox used
is a worm gearbox, helpful to avoid the measurement of
the driving machine ripple. The low speed also reduces the
mechanical filtering effect given by the rotor inertia.

Fig. 14. Test rig for torque ripple measurement: driving machine with worm
gearbox on the right and prototype under test on the left.
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Fig. 15. Comparison between FEA and experimental measurement on the
prototype at 12.5, 18.75 and 25 A

B. Torque waveforms

The first test aims to measure the torque waveform
versus the rotor position. During this test, the machine
is current controlled along the MTPA. Fig. 15 reports the
comparison between the torque waveform obtained with
FEA and the experimental measurements at 12.5, 18.75 and
25 A (respectively, 80%, 120% and 160% of the thermal
rated current). The plot shows a good agreement between
FEA and measurements. A small discrepancy in the mean
torque exist, and it is related to the end effect, neglected
in the FEA. Another difference is the harmonic content: the
high frequency ripple is missing in the experimental results.
This difference is caused by higher order effect due to the
manufacturing process and neglected in the FEA model.

C. Torque ripple map

A more complete test is the torque ripple map. During
this experiment, the prototype is current controlled over a
regular grid in the dg-plane. Fig. 16 compares the measured
peak-to-peak torque ripple map with the FEA results. The
MTPA trajectory is reported in solid red line and the current
level are plotted in black dashed lines. The match between
the two plots is good along the MTPA and for low currents
(lower than 20 A). The area with higher discrepancy is for
high d-currents and low g-currents, with an underestimation
of the torque ripple by the FEA. Furthermore, this points are
never used during the normal operation of the machine. As
evidenced in the previous test, FEA overestimate the torque
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Fig. 16. Peak-to-peak torque ripple map: FEA results (a) and experimental
results (b)

ripple at high currents (greater than 20 A). This behavior is
due to manufacturing defects, that reduce the high frequency
torque ripple harmonics.

VI. CONCLUSION

An innovative method to reduce torque ripple in SyR
machines has been presented. The proposed method deforms
the rotor by shifting some rotor flux barriers ends of a well
defined angle. The theoretical rules of the torque ripple reduc-
tion through FBS has been addressed, and the capability of
FBS to reduce the target torque harmonic has been presented
both on a test machine. After that, an original and com-
plete design procedure based on regular SyR machines and
FBS has been presented and compared with an optimization
algorithm. The comparison shows that the two procedures
allow to design machines with similar performances, but with
different computational time. The FBS-based algorithm allow
to design a machine in less than one cent of the time spent
by the optimization-based algorithm. Experimental tests are
ongoing, and the results on the available prototype validates
the FEA simulations and the software tools used during the
design process.
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