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The primary goal of ‘in vitro–in vivo correlation’ (IVIVC) is the reliable prediction of the in vivo serum
concentration-time course, based on the in vitro drug dissolution or release profiles. IVIVC methods are
particularly appropriate for formulations which are released over an extended period of time or with a lag
in absorption and may support approving a change in formulation of a drug without additional bioequiva-
lence trials in human subjects. Most of the current IVIVC models are assessed using frequentist methods,
such as linear regression, based on averaged data and entail complex and potentially unstable mathemat-
ical deconvolution. The proposed IVIVC approach includes (a) a nonlinear mixed effects model for the
in vitro release data; (b) a population pharmacokinetic (PK) compartment model for the in vivo immediate
release (IR) data; and (c) a system of ordinal differential equations (ODEs), containing the submodels (a)
and (b), which approximates and predicts the in vivo controlled release (CR) data. The innovation in this
paper consists of splitting the parameter space between submodels (a) and (b) versus (c). Subsequently, the
uncertainty on these parameters is accounted for using a Bayesian framework, i.e., estimates from the first
two submodels serve as priors for the Bayesian hierarchical third submodel. As such, the Bayesian method
explained ensures a natural integration and transfer of knowledge between various sources of information,
balancing possible differences in sample size and parameter uncertainty of in vitro and in vivo studies. Con-
sequently, it is a very flexible approach yielding results for a broad range of data situations. The application
of the method is demonstrated for a transdermal patch (TD).

Key words: Bayesian; In vitro–in vivo correlation (IVIVC); Ordinary differential equation
(ODE); Pharmacokinetics; Transdermal patch.

Supporting Information for this article is available from the author or on the WWW under
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1 Introduction

Optimising the exposure of a compound becomes a key step during the drug development process. For-
mulation modification can occur throughout the lifetime of a compound, ranging from changes instituted
during early pre-approval stages to supplementary formulation development after the initial marketing of
the compound. Controlled release (CR) formulations, as opposed to traditional immediate release (IR)
formulations, are a tool for such a release optimisation of the compound over time. The determination
of the in vivo impact of a modification of the route of administration or the drug formulation is typically
addressed in a clinical trial using bioequivalence testing (Chow and Liu, 2008, chap. 1.2). But studying the
compound release and distribution in vivo through clinical trials is both time consuming and costly.
When a set of CR formulations is under development, establishing an ‘in vitro–in vivo correlation’ (IVIVC)

∗Corresponding author: e-mail: elvira.erhardt@polito.it

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



2 Elvira M. Erhardt et al.: Bayesian knowledge integration for an IVIVC model

model has become an integral part of the drug development process; it links changes in the in vitro dis-
solution or release to modifications of the compound exposure. If the release remains within preexisting
specifications, the exposure is assumed to remain as anticipated. For these reasons, in vitro drug dissolu-
tion or release can often be used as surrogate for the in vivo drug absorption once a, possibly nonlinear,
relationship exists between the two. Under appropriate circumstances, in vivo bioequivalence trials may
not be needed (European Agency for the Evaluation of Medicinal Products, EMEA, 1999).
The broad definition of IVIVC has been subdivided into the levels A, B, C and D. The former is considered
the most informative and is consequently recommended by the American Food and Drug Administration
(FDA, 1997a). It can be used to predict the entire in vivo time profile and, if required, the key PK parame-
ters, e.g., area under the curve (AUC) or the peak serum concentration (Cmax).

To this end, many methods of developing IVIVC models have been proposed over the past 50 years, which
generally fall into two categories: convolution and deconvolution-based methods (see e.g., the review by
Yu et al., 1996).
Deconvolution extracts the (unobservable) in vivo release based on the fact that the observable CR blood
concentrations equal the convolution of IR blood concentrations and drug release in vivo. The latter is
linked to the observed in vitro release results, generally via linear or nonlinear regression. Even though
Dunne et al. (2005) and Gaynor et al. (2008) proved that the deconvolution method gives rise to a range
of modelling and statistical problems, it is still the most frequently method used (Margolskee et al., 2016).
Furthermore, Gaynor et al. (2009) reported that averaging has a detrimental effect on the accuracy of pre-
dictions produced, still one can see quite commonly the averaging of data before its deconvolution.
The statistical limitations and presumptive mathematical instabilities associated with deconvolution-based
methods explained above can be overcome using the convolution-based methods as proposed by Gillespie
(1997) and O’Hara et al. (2001). Here, the in vitro release profiles and the in vivo blood concentration-time
profiles are expressed in terms of nonlinear mixed effect models, thus, allow for the incorporation of ran-
dom effects into the IVIVC estimation. Within convolution-based methods, two approaches are possible.
In the two-stage approach, the in vitro release and blood concentrations from the IR formulation are mod-
elled in a first instance. Secondly, the model predicts directly the CR blood concentration-time profiles as
the convolution of the former two, avoiding explicit calculation of the in vivo release. In this second stage of
the modelling, point estimates of the fixed and random effects from the first stage are borrowed to estimate
the CR exposures. This approach splits the parameter space and model convergence, therefore, is easier
obtained. However, uncertainty on the parameter estimates are not retained from one stage to another. To
account for this, Jacobs et al. (2008) replaced the two steps of the convolution method by a one-stage ap-
proach through the simultaneous fitting of all three submodels. The downside of this approach is that the
large parameter space in combination with the complexity of the nonlinear models might lead to slow and
difficult convergence of the model fitting via maximum likelihood. Moreover, it is lacking the possibility
to account for a possible imbalance of information density and study size between in vitro and in vivo study.

An intermediate solution considered in this paper is a Bayesian two-stage approach to the convolution-
based method to mitigate the above mentioned pitfalls. In Bayesian analysis, prior information and ob-
served data are combined in the context of the selected model (Gelman et al., 1996). Thirty years ago,
Sheiner et al. (1979) introduced the Bayesian pharmacokinetic approach and to our knowledge, so far
merely three publications thematised Bayesian techniques in the context of level A IVIVC models. The
first has been by Kortejärvi et al. (2006); however, their approach is restricted to very specific model and
data assumptions.
Gould et al. (2009) developed a Bayesian IVIVC model using time-scaling to insert the release fraction
into the CR model by re-scaling the time. This restricts the method to specific formulations for the IR. This
method would for example fail for the commonly used intravenous formulation as IR. The objective of
Qiu et al. (2016) was the evaluation of the correlation between in vitro and in vivo release profiles and the
derivation of Bayesian tolerance intervals for the latter. A deconvolution approach is applied, ignoring the
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variability among the in vitro repeated measurements. Further, the prediction of CR data is not addressed.

In this paper, a new Bayesian convolution-based approach to IVIVC modelling is presented that extends
the current methodology. The Bayesian method was chosen since it allows for the natural integration of
knowledge from one source of information into the other by combining data from several submodels in the
same IVIVC model. In particular, the new aspect is the transfer of information from in vitro to in vivo set-
ting in a flexible way, guaranteeing results even in an imbalanced data situation. The approach is illustrated
on a case study, the controlled release (i.e., permeation) of a compound through a transdermal patch (TD),
but can easily be applied to other CR routes as well. The IVIVC model was established by combining
the in vitro release of the patch and the in vivo intravenous infusion blood serum concentration-time pro-
files of the IR formulation to predict the in vivo TD blood serum concentration-time profiles. The in vitro
and IR data were first estimated using nonlinear mixed models in a frequentist approach. Subsequently,
the resulting estimates served as prior information for the Bayesian hierarchical model of the TD serum
concentrations. As such, the uncertainty on the fixed (population) and random (individual) effects can be
integrated in the second part of the model in an intuitive manner and convergence is assured. The results
are readily interpretable as probability distributions of the parameters.

This article is structured in the following way: First, the case study is introduced. In section 3, the features
of the in vitro permeation model and the model for the in vivo IR formulation are explained. Thereafter,
the convolution, i.e., the combination of information from the first two models in a Bayesian framework is
expounded in detail. The results of applying this proposed methodology are reported in section 4. Finally,
section 5 sets this new approach into perspective by offering a brief discussion and concluding remarks.

2 Case study

2.1 In vitro TD permeation data

The in vitro permeability of the compound was quantified using 50 human skin portions in order to mimic
the absorption process. The skin samples were excised during surgical operations. The skin was not
removed to provide samples for these in vitro investigations. The hospital had the prior consent of the
patients that the tissue could be used for scientific research. This preclinical study has been conducted as
described in Franz et al. (2009), which is in accordance with the guidelines of the Scientific Committee
on Consumer Products (SCCP, 2006) and the Organisation for Economic Co-operation and Development
(OECD, 2004a,b).
The cumulated amount (in mg cm−2) of drug that passed through the skin at different time-points had
been recorded. Samples were taken between 0 and 72 hours after patch application. Data of two dif-
ferent formulations was available, i.e., a 24 h and a 72 h formulation. The 21 cm2 patches were loaded
with 0.4 mg cm−2 each (72 h formulation). The 24 h formulation constituted of 0.21 mg cm−2 of drug in
16 cm2 patches. Three of the 50 skins were tested in either of the TD formulations, 47 skins only with the
72 h patch (two out of these 47 have had two patches applied). These are indicated by solid and dashed
lines, respectively, in Figure 1.

The purpose of the case study in this paper is not to formally demonstrate an IVIVC relation, but rather to
illustrate the proposed modelling methodology. Therefore, there was no external validation performed.

2.2 In vivo infusion and TD serum concentration data

Eighteen subjects had received a dose of 300 µg within 15 min via an intravenous infusion. Plasma
concentration-time profiles were recorded 20 times during 36 h; they are depicted in Figure 2. Subse-
quently, the two transdermal patch formulations (containing 8.01 mg and 3.42 mg total dose, respectively)
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were administered in eighteen different subjects in a cross-over setting, separated by a washout period.
The serum concentration-time profiles are depicted in Figure 3. Further, the patches were collected after
removal after 24 and 72 h, respectively, and the remaining drug substance content within the patch was
assessed. The distribution of the data by patch formulation can be seen in Figure S1 in the Supporting
Information on the journal’s web page, which contains additional plots not presented in this manuscript.

3 Modelling

The proposed procedure consists of first fitting the in vitro drug permeation and the in vivo infusion serum
concentration-time profiles. The obtained parameter estimates serve as priors for the subsequent modelling
of the TD serum concentration-time profiles.

3.1 In vitro permeation model

The in vitro data collected from the skin portions served as a biomarker for the in vivo release of the patch.
As can be seen in Figure 1, the permeation profiles described an asymmetric S-shape starting at zero. The
accumulating amount of compound found in the skin portions over time can be mathematically represented
by a cumulative distribution function (CDF). The Weibull cumulative distribution function,

CDFW (t;h, s) = 1− exp

{
−
(
t

s

)h}
, t ≥ 0, h > 0, s > 0,

has the characteristic asymmetric S-shape and is very flexible yet not overly complex since it depends
on two parameters, the shape h and the scale s. The log-normal, exponential and Gompertz CDFs were
evaluated to mimic the in vitro data shape as well. For this purpose, the CDFs were multiplied by the
total dose Dk for the two formulations k = 1, 2 to describe the permeation of the compound over time.
However, both in the in vitro as well as in vivo setting, only a proportion of the total dose was permeated
and entered the skin before patch removal, the other part remained in the patch (Figure 1 and Figure S1
in the Supporting Information), as typical for transdermal patches. Therefore, a further parameter f was
introduced accounting for the fraction of dose delivered, i.e., the fraction of compound that was permeated
from the patch.
The two formulations of the in vitro permeation study were fitted separately using frequentist nonlinear
mixed effects models. This class of models is used to accommodate longitudinal data, incorporating both
fixed (population) effects and random (individual) effects to account for heterogeneity between the samples.
The mixed effects shape and scale had been log-transformed (logh = `h, analogous for s) to ensure strictly
positive estimates and are thus, sums of the fixed effect µ and the random effects ηi. This lead to the
following model for the in vitro permeation measurements yijk:

yijk = Dk × fik × CDF(tijk;hik, sik) + εijk, εijk ∼ N (0, σ2
ε ), (1)

`hik = µ`hk
+ η`h,i, `sik = µ`sk + η`s,i, η`s,i ∼ N (0, ω2

`sk
), η`h,i ∼ N (0, ω2

`hk
),

where i denotes the different skin portions at j = 1, . . . , Ji measurement times t for the patch formulations
k = 1, 2. The independent, identically, normally distributed εijk refers to the measurement error, assumed
to be independent of the ηi, which are normally distributed with mean 0 and variances ω2 (Pinheiro and
Bates, 2000, p. 306).

3.2 Immediate release IR serum concentrations

After the drug has been dissolved and absorbed into the bloodstream, the concentration of drug in the blood
serum is determined by the bodily distribution, metabolism and elimination mechanisms (e.g., Tozer and
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Rowland, 2006, chap. 2). Intravenous infusion formulations lack an absorption phase and are thus used
to estimate the disposition of the compound. In this paper, the concentration of the compound in blood
serum from the IR formulation was modelled by means of a compartmental model. Compartmental models
represent the flow of the compound between different body tissues and are mathematically represented as a
system of first-order ordinal differential equations (e.g., Rosenbaum, 2011, chap. 6.4), describing the time
dependence of the drug amount in each homogeneous compartment. One- and two-compartmental models
did not show a satisfactory fit to the infusion data based on a poor fit of the elimination phase as well as
based on the likelihood criteria (see Figure S2 in the Supporting Information); hence, a three-compartment
model was chosen for evaluation,

da1(tij)

dt
= k21a2(tij) + k31a3(tij)− [k12a1(tij) + k13a1(tij) + kea1(tij)] ,

da2(tij)

dt
= k12a1(tij)− [k21a2(tij)] , (2)

da3(tij)

dt
= k13a1(tij)− [k31a3(tij)] ,

C1(tijk) =
a1(tijk)

V1,i
.

The amount of drug in compartment m = 1, 2, 3 at time t is denoted by am(t). The central compartment
corresponds to the compound circulating in the blood (serum) and the compartments two and three are
peripheral compartments in which the compound distributes more slowly. The parameters k12, k21, k13
and k31 denote the rate constants with which the drug is distributed and redistributed between central
and peripheral compartments. Lastly, ke is the elimination rate constant with which the compound is
eliminated from the body. To obtain the drug concentrations C, the amounts are divided by the volume
of distribution (V ) of the corresponding compartments. All PK parameters have been log-transformed
to avoid non-positive values and the heterogeneity between the subjects was accounted for by attributing
random effects solely to `V = µ`V + η`V,i, with η`V,i ∼ N (0, ω2

`V ), estimating all parameters with
corresponding uncertainties in a nonlinear mixed effects model setting (notation as above).

3.3 Serum concentrations after transdermal patch administration

The PK of a compound is essentially describing the combined aspects of absorption and disposition. It is
easy to derive that a convolution-based IVIVC modelling can be rephrased in the context of differential
equations (see Buchwald, 2003). The first equation in (3) represents a complex input function (In), and
three differential equations describe the metabolism and elimination of the compound. The in vitro perme-
ation data in equation (1) can approximate the input function and the three-compartment model from the
IR formulation (2) serves for describing the disposition,

In(tijk) = Dk × Fik ×Bi ×
hik
sik
×
(
tijk
sik

)hik−1

× exp

{(
− tijk
sik

)hik
}
,

da1(tijk)

dt
= In(tijk) + k21a2(tijk) + k31a3(tijk)

− [k12a1(tijk) + k13a1(tijk) + kea1(tijk)] , (3)

da2(tijk)

dt
= k12a1(tijk)− [k21a2(tijk)] ,

da3(tijk)

dt
= k13a1(tijk)− [k31a3(tijk)] ,

C1(tijk) =
a1(tijk)

V1,i
.
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6 Elvira M. Erhardt et al.: Bayesian knowledge integration for an IVIVC model

The in vitro permeation was chosen as surrogate for the In(tijk). The factor F signifies the fraction of the
dose delivered (analogue to the f in equation (1)), as measured from the residual dose in patch. Part of
the permeated amount of the dose potentially did not enter the bloodstream; hence, it did not contribute to
the serum concentration-time profile, implying the need for a biovailability factor B, the fraction of dose
delivered which is actually absorbed into the systemic circulation. To ensure it is laying within the unit
interval after inclusion of the random effects, a logit-transform was applied to B, so that the transformed
B̃ can range between ±∞. The bioavailability had assigned a random effect per subject i; the same held
for the PK parameter V1,i, in line with the infusion model (2).
The vector θ unifies all twelve population parameters estimated by the model,

θ = (µB̃ , µ`hk
, µ`sk , µ`V , µ`k12 , µ`k21 , µ`k13 , µ`k31 , σ

2), k = 1, 2,

and the standard deviations (SDs) of the four random effects are

Ω = (ωB̃ , ω`h, ω`s, ω`V ).

To restrict the model’s complexity to a (computationally) reasonable extent, the mixed effects `hik and
`sik for the dose-dependent shape and scale, respectively, of the in vitro permeation model’s input function
(1) had their specific fixed µk but shared the random ηi,

θn,ik = µn,k + ηn,i with ηn,i ∼ N (0,Ω2
n), n = 1, 2, 3.

The index n is denoting the nth element of the vector θ and Ω, respectively. The small sample size of the
24 h formulation in the permeation data (see the three dashed lines in Figure 1) yielded an artificially low
variability of its parameter estimates. To be conservative, the higher estimates of the 72 h formulation have
been used for the shared random effects of `h and `s.

An additive residual error (i.e., assuming normal distribution) or a proportional residual error (i.e., assum-
ing log-normal distribution) model is common practice when modelling serum concentration-time profiles.
Instead of using transformations to obtain normally distributed residuals, one can change the distributional
assumption itself. Lindsey et al. (2001) showed that the gamma distribution is often more suitable when
fitting PK concentration data. As this held true for the TD data in the present case, this recommendation
has been followed. Accordingly, the TD observations y(tijk), i.e., the measured drug concentrations in
blood serum of the TD formulation in subject i at time tj wearing patch formulation k were modelled as:

y(tijk) ∼ G(α(tijk), β(tijk)),

α(tijk) = (C1(tijk)/σ)2,

β(tijk) = C1(tijk)/σ2.

The shape α and the scale β parameter of the gamma distribution have been defined in order to maintain
the mean value, E(y(tijk)) = C1(tijk), and the variance, Var(y(tijk)) = σ2, of the observed TD data
under the assumed model.

3.4 Bayesian knowledge integration

The integration of component knowledge to a whole system requires a systematic and yet flexible approach.
The Bayesian algorithm enables a natural flow of parameter uncertainty between the different models
where parameter estimates of the first stage serve as priors for the second stage of the modelling.
A characteristic difficulty of PK model estimation is that they predict a pattern of concentration over
time that is close to a mixture of declining exponential functions, with the amplitudes and decay times
of the different components corresponding to functions of the model parameters. The estimation of the
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decay times of a mixture of exponentials is known to be an ill-conditioned problem (see e.g., Acton, 1970,
p. 253), which results in difficulties to simultaneously estimate the parameters in such a model (Gelman
et al., 1996). Furthermore, the simultaneous estimation of twelve fixed effects plus four random effects is
of great complexity, above all from observations of only 36 patch applications. These circumstances, as
well as the availability of relevant information on many parameters, justify the choice of informative prior
distributions with, in some cases, low SDs (see Table 1). Further, for the sake of simplicity, all parameters
were assumed to be independent and thus, only univariate priors had been used.
The log-transformation of PK and Weibull parameters yielded normal distributed priors; to be coherent, a
weakly informative half-normal distribution was assigned to the residual variability σ2 of the TD data. The
following joint prior resulted,

p(θ,Ω) = p(θ)× p(Ω) =

[{
11∏
n=1

N (µ̂n, σ̂
2
n)

}
× half-N (0, δ)

]
×

[
4∏

n=1

half-N (ω̂n, ξ
2
n)

]
,

with specific means µ̂n, ω̂n and variances σ̂2
n equal to the estimates from the IR and permeation datasets

and corresponding standard effects, respectively (cf. Table 1). The half-normal distribution scale parame-
ter δ = 10 and the variances ξ2n = 2 of the elements in Ω were chosen high to remain conservative. For the
same reason, the prior SD of the parameters µ`sk was increased to 1. Further, independence was assumed
for model parameters and variance parameters, although a multivariate approach would have been more
suited. It was abstained from this to facilitate the interpretability of the model parameters and to evade
highly intricate structures.

To evaluate the model ability of predicting the correct serum concentration data, population predictions
were simulated. That is, the model was used to repeatedly simulate observations according to the original
design of the study, resulting in predictions of future observations ỹ for additional subjects (exchangeable
with the subjects in the study). This was achieved by simulating random vectors of the physiological pa-
rameters from their simulated population distribution. The posterior predictive distribution was calculated
as

p(ỹ|y) =

∫
p(ỹ|θ,Ω)p(θ,Ω|y)d(θ,Ω).

The variance in the population distribution of the parameters includes posterior uncertainty in the parame-
ter estimates and also real variation in the population.

To compare directly the impact of the integration of information via prior uncertainty, a version of the
proposed CR model without uncertainty propagation has been applied as well. That is, the point estimates
from the first stage (in vitro and IV model) were plugged in as fixed data and only the bioavailability B
and the error term σ had priors attached and thus, were estimated. Then, the predictions were conducted
analogously to the way described above.

Key quantities of interest in concentration prediction, the AUC, the Cmax and the time of peak concen-
tration, tmax, were calculated for model evaluation. Those were compared between observations and
predictions and between the proposed model with uncertainty and the and version without uncertainty
propagation. At last, the percent prediction error

%PE = 100 ∗
|AUCobservations −AUCpredictions|

AUCobservations

was calculated as well as a measure of prediction accuracy.
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4 Results

The two frequentist nonlinear mixed effects models for the in vitro release formulations were fitted using
the R package nlme by Pinheiro and Bates (2000, chap. 8.2). The function approximated the in vitro data
well. It has been formally compared with other distributions based on the Akaike Information Criterion
(AIC). For both formulations, the log-normal distribution yielded the lowest AIC. Looking at the 72 h
formulation, the result was 8664.08 for the log-normal, followed by the Weibull (8672.22), the Gompertz
(8821.10) and lastly, the exponential distribution (9106.94). The decision has been made for the Weibull
CDF, considering the small difference in AIC between its fit and the log-normal fit, the visual difficult
distinguishability of their curves (Supporting Information, Figure S3), the common usage of the Weibull
distribution in drug release curve fitting (Goldsmith et al., 1978; Costa and Lobo, 2001; Zhou, 2003) and
the interpretability of its shape parameter as permeation rate in that context.
The graphical fit of the permeation profiles using only the population effects for shape (h) and scale (s)
can be found in Figure 1. Figure S4 in the Supporting Information depicts the individual fits to skins using
the random effects η for h and s; the parameter estimates are in Table 1 (first column, top).
For the nonlinear mixed effects model of the IR concentration-time profiles, the nlmixr package in R
was utilised. The adequate model fit of the three-compartment model for the IR data is shown graphically
in Figure 2 (population fit) and in the first column (bottom) of Table 1. A plot of the individual fit to the
infusion data is given in the Supporting Information Figure S5. The figures show a very good approxima-
tion of the data, except for one observation of subject number 111.
The TD data was fitted using the combined ODE system (3) of the drug permeation model (1) and the
infusion model (2) above. The frequentist parameter estimates (with uncertainties) of these two models
were utilised as initial values and prior information for the Bayesian fit of the IVIVC model. The resulting
posterior distributions involve high-dimensional integration and are analytically intractable. This hierar-
chical Bayesian differential equation modelling was implemented via Hamiltonian Monte Carlo (HMC)
(e.g., Neal , 2011), a type of Markov Chain Monte Carlo (MCMC) algorithm incorporated in the software
package Stan, via R (Stan Development Team , 2018). To make the MCMC method arithmetically more
stable and to improve the sampling efficiency of the HMC algorithm, all mixed effects were reparametrised
non-centrally (Betancourt and Girolami, 2015; Papaspiliopoulos et al., 2007). Stan’s HMC algorithm was
used to draw samples of the parameters from the posterior distribution via the R package rstan. From
those, features of the marginal distributions of interest could be inferred as well as model diagnostics such
as visual predictive checks (VPCs).
To allow faster convergence, only the shapes h and scales s of the Weibull distributions, the volume V from
the PK parameters and the bioavailabilityB had random effects added. The volume was estimated for each
of the 18 subjects, the other random effects for each of the 36 patch applications. Both patch formulations
were fitted simultaneously to allow an exchange of information between formulations.
The individual predictions (per subject) of the TD data can be seen in Figure 4. More precisely, the real
observations with the posterior median and the 90% credibility interval (CI) of the simulated observations
are depicted. These are predictions of newly observed concentrations in the same subjects participating in
the actual study. Figure 5 contains the 90% CI of the population predictions, the predicted new observa-
tions in new subjects. For an improved illustration of the model’s predictive ability and appropriateness,
quantiles of the entirety of population predictions have been plotted versus time on top of the correspond-
ing quantiles of the real observations, to aid comparison of predictions with observations (VPC). Ideally,
the solid curves are congruent with the dashed lines or at least, lay within the 50% confidence band around
each of the prediction intervals obtained by simulation (grey areas in the plot). The percentiles chosen for
plotting were the 5th, 50th and 95th percentile (Figure S6 in the Supporting Information) as well as the 25th,
50th and 75th (Figure S7 in the Supporting Information) as for small data sets, less extreme percentiles may
be more appropriate (Karlsson and Holford, 2008).
The comparison of the AUCs between observed and individual predicted concentrations for the models
with and without uncertainty propagation can be seen in Figure 6. The densities of the corresponding
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%PEs with the quantiles are overlaid as vertical red bars are plotted as well (see Figure 7). Further key
quantities and comparison also with the population predictions are contained in the Supporting Information
(Figures S8-S15).

For each parameter, 4 independent Markov chains were started at values obtained by sampling the cor-
responding parameter at random from its prior distribution. After careful inspection of former programme
runs, the number of iterations per chain had been fixed to 750, of which the first 150 were discarded as
“warm-up”, adding up to 2400 iterations in total. Compared to iteration numbers of MCMC algorithms
this seems few but it is important to note that the HMC algorithm explores the parameter space much more
efficiently. For the population predictions, 2400 sets of 18 new subjects receiving both formulations were
simulated, yielding 540 × 2400 = 1, 296, 000 predicted observations. The computations required ca. 30
hours on a Linux Infiniband-QDR MIMD Distributed Shared-Memory Cluster with CPU Model 2x Xeon
E5-2680 v3 2.50 GHz (turbo 3.3 GHz) 12 cores.
The convergence of the simulations was monitored by comparison of the variance between and within
sequences for all parameters of interest. Specifically, the R̂ statistic by Gelman and Rubin (1992) was
calculated to assess convergence comparing within- and between-chain variability over the second half of
each chain (see Table 1 and Figure S16 in the Supporting Information). Additionally, the chain’s traces (the
time series of the posterior draws), the pairwise correlations and HMC diagnostics and each parameter’s
Kernel density of posterior draws were plotted to assess convergence visually (see the Supporting Informa-
tion Figures S17-S18). The chain’s plotted traces resembled “fuzzy caterpillars”, a sign for convergence,
and there were 0 divergences after warm-up reported by the Stan algorithm. The plot of the parameter’s
pairwise correlations was free of abnormalities or strong dependencies.
Source code and simulated datasets to reproduce the results are available among the Supporting Informa-
tion on the journal’s web page.

5 Discussion

An in vitro–in vivo correlation is a mathematical description of the, possibly nonlinear, relationship be-
tween in vitro drug release and either in vivo drug release or absorption. The IVIVC models are commonly
used in a wide range of applications. During clinical phases I and II an IVIVC model can be used for mod-
ification or optimisation of the drug formulation in order to achieve target concentrations of drug in serum
which remain within the therapeutic window over a sufficient period of time. In clinical phase III and in
the post approval period, an IVIVC model can support changes made to production procedures, known as
variations or scale-up and post approval changes (SUPAC) (FDA, 1997b; Leeson, 1995) and cost-intensive
in vivo bioequivalence trials might be evitable.
IVIVC modelling consists of combining of data from different resources in a physiological meaningful
manner. Several methods have been proposed. The most widely applied among these are deconvolution-
based. This may be due to their relatively easy implementation. Gaynor et al. (2008) demonstrated that
bias might be introduced in this method. Therefore, convolution-based methods seem more appropriate for
the development of IVIVC modelling, despite the more challenging implementation of such models.
The goal of this project was to investigate a fundamental way of integrating prior knowledge and TD data
to obtain a full picture of the IVIVC. A Bayesian nonlinear mixed-effects IVIVC model is introduced and
the method is applied to the case study of a transdermal patch. The hierarchical aspect is deemed required
to correctly account for the sources of variation, i.e., inter- versus intra-subject variability. This aspect is
often ignored in deconvolution–based methods, where the average in vitro release profile is used. In the
two-stage convolution-based methods, the parameter uncertainty is also not accounted for when parameter
estimates are transferred to the second stage, instead it is claimed that the first stage estimates are esti-
mated exactly and all uncertainty is therefore pushed forward to the second stage in the estimation process,
which potentially leads to inflated variances. On the other hand, the one-stage modelling might lead to

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



10 Elvira M. Erhardt et al.: Bayesian knowledge integration for an IVIVC model

a compensation-type of effect from one submodel towards the other submodels. More detailed, in prac-
tice there is often an imbalance of sample size between in vitro and in vivo studies, typically the latter is
sparser due to its higher costs, but also the contrary, very rich clinical trials, can occur. In this situation,
the one-stage approach would tend to discard the information of the smaller trial, as the larger trial might
dominate the estimation process. In the pharmacokinetic/pharmacodynamic (PKPD) modelling context,
simultaneous modelling of different sources of data is statistically preferable compared to first estimating
parameters, which are then fixed and used in the second stage of the analysis (Zhang et al., 2003). Jacob
et al. (2017) investigate in their paper why and when modular approaches might be preferable to the full
model and propose a method for choosing between these two types of inference.
The applicability of Bayesian statistics in IVIVC models has been recognised about 10 years ago by Ko-
rtejärvi et al. (2006). The limiting assumptions of their approach, however, are that oral dosage form
absorption is dissolution rate controlled, pharmacokinetics follows a one-compartment model with first
order absorption and the AUC is independent of the formulations. Moreover, the dissolution function was
fit to averaged dissolution data. The posterior parameter estimates were generated in absence of an IR unit,
thus, the method works only with very informative CR data and a simple compartment model to reduce
the number of parameters. Gould et al. (2009) developed a Bayesian predictive approach for IVIVC which
rescales the time based on the in vitro release so that the in vivo release of the IR corresponds to it. There-
fore, the method can not be used with an intravenous infusion as IR. Qiu et al. (2016) proposed a method
to derive two-sided Bayesian tolerance intervals depending upon averaged observed in vitro release and
deconvolved in vivo release profiles.

A Bayesian hierarchical model is a powerful and natural tool for incorporating such parameter uncertainty
between different stages of the modelling. The approach explained in this paper represents an intermediate
solution to the possible criticism on both the one- and the two-stage convolution-based methods. It uses
the estimated means and corresponding SDs from the first stage – the fit of the in vitro permeation and
the in vivo IR data – merely as prior information for the second stage. Thus, the (lack of) information on
parameters is shared towards modelling of the CR formulation rather than using plug-in estimates from the
first stage of PK modelling which may introduces an undue over-confidence into the model.
By following this approach, preclinical in vitro and in vivo IR data is used not only to extract the parameter
estimates, but also to understand the CR model structure. Once the CR model is built in this way (includ-
ing some transformation, if necessary) the before acquired knowledge about the parameters of two separate
sources enters the model together as prior information to predict the exposure of the new formulation in
human blood serum. This step-by-step procedure is a general approach that can come flexibly into opera-
tion for many different kinds of dissolution or release, IR and CR studies. The method is also feasible in
a very imbalanced data situation with high uncertainty around the parameters, since it uses the first stage
data to gather knowledge but stays flexible by usage of informative priors. Consequently, convergence is
assured and uncertainty is accounted for in a more intuitive manner, i.e., both in the in vitro and the in vivo
part of the IVIVC model.

When applying this approach to the case study at hand, the resulting Figures 1 and 2 show that the popula-
tion effects of the in vitro permeation and the in vivo IR serum concentration-time profiles, respectively, are
laying well within the individual curves. The model fit was evaluated based on likelihood criteria as well
as visual inspection. The appropriate fit to the in vitro permeation data could be expected as the Weibull
CDF has a long tradition in the modelling of release profiles (Christensen et al., 1980; Berry and Likar,
2007), with Piotrovskii (1987) being the first one applying it, to our knowledge.
The individual fits are tracing the observations of single skin and subject, respectively (see the Support-
ing Information Figures S4 and S5, respectively, for the graphical representation). The only remarkable
deviation from the measurements is the fifth sample of subject number 111 in Figure S5, which might be
considered as a potential outlier in Figure 2.
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The individual predictions for the TD serum concentration-time profiles, shown in Figure 4, fit the obser-
vations well. It is important to note that in this study, the in vitro permeation (in skin portions) has been set
equal to the in vivo permeation in subjects (In(tijk)). This is generally not the case and we acknowledge
that this is an unrealistic assumption. However, as the case study serves for illustrative purposes only, it
was analysed in a basic manner. Generalisation can be done easily as proposed by Dunne et al. (1999), i.e.,
the in vivo release would be replaced by the in vitro release upon generalisation with a link function.
Solely the absorption phase of the 24 h patch worn by subjects number 1017 and 1018 in Figure 4 were not
fitted optimally by the posterior median. The late onset of the absorption phase of subject 1017 is difficult
to fit as well as the initial burst of the latter. Figure 5 suggests that the predictions made by the model are
in agreement with the data. The sharp discontinuity of the posterior median and credibility bands at 72 and
24 h, respectively, is due to the removal of the patch from the skin, after which no compound was absorbed
any more.
The VPC reveals that the observation median lies for the most part within the 50% confidence bands of
the mean posterior prediction, the lower and upper percentiles instead, are estimated too low and too high,
respectively. This discrepancy is apparent for both patch formulations but more distinct for the second
(lower dose).
From the comparison of the AUCs (Figures 6 and 7) and other key quantities (Figures S8-S15 in the
Supporting Information) for the different scenarios can the conclusion be drawn, that the propagation of
uncertainty results in an advantageous prediction, thus, the estimation in the Bayesian framework brings
a clear improvement of the IVIVC model. Only for the AUC of the 72 h formulation, the optimal re-
sult of a straight line in the comparison plots could be achieved and the small sample size of the 24 h in
vitro formulation gives in general less accurate predictions than the 72 h formulation. Accordingly, the
%PEs lie above the FDA criteria of 10% or less for AUC and Cmax to establish the predictability of the
IVIVC (FDA, 1997a). However, the aim of this work is not the claim of establishment of an IVIVC for
the compound according regulatory guidelines but rather, to outline a general framework of a new IVIVC
development methodology.
According to (Källén, 2007, p. 23), the bioavailability B is not only subject to between-subject variability,
but it can also vary between different doses k. However, a model with random effect assigned per subject
i and for each patch formulation k lead to a strong positive correlation of the two biovailability factors.
Reparametrisation removed the correlation and revealed a 98% congruousness of B1 and B2, wherefore
the model with a single dose-independent B was chosen.
In general, when first stage results are used for building priors of a second stage, this can possibly result in
inconsistent estimates as prior-data conflicts can arise. The IVIVC theory however, is based on the concept
that the in vitro information surrogates the in vivo environment. Hence, a conflicting prior would indicate
that one cannot make any conclusions regarding the in vivo data based on the in vitro release profiles.
Therefore, such data would support absence of an IVIVC model.
Still, to avoid overconfidence into the frequentist estimates, a sensitivity analysis with priors having SDs
twice as high (with the exception of the already high Ω SDs) was run. As can be seen in Table S1 in
the Supporting Information, the posterior means are comparable, while some of the posterior SDs are in-
creased.
Given the vastly increased run times (by a factor of 3.5 from ca. 30 to ca. 104 hours) caused by the broader
parameter space, the good practice was followed and not deviated from the frequentist variance estimates
of the first stage.
Lastly, a gamma distribution has been proposed for the serum plasma concentrations and was straightfor-
wardly implemented in Stan, while commonly distributions other than the (log-)normal distribution so
far remain underused, particularly due to their unavailability in standard PK software (Dosne et al., 2016).

In conclusion, the presented combined in vitro–in vivo model provides a satisfactory estimation of the
transdermal patch serum concentration-time profile. The Bayesian framework allows a natural integration
of knowledge from one source of information into another, while accounting for the uncertainty of the
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parameters. The possibility to utilise all observed data when constructing an IVIVC model, can be con-
sidered as a major strength of the Bayesian approach. This is a clear improvement of the current IVIVC
methodology where a frequentist one-stage or two-stage approach is the standard. The proposed IVIVC
model enables the use of in vitro release for formulation optimisation and can function as a surrogate for
in vivo bioequivalency studies of the transdermal patch at hand.
Further, the proposed approach is very flexible: it can be easily modified to combine multiple sets of IVIVC
data with relevant sources of variation incorporated into the analysis. Also, the ODE system makes a switch
to formulations following Michaelis-Menten kinetics (as opposed to linear elimination) straightforward.
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Figure 1 Population fit of the Weibull input functions (black) to the 52 permeation curves of the 72 h
formulation (grey, solid) and the 3 permeation curves of the 24 h formulation (grey, dashed).
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Figure 2 Population fit (black) of the compartment model to the 18 IR profiles (grey).
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Figure 3 Serum concentrations of the TD’s 72 h formulation (left) and 24 h formulation (right), 18
concentration-time profiles each.
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Figure 4 Serum concentrations (black dots) with posterior median (black lines) and 90% credible bands
of predicted individual observations in study subjects.
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Figure 5 Serum concentrations (black dots) with posterior median (black lines) and 90% credible bands
of predicted population observations in new subjects for the 72 h formulation (left) and the 24 h formulation
(right) of the TD.
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Figure 6 Individual predictions: observed vs. predicted AUC for the 72 h formulation (left column,
dark grey) and the 24 h formulation (right column, light grey) comparing the proposed model (top row,
circles) with the model without uncertainty propagation (bottom row, triangles). The dashed line indicates
the diagonal.
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Figure 7 Individual predictions: density of the AUC percent prediction errors (%PE) for the 72 h
formulation (left column, dark grey) and the 24 h formulation (right column, light grey) comparing the
proposed model (top row) with the model without uncertainty propagation (bottom row). Quantiles are
overlaid as vertical dashed lines.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



18 Elvira M. Erhardt et al.: Bayesian knowledge integration for an IVIVC model

Table 1 Estimates of all model parameters. Frequentist models for drug permeation and IR with fixed
effects, corresponding SDs and random effect SDs (both in parenthesis). Analogously for the Bayesian
model of the TD data, with posterior SD (in parenthesis) and Gelman-Rubin statistic R̂.

mean (SD)

Parameter Frequentist Bayesian
fixed random fixed R̂ random R̂

permeation controlled release
B - - 0.34 (0.09) 1.01 0.26 (0.15) 1.03
f1 0.83 (0.02) (0.16) - - - -
f2 0.91 (0.05) (0.07) - - - -
log(h1) 0.52 (0.02) (0.15) 0.52 (0.02) 1.00 0.08 (0.02) 1.00log(h2) 0.61 (0.05) (0.05) 0.66 (0.03) 1.00
log(s1) 3.84 (0.03) (0.16) 3.34 (0.13) 1.00 0.42 (0.06) 1.00log(s2) 3.82 (0.07) (0.11) 2.72 (0.12) 1.01

immediate release
log(V ) 10.47 (0.11) (0.38) 10.50 (0.11) 1.00 0.17 (0.09) 1.00
log(ke) 0.39 (0.28) - -1.00 (0.19) 1.01 - -
log(k12) 0.15 (0.45) - 0.32 (0.42) 1.00 - -
log(k21) -2.16 (1.05) - -2.12 (0.28) 1.00 - -
log(k13) 1.82 (0.15) - 2.13 (0.15) 1.00 - -
log(k31) 0.61 (0.20) - 0.35 (0.17) 1.00 - -
σ - - 0.18 (0.01) 1.00 - -
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