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NONLINEAR STATIC RESPONSE ANALYSIS

OF SANDWICH BEAMS

USING THE REFINED ZIGZAG THEORY

Alessia Ascione, Marco Gherlone

Abstract

The Refined Zigzag Theory (RZT) is assessed for the buckling and nonlinear static response
analysis of multilayered composite and sandwich beams. A nonlinear formulation of the RZT is
developed taking into account geometric imperfections and nonlinearities using the Von Karman
nonlinear strain-displacement relations. FE analyses are conducted employing C’-beam elements
based on the RZT and the Timoshenko Beam Theory (TBT) to model three sandwich beams with
different core materials and slenderness ratios, in both simply supported and cantilever
configurations. The reference solutions are obtained by high-fidelity FE commercial codes,
Abaqus® and Nastran®. The first two buckling loads are evaluated for the beams without initial
imperfections. Several shapes are then assumed as geometric imperfections to calculate the beams
nonlinear response to axial-compressive loads. The comparisons show the very high accuracy of the

RZT (comparable to high-fidelity FE commercial codes) for both the buckling and nonlinear static
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analyses and its superior capability With respect to the TBT to deal with sandwich beams with low

slenderness ratio and higher face-to-core stiffness ratio.

1. Introduction

In the last sixty years, the usage of multilayered composite and sandwich materials has significantly
increased in civil, mechanical and aerospace engineering applications. The percentage of
composites and sandwiches employed in airplane structures has risen from 2% to more than 50% in
modern aircrafts [1]. The main advantages of such materials are the good resistance to corrosion,
the high stiffness-to-weight and strength-to-weight ratios and the “tailoring” freedom related to the
possibility to obtain optimal structural responses by adopting selected stacking sequences. These
properties make multilayered composite structures very attractive, especially for primary structural
components of aircrafts. In working conditions, a large proportion of an aircraft’s structure is
subjected to axial and bending loads and the buckling is one of the most typical failure modes. The
buckling is a nonlinear phenomenon associated with large transverse displacements when a small
load increment (with respect to a critical level) is added to the axial compressive or shear load
applied to a beam- or plate-like structure. An accurate understanding of this phenomenon in metal
structures allows the usage of such structures also in the post-buckling regime, leading to a
considerable reduction of the thicknesses required to carry the applied loads. On the other hand,
composites and sandwiches are still used only in the pre-buckling regime because their behavior
still cannot be predicted with high accuracy in critical situations. As a consequence, one of the
major challenges for the aerospace industries is the possibility to employ composites in post-
buckling regime to further reduce the structural weight [1].

Various approaches have been adopted for predicting critical buckling loads in structural members

usually subjected to compressive loads. [nSome of these approaches. geometric imperfections are
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with an initially straight axis configuration. In [2], Brush and Almroth collected the most common
methods and investigated the stability of structures considering geometric nonlinearities in the
elementary bending analysis. A first attempt to analyze the behavior of composite and sandwich
beams was conducted applying the Classical Lamination Theory (CLT) and the classical theory for
beams (Bernoulli-Euler beam theory). As an example, Barbero and Raftoyiannis [3] evaluated the
critical buckling loads and the failure modes of pultruded composite columns with thin-walled cross
sections, employing the CLT for the stiffness characteristics and then the Euler’s critical load
formula. Columns of various lengths were considered to investigate the transition of the first failure
mode from global to local buckling when the beam length decreases. The classical theory was also
adopted to investigate the nonlinear behavior of composite beams with geometric imperfections
both in pre- and post-buckling regimes. In [4], the effect of piezoelectric layers attached to the beam
was included in the nonlinear formulation of Bernoulli-Euler beam theory for initially imperfect
composite beams under compression. The analysis showed that the nonlinear response of slender
composite beams in the pre-buckling regime can be significantly modified by the piezoelectric
actuation, obtaining a load-displacement equilibrium path that is close to the ideal solution for
perfect beams. Emam and Nayfeh [5] found a closed form solution for the equilibrium
configurations of composite beams loaded beyond the critical buckling load and studied both the
stability in post-buckling regime and the dynamic behavior in the buckled state considering various
boundary conditions. The mathematical model was based on the Bernoulli-Euler beam theory.

However, many authors demonstrated the inaccuracy of this theory for the analyses of multilayered
composite and sandwich structures. Khedir and Reddy in [6] showed that the Bernoulli-Euler beam
theory highly overestimates the buckling loads of cross-ply laminated beams. They compared the
exact analytical solutions of the governing equations for the buckling analysis based on four
different theories: the Bernoulli-Euler beam theory, the Timoshenko beam theory (or First-order
Shear Deformation Theory, FSDT), the Second-Order Shear Deformation Theory (SSDT) and the

Reddy-Third order Shear Deformation Theory (TSDT). The critical loads evaluated with the shear-
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deformation theories were rather similar to one another but much lower than Bernoulli-Euler
values. A nonlinear formulation of the Reddy TSDT was developed in [7] to study the pre- and
post-buckling of imperfect laminated beams. The governing equations were solved numerically for
different types of boundary conditions to evaluate the equilibrium path of longitudinal and
transverse displacements when the axial-compressive load increases from zero beyond the buckling

load. Various imperfection functions and lay-ups were considered for investigating their effect on

the structural behavior in post-buckling regime.

The importance of the shear deformation in the buckling and post-buckling analysis, especially for
composite and sandwich structures, was observed also by Sheinman. In [20], he developed a
nonlinear formulation based on a TSDT to investigate the post-buckling behavior of laminated
beams, showing that not only the shear deformation must be considered in composite beam analyses
but also that a higher-order theory is necessary when the beam length-to-thickness ratio is low.
However, Tessler et al. observed that the FSDT and the HSDTs (Higher-order Shear Deformation
Theories), which belong to a class of theories called Equivalent-Single Layer (ESL), can lead to
erroneous predictions of the in-plane and transverse-shear stresses in case of either thick beams (or
plates) or highly heterogeneous material lay-ups [21-26]. The major drawback of these theories is
the through-the thickness discontinuity of the transverse stresses as a consequence of a C'-

continuous displacement field assumption. Layer-Wise (LW) theories overcome these problems
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assuming an independent displacement field for each layer and enforcing the stress continuity at
layer interfaces. They are able to accurately reproduce the zigzag pattern along the thickness of the
in-plane displacements, but their computational cost is affordable only in case of few material
layers [27, 28]. A compromise between the ESL and the LW theories in terms of accuracy and
computational effort is represented by the zigzag theories, where the displacement field is
developed in such a way that the transverse shear stresses continuity is ensured and the numbers of
kinematic variables is independent of the number of layers [29, 30]. Among this class of theories,
the Refined Zigzag Theory (RZT) [21-26], has proven to be one of the most amenable to
engineering practice because of its superior capacity to predict static, dynamic and buckling
behavior of composite and sandwich structures, including very thick laminates with highly
heterogeneous material properties, with very low computational cost. In [25], RZT was compared to
TSDT and a HSDT for the static, free-vibration and buckling analysis of sandwich plates, showing
better performances. The promising characteristics of the RZT has led to an interest in extending
the theory to the nonlinear analysis of composite and sandwich beams under axial-compressive
loads.

Aim of the present effort is to assess the Refined Zigzag Theory for the buckling and nonlinear
response analysis of composite and sandwich beams also in presence of geometric imperfections.
Atfirst] a nonlinear formulation of RZT for beams has been developed using Von Karman strain-
displacement relations. The nonlinear response of geometrically imperfect composite and sandwich
beams in the pre-buckling regime can be modelled. A finite element approximation based on RZT
C’-beam elements [24] has been introduced to solve the nonlinear equilibrium equations for any
kind of boundary conditions. The RZT capability to solve this kind of problems has been assessed
by comparison with high fidelity, two-dimensional Abaqus® and MSC/Nastran® FE models, for

simply-supported and cantilevered sandwich beams.

2. Nonlinear formulation of the Refined Zigzag Theory for geometrically imperfect beams

hhttp://mc.manuscriptcentral.com/jssm
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In this section, a nonlinear formulation of the Refined Zigzag Theory for geometrically imperfect
beams is developed.
2.1 Displacements, strains, and stresses

Consider a beam of length L and cross-sectional area A = 2h x b, where 2h is the total

thickness and b the cross-sectional width. The beam is composed of N orthotropic material layers

perfectly bonded to each other (Figure 1); each layer is denoted by the superscript (k).

[insert Figure 1.]

The longitudinal axis of the beam is denoted by x, with xe[x,,x,] (L =x, —x, ), whereas the
thickness coordinate is z , with z e [~A, h]. The thickness of the k th layer is 24’ and its thickness
coordinate ranges from z, ,, to z,, (Figure 2a). It is assumed that the beam can be deformed only
in the (x,z) plane. Distributed loads (units of force/length) are applied at the bottom (z =-4) and
top (z =+h) beam surfaces; namely, the axial, p’(x) and p'(x), and transverse, ¢’ (x) andgq'(x),
loads. The end cross-sections are subjected to the action of prescribed axial (7,7, ) and transverse

shear (7

za?’

T,,) tractions (Figure 1).

The orthogonal components of the displacement vector of the Refined Zigzag Theory can be

written in the following matrix form [24]

u(x)
(%) 1 0 )
u.'(x,z z z) || w(x)
e ) / =Z,(2)u(x) (1)
u, (x,2) 01 0 0 z9(x)
(%)
where 4" and u_ are the displacements in the directions of the x and z -axis, respectively, and u

hhttp://mc.manuscriptcentral.com/jssm
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is a vector containing the four kinematic variables of the theory: the uniform axial displacement,

u(x) , the deflection, w(x), the average cross-sectional (bending) rotation, $(x), and the zigzag
rotation, w(x). Note that u, = w(x) is through-the-thickness uniform hence the superscript (k)

does not appear in the notation for this quantity. Moreover, w(x) is the RZT additional kinematic
variable with respect to the Timoshenko beam theory and measures the magnitude of the zigzag
contribution to the axial displacement, ¢ (z)y (x), i.e., the cross-sectional piecewise continuous
distortion typical of multilayered structures.

The zigzag function, ¢*’ = ¢*(z), has units of length, is a piecewise linear, C’-continuous
function of the thickness coordinate and is completely defined once its (N +1) interfacial values

#.,(i=0,1,...,N) are known (see Figure 2b).

[insert Figure 2.]

. . . . 1
¢ is set to vanish on the top and bottom laminate surface, i.e., ¢(0)E¢()(Z(O))=0 and

D, E¢(N)(Z(N)) =0. The internal values, @, E¢(‘/)(Z(j))=¢(‘i+l)(2(j)) (j=12,...,N —1) can be

obtained as follows

¢(j) :¢(}._1) +2h(j)ﬂ(j) (] 21,2,...,N—l) Q)

where S* is the zigzag function slope in each layer. ) can be obtained by using the following

expression

hhttp://mc.manuscriptcentral.com/jssm
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€)

where G)Ef ) is the kth layer transverse shear modulus and G denotes a weighted-average transverse

shear modulus of the laminate
-1 -1
(1 td ) (1 a™
o=l | <15 @

The complete derivation of Egs. (2)-(4) can be found in [21].
Geometric imperfections and nonlinearity are included in the model by considering the Von

Karman nonlinear strain-displacement relations

o, .
gx - ux,x + Euz,x + uz,xw,x (5)

}/xz = ux,z + uz,x

where the function v’ describes initial imperfections, i.c. initial stress-free transverse deviations

Substituting the displacement components (Eq. (1)) into Eq. (5), the following nonlinear strains for

the Refined Zigzag Theory are obtained

hhttp://mc.manuscriptcentral.com/jssm
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£05,2) =1, ()4 20, () 4 W, (042 W ()4, (W, (2)

=ZP(2)o(x)+ % o(x) Ho(x)+ o' (x)" o(x)

(6)
78 (x,2) = w (x)+0(x)+ By (x)
=72 (2)o(x)
where
o=[u, w, 8 v & ]
. . T (7
o =[0 w, 00 0 0]

The zero-one matrix H and the matrices Z* and Z(Yk) (function of the thickness coordinate) are

defined in Appendix A.
The material of each layer is linearly elastic and orthotropic, with the orthotropy directions

corresponding to the axes of the coordinate system, (x,y,z). A plane-stress behavior is assumed in

the (x,z) plane. Moreover, the transverse normal stress, o®

z

, is negligible with respect to the axial

and transverse shear stresses. Consequently, the constitutive equations for the kth layer are

(k) — (k) (k)
O-x _Ex gx

(®)
(k) — G(k) (k)
sz =0V

where E and G% are, respectively, the Young modulus along the x-direction and the

transverse-shear modulus in the (x,z) plane.

2.2 Principle of Virtual Works
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The Principle of Virtual Works (PVW) is employed to derive the Euler—Lagrange equilibrium

equations and the set of consistent boundary conditions. The PVW is written in the form

§U—5Le = 0 (9)

where U is the strain energy and L, is the work done by external forces. Introducing the vectors of

strain and stress components as e =[¢*) V1" and 6 =[c¥ *)]", the virtual variation of U is
oU = J. 6£T6dv=J‘Xh I [é‘g(k)a(k) +oyHe® ]dAdx
% x, 4 x x 5]/)(2 Xz (10)

For the loading conditions represented in Figure 1

sL=[" [5u

X,

0 (—h)pb + 5u£N) (+h)p’ +5u£l) (—h)qh + 5u£N) (+h)qt}dx

X

an

za

—J.A[é'uik) (xa,z)fm +ou,_ (xa,z)T }dA + L[é‘uik) (xb,z)Tx,, +ou, (xﬂ,z)sz }dA

Egs. (6) and (8) are now substituted into Eq. (10). The latter, together with Eq. (11), is then
substituted into Eq. (9). Integrating over the beam’s cross-section yields a one-dimensional form of

the PVW based on the nonlinear formulation of RZT

+[ N, Ou(x,)+M,00(x,)+V, ow(x,)+M,5p(x,) ] (12)
[ Nyou(x,)+ M ,,60(x,) +V,,6w(x, ) +M 5y (x,) | =0

X

1

NS, + %Wi +w W)+ M50, +V.5(w, +0)+MSy , +V,5y - pou—qSw- mﬁé’}dx

hhttp://mc.manuscriptcentral.com/jssm
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where
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k
[N MMV, =] [0, 20l g0 20, g0 |aa (1.1

IS k
MMV = [ [T Tt A (@ =) (132)
18 are the internal and applied stress resultant forces and moments, respectively, and

24 [pgm]=| (¢ +p )¢+ )((p =2")) | (14)

are the resultant distributed loads.
30 Starting from definition (13.1) and making use of Eqs. (6) and (8), the nonlinear constitutive

34 equations for the RZT imperfect beam are obtained and summarized in the following matrix form

s _
39

1
40 (15)

45 where R = [Nx v. Vv, M, M ¢]T, A is the matrix containing the stiffness coefficients andl

48 is the first column of the matrix A. Refer to Appendix A for the definition of A.
50 Integration by parts of Eq. (12) yields the nonlinear equilibrium equations in terms of resultant

forces and moments

hhttp://mc.manuscriptcentral.com/jssm
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N, .+p=0

Vot [N, (w,+w))] +4=0

16
M, —V.+m=0 (16)

M, =V, =0

and a set of consistent boundary conditions (geometric and kinetic, respectively)

either u(x,)=it, or N,(x,)=N,,

either w(x,)=w, or V.(x,) =V,

(17)
either Hx,)=8, or M (x,)=M_,

either y(x,) =y, or V,(x,) = M i

where the quantities denoted by an overbar are the kinematic variables and the stress resultants

prescribed at the beam ends, x, = (x,,x,). Substituting Egs. (15) into Egs. (16), the equilibrium

equations can be expressed in terms of displacement components

4, [u + G wiiwow ] } +B,0, +Byy, +p=0

GA(w,, +0,)+ (G —E)Ay/’x +{{AH {u’x +(% wltwow ﬂ +B,0, + BIZI//,xi|(M/,x +w, )} | +g=0

(18)

B, |:u +G wltwow j } +D,0,, +Dyy . —GA(w, +0) —(G —E)Ay/ +m=0

B, [u +(%%z W, MJrDuan_ +Duy, ~(G=G)A(w, +0)~(G-G) 4y =0

where the stiffness coefficients are defined in Appendix A.

hhttp://mc.manuscriptcentral.com/jssm
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An approximate solution of Eqs. (18) is now obtained for general boundary and loading conditions

by means of the finite element method.

3. Finite element formulation

Before introducing the finite element approximation into the PVW statement, the strain energy
virtual variation SU , Eq. (10), is expressed as a function of ® and " by using Egs. (6)-(8). After
some straightforward operations and neglecting higher order terms, the following expression is
obtained

sU = j L[6mTZLk’TE§k)Zi")deAdx+% j [ [60"ZY" EP o Ho |ddds

" [00" 20 EV 0" o lade+ [ [ [ 50 HoEN ZPo [d4dx (19)

+] [ [o0' 0’ EOZY o Jiddx+ [ [ [ 6027 GEZPo Jdddx

Since o, o  and H do not depend on the cross-sectional coordinate axes, the following expression

for SU can be obtained from Eq. (19)

U =["s0" [ | ZO"ENZY lddodx+ % [" o0’ [ [Z¥7EP Jido Hodx
+J.:" S’ J.A [Z‘;‘"E ) JdAm*T(odx + J.:" 6u)TH(oJ‘A [E VA JdA odx (19bis)

+J.:/ so'o’ L [E A JdA odx + Jj' S’ L [Z‘Y"’TG'ﬁf)Z‘Y"’ JdA(odx

The kinematic variables are approximated within the beam finite element by using the

anisoparametric interpolation [24]. In order to avoid shear locking, the deflection w(x) is
approximated using a quadratic polynomial whereas u(x), $(x) and w(x) are linearly
interpolated. A consistent constraining condition based on the resultant shear force V_ is used to

simplify the element topology [24]: two nodes and four degrees of freedom per node are obtained
(Figure 3).
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[insert Figure 3.]

The matrix form of the element-wise approximation of the kinematic variables, u , is

u(x)

W) | ngeee
u= 3(x) =Nu (20)

w(x)
where u’ E[u1 w$ oy ou, o w, § %]T is the vector of nodal degrees of freedom and N
is the shape-function matrix (refer to [24] for details on the shape functions definition).
The initial imperfection function w'(x) is an input of the problem and is approximated within each

element as a parabolic function

wx)=N.u* 1)

* . . . *€ * * « T .
where N contains the Lagrange parabolic polynomials and u E[wl w W2:| is the vector

containing the values of the initial imperfection at the ends and at the mid-point of the element

(Figure 4).
[insert Figure 4.]

The PVW statement is now discretized applying the finite element approximation to derive the
element-level equilibrium equation corresponding to the nonlinear formulation of RZT. The vectors

o and @ are related to the corresponding nodal degrees-of-freedom vectors by the relations

hhttp://mc.manuscriptcentral.com/jssm
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(22)

where B and B contain the derivatives with respect to the x-coordinate of the shape functions
defined in Eq. (20) and Eq. (21), respectively (refer to Appendix B). The finite element
approximation of the strain energy variation is obtained substituting Eq. (22) into Eq. (19bis)
~ Syl [Leper ®T (k)7 ®) R Ty e l of [Leperger [ eIpelype e
oU =5u” [ "B -[ (Z¥"EWZY YA Btdx-u +-0u [‘BZY [u"BTHB [dx-u
e L e e wel el e e e L e e e e e e
+ou [“B TZNT-[u BB de-u +6u” [ “[BTHB' ' |- Z{B'dx-u 23)

er (L eTp*t  *¢ e pe e e [Le el KT (k) Re nt
+6u , [B B u JZNde u+ou IO B L(ZY G.'Z, )dA Bfdx-u

where Z§ = L[Ei_“ZS‘)JdA and L, is the finite element length.
Assuming that the internal axial-force resultant, N _, can be approximated as the integral over the

beam cross-section of the linear component of the axial stress (refer to Egs. (8) and (5))

N, =[ EPu, dd
B

- L EPZ® (2)m(x)dA = L E®ZY(2)B (x)u‘d4 (232)

= L E®Z® (2)dAB (x)u’ = ZE B (x)u®

Eq. (23) can be rewritten as follows

hhttp://mc.manuscriptcentral.com/jssm
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SU = su B[ (29" EWZY Jid Bt dx-u* +% [“oN, [u"B"HB Jax-u'
T el L

#fy N[ BB faeu v ou [T B HBE | N deout (23bis)

e L, e *€ %€ e L, e ) (k)rg (k) e e
+ou*’ . [B B ]-N)_dx-u +J5u TIO BT'L<Z(Y”GXZ Zy )dA-B dx-u

Some terms can be collected thus leading to the following expression

L,

SU = su®’ j:“ B[ (ZOTELNZY A -Btdx-ut + % su” [ [ BHBu' |- Z4 B dx-u*

e L e *€ e epe e e L e ¢ e e (24)
+26u’ . [B "B u }-ZNB dx-u‘ +du TIO B ~J‘A(Z$"TG§ZA)Z(;")dA-B dx-u
The virtual work of external forces in the case of loads distributed along the element span is
5L€ = 5ueTfe (25)

where f° is the element consistent load vector corresponding to distributed loads of Eq. (14) and is

defined as
. L, —T
f* = , N qdx (26)

The matrix N is composed by the first three rows of the shape-function matrix N of Eq. (20), and

a=[p q m.

Substituting Egs. (24) and (25) into the PVW statement, Eq. (9), the element-level nonlinear

equilibrium equation can be obtained
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e, e 3 e e e «€ «€ e e
K‘u +EKG(u yu'+Kg(u )-u®=f @7

where the linear stiffness matrix, K¢, and the geometric stiffness matrices, K¢ (u®) and Kg (u*e),

are defined as

K= J‘L BeTABedX, K_z;(ue) — J‘OLU BeTHBeueZ;Bedx, K:: (u*e)E J‘OLU BeTB*eTu*

0

el o e
ZB'dx  (28)

The matrix K¢ (u®) is associated to the nonlinearities and it is function of the nodal degrees of

freedom, while K*Ge (u™) is dependent on the initial geometric imperfections.
If the internal axial-force resultant N_ is constant along the beam and corresponding to the

externally applied compressive force N, (N, =—N, ), the quantity ON_ in Eq. (23bis) vanishes and

Eq. (27) becomes

(K* = NKG Ju® = N Kgu™ +f° 29)

where K¢ and K*Ge are no more dependent on the nodal-degrees of freedom and on the initial

imperfections, respectively

T

K;=[ B'HB'd, K;=[ BB (30)
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Buckling loads can be evaluated for symmetrically laminated beams without initial geometric
imperfections by using the Euler’s method of the adjacent equilibrium configurations. Considering
that the beams remain straight in the pre-buckling state, the linearized stability equations can be

obtained from Eq. (29)

(K" ~ N,K¢, )ﬁ" =0 31)

where U° are incremental with respect to the pre-buckling state. Eq. (31) defines an eigenvalue
problem providing both buckling loads and the corresponding buckling shapes.

4. Numerical results

The accuracy of the nonlinear model based on RZT for the analysis of multilayered beams has been
assessed through a set of numerical test cases. Both critical loads of perfect beams and nonlinear
static response of initially imperfect beams have been investigated. The focus of these numerical
results is on sandwich beams with different core materials and slenderness ratios. Comparison with
Timoshenko Beam Theory (TBT) results are also presented, as well as with high-fidelity FEM

results based on commercial codes and used as benchmarks.

4.1 Beams geometry, materials, boundary conditions and applied loads
Three sandwich beams have been considered with symmetric lay-up (Table 1): two facesheets with
thickness hf and a core with thickness h.. The width of the cross-section is 5 and the length of the

beamis L.

hhttp://mc.manuscriptcentral.com/jssm
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Table 1. Sandwich beams geometry.

Beam L (mm) b (mm) h, (mm) hs (mm)

IG 32 5 320.00 48.53 6.07 5.00

OCoONOOORWN =

11 WF 325 320.00 48.18 6.10 5.00

14 IG 96 2 960.00 72.40 19.93 2.00

Beams IG 32 5 and WF 32 5 share the same nominal geometry (slenderness ratio 20 and face-to-
o3 core thickness ratio 0.82) but they have a different face-to-core stiffness ratio. Beam IG 96 2 has a
o5 higher slenderness ratio (40) and a higher core-to-face thickness ratio (10).

27 Facesheets are made of a 7075 aluminum alloy (Ergal®™) whereas cores are made of Rohacell”
29 structural foams. Two types of foams have been used, namely WF110 and IG31. Material properties
have been evaluated with a dedicated experimental tests campaign for a previous research activity

4 [31], Table 2.

38 Table 2. Materials mechanical properties.

40 Material E (MPa) G (MPa)

43 Ergal® 69,570 25,766
46 Rohacell® 1G31 40.3 12.4

49 Rohacell® WF110 196 65.4

54 Both cantilevered (CF) and simply-supported (SS) boundary conditions have been considered. A

56 compressive load is applied at the beam end that is free to move axially.
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[insert Figure 5.]

4.2  Models

Sandwich beams have been analyzed using beam finite elements based on both RZT and TBT. The
beam length has been divided into 40 elements, found to guarantee convergencel. Both RZT and
TBT elements formulation is based on anisoparametric interpolation (refer to Section 3 and to [24]
for further details). Moreover, a shear correction factor has been used within TBT analysis that is
based on the transverse-shear strain energy [32].

High-fidelity FE models based on commercial codes have also been used in order to provide
reference results with high accuracy. Both Abaqus® and MSC/Nastran® have been adopted. Plane
stress analyses have been performed using S4R and QUAD4 elements, respectively. The detailed

description of the mesh for the considered beams is reported in Table 3.

Table 3. Mesh details for the FEM analyses performed with commercial codes.

No. of elements

No. of
nodes along the along hy¢ along h, total
beam length
(IG/WF) 32 5 5457 320 5 6 5120
IG 96 2 25947 960 2 20 23040

The compressive force is simulated as a distributed load over the cross-section of the beam. The

load in each layer (per unit length of the thickness coordinate) is proportional to the corresponding

hhttp://mc.manuscriptcentral.com/jssm
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Young modulus in order to make the cross-section move remaining flat and to avoid local effects

(that neither RZT and TBT could model).

4.3 Buckling loads

The first two buckling loads have been evaluated for the different combinations of beam stacking

sequences and boundary conditions, Tables 4-6. The RZT solution has been obtained solving the

The value of the shear correction factor adopted within TBT analysis is also reported for each case.

Table 4. First two buckling loads of the IG_32_5 sandwich beam. Loads are expressed in N.

BCs RZT TBT (K=1.1163x 10%) | ABAQUS
9,905 9,159 9,850
CF
26,856 13,196 26,292
17,681 12,346 17,361
SS
38,980 13,522 37,745

Table 5. First two buckling loads of the WF_32 5 sandwich beam. Loads are expressed in N.

BCs RZT TBT (#=5.7162x 107) | ABAQUS
19,4
19,540 19,409 2498
CF
64,303 55,153 63,983
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45,311 42,828 45,005

SS

81,329 61,332 80,009

Table 6. First two buckling loads of the IG_96 2 sandwich beam. Loads are expressed in N.

BCs RZT TBT (K=1.4914x 10%) | ABAQUS
5,026 5,025 3,017
CF
16,076 15,994 15,973
11,946 11,926 11,894
ss
18,354 18,162 18,172

The Refined Zigzag Theory is highly accurate in predicting the first two buckling loads for the
considered beams. The more challenging problem is associated with the IG 32 5 beam that is
characterized by a slenderness ratio of 20, by thick facesheets and a weak core. Nevertheless, the
maximum error on the critical load is below 2% with respect to the Abaqus solution and the
maximum error on the second critical load is around 3%. Beam WF 32 5 has a stiffer core and
beam IG_96 2 is more slender, therefore lower errors are experienced.

A similar trend is exhibited by the Timoshenko Beam Theory, however higher discrepancies are
shown with respect to the Abaqus reference solution. The critical load is evaluated with a good
accuracy for beams WF 32 5 and IG 96 2, whereas it is heavily underestimated (30% error) for
the simply supported IG 32 5 beam. Higher errors are found for the second buckling load of both
IG 32 5 and WF_32 5 beams. It is interesting that, for the same beam, the buckling loads of the
simply supported boundary conditions are less accurate with respect to the cantilevered

configuration.
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As already highlighted in other works [25], although an ad hoc shear correction factor is adopted,
TBT is not accurate for the analysis of sandwich structures with high face-to-core thickness ratio

and face-to-core stiffness ratio. And this applies also to the buckling analysis.

4.4  Nonlinear static response analysis
The nonlinear static response of initially imperfect sandwich beams subjected to a compressive load
has been analyzed using different approaches to introduce the imperfection.

At first, a cantilevered IG 32 5 beam has been modeled in MSC/Patran® as a slightly-curved beam

to reproduce the geometric initial imperfection. [The geometric impetfection is described by the

. L2+ 2_ L2+ 2 2_4 2x2
W (x) = U \/( _ W) —4u (32)
y7]

S B G S The some mesh dotails reporcd i Tabe 3
are valid for the mesh of the imperfect beam. The' RZT nonlinear response has been obtained by

Figlite’d shows the load-tip deflection curve as computed using MSC/Nastran® and the TBT and

RZT FE solutionsf.
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All of the considered beam theories correctly provide a load-deflection curve that asymptotically
approaches the corresponding critical load (see Table 4).

RZT confirms its accuracy for the nonlinear analysis of sandwich beams with initial geometric
imperfections. The latter are correctly modeled by using the Von Kérman definition of nonlinear
strains, Eq. (5).

An Abaqus® command allows the introduction of the geometric imperfections as a linear
combination of selected buckling modes, thus perfect beam models have been realized and different
imperfection cases have been considered for each beam without the need to modify the model. In
particular, all of the considered beams have been analyzed in both the SS and CF configurations and
in presence of initial imperfections corresponding to the first buckling shape, to the second buckling
shape and to a linear combination of the first two shapes (70% of the first plus 30% of the second).
For all the cases, the actual deviation from the straight perfect geometry has been calculated setting
to 1 mm the maximum displacement of the first and second buckling mode. Figures 7=15 show the

response predictions obtained using Abaqus® as well RZT and TBTI.
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21 As expected, in case of initial geometric imperfections, either as generic function (-) or as
23 linear combination of the buckling modes (Figures 9, 12'and 15), the load-deflection curves tend
25 asymptotically to the first buckling load. However, when the second buckling mode is assumed as
initial imperfection, the load-asymptotic value is the second buckling load of the beam (see Table
).

32 The deflection of the whole beam is shown in Figures 16220 for the IG31 32 5 in case of initial

w
o
N

34 imperfection as a linear combination of the buckling modes. In Figures 16 the applied load is zero,
36 while in Figures 17-20 it corresponds, respectively, to 25%, 45%, 70% and 90% of the critical

buckling load N;.

)]
N
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The vertical displacements of the nodes on the beam axis of the Abaqus model are used as
reference. A perfect match between RZT and Abaqus can be observed in all cases, also for high
values of M. It is worth noting that the deformed shape tends to the first buckling mode when N,
approaches the first buckling load, which is the asymptotic value in the corresponding load-

displacement curve, as shown in Figuire'9.

prove the superior capability of the RZT in predicting the nonlinear response of

sandwich beams also in presence of complex initial geometric imperfections. The accuracy of the

RZT load-deflection curves (Figures 7-15) and deformed shapes (Figures 16°20) is confirmed by

the Abaqus results for the considered cases of beam slenderness and face-to-core stiffness and

-
=
2.
%
o
w2
w2
—
N
=4
=
Qo
“w
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Conclusions

A nonlinear formulation based on the Refined Zigzag Theory (RZT) has been developed to assess
the theory for the buckling and nonlinear static response analysis of multilayered composite and
sandwich beams with geometric imperfections. Numerical tests have been conducted on three
sandwich beams with different core materials and slenderness ratios in both simply supported and
cantilever configurations. C’-beam finite elements based on the RZT and on the Timoshenko Beam
Theory (TBT) have been employed for the analyses, and the initial imperfection within each
element has been approximated by quadratic Lagrange polynomials. The RZT and TBT results have
been compared to the solutions of high-fidelity commercial codes (Abaqus and Nastran) used as
benchmarks.

Firstly, perfect beams have been considered to evaluate the first and the second buckling loads. The
RZT error of the critical buckling load With'tespect to the corresponding Abaqus solution is always
below 2%. Moreover, RZT is much more accurate than TBT for beams with low slenderness ratio
and thicker facesheets, especially in case of higher face-to-core stiffness ratio. Then, geometric
imperfections have been introduced in the models to evaluate the nonlinear response of the beams
under axial compressive loads. To assess the theory for any kind of geometric imperfection, several
shapes have been considered as initial deviation from the straight perfect geometry. As first case,
the 1G31 32 5 beam in cantilever boundary conditions has been analyzed assuming a
circumference-arc shape as imperfection; the reference 2D model has been realized in Nastran.
Furthermore, all the beams have been analyzed in Abaqus in both the SS and CF configurations and
with initial imperfections corresponding to the first buckling shape, to the second buckling shape

and to a linear combination of the first two shapes (70% of the first plus 30% of the second). The
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results have shown a very good agreement between the RZT and commercial codes solutions for the
evaluation of the nonlinear load-displacement equilibrium path. In all cases, the level of accuracy of
the RZT 1is remarkable also for applied loads close to the critical buckling values, proving the
superior capability of the RZT in predicting the response of sandwich beams also in presence of

complex geometric nonlinearities.

z
=
[¢]
s
&
[kl
7]
>

In Eq. (6), the strain components dependence on the z -coordinate is expressed through the matrices

zP=[100 0 z ¢¥]

zP=[0 11 g% 0 0]

whereas H is the zero-one matrix

I
S O O O O O
S O O O O O
S O O O O O
S O O O O O
S O O O O O

S ©O O o = O
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The matrix A containing the stiffness coefficient in the nonlinear constitutive equations (Eq.15) is

OCoONOOORWN =

INES
e
Ql
h
Ql
b
Q

|
&

o4 where

gg [AII’BIZ’DH]EJAEik)[19Z922:|dA

o [BB’DIZ’DZZ:I EJ‘A E)(ck)¢(k) I:ls Z, ¢(k)}dA

35 c= L™

L6
36 2hdon

Appendix B
43 The strain—displacement matrix, B¢, for the two-node, eight-dof constrained anisoparametric

45 element is given by [24]:

49 'NL 0 0 0 NE 0 0 0 ]
—ac%Nﬁf 0 N, a%zvﬁf ac%Nﬁf
0 LNy 0
0 LNy
Ny, 0
0 Ny

52 g e

()]
()]
S O O O
S O O
=
S O O O
S O O
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and the matrix B", containing the derivatives with respect to the x -coordinate of the Lagrange

parabolic polynomials, is

0 0 0
Ni: Npe N2
1o o o0
o o o0
0 0 0

0 0 0 |

where & =2x/L° —1 is the non-dimensional axial coordinate (& €[-1,1] and x €[0,L°]).
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Figure Captions

Figure 1. Notation for beam geometry and applied loads.

Figure 2. Through-thickness layer notation and zigzag function of the Refined Zigzag Theory for a
four-layered laminate: (a) layer notation and (b) zigzag function.

Figure 3. Nodal configuration for a two-node constrained anisoparametric element based on
Refined Zigzag Theory for beams [21].

Figure 4. Parabolic approximation of the initial imperfections.

Figure 5. Load and boundary conditions: (a) simply supported beam and (b) cantilever beam under
axial compressive force.

Figure 6. Load-deflection curves for the cantilevered IG 32 5 beam with initial imperfection.
Figure 7. Load-deflection curves for the IG 32 5 imperfect beam (imperfection corresponding to

the 1* buckling shape): (a) CF, (b) SS.
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Figure 8. Load-deflection curves for the IG_32 5 imperfect beam (imperfection corresponding to
the 2™ buckling shape): (a) CF, (b) SS.

Figure 9. Load-deflection curves for the IG_32 5 imperfect beam (imperfection corresponding to a
linear combination of the 1" and of the 2™ buckling shape): (a) CF, (b) SS.

Figure 10. Load-deflection curves for the WF 32 5 imperfect beam (imperfection corresponding
to the 1* buckling shape): (a) CF, (b) SS.

Figure 11. Load-deflection curves for the WF 32 5 imperfect beam (imperfection corresponding
to the 2™ buckling shape): (a) CF, (b) SS.

Figure 12. Load-deflection curves for the WF 32 5 imperfect beam (imperfection corresponding
to a linear combination of the 1* and of the 2™ buckling shape): (a) CF, (b) SS.

Figure 13. Load-deflection curves for the IG 96 2 imperfect beam (imperfection corresponding to
the 1* buckling shape): (a) CF, (b) SS.

Figure 14. Load-deflection curves for the IG 96 2 imperfect beam (imperfection corresponding to
the 2™ buckling shape): (a) CF, (b) SS.

Figure 15. Load-deflection curves for the IG 96 2 imperfect beam (imperfection corresponding to
a linear combination of the 1*' and of the 2™ buckling shape): (a) CF, (b) SS.

Figure 16. Deflection of the IG 32 5 imperfect beam (imperfection corresponding to a linear
combination of the 1* and of the 2™ buckling shape) for Ng=0: (a) CF, (b) SS.

Figure 17. Deflection of the IG 32 5 imperfect beam (imperfection corresponding to a linear
combination of the 1% and of the 2™ buckling shape) for Ny=025-Ny,: (a) CF, (b) SS.

Figure 18. Deflection of the IG 32 5 imperfect beam (imperfection corresponding to a linear
combination of the 1% and of the 2™ buckling shape) for Ng=0.45-N,: (a) CF, (b) SS.

Figure 19. Deflection of the IG 32 5 imperfect beam (imperfection corresponding to a linear
combination of the 1st and of the 2nd buckling shape) for N0=0.66-Ncr: (a) CF, (b) SS.

Figure 20. Deflection of the IG 32 5 imperfect beam (imperfection corresponding to a linear

combination of the 1st and of the 2nd buckling shape) for N0=0.89-Ncr: (a) CF, (b) SS.
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Figure 1. Notation for beam geometry and applied loads.
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Figure 2. Through-thickness layer notation and zigzag function of the Refined Zigzag Theory for a four-
layered laminate: (a) layer notation and (b) zigzag function.
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Figure 4. Parabolic approximation of the initial imperfections.
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15 compressive force.
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29 Figure 7a. Load-deflection curves for the IG_32_5 imperfect beam (imperfection corresponding to the 1st
buckling shape): CF.
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Figure 7b. Load-deflection curves for the IG_32_5 imperfect beam (imperfection corresponding to the 1st
buckling shape): SS.
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Figure 8b. Load-deflection curves for the IG_32_5 imperfect beam (imperfection corresponding to the 2nd
buckling shape): SS.
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29 Figure 9a. Load-deflection curves for the IG_32_5 imperfect beam (imperfection corresponding to a linear
combination of the 1st and of the 2nd buckling shape): CF.
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Figure 9b. Load-deflection curves for the IG_32_5 imperfect beam (imperfection corresponding to a linear
combination of the 1st and of the 2nd buckling shape): SS.
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29 Figure 10a. Load-deflection curves for the WF_32_5 imperfect beam (imperfection corresponding to the 1st
buckling shape): CF.
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Figure 10b. Load-deflection curves for the WF_32_5 imperfect beam (imperfection corresponding to the 1st
buckling shape): SS.
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Figure 11a. Load-deflection curves for the WF_32_5 imperfect beam (imperfection corresponding to the 2nd
buckling shape): CF.
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Figure 11b. Load-deflection curves for the WF_32_5 imperfect beam (imperfection corresponding to the 2nd
buckling shape): SS.
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29 Figure 12a. Load-deflection curves for the WF_32_5 imperfect beam (imperfection corresponding to a linear
combination of the 1st and of the 2nd buckling shape): CF.
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Figure 12b. Load-deflection curves for the WF_32_5 imperfect beam (imperfection corresponding to a linear

combination of the 1st and of the 2nd buckling shape): SS.
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Figure 13a. Load-deflection curves for the IG_96_2 imperfect beam (imperfection corresponding to the 1st
buckling shape): CF.
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Figure 13b. Load-deflection curves for the IG_96_2 imperfect beam (imperfection corresponding to the 1st
buckling shape): SS.
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29 Figure 14a. Load-deflection curves for the IG_96_2 imperfect beam (imperfection corresponding to the 2nd
buckling shape): CF.

31 651x416mm (72 x 72 DPI)

hhttp://mc.manuscriptcentral.com/jssm



OCoONOOORWN =

18000
16000
14000

12000

Z 8000
6000
4000

2000

Journal of Sandwich Structures and Materials

—RzT
- - TBT
o ABAQUS
1 1 1 1 1 1 1 1 J

0 2 4 6 8 10 12 14 16 18 20
w(x=L/4) (mm)

Figure 14b. Load-deflection curves for the IG_96_2 imperfect beam (imperfection corresponding to the 2nd

buckling shape): SS.
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Figure 15a. Load-deflection curves for the IG_96_2 imperfect beam (imperfection corresponding to a linear
combination of the 1st and of the 2nd buckling shape): CF.
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Figure 15b. Load-deflection curves for the IG_96_2 imperfect beam (imperfection corresponding to a linear
combination of the 1st and of the 2nd buckling shape): SS.
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29 Figure 16a. Deflection of the IG_32_5 imperfect beam (imperfection corresponding to a linear combination
of the 1st and of the 2nd buckling shape) for NO=0: CF.
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Figure 16b. Deflection of the IG_32_5 imperfect beam (imperfection corresponding to a linear combination
of the 1st and of the 2nd buckling shape) for NO=0: SS.
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29 Figure 17a. Deflection of the IG_32_5 imperfect beam (imperfection corresponding to a linear combination
of the 1st and of the 2nd buckling shape) for NO=025-Ncr: CF.
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Figure 17b. Deflection of the IG_32_5 imperfect beam (imperfection corresponding to a linear combination
of the 1st and of the 2nd buckling shape) for NO=025-Ncr: SS.
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29 Figure 18a. Deflection of the IG_32_5 imperfect beam (imperfection corresponding to a linear combination
of the 1st and of the 2nd buckling shape) for NO=0.45-Ncr: CF.
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Figure 18b. Deflection of the IG_32_5 imperfect beam (imperfection corresponding to a linear combination
of the 1st and of the 2nd buckling shape) for NO=0.45-Ncr: SS.
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29 Figure 19a. Deflection of the IG_32_5 imperfect beam (imperfection corresponding to a linear combination
of the 1st and of the 2nd buckling shape) for NO=0.66-Ncr: CF.
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Figure 19b. Deflection of the IG_32_5 imperfect beam (imperfection corresponding to a linear combination
of the 1st and of the 2nd buckling shape) for NO=0.66-Ncr: SS.
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29 Figure 20a. Deflection of the IG_32_5 imperfect beam (imperfection corresponding to a linear combination
of the 1st and of the 2nd buckling shape) for NO=0.89-Ncr: CF.
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Figure 20b. Deflection of the IG_32_5 imperfect beam (imperfection corresponding to a linear combination
of the 1st and of the 2nd buckling shape) for NO=0.89:Ncr: SS.

651x416mm (72 x 72 DPI)

hhttp://mc.manuscriptcentral.com/jssm



