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Abstract

Evidence-based quantitative methodologies have been proposed to inform decision-
making in drug development, such as metrics to make go/no-go decisions or pre-
dictions of success, identified with statistical significance of future clinical trials.
While these methodologies appropriately address some critical questions on the
potential of a drug, they either consider the past evidence without predicting
the outcome of the future trials or focus only on efficacy, failing to account
for the multifaceted aspects of a successful drug development. As quantitative
benefit-risk assessments could enhance decision-making, we propose a more com-
prehensive approach using a composite definition of success based not only on
the statistical significance of the treatment effect on the primary endpoint, but
also on its clinical relevance, and on a favorable benefit-risk balance in the next
pivotal studies. For one drug, we can thus study several development strategies
before starting the pivotal trials by comparing their predictive probability of
success. The predictions are based on the available evidence from the previous
trials, to which new hypotheses on the future development could be added. The
resulting predictive probability of composite success provides a useful summary
to support the discussions of the decision-makers. We present a fictive, but real-
istic, example in Major Depressive Disorder inspired by a real decision-making
case.

Keywords: Decision-making; Composite success; Probability of success; Benefit-risk;
Bayesian analysis.

1 Introduction

Decision-making in pharmaceutical development aims at making an optimal choice
between several alternatives, at multiple time points during a drug life-cycle, based on
the current knowledge of the investigational product. For example, go/no-go decisions
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are made at the end of phase I and of phase II clinical trials, according to the evidence
from the accumulated data and the market potential of the experimental drug com-
pared to other compounds for the same disease. However, decisions are not limited to
the continuation or the termination of the development, but are also needed to choose
the targeted indication, the patient population, the doses or the study designs.
The success of a drug development is driven by the conjunction between a valuable
product and a successful development strategy. A marketing authorization is usually
conditioned by the success of the pivotal clinical trials, which must reach statistical
significance on their primary endpoint while showing a clinically meaningful effect of
the drug (see for example [1, 2, 3]). On the other hand, the benefit-risk balance is
a strong predictor of the long-term viability of a medicine, and a key element for
the regulatory approval process [4, 5, 6]. Indeed, only medicines with a favorable
benefit-risk ratio should be considered, i.e. when the benefits outweigh the risks.
Moreover, even though the final decisions always involve a qualitative judgement from
the decision-makers, the project teams need tools to summarize the available infor-
mation and to assess the chances of success of the drug development. Evidence-based
quantitative methodologies have been proposed to inform decision-making, either to
develop metrics and standard processes to make go/no-go decisions [7, 8], to assess the
benefit-risk balance of the treatments [9, 10, 11, 12] or to predict the statistical signif-
icance or the futility of clinical trials [13, 14, 15, 16, 17, 18, 19, 20]. So far, predictions
of success and benefit-risk assessments were both used for decision-making, but were
considered separately.
The aim of this paper is to propose a comprehensive approach to predict the success
of a drug development strategy. We define success as a composite event based on
the statistical significance of the treatment effect on the primary endpoint, its clinical
relevance and a favorable benefit-risk balance versus the comparator(s) in the next
pivotal studies. Using a Bayesian framework, we account for the dependence between
the different components, and we also present their marginal predictive probability of
occurrence separately for a transparent assessment of the strategies.
The statistical methods to predict the composite success of a drug development strat-
egy and of its components are detailed in section 2. In Section 3, we present a case-
study to compare the chances of success of different development strategies in Major
Depressive Disorder. This example is fictive but inspired by a real case where the
same statistical methods were used. A discussion and concluding remarks are given in
Section 4. Additional information including source code to reproduce the results may
be found in Supplemental Material.

2 Methods

In this section, we suppose that some evidence on the efficacy and safety endpoints
is available from one or several clinical non-pivotal trials, and that the future clinical
development strategy has been defined with one or several future pivotal trials (Fig-
ure 1). The future trials are already designed and powered to show superiority of an
experimental treatment against a control on a primary endpoint. It is assumed that
this primary endpoint was one of the efficacy criteria assessed in the previous trials.
First, we will present in Sections 2.1 to 2.3 how to predict the success of one future
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trial using our composite definition of success. The extension to drug developments
including several future trials is presented in Section 2.4.
The methods presented here can be simply extended to earlier decision-making time-
points, when some non-pivotal clinical trials are still to be conducted, or later, when
results for some pivotal trials have been observed. In the first case, one should expect
more uncertainty, while in the second case, the variability is reduced since the outcome
of some pivotal trials is observed.
We declare the success of a drug development strategy if, in each pivotal study, the
observed treatment effect on the primary endpoint is statistically significant, if it is
also clinically relevant, and if the observed benefit-risk balance is better than the com-
parator(s). If several pivotal trials are planned, we assume that the criteria should
be fulfilled in all of them and not only at the development level (using for example
meta-analyses or a full Bayesian approach), because one pivotal trial failing to satisfy
these criteria is likely to cast some doubts on the replicability of the results [21]. It
should be noted however that, when the safety of a new drug is evaluated for marketing
authorization, the individual study safety results are important but pooled analyses
should also be provided in order to incorporate long-term, less common and rare out-
comes in the overall safety profile. These data are usually not available at the time
of the decision-making timepoint considered in this paper and are not incorporated in
our composite definition of success.
The predictive probabilities are called respectively PPoS1, PPoS2, PPoS3 and PPoS
for the statistical significance on the primary endpoint, its clinical relevance, the pos-
itive benefit-risk balance and the overall composite success.

2.1 Success criteria based on the primary endpoint

Suppose that the planned analysis on the primary endpoint in the next study follows
a conventional frequentist approach testing the null hypothesis H0: δ≤0 against the
alternative, H1: δ>0, where δ is a measure of difference between the experimental
treatment and the control. Suppose we have the prior distribution density f(δ), then
its posterior distribution obtained from the data Y=y observed in one previous clinical
trial or resulting from evidence synthesis of several trials [22, 23, 24] can be calculated
according to Bayes theorem as:

f(δ|Y=y)=
fY(y|δ)f(δ)

f(y)
, (1)

where fY is the density of Y conditional on δ and f(y)=
∫
fY(y|δ)f(δ)dδ.

Let d∗ be the difference between treatments that will be observed on the primary
endpoint in the next trial, and fd∗ its density conditional on δ. The probability to
have d∗ greater than a pre-defined threshold D in the next trial conditional on δ is:

P (d∗>D|δ)=
∫
z>D

fd∗(z|δ)dz.

Its predictive probability after observing the data from the previous trials can therefore
be calculated using the posterior distribution f(δ|Y=y), under the usual assumption
of conditional independence of the next trial from the previous ones given δ:

P (d∗>D|Y=y)=

∫ ∫
z>D

fd∗(z|δ)f(δ|Y=y)dzdδ.
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Using Equation (1), it can be re-written as:

P (d∗>D|Y=y)=

∫ ∫
z>D

fd∗(z|δ)fY(y|δ)f(δ)dzdδ∫
fY(y|δ)f(δ)dδ

. (2)

For example, assume that the current posterior distribution of δ based on the avail-
able evidence (i.e., having seen Y=y) is normal N(d,s2), and the distribution of d∗

conditional on δ is normal with d∗|δ∼N(δ,s∗2), where s∗2 is its variance in the next
trial. From the posterior distribution of δ and the distribution of d∗|δ, we obtain the
predictive distribution:

d∗|Y=y∼
∫
fd∗(z|δ)f(δ|Y=y)dδ=N

(
d,s2+s∗2

)
.

Therefore the predictive probability of d∗>D is:

P
(
d∗>D|d,s2

)
=1−Φ

(
D−d√
s2+s∗2

)
,

where Φ denotes the cumulative distribution function of the standard normal distri-
bution.

We define the predictive probabilities of two success criteria based on the primary
endpoint:

• Statistical significance. When D=c, with c>0 the critical value at which the
null hypothesis H0 is rejected at a pre-specified significance level α, the probabil-
ity in Equation (2) is the predictive probability of statistical significance on the
primary endpoint in the next trial, and we note it PPoS1. Its closed formula has
been derived in earlier work, where it is also called assurance [15] or Bayesian
predictive power [25, 26]. In the example with a normal distribution presented
above, we have c=zαs

∗, where zα is the (1−α)100th percentile of the standard
normal distribution.

• Clinical relevance. While the statistical significance is a gatekeeper to declare
the success of a trial, the clinical relevance of the observed difference between
treatments on the primary endpoint is also required for success (see for example
[1, 2, 3]). We define the probability of clinical relevance on the primary endpoint,
PPoS2, as the probability in Equation (2) for D=dT a pre-defined minimal
clinically relevant threshold.

According to the regulatory recommendations, the study should be powered such that
the anticipated treatment effect is equal to or larger than dT [27]. Statistical signif-
icance is easier to reach than clinical relevance (PPoS1>PPoS2) if c<dT , when for
example the study is powered with an anticipated treatment effect that is the minimal
clinically relevant difference. Clinical relevance is easier to reach than statistical sig-
nificance (PPoS1<PPoS2) if c>dT , when for example a treatment effect greater than
dT is anticipated and c is large due to the management of multiplicity issues. PPoS1

and PPoS2 are equal if c=dT , i.e. if c is just clinically meaningful.
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2.2 Success criterion based on the benefit-risk balance

While the success of a pivotal clinical trial is often focused on the primary efficacy
endpoint, the decisions regarding the drug development and its licensing are taken
considering several efficacy and safety endpoints, i.e. by assessing the benefit-risk bal-
ance of the new drug versus comparator(s). Several quantitative methodologies have
been proposed [9, 10, 11, 12, 28, 29] and provide an explicit quantitative information
on benefits and risks in order to assist the decision-making process. In this paper, we
choose a Multi-Criteria Decision Analysis (MCDA) [30, 31, 32], since the European
Medicine Agency Benefit-Risk Methodology Project suggested that it is one of the most
comprehensive among the quantitative methodologies they considered [33, 34, 35, 36],
and it is also recommended by the IMI PROTECT Work package 5 [37]. Other
methodologies can be chosen and the methods described in this paper can be adapted
accordingly. In this section, we first briefly present the MCDA model, and then show
how it can be used to calculate another component of the predictive probability of
success in a next trial.

The principle of MCDA is to compare several treatments using utility scores calcu-
lated from multiple criteria of benefit and risk, and taking into account their relative
importance according to the preferences of the decision-makers. In the initial version
of MCDA [30, 31], the scoring process of the treatments is deterministic and ignores
the parameter uncertainty induced by the data sampling variation. Instead, we use
a probabilistic model, often called Probabilistic MCDA (or Stochastic MCDA), de-
veloped by Waddingham et al. [38] which estimates the score distributions based on
the distributions of the criterion parameters, which are themselves estimated from the
treatment effects observed in previous studies.

Consider the experimental treatment and the control denoted by i=1,2 respectively,
assessed on n criteria (j=1,...,n), and the following quantities and functions [30]:

(i) The performance of treatment i on criterion j is denoted by ξij. The vector of
criterion performances for the treatment i is denoted by ξi=(ξi1,...,ξin).

(ii) The monotonically increasing partial value functions 0≤uj(·)≤1 are used to nor-
malize the criterion performances. Let ξ′j and ξ′′j be the most and the least
preferable values, then uj(ξ

′′
j )=0 and uj(ξ

′
j)=1. The inequality uj(ξij)>uj(ξhj)

indicates that the performance of the treatment i is preferred to the performance
of the treatment h on criterion j. A common choice for the function [10, 30, 38, 39]
is

uj(ξij)=
ξij−ξ′′j
ξ′j−ξ′′j

.

(iii) The weights indicating the relative importance of the criteria are known constants
denoted by wj, with the constraint that

∑n
j=1wj=1. The wj should be provided

by the decision-makers. The vector of weights used for the analysis is denoted
by w=(w1,...,wn).

It is generally assumed that the criteria are independent, which allows us to use an
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additive formula to calculate the global utility score:

ui=u(ξi,w)=w1u1(ξi1)+...+wnun(ξin)=
n∑
j=1

wjuj(ξij).

The utility score is a measure of benefit-risk, which permits to discriminate the treat-
ments according to their performances, and according to the weights attributed to
the criteria. The highest the utility score, the most preferable the benefit-risk ratio,
therefore a treatment has a positive benefit-risk balance compared to the control if the
difference between the two utility scores is positive:

∆u12=∆u(ξ1,ξ2,w)=u(ξ1,w)−u(ξ2,w)>0.

Following the approach proposed by Waddingham et al. [38], we consider a Bayesian
model and assign a probability distribution to the ξij, which are considered as un-
known parameters. Suppose the information we have about ξij prior to the clinical
development is expressed through the prior distribution density f(ξij). Its posterior
distribution can be obtained from the data Xij=xij summarizing the available evi-
dence, according to Bayes theorem:

f(ξij|Xij=xij)=
fXij

(xij|ξij)f(ξij)

f(xij)
, (3)

where fXij
is the density of Xij conditional on ξij and f(xij)=

∫
fXij

(xij|ξij)f(ξij)dξij.
It follows that the utility scores ui and their difference between two treatments ∆u12

are unobservable random variables.
At the sampling level, on the other hand, there will usually exist observable random
variables x∗ij which are estimates of the ξij in the next trial, much like in the discussion
about efficacy there exists an observable random variable d∗ which is an estimate of
δ. Let x∗i be the vectorized notation of x∗ij accross the criteria.
To fulfill our stated goal of requiring a positive benefit-risk balance at the trial level on
each pivotal study, consider then ∆∗u12=∆u(x∗1,x

∗
2,w) the observed difference between

the utility scores of the experimental treatment and the control in the next trial. Let
f∆∗u12 be its density conditional on unknown true values of the parameters ξ1 and
ξ2: f∆∗u12 takes into account the data sampling variation in the next study. The
probability of observing a positive benefit-risk balance of the experimental treatment
versus the control in the next trial conditional on ξ1 and ξ2 is calculated as

P (∆∗u12>0|ξ1,ξ2)=

∫
v>0

f∆∗u12(v|ξ1,ξ2)dv.

Its predictive probability after observing the data from the previous trials can therefore
be calculated using the posterior distributions f(ξ1|X1=x1) and f(ξ2|X2=x2), given
that ξ1 and ξ2 are assumed to be independent:

PPoS3 = P (∆∗u12>0|X1=x1,X2=x2)

=

∫ ∫ ∫
v>0

f∆∗u12(v|ξ1,ξ2)f(ξ1|X1=x1)f(ξ2|X2=x2)dvdξ1dξ2.
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Using Equation (3) and the vectorized notations, it can be re-written as:

PPoS3=

∫ ∫ ∫
v>0

f∆∗u12(v|ξ1,ξ2)fX1(x1|ξ1)fX2(x2|ξ2)f(ξ1)f(ξ2)dvdξ1dξ2∫
fX1(x1|ξ1)f(ξ1)dξ1

∫
fX2(x2|ξ2)f(ξ2)dξ2

.

While these formula are likely to be difficult to resolve analytically, the results can be
easily obtained by simulations according to the following steps:

(i) The posterior distributions f(ξ1|X1=x1) and f(ξ2|X2=x2) of ξ1 and ξ2 are ob-
tained using classical Bayesian methods [40], either analytically or with Markov
Chain Monte Carlo (MCMC) simulations.

(ii) Values ξ
∗(k)
1 and ξ

∗(k)
2 are sampled from f(ξ1|X1=x1) and f(ξ2|X2=x2), for k=

1,...,K where K is the total number of simulations (a large number). These
simulations can come from the MCMC simulations, after the chain(s) converged.

(iii) Observed values x
∗(k)
1 and x

∗(k)
2 of the performances of the treatments in the next

trial are simulated from fX1(x1|ξ∗(k)
1 ) and fX2(x2|ξ∗(k)

2 ), according to the study
design and in particular the planned number of patients.

(iv) The difference between treatment utility scores is calculated for each simulated

trial k as ∆∗(k)u12=u(x
∗(k)
1 ,w)−u(x

∗(k)
2 ,w).

(v) The predictive probability of positive benefit-risk balance of the experimental
treatment versus the control in the next trial is approximated by

PPoS3≈
1

K

K∑
k=1

1
[
∆∗(k)u12>0

]
,

where 1[true]=1 and 1[false]=0.

2.3 Composite success

We define the success of a drug development strategy as the simultaneous fulfillment
of the following criteria in all the pivotal studies:

(i) The statistical significance on the primary endpoint.

(ii) A clinically meaningful effect on the primary endpoint.

(iii) A positive benefit-risk balance versus the comparator(s).

Therefore, the predictive probability of composite success of a drug development strat-
egy, with one future pivotal study, can be written as:

PPoS = P [(d∗>max(c,dT )) ∩ (∆∗u12>0)|Y=y,X1=x1,X2=x2].

It is highly unlikely that δ is independent of ξ1 and ξ2, since the primary endpoint is
almost always one of the criteria considered in the benefit-risk assessment. Therefore,
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we consider the joint distribution of (δ,ξ1,ξ2) to write explicitely the formula of the
PPoS, following the same principle as in the previous sections:

PPoS=

∫ ∫
Z
fd∗,∆∗u12(z,v|δ,ξ1,ξ2)fY,X1,X2(y,x1,x2|δ,ξ1,ξ2)f(δ,ξ1,ξ2)d(z,v)d(δ,ξ1,ξ2)∫

fY,X1,X2(y,x1,x2|δ,ξ1,ξ2)f(δ,ξ1,ξ2)d(δ,ξ1,ξ2)
,

where Z={z>max(c,dT ),v>0}.

It should be noted that, for a fixed c (which usually depends on a fixed type I error α,
the estimation from previous evidence of the variability of the primary endpoint and
the number of patients or of events in the next study) and a pre-defined threshold dT ,
one should know in advance the maximum between c and dT , and only one of the two
criteria is actually needed in the formula. On the other hand, these two criteria are
useful to communicate with non-statisticians on the definition of success. Using both
thresholds permits to calculate several PPoS separately and to discuss them with
the project team while the discussions regarding the sample size of the next study or
the choice of the threshold dT are still on-going, without changing the formula itself.
For transparency, the PPoS should be provided along with its components PPoS1,
PPoS2 and PPoS3, to present which ones are the most restrictive and have the greatest
impact on the predictive probability of composite success. The predictive probabilities
of achieving two components out of three can also be calculated and discussed.

2.4 Development strategies with more than one future studies

Suppose now that the future development strategy consists in S future pivotal trials.
We assume that the development strategy will be successful if the criteria of statistical
significance, clinical relevance and positive benefit-risk balance are fulfilled in each
of the pivotal trials. The estimates of the efficacy and safety criterion performances
in the next trials are conditionally independent, between trials, given the posterior
distribution of their parameters. The predictive probabilities can be obtained by
marginalizing over the parameters, using the posterior distributions:

PPoS1 =

∫ ( S∏
m=1

P [d∗m>cm|δ]

)
f(δ|Y=y)dδ,

PPoS2 =

∫ ( S∏
m=1

P [d∗m>dmT |δ]

)
f(δ|Y=y)dδ,

PPoS3 =

∫ ∫ ( S∏
m=1

P [∆∗mu12>0|ξ1,ξ2]

)
f(ξ1|X1=x1)f(ξ2|X2=x2)dξ1dξ2,

PPoS =

∫ ( S∏
m=1

P [(d∗m>max(cm,dmT )) ∩ (∆∗mu12>0)|δ,ξ1,ξ2]

)
×

f(δ,ξ1,ξ2|Y=y,X1=x1,X2=x2)d(δ,ξ1,ξ2),

where d∗m, cm, dmT and ∆∗mu12 are respectively the observed difference between treat-
ments on the primary endpoint, the critical value at which the null hypothesis will
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be rejected, the clinical threshold and the observed difference between treatment util-
ity scores in study m. As before, these formulas are likely to be difficult to resolve
analytically, but the results can be easily obtained by simulations.

3 Example in Major Depressive Disorder

In this section, we illustrate the use of the above methods to support decision-making
between different future strategies of development in Major Depressive Disorder. This
example is fictive but inspired by a real case discussed with a project team: the clinical
context, the indication and the data have been changed for confidentiality reasons, but
the essence of the problem and the statistical methods are the same.

3.1 Context and data

We assume that the results of one Phase II trial are available, which compared a Low
dose and a High dose of an experimental treatment versus placebo. Suppose that
only one pivotal two-arm Phase III study is planned to compare this experimental
treatment versus placebo. The dose or regimen of the experimental treatment group
needs to be chosen, according to its probability to reach statistical significance and
clinical relevance on the primary endpoint and to have a positive benefit-risk balance
versus placebo in the next trial.
The primary efficacy endpoint for both the Phase II and the Phase III trials is the
total score on the Hamilton Depression Rating Scale 17 items (HAM-D17) after 6
weeks of treatment. The HAM-D17 total score ranges from 0 to 52, with higher values
indicating a higher severity of illness. The safety of the treatment is mainly assessed
by the proportion of patients experiencing emergent adverse events during the study.
Descriptive statistics of the results of the Phase II study on the HAM-D17 total score
and on the five more frequent adverse events are presented in Table 1. A dose-response
relationship is observed, with the Higher dose showing a better efficacy but also more
adverse events than the Low dose. In particular, Hypokalemia are observed in 71% of
the patients at High dose: this adverse event may be a safety concern for this dose.
The next Phase III study is designed as a two-arm trial comparing one regimen of the
experimental treatment, to be chosen, versus placebo on the HAM-D17 total score.
A sample size of 228 patients (114 per arm) is planned to reach a power of 90%,
based on an assumed difference of 3 points on the HAM-D17 total score at 6 weeks,
a standard-deviation of 7 and a one-sided α of 2.5%. Both statistical significance
and clinical relevance on this endpoint should be achieved in this trial to apply for
a marketing authorization. There is no consensus on the minimally relevant effect
but the clinical relevance would be indisputable for a threshold dT=3 points. For the
MCDA analysis, we consider the HAM-D17 total score as the only criterion of benefit,
and the occurrence of the five more frequent adverse events as the risk criteria.

3.2 Bayesian model

The prior distributions, the sampling distributions (likelihoods) and the posterior dis-
tributions of all the parameters used in the model are summarized in Table 2.
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The HAM-D17 total score is usually and reasonably assumed to be normally distributed
[41]. The mean effects in each arm for the Low dose, the High dose and the placebo
(i=1,2,3 respectively) are denoted by the parameters ξi1. Their posterior distributions
are obtained from a weakly informative conjugate prior ξi1∼N(0,104) and the sample
means m1=14.0, m2=12.6 and m3=16.9 observed in the Phase II study, which are
realizations of the normal distributions N(ξi1,σ

2
i ) with σ1=0.98, σ2=1.02 and σ3=0.97.

The parameters of the treatment differences versus placebo for each dose i=1,2 are
δi=ξ31−ξi1. Their posterior distributions are obtained from a weakly informative
prior δi∼N(0,2×104) (induced by the priors on ξi1) and from the observed differ-
ences between treatments di=m3−mi which are realizations of the normal distribu-
tions N(δi=ξ31−ξi1,s2

i ) for i=1,2, where s1=1.37 and s2=1.41 are the standard errors
of the differences.
The five more frequent adverse events are binary events. We note rij, nij and ξij
respectively the number of events, the number of patients and the probability of event
for treatment i (i=1,2,3) and safety criterion j (j=2,...,6). We obtain the posterior
distributions of the parameters ξij from the realizations rij of the binomial densities
Bin(nij,ξij) and uniform conjugate priors ξij∼Beta(1,1).
The partial value functions of all criteria are defined as linear functions as presented
in Section 2.2. The best and the worst values of the HAM-D17 mean total score at 6
weeks in the patient population are assumed to be 10 and 25 respectively. The range
of the probabilities of adverse event is [0,1], so the best and the worst values for the
risk criteria are naturally defined as 0 and 1 respectively.
Benefits and risks are assumed to have an equal importance, with a weight of 50%
attributed to the HAM-D17 total score and 50% in total for the safety criteria, split
as 20% for Hypokalemia and 7.5% for each of the other adverse events. The median
and 95% credible intervals of the posterior distributions, the partial value functions
and the weights are summarized in Table 3.

The results of the next Phase III study are simulated conditional on the parameters
ξij and δi, which have the posterior distributions defined in Table 2, and assuming
that 114 patients per arm are included:

(i) Means HAM-D17 total score: m∗i |ξi1∼N(ξi1,σ
∗2
i ) for i=1,2,3, with the standard

errors in the new trial σ∗i fixed to 7/
√

114≈0.66, i.e. with a standard deviation
in all arms equal to 7 according to the literature and to the data observed in the
Phase II study.

(ii) Differences in HAM-D17 mean total score versus placebo: d∗i |δi∼N(δi,s
∗2
i ) for

i=1,2, with the standard errors in the new trial s∗i=
√

2σ∗i≈0.93.

(iii) Proportions of adverse events: p∗ij|ξij=r∗ij/114 with r∗ij∼Bin(114,ξij) for i=1,2,3
and j=2,...,6.

(iv) Benefit-risk utility scores: u(m∗i ,p
∗
i2,...,p

∗
i6,w)=w1u1(m∗i )+w2u2(p∗i2)+...+w6u6(p∗i6)

with w=(0.5, 0.2, 0.075, 0.075, 0.075, 0.075). As before, for simplicity, we note
u(m∗i ,p

∗
i2,...,p

∗
i6,w)=u∗i .

(v) Differences in benefit-risk utility score versus placebo: ∆∗ui3=u∗i−u∗3 for i=1,2.
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The analyses were conducted using R, and 100,000 simulations were run to estimate
the parameter distributions and the probabilities of success.

3.3 First results

The predictive distributions of the differences in HAM-D17 mean total score, d∗1 and d∗2,
and the predictive distributions of the differences in benefit-risk utility score, ∆∗u13 and
∆∗u23, of each dose versus placebo in the next Phase III study are presented in Figure 2.
The predictive probability of composite success of the development strategies, PPoS,
along with the predictive probabilities of its components, PPoS1, PPoS2 and PPoS3

are presented in Table 4.
Regarding the primary efficacy endpoint, statistical significance is reached if the dif-
ference between treatments on the primary endpoint in the next study is greater than
1.96s∗≈1.82 and the clinical relevance is indisputably achieved if it is greater than
dT=3, therefore the statistical significance is easier to achieve than the clinical rele-
vance (PPoS1>PPoS2). The predictive probabilities for the High dose to fulfill these
criteria are high (93% and 78% respectively). The predictive probability for the Low
dose to achieve the statistical significance is also encouraging (74%), but its capacity
to reach the clinical relevance could be questionable (48%). Therefore, if the choice
between the two doses was based only on the primary efficacy endpoint, the High dose
would be preferred.
On the other hand, the Low dose has a high predictive probability of positive benefit-
risk balance versus placebo (88%). In contrast, despite its encouraging efficacy results,
the High dose has a safety profile which leads to a probability of only 24% to show a
better benefit-risk balance than placebo in the next Phase III.
Overall, the predictive probabilities of composite success of the drug development
strategies are only 48% and 24% respectively for the Low dose and the High dose.
It should be noted, and emphasized during the discussions with the decision-makers,
that the probability of success of the Low dose is bounded by its probability to achieve
the clinical relevance on the primary endpoint with dT=3 points, while the success of
the High dose is compromised by potential safety concerns.

3.4 Strategy refinement

Based on the previous results, the project team can consider either stopping the de-
velopment, choosing the Low dose despite its low predictive probability of composite
success if the chosen clinical threshold is considered to be an ambitious target, or
changing of strategy. Indeed, the unfavorable benefit-risk balance of the High dose
prevents from choosing it for further development. However, it is observed that the
most frequent adverse event at this dose is Hypokalemia, which could be managed
for example by a supplementation in potassium co-administered with the drug. The
project team may also consider another strategy which consists in initiating all pa-
tients at the Low dose, and to increase at the High dose only those not responding
to treatment at short term. This would permit to limit, although not completely pre-
venting, the occurrence of Hypokalemia, while increasing the overall efficacy of the
regimen compared to the Low dose only. Since no data were available for these two
regimen, the clinical assumptions were incorporated in the model as follows:
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(i) High dose with potassium supplements. The predictions are based on the
posterior distribution of ξ32 obtained for the placebo for Hypokalemia, and on
the posterior distributions obtained for the High dose (as in the previous section)
for all the other criteria.

(ii) Dose increase. According to the clinicians, 30% to 40% of the patients would
increase to the High dose in the Phase III study, therefore a new parameter with
a uniform prior distribution ζ∼U [0.3,0.4] is used in the model as the proportion
of patients receiving the High dose. We make the assumption that the expected
efficacy and safety of the experimental treatment in the subpopulation of respon-
der patients staying at Low dose are the same as those observed for all patients
receiving Low dose in the Phase II study. Similarly, we suppose that the expected
efficacy and safety in the subpopulation of nonresponder patients increasing to
High dose are the same as those observed for all patients receiving High dose
in the Phase II study. This could be debatable, however it is considered to be
a reasonable assumption and no other objective hypothesis could be made. As
a consequence, the parameters associated to the efficacy and safety criteria are
assumed to be linear combinations of the initial parameters: (1−ζ)×ξ1j+ζ×ξ2j

for j=1,...,6.

The predictive distributions of the differences in HAM-D17 mean total score and of the
differences in benefit-risk utility score of each new regimen versus placebo in the next
Phase III study are presented in Figure 3, and the predictive probabilities of success
are summarized in Table 5. The supplementation in potassium substantially improves
the benefit-risk balance of the High dose, which is now predicted to be positive versus
placebo with a probability of 95%, leading to a predictive probability of composite
success of 78% for this regimen. The dose increase, as expected, improves the chances
to observe a clinically relevant difference on the primary endpoint compared to the
Low dose. However, its predictive probability of composite success is only 58%. Given
these results, the best strategy seems to choose for further development the High dose
with a co-administration of potassium supplements, if the external factors (feasibility,
quality of life, price...) do not alter this conclusion.

3.5 Sensitivity analyses

We investigated the robustness of the results in cases of:

• Uncertainty in the weight elicitation, by applying a Dirichlet Stochastic Multicri-
teria Acceptability Analysis (Dirichlet SMAA) model [42], where the weights are
treated as random variables, and their variance depends on the decision-makers’
confidence in their elicitation.

• Correlated criteria, by considering correlation patterns where (i) all criteria are
positively correlated, or (ii) the benefit criterion is negatively correlated with the
risk criteria, and the risk criteria are positively correlated between themselves.

• Departure from the clinical assumptions for the strategy refinement, where the
priors on the corresponding parameters (probability of Hypokalemia, proportion
of patients receiving the High dose) are changed.
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The results of the sensitivity analyses are given in Supplemental Material. Overall, the
conclusions are robust to uncertainty in weight elicitation, correlations, and departure
from clinical assumptions.

3.6 Alternative example

An alternative example is presented in Supplementary Material, with the two following
changes:

• The threshold of minimal clinical relevance is fixed at dT=2 points. This could
be relevant if, for example, the drug is an add-on therapy administered on top
of a standard therapy, so the difference versus the control group may not need
to be as large as for a monotherapy.

• Three experimental arms are to be included in the next Phase III trial, and they
should be selected among the four possible regimen (Low dose, High dose, High
dose with potassium supplements and Dose increase).

This example illustrates a case where clinical relevance is easier to reach than statistical
significance (PPoS1<PPoS2). Since PPoS3 is unchanged, the results indicate that
the High dose could be excluded from the selected regimen for Phase III, as in the
initial example, due to its low probability to show a positive benefit-risk balance versus
the control.

4 Discussion

The approach described in the paper provides some new quantitative methods for pre-
dicting the success of a drug development by comparing several development strategies
using a composite definition of success, including the statistical significance of the fu-
ture trial(s) on the primary efficacy endpoint, the clinical relevance of the treatment
effect and a positive benefit-risk balance of the drug. The methods are based on the
available evidence from previous trials, which could be combined with new additional
hypotheses on the future development (such as a modification of the regimen of a
drug) using priors. The resulting predictive probability of composite success and its
components have demonstrated their utility in an actual go/no-go decision setting,
which inspired us to present a fictive, but realistic, example. Other applications could
be considered, such as a decision-making tool for the selection between several doses
at the interim analysis of an adapative design trial, or a measure of development risks
to be incorporated in financial tools for portfolio management and valuation of invest-
ments [43].

Quantitative benefit-risk assessment requires many assumptions that may appear at
first difficult to elicitate, and the important role of value judgments in this undertaking
needs to be emphasized. This actually reflects the complexity of the context in which
drugs are evaluated, and the cognitive load required for health care decisions (see [44,
Chapter 5] for a full discussion on the challenges faced by the use of explicit quantita-
tive methods in benefit-risk assessment, and the advantages of overcoming these issues
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to enhance the decision-making process). Guidance and practical recommendations
on the implementation of MCDA in the medical context [11, 30] are valuable tools to
help building such models, and some support could also be found from the general
literature on MCDA [45, 46].

Sensitivity analyses should be conducted as part of the decision-making process:

• The influence of subjectivity on the conclusions from MCDA should be investi-
gated. First, the choice of the criteria used to assess the benefits and risks can
strongly affect the results, and a considerable effort has been made in the past
years to propose framework approaches that help in identifying the key benefits
and the key risks [12, 37, 50]. The second source of subjectivity is the defini-
tion of the partial value functions to map the criterion measurements into a 0-1
scale, which should reflect the importance of a change on each criterion. Partial
value functions could be very simple in some cases, as in our example where they
are assumed to be linear, but nonlinear functions are more sensible when only
some values, or ranges of values, actually represent an increased benefit or risk.
Third, MCDA requires the exact elicitation of weights to quantify the relative
importance of the criteria according to the preferences of the decision makers.
Extended models have been proposed where the weights are considered to be
random variables [42, 51], and sensitivity analyses could be conducted by vary-
ing the variance of weights. Finally, the independence of the criteria for benefits
and risks is usually assumed for the sake of simplicity, but the impact of possible
correlations should be assessed [38].

• The sensitivity of the results to the choice of the priors used in the Bayesian
analysis should be evaluated [26]. In particular, our example presents a situa-
tion where some of the strategies considered for future development differ from
the past ones, and are not yet experimented. The success of these strategies
is predicted using together previous evidence on other regimens and clinical as-
sumptions, which are translated into priors on some parameters. The impact of
these assumptions on the reliability of the conclusions was evaluated.

One may prefer to use a Frequentist framework instead of a Bayesian one where only
vague priors are used, and to present the same success component criteria on different
scales such as standardized differences or conditional powers [52]. These are common
approaches when the success definition is based solely on the primary efficacy endpoint,
but some difficulty arises when trying to derive a single Frequentist test statistic on
multiple outcomes of benefit and risk, which often have different distributions.

Since the methods described here are evidence-based, they require that some clin-
ical data on the efficacy and the safety of the experimental treatment are available.
Therefore, these methods may not be appropriate in very early development, when the
knowledge about the drug comes mainly from the pre-clinical development or pharma-
cokinetics trials. In this case, extrapolation models or beliefs from experts or literature
could be used and incorporated in the model using priors to substitute or complement
the clinical data. Priors could also be elicited by borrowing information from very
similar compounds, if any. The advantage of the Bayesian framework of our approach

14



is that the predictions of success can be updated with the accumulation of knowledge
from trial to trial.

Moreover, predicting the efficacy and the safety in future trials from the posterior
distribution of parameters assessed in previous trials supposes that the future and the
previous trials use the same endpoints in the same clinical context (patient popula-
tion, assessment timepoint(s)...). While this assumption is realistic for some diseases,
like Major Depressive Disorders in our example, for other diseases early clinical trials
may use a surrogate or a predictive endpoint as primary endpoint. In such situation,
the predictive distribution of the clinical endpoint in a future trial may be estimated
from the posterior distribution of a surrogate endpoint of a previous trial, taking into
account the dependence between the two endpoints [47]. If some limited data have
also been collected on the clinical endpoint in early trials, these data may be com-
bined with those of the surrogate data to be integrated in the decision-making process
[48, 49].

In the composite definition of success, we have seen that the two components of sta-
tistical significance and clinical relevance may be seen as redundant. However, both
aspects are important to achieve success, and knowing which one is the most restric-
tive may not be obvious in advance, in particular for non-statisticians. Moreover, the
clinical relevant threshold and the sample size of the next studies could be subject to
discussions, and keeping both rules permits to perform several analyses using differ-
ent thresholds or different sample sizes without changing the definition of composite
success. In any case, presenting the marginal predictive probabilities of all the suc-
cess components can help the decision-makers in choosing between different strategies,
when some uncertainty remains on some but not all of the components.

We defined the success components using observable statistics (observed treatment
differences in efficacy and in benefit-risk balance) in each pivotal study. One could
consider defining criteria at the development level rather than at the trial level, using
for example meta-analyses and/or hierarchical models, in a full Bayesian approach,
after completion of all the trials. However, we believe that our method addresses a
general demand for replication of the study results when medicinal products are evalu-
ated for marketing authorization [21]. Once the development is completed, a synthesis
of the results at the development level is usually worthwhile to complement the individ-
ual study results. In particular, the overall safety profile is estimated considering data
from multiple sources (pivotal and non-pivotal clinical trials, pharmacovigilance...) to
incorporate for example long-term, less common and rare outcomes.

Finally, without a large experience using this composite definition of success, no clear
threshold could be provided yet to indicate whether its predictive probability supports
a go or a no-go decision. The results depend on the precision of the available evidence
and on how promising (or non-promising) the strategy is: the predictive probabili-
ties are expected to be close to 50% when the amount of evidence is very low, and
decision-making is challenging in this case ; they are expected to increase for promising
strategies (or, respectively, to decrease for non-promising strategies) with the time of
development and the accumulation of knowledge ; and they are expected to remain
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close to 50% for average strategies, whatever the amount of available evidence. De-
pending on the therapeutic area and the phase of development, some thresholds could
be defined using pre-specified targeted levels of evidence following for example the
concepts developed by Neuenschwander et al. [54] or Frewer et al. [8]. In any case,
one should be careful in making decisions based on a direct, intuitive, interpretation
of the PPoS as a chance of success for the development [52]. The probability of com-
posite success presented here rather corresponds to a ‘probability of technical success
[...] defined as the probability of a compound generating favorable data to support a
filing to regulators’ [55], and supports decision in favor of one development strategy
when the whole set of results (on the three components and the composite, for the
main analysis and the sensitivity analyses) supports the belief of a positive outcome.

In conclusion, the predictive probabilities of composite success and of its components
are helpful tools to compare development strategies and to inform decision-making in
the pharmaceutical development. Since it is an evidence-based approach to make pre-
dictions, the similarity between the previous and the future studies (e.g. in terms of
endpoints, patient population, doses) is an important condition that may be bypassed
by appropriate assumptions. Although the composite definition of success provides a
useful summary of the potential of a strategy, it is recommended to present it along
with its different components, to appropriately support the discussions of the decision-
makers. In particular in therapeutic areas with unmet medical needs, the project team
may be willing to take a certain amount of risk to continue the development, even when
some uncertainty remains regarding the chances to reach some of the success criteria.
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