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Abstract

Manipulating magnetic domain walls in nanostructures has been linked with applications in spin-
tronic logic, sensing and storage devices. Recent studies of domain wall motion have focused on
perpendicular magnetic anisotropy heterostructures of ultrathin ferromagnets sandwiched between
a heavy metal layer and an oxide, in which spin-orbit coupling and broken inversion symmetry can
dominate domain wall motion.

Specifically, chiral domain walls are stabilized in these systems due to the Dzyaloshinskii-Moriya
interaction, and current-driven domain wall motion is enhanced due to the spin Hall effect. The
chirality of the domain walls in such systems may be partially influenced by the application of
external in-plane magnetic fields. Such magnetic fields are used in bubble expansion experiments
to assess the strength of the Dzyaloshinskii-Moriya interaction. In addition, bombarding the fer-
romagnetic layer with heavy metal ions can induce local changes in material properties such as
magnetic anisotropy which could be used to manipulate local pinning properties.

While computational micromagnetic simulations can help elucidate the behavior of domain
walls, their computational cost prohibits extensive studies. As such, assessing the strength of the
Dzyaloshinskii-Moriya interaction, extracting material parameters and understanding the behavior
of the domain wall to an extent depends on simpler models of domain wall motion based on
collective characteristics of the domain wall, and derived from applying model reduction methods
to the more complex micromagnetic model.

Several Lagrangian-based collective coordinate models exist to describe domain wall motion,
namely the q − φ, q − φ − ∆, and q − φ − χ models. While these models can describe domain
wall motion with acceptable accuracy, they fail to replicate results of micromagnetic simulations
specially for domain wall motion under the application of in-plane fields in heterostructures of
interest. Moreover, recent advances in domain wall motion such as pinning due to irradiation have
not been included in these models.

In this work, we will first present the process for developing Lagrangian-based collective coor-
dinate models, culminating in the derivation of a four collective coordinate model for domain wall
motion (the q − φ − χ − ∆ model). We show how this model can be extended for cases where
in-plane magnetic fields are present to correctly account for the physics; this extension involved
introducing the canting induced by the in-plane fields in the domains. We also extend these models
to describe the dynamics of magnetic bubbles.

In-plane field cases are specifically studied to help identify specific conditions which could
help measure properties of the magnetic material. We also compare the equations derived using
our Lagrangian-based approach to another reduced model developed through the application of
statistical methods to the LLG equation, shedding light on the shortcomings of our approach. The
work culminates with a summary of how these models may be made more realistic, through the
inclusion of pinning and thermal effects within the model.
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Nomenclature

This list includes several symbols that will be used later in the Chapters to represent specific
quantities.

α Gilbert damping

αR Rashba strength

β Nonadiabaticity coefficient

F Rayleigh dissipation function

L Lagrangian

T Kinetic energy of the system

V Potential energy of the system

χ Magnetic susceptibility of a ma-
terial

χ Tilt angle of the DW

∆ DW width

∆av DW width in the semi-analytical
model

γ Gyromagnetic ratio

N̂ Demagnetizing tensor

ûSOT Direction of spin-orbit effects

h̄ Planck’s constant

λ Landau-Lifshitz damping

µ Magnetic permeability of a mate-
rial

µ0 Magnetic permeability of free
space, also known as the magnetic
constant or the permeability con-
stant

µB Bohr magneton

~τSOT Spin-orbit torques (SOTs)

~τSTT Spin transfer torques (STTs)

~D DMI vector

~M Magnetization vector

~m Normalized magnetization vector

Ω Angle determining location on a
magnetic bubble

φ Magnetization angle at the center
of the DW

Φav SW magnetization angle in the
semi-analytical model

θ, Φ Euler angles of magnetization,
defined in Figure 2.3

θSH Spin Hall angle

∗ Denotes a steady state value of a
parameter

A Exchange constant

B Magnetic field due to current or
in magnetic materials also knows
as the B-field

D DMI strength in systems with
symmetru breaking at the z in-
terface

E Energy of the magnetic system

e Electron charge

Edens,anis Anisotropy energy density

Edens Total energy density of the sys-
tem

g Dimensionless magnetic moment

H Magnetic field in vaccum also
known as H-field

Hd Demagnetizing field
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hi The i field normalized by the
Walker breakdown field

Hanis Anisotropy field

Heff Effective field

Hext External magnetic field

HFL Field-like field due to spin-orbit
effects

HSL Slonczewski-like field due to spin-
orbit effects

HSTT Effective field due to the Spin
Transfer Torque (STT)

J Current density

K0,K1,K2 Anisotropy constants

KU Uniaxial anisotropy constant

Keff Effective anisotropy taking into
account both uniaxial anisotropy
and demagnetizing effects

Ms Saturation Magnetization

Na,Nb,Nc Demagnetizing factors along el-
lipsoidal axes a,b, andc

P Current polarization

q DW position

t Layer thickness

u Electron velocity

uZeeman Zeeman energy density

Xav DW geometric tilting in the semi-
analytical model

H Hamiltonian

Hanis Anisotropy field

Hexch Exchange field

Hext External magnetic field

Hms Magnetostatic field

HR Rashba field

HSHE Spin Hall effect field

DMI Dzyaloshinski-Moriya interaction

DW Domain wall

MRAM Magnetoresistive random access
memory

Q DW position in the semi-
analytical model

SHE Spin Hall effect

STT Spin transfer torque
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Chapter 1

Introduction

One of the promising fields of technological advancement is the area of spintronics, which exploits
both the charge and the spin degrees of freedom of electrons in the design of devices [9,10]. Fueled
by the limitations of current technologies in areas such as storage media, physicists and material
scientists have focused on developing a fundamental understanding of spintronic phenomena along
with possible applications for these new discoveries in data processing, storage and transfer [11–20].

Advances in manufacturing have led to the miniaturization of electronic components towards
nanoscale devices. Manipulating magnetic domain walls (DWs) in nanostructures has been linked
with applications in spintronic logic [21–25], storage/memory [26–34] and sensing [35, 36]. Poten-
tial advantages of devices which use magnetic moments to carry information include low power
dissipation, nonvolatile data retention, radiation tolerance, faster manipulation of data, high areal
densities and lack of mechanical parts. Such applications have led to increased interest within the
scientific community in developing models which can qualitatively or quantitatively describe the
dynamics of magnetic moments.

1.1 Spintronics and Domain Wall Devices

Spintronic devices have been in industrial use for many years. Since the 1988 discovery of giant
magnetoresistance [37, 38] which led to the 2007 Noble prize in physics for the scientists involved,
there has been an increasing interest in the control of charge transport through magnetism, and use
of new fundamental effects which emerge at the nanoscale in functional devices. Further studies in
this area led to the creation of spin valve sensors and the first applications of spintronics in hard
drive read-heads, helping increase hard drive capacities [26].

The next important application came with the magnetoresistive random access memory (MRAM);
this device combines nonvolatility, endurance and fast random access to the data, making it a likely
candidate for universal memory [39]. A universal memory is one which combines data retention
(seen in Flash and Read Only Memory - ROM), fast execution (seen in Dynamic and Static RAMs)
with high density (seen in Hard Disk Drives). While MRAMs use the reading and writing prin-
ciple previously used in magnetic core memories of the 1950s [40–42], they use new advances in
nanofabrication and fundamental physics to improve storage capacity. In 2006, the first com-
mercial MRAM was released by Freescale and in 2007 a space and military qualified version was
introduced, meeting relevant thermal limits and using the intrinsic radiation resistance of magnetic
storage to its advantage. MRAMs are limited by the superparamagnetic threshold which limits the
size of the cells; below the size determined by this threshold, the magnetization of the cells can
spontaneously reverse as a result of thermal fluctuations [30].
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Magnetic Domain Walls (DWs) are interfaces that separate magnetic domains, areas in a
magnetic material where the direction of magnetism is homogeneous. The next generation of
magnetic mass storage devices could rely on moving DWs. This approach, which is closely related
to the Bubble Magnetic Memories of the 1970s [43, 44], relies on the fact that file architectures
for mass storage do not require random access to single bits; instead they need random access to
sectors of sequential binary information, which could be represented by a chain of DWs in a strip
of material. In a series of papers [28, 29], Parkin and his team presented the racetrack memory,
which uses this principle in different architectures and relies on oscillating magnetic fields or electric
currents to move the data. The racetrack memory promises mass storage without any mechanical
moving parts along with the possibility of achieving 3-D memory units which could help with
increasing storage capacity. Other concepts proposed in the area of magnetic memories include the
use of structural features in nanowires to increase the number of memory states achievable [30],
or using oscillating fields to move magnetic bubble domains as part of the bubblecade memory
concept [34].

Up until 2002, most work on spintronics focused on data storage, and specifically MRAM
applications. Logic devices became another possibility when Allwood et al. demonstrated an all-
metallic submicrometer device able to perform NOT operations on magnetic signals [21]. This
approach was later extended to other logic elements such as AND, Fan-out, Cross-over, and more
complex logic circuits [22]. The main motivation of these attempts were to improve scaling by not
using semiconductor materials [21].

Many other applications have been demonstrated for DW devices. For instance, nanomagnetic
systems of DWs in in-plane magnetic materials have been used to manipulate ultracold atoms,
which could find application in quantum information technology [45], and domain wall assisted
transport of nanoparticles [46–48]. Spintronics has also been seen as an enabler of other novel
technologies such as bioinspired computational architectures [49].

While all these applications are important and fuel further fundamental research, as noted
by Dyakonov [50], these applications might never be realized or might be outperformed by other
new technologies (as happened to the bubble memory); the hype should not overshadow scientific
understanding.

1.2 Magnetic Domain Walls and Their Motion

Engineering any device that relies on magnetic domains or domain walls to code information will
inadvertently require proper understanding of the motion of domain walls.

As depicted in Figure 1.1, domain wall motion has been generally broken down into three
regimes depending on the strength of the driving interaction [51]:

1. The creep regime, where the driving interaction is low enough for the motion of the DW to
be dominated by thermal activation and the disorder within the system.

2. The depinning regime, where the drive interaction is high enough for thermal activation to
have minimal effect, but pinning still exerts a strong effect on the dynamics.

3. The flow regime where the drive interaction is much higher than pinning or thermal fluctu-
ations, with minimal effect from the latter two contributions.

In the flow regime, it is well established that a steady state condition can be reached if the
excitation is lower than the Walker excitation (Hw) [53]. In this condition the DW speed changes
almost linearly with the drive interaction, a fact that could also be verified using micromagnetic
simulations. Below the Walker breakdown, the precession of magnetization and evolution of other
DW parameters halt after a specific amount of time has passed. Above the Walker breakdown field
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(a) Low drive interaction. (b) Flow regime.

Figure 1.1: The main regimes of domain wall motion [51,52]. (a) In the absence of thermal effects,
no creep is observed; however, a threshold drive force exists after which the interface moves. This
threshold is the depinning force. Presence of thermal effects means that the interface can move at
lower force strengths due to the extra energy contribution from the temperature. In the flow regime,
effects of temperature and pinning are negligible. (b) Below a threshold field called the Walker
breakdown field (HW), the motion has a linear relationship with the field applied. Above this field,
we see a reduction in speed due to energy dissipation from the precession of magnetization. At
very high fields a linear regime can be observed with a different slope.

the domain wall moves back and forth (due to magnetization precession) with a general motion
forward. At fields much higher than the Walker breakdown, the precession of magnetization
becomes so fast that it leads to a linear increase of velocity with applied excitation; however, the
slope is different compared to excitations lower thna the Walker breakdown.

It is notable that the motion of the domain wall has to be modeled differently in different
regimes. Stochastic effects are dominant in the creep and depinning regimes, due to the effect of
thermal fluctuations and disorder within the system. As such, modeling these regimes relies heavily
on statistical physics. In the flow regime, the motion of the domain wall is more deterministic and
acceptable results may be obtained without taking into account the stochastic nature of the physics.

1.3 Modeling DW Motion

The Landau-Lifshitz-Gilbert (LLG) equation has been used extensively to study magnetization
dynamics in ferromagnetic systems. Micromagnetic simulation tools based on the LLG equation
are flexible (may be applied to different problems in magnetism with new interactions introduced
based on the set-up of the system) and help better understand the underlying physics; however,
their use is computationally costly and might be hard to interpret at times.

Alternatively, simpler models may be extracted from the LLG equation to analyze the motion of
specific spin textures of interest, such as vortices and DWs. In 1972, Slonczewski used a Lagrangian
approach to propose the first widely used collective coordinate model (CCM) for DW motion in
perpendicularly magnetized materials (the q−φ model) which takes into account the change in the
position (q) and magnetization angle (φ) of the DW [54, 55]. Meanwhile, Thiele used a different
approach to derive the equations of motion for magnetic bubbles based on a force description
which some find easier to interpret [56, 57]. Both descriptions rely on an assumption for how the
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perpendicular component of the magnetization changes within the system. In a series of papers,
Sobolev et al. extended these models to systems under in-plane fields [58–61].

Thiaville and Nakatani later extended the Slonczewski model to in-plane systems, adding the
DW width parameter (∆) as an additional coordinate in the q − φ −∆ model, and revisited the
use of the Thiele model for in-plane systems [62]. They later added the spin transfer torque (STT)
stemming from use of electric currents in their models as well [63,64]. These collective coordinate
models were later made more realistic by the inclusion of thermal fluctuations and pinning [65–68].

Recent studies on DW motion have focused on heterostructures of ultrathin ferromagnets sand-
wiched between a heavy metal layer and an oxide. In these systems, spin-orbit coupling (SOC)
and broken inversion symmetry at the interfaces stabilizes Néel-like chiral DWs [69–71] through
the interfacial Dzyaloshinski-Moriya interaction (DMI) [72,73]. Transition to the Bloch DW struc-
ture is not favored in systems with DMI, and this delays the Walker Breakdown [53], allowing for
larger DW velocities to be reached compared to systems without DMI [74]. SOC also leads to
enhanced current induced DW motion, attributed to the spin Hall effect (SHE) [75,76] or Rashba
SOC [77, 78]. The main torques stemming from SOC may be added to the LLG equation as a
field-like and a damping-like torque [79–81].

In the case of DW motion in perpendicular magnetic anisotropy (PMA) nanowires with DMI,
the DWs were observed to tilt in the plane of the sample (Figure 1.2). This led to the development
of the most recent collective coordinate model for DW motion, namely the q− φ− χ model which
takes into account the effect of rigid tilting of the DW through the parameter χ and assuming a
fixed DW width [82,83].
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Figure 1.2: Visual depiction of the collective coordinates used to describe a DW in different models.
The red arrow shows the magnetization inside the DW, which we assume is homogeneous at every
point inside the DW.

While these collective coordinate models have been successfully applied to many problems,
there have been several cases in which their use was unsatisfactory. One of the problems of interest
is the study of DW motion in PMA systems with DMI under the application of applied fields in the
plane of the sample [82–87]. While micromagnetic simulations of this problem are in agreement
with experiments, conventional collective coordinate models (q−φ and q−φ−χ) fail to reproduce
the micromagnetic results [82, 85]. The failure of CCMs is a major issue, as the main method
for measuring DMI strength is bubble expansion under in-plane fields which relies on equations
derived using the collective coordinate approach [88–90].

In addition, characterizing pinning based on material properties is key in modeling DW pinning
due to ion irradiation [91–94], but this has not been achieved in analytical models. All these
limitations call for improvements in collective coordinate modeling of DW motion.
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1.4 Aims and Objectives

The aim of this work is to improve the accuracy of collective coordinate models used to describe
the motion of magnetic domain walls (DWs) under applied fields and currents in perpendicu-
lar magnetic anisotropy (PMA) systems with the Dzyaloshinskii-Moriya interaction (DMI). The
Euler-Lagrange equation with the Lagrangian and dissipation functions presented in reference [82]
are used as a starting point to reduce the LLG equation from a spatio-temporal description to
one based on temporal evolution of collective coordinates describing the DW. In order to study
the heterostructures of interest, along with the traditional interactions (exchange, anisotropy and
magnetostatics) and the Zeeman energy, we include the DMI [74,95,96], spin-orbit torques [80,81],
and the STT mechanism [64,97].

Specific objectives of this work include:

� extension of the method of collective variables to derive simplified models for DW dynamics
in PMA materials, under applied fields and currents (including spin-transfer and spin-orbit
torque effects);

� description of the propagating DW state by a finite set of state variables, such as position
and width, taking into account local spin structure features; and

� use of a Lagrangian approach, based on micromagnetic theory, to describe the dynamics of
the state variables.

1.5 Approach

Based on micromagnetic simulations, experimental observations and previous studies in this area
[54,62,82], the following time dependent collective coordinates were used to describe the collective
behavior of the DW as depicted in Figure 1.2:

� The position of the center of the DW (q);

� The magnetization angle at the center of the DW (φ);

� The DW width parameter (∆); and

� The geometric tilting of the DW (χ).

Using these coordinates, the DW is modeled as a thin line with four degrees of freedom as
depicted in Figure 1.2. An ansatz is used to link the collective coordinates with the components of
the magnetization, basically defining the structure of the object under study. For DWs, one such
ansatz is the tilted Bloch profile [82], while another option is an inherently canted ansatz [58–61]
proposed for cases when strong in-plane fields are applied. Irrespective of the ansatz used, we also
assume that magnetization is homogeneous along the DW, hence φ(r, t) = φ(t).

Armed with these assumptions for the profile of the DW, one can write the Lagrangian and dis-
sipation density functions (describing the energy landscape of the system) in terms of the collective
coordinates. This description of the energy landscape needs to be integrated along the dimensions
of the system to characterize the total energy of the system. The total energy of the system may
then be plugged into the Euler-Lagrange equation to derive the equations of motion. Depending
on the ansatz used and the integration approach, different collective coordinate models may be
developed which will be detailed in this thesis.
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1.6 Structure of This Dissertation

This thesis has been prepared in 9 Chapters. The current Chapter highlighted the aims of the
project, along with some of the background information regarding the field.

Chapter 2 introduces micromagnetic theory and the LLG equation in detail, highlighting the
framework used in this work. In addition, a summary of material properties for typical materials
currently under investigation are provided.

Chapter 3 focuses on the use of the collective coordinate approach to predict the static structure
of domain walls.

Chapter 4 introduces the Euler-Lagrange approach for developing collective coordinate models
in detail, and present four collective coordinate models for DW motion. The accuracy of these
models are compared to micromagnetic simulations.

In Chapter 5, models from Chapter 4 are extended to include canting in the domains, which
is an effect playing an important role in domain wall motion under in-plane fields. We apply the
models to two cases of nanowires under in-plane fields, identifying critical points in domain wall
motion.

Chapter 6 applies the models developed to magnetic bubbles in thin films, providing a toy
model and showcasing the importance of using models with canting in measuring DMI.

Chapter 7 showcases a comparison between the models developed using the approach above with
another model, called the ”semi-analytical collective coordinate model” based on spatial averages
of the LLG equation outputs.

Chapter 8 introduces effects of DW pinning and thermal activation on DW motion, and some
of the approaches these effects may be added to collective coordinate models.

In Chapter 9, a summary of the findings of this work is presented, along with perspectives on
future work.
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Chapter 2

Magnetic Materials: Properties
and Interactions

In this Chapter, we review some of the basic properties of magnetic materials, and the fundamental
interactions that give rise to these properties. A list of typical material stacks currently under
investigation by different groups will also be presented.

For conciseness, only the properties relevant to the studies in this thesis will be discussed. For
more information about magnetic materials, readers may refer to references [98–100]. For more
information about magnetic domain walls and their properties, the reader is referred to [101,102].

2.1 Spins and Magnetic Moments

Subatomic particles such as protons, neutrons and electrons have spins. According to the Heisen-
berg uncertainty principle, particles at the same energy level need to have different spins. In the
case of even numbers of particles, usually the spins cancel out; however, with an odd number of
particles are present, or energy levels are not full, a net moment may exist. This is why 3d elements
such as iron, cobalt, and nickel (the most commonly used magnetic elements) are ferromagnetic,
showcasing specific behaviors under magnetic fields.

While atoms can have a net spin, atomistic modeling of systems based on quantum mechanics
is resource intensive. Continuum theories of magnetism are not based on atomic spins, but based
on magnetization, which is the summation of all spins within a specific volume of the system, or the
density of magnetic spins within the system, with the units A/m. The saturation magnetization
(Ms) is the maximum magnetization that a system can reach which coincides with a condition
when all spins within the system are parallel.

The most distinctive features of ferromagnetism are the existence of the Curie point and the
observation of a hysteresis loop [98]. At temperatures near the Curie point, the material loses its
permanent magnetic properties. The hysteresis loop is a curve depicting the magnetization versus
the applied field (H) measured in A/m or magnetic induction (B) measured in Teslas.

2.2 Energy Description of Magnetic Materials and Micro-
magnetics

Micromagnetics is the formulation of equations describing the microscopic arrangement of mag-
netization within a material. The term was coined by Brown [103, 104] who studied the total
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magnetic energy of the material using a phenomenological description. In micromagnetics, the aim
is to minimize the total free energy of the system with respect to the magnetization in order to
find a relaxed state and describe system behavior.

Micromagnetics relies on the description of the system based magnetic moments ~M = Ms~m,
vectors which describe the properties of the spins in a macroscale volume in the system. In this
equation ~m is the normalized magnetization, describing the direction of magnetization while the
saturation magnetization Ms describes the value of the magnetization. Ms can vary in space and
time, but has an almost fixed value for temperatures far below the Curie temperature.

Different interactions contribute to the internal energy of the system. In most systems, these
include the exchange interaction, magnetocrystalline anisotropy, magnetostatics, and the Zeeman
energy.

The exchange interaction stems from electrostatic coupling between electron orbitals while
satisfying the Pauli exclusion principle [98]. It favors long-range ordering of magnetization (electron
spins), and prefers the magnetization vectors to be parallel with each other. Mathematically, the
exchange interaction energy density is written as:

Edens, exchange = A

3∑
i=1

|∇mi| (2.1)

Magnetocrystalline anisotropy stems from the interaction of electron orbitals with the potential
from the hosting lattice which breaks the symmetry of isotropic exchange interactions [98]. In
essence, anisotropy effects make specific spatial orientations of magnetization more favorable than
others. This leads to the formation of easy magnetization axes, directions which are favored by
anisotropy or along which anisotropy energy is minimum. On the other hand, unfavored directions
are also formed, called hard magnetization axes, along which the anisotropy energy reaches a
maximum. Johnson et al. performed an extensive review of magnetic anisotropy of metallic
multilayers, with specific focus on Iron, Cobalt and Nickel [105]. They list theories and numerous
experimental results for these materials.

Anisotropy can have various forms based on the complexity of the easy and hard axes. The
simplest case is uniaxial anisotropy in which case anisotropy energy only depends on the orientation
of magnetization with respect to a single axis. Most magnetic materials of interest have this form
of anisotropy and are characterized by their anisotropy axis, with in-plane magnetized systems and
perpendicular magnetized systems being the two commonly used.

The energy density due to uniaxial anisotropy may be formulated as:

Edens, anis(~m) = K0 +K1 sin2 θ +K2 sin4 θ +K3 sin6 θ + ... (2.2)

in which K0, K1, K2 and K3 are anisotropy constants and θ is the angle the magnetization m̃
makes with respect to the anisotropy axis. In most cases, only the lowest degree term with respect
to θ is considered, in which case K1 is denoted as KU.

Based on the anisotropy energy, the anisotropy field can be defined as:

Hanis =
2K1

µ0Ms
(2.3)

The magnetostatic energy represents the mechanical work needed to build up the magnetic body
by bringing its magnetic moments together, or in a sense the magnetic field sensed due to the finite
nature of the system and the fact that flux lines need to close. Magnetostatics focuses on magnetic
properties of steady state stationary currents and may be analyzed using a simplified form of the
Maxwell equations of electromagnetism. In the context of magnetostatics, a helpful concept is the
concept of magnetic charges. Despite not existing physically, these abstractions can help visualize
a magnetic phenomena using analogy with electric charges.
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Magnetized matter produces a magnetic field in space as a consequence of its atomic structure
due to the electron’s spin angular momentum. In the phenomenological description ,the magnetic
matter is described as an assembly of elementary moments of atomic origin, with the magnetic
field

~B = µ0( ~H + ~M) (2.4)

Solving this equation requires a constitutive law for the medium, relating B or H to the magneti-
zation. Such laws take the form:

~B = µ ~H

~M = χm ~H
(2.5)

in which µ and χm are the magnetic permeability and susceptibility of the medium, and related
to each other through:

µ = µ0(1 + χm) (2.6)

with χm ≥ −1 and µ > 0 for thermodynamic stability. In a ferromagnetic body, the depen-
dence of ~M on ~H is usually anisotropic, nonlinear, and hysteretic. Hence, this model is only an
approximation used for simplicity.

Magnetostatic effects are usually summarized using the demagnetizing field, which opposes the
magnetization:

~Hd = −N̂ · ~M (2.7)

where N is the tensor of demagnetizing factors.
If the object under study has an ellipsoidal shape, N will be diagonally matrix defined along

the ellipsoidal axes of the system, and we have three demagnetizing factors, Na, Nb, Nc associated
with each of the three ellipsoid principal axes, a, b, and c. These demagnetizing factors obey
the general constraint Na + Nb + Nc = 1. The demagnetizing field is small when the body has
an elongated shape and the magnetization points along the long axis. The magnetostatic energy
density of an ellipsoidal magnetic body can simply be written as [98]:

Edens,magnetostatic =
µ0

2
~Hd · ~m =

µ0

2
(NaM

2
a +NbM

2
b +NcM

2
c ) (2.8)

The demagnetizing factors of a generalized ellipsoid (assuming ellipsoidal semiaxes a,b, and c with
a ≤ b ≤ c ≤ 0) may be calculated using the following formulae [106]:

Na =
cosψ cos ν

sin3 ν sin2 α
[F (k, ν)− E(k, ν)] (2.9)

Nc =
cosψ cos ν

sin3 ν cos2 α

[
sin ν cosψ

cos ν
− E(k, ν)

]
(2.10)

Nb = 1−Na −Nc (2.11)

with cos ν = c
a , cosψ = b

a and k = sinα = sinψ
sin ν . F is the elliptical integral of the first kind:

F (k, ν) =

∫ k

0

dθ√
1− ν2 sin2 θ

(2.12)
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and E is the elliptical integral of the second kind:

E(k, ν) =

∫ k

0

√
1− ν2 sin2 θdθ (2.13)

Different authors have provided simpler descriptions for these factors based on mathematical sim-
plification [107–110].

Finally, the Zeeman energy characterizes the energy added to the system due to the application
of an external magnetic field. The energy density due to the external field has the form:

Edens, Zeeman = µ0
~M · ~Hext (2.14)

2.3 Modeling Magnetization Dynamics: The LLG Equation

The Landau-Lifshitz-Gilbert (LLG) equation is a phenomenological relationship used in the contin-
uum limit to describe magnetization dynamics through a series of torques on the magnetization.
This equation, developed from energy minimization, has the form [111]:

d~m

dt
= −γ ~m× ~Heffective + α~m× d~m

dt
(2.15)

in which γ = 1.79 × 1011 is the gyromagnetic ratio, ~m is the normalized magnetization vector,
~Heffective = δE

δ~m is the effective magnetic field acting on the magnetization and α is the phenomeno-
logical Gilbert damping, formulated based on the Lagrangian approach [111]. The LLG equation
constitutes two torques as depicted in Figure 2.1: a torque by the effective field trying to precess the
magnetization, and a damping torque perpendicular to the former which relaxes the magnetization
towards the effective field direction.

Figure 2.1: The torques due to the effective field and damping. The torque in red is due to the
effective field and aims to precess the magnetization around the effective field direction, while the
damping torque shown in blue eventually relaxes the magnetization towards the direction of the
effective field. Most torques from other origins are usually studied in the field-like and damping-like
directions defined in this figure.

The LLG equation can also be written as the Landau-Lifshitz equation with a different form of
damping [112]:

d~m

dt
= −γLL ~m× ~Heffective − λ~m× (~m× ~Heffective) (2.16)

in which λ is the Landau-Lifshitz form of damping. The two equations can be transformed into one
another using algebraic manipulation. The Landau-Lifshitz form of damping encounters problems
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for large damping, which was the main reason behind developing the Gilbert form of damping [111].
As such, we will base all further discussion in this work on the LLG equation.

Due to our specific interest in current-induced magnetization dynamics, we will separate terms
due to currents and add them as separate torques to the LLG equation, leading to the extended
LLG equation:

d~m

dt
= −γ ~m× ~Heffective + α~m× d~m

dt
+ ~τSTT + ~τSOT (2.17)

where ~τSTT are the torques due to spin transfer and ~τSOT are torques due to spin-orbit interactions.
These torques will be outlined in the next sections.

2.3.1 The Effective Field

The effective field in the LLG equation is key to understanding magnetization dynamics. This field
includes internal interactions within the magnetic material, and may include external stimulation
of the system due to fields and currents. The effective field is related to the energy of the different
interactions through H̃eff = − 1

µ0Ms

δE
δm̃ . The major energy terms inherent to a ferromagnetic sample

are exchange, magnetic anisotropy, and magnetostatic energies. Any applied external field will also
contribute to the effective field through an associated Zeeman energy term.

In the presence of an applied field, the total energy density of a system with DMI and uniaxial
anisotropy may be written as:

Edens =

Exchange︷ ︸︸ ︷
A

3∑
i=1

|∇mi|2 +

Anisotropy︷ ︸︸ ︷
KU sin2 θ−

Magnetostatics︷ ︸︸ ︷
µ0Ms

2
~Hd · ~m−

Zeeman︷ ︸︸ ︷
µ0Ms

~Hext · ~m (2.18)

where A is the exchange constant, KU is the uniaxial anisotropy constant, Ms is the saturation
magnetization, Hd is the demagnetizing field, Hext is the externally applied field and θ is the
angle between the easy axis of magnetization and the magnetization. The demagnetizing field
may be calculated as Hd = −N̂.~m where N̂ is the demagnetizing tensor. It is also notable that
the magnetostatic energy can be included in anisotropy energy as shape anisotropy. In a system
with perpendicular magnetic anisotropy and ellipsoidal conditions, the effective anisotropy will be
defined as:

Keff,0 =
1

2
µ0M

2
sNz (2.19)

Keff,U = KU +
1

2
µ0M

2
s

(
Nx cos2 φ+Ny sin2 φ−Nz

)
(2.20)

2.3.2 Spin Transfer Torques

When a spin polarized current is injected in a ferromagnetic material, it gives rise to spin transfer
torques (STTs) which can induce magnetization dynamics and move a DW [113,114]. Sloncwezski
and Berger were the first to predict this phenomenon [115, 116], which was later experimentally
demonstrated [117,118]. Spin polarization of current may be achieved by various methods, includ-
ing injection of the current in a ferromagnet [19]; most nanowires are sufficiently long enough to
assume spin polarization of the current to an extent as it traverses the ferromagnetic layer [64].

Two underlying mechanisms contribute to DW motion through STT:
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1. Linear momentum transfer and electron reflection:In theory, the electron can be assumed
to reflect completely after hitting the DW. The reflected electrons will have opposite spin
compared to the incoming electrons. This requires linear momentum transfer to the wall,
leading to DW motion. This mechanism is the most important for thin DWs due to electron
scattering.

2. Electron transmission and angular momentum transfer: Theoretically, the electron can also
traverse the wall. During this process, the electron changes its spin direction, which requires
angular momentum transfer between the transmitting electron and the DW, to comply with
conservation of angular momentum. This process is most important in thick DWs where
strong exchange interaction prevents electron scattering.

Of course, in reality we have a combination of the two happening in any system.
Several authors developed theories to describe STT and its effects on magnetization dynamics

[97,119,120]. These two processes can be modeled by adding two terms in the LLG equation: An
adiabatic term taking into account electron transmission and angular momentum transfer, and a
non-adiabatic term which stems from linear momentum transfer and spin relaxation. The torques
on the magnetization due to these terms may be written as [64,97]:

~τSTT = −
(
~u · ~∇

)
~m︸ ︷︷ ︸

adiabatic

+

non−adiabatic︷ ︸︸ ︷
β ~m× ((~u · ∇) ~m) (2.21)

in which β is the nonadiabaticity coefficient and ~u =
~JPgµb

2eMs
is the velocity of the electrons, with J

denoting current density and P denoting the polarization rate of the current. The adiabatic torque
is also known as the in-plane or Slonczewski-like torque (the torque being in the same direction as
the damping torque), while the non-adiabatic term is also called the field-like torque, perpendicular
torque or β term (the torque being in the same direction as the torque due to the effective field).
The direction of DW motion in STT is the same as that of electron motion or opposite current
flow. Note that the non-adiabatic torque is the driving force in DW motion, while the adiabatic
torque competes with damping and prevents precession to end.

These torques may also be included as an equivalent effective field using the following formu-
lation:

HSTT = ~m×
((
~u.~∇

)
~m
)

︸ ︷︷ ︸
adiabatic

+

non−adiabatic︷ ︸︸ ︷
β
(
~u.~∇

)
~m (2.22)

Some authors describe this as the in-plane STT, as it is only valid when the current is going
within the ferromagnetic layer. The out-of-plane spin transfer torque happens when the current is
traversing the ferromagnetic layer perpendicular to the system (in magnetic tunnel junctions for
example), and has a form similar to the Sloncwezski-like spin orbit torques presented in the next

section (with uSOT replaced with the current polarization vector) and HSL = −|g|
2

µB

Ms

1
t

J
|e| [116].

2.4 Spin Orbit Interactions

Recent studies on heterostructures of ultrathin ferromagnets sandwiched between a heavy metal
layer and an oxide have highlighted the importance of spin-orbit coupling (SOC) and broken inver-
sion symmetry (BIS) in domain wall (DW) motion. In these structures, interfacial effects contribute
to DW motion as predicted theoretically [121–123] and later observed in experiments [75,124].
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Current-dependent spin-orbit interactions are observed in systems with a ferromagnetic layer
sandwiched between two heavy metal layers, or a heavy metal layer and an oxide layer. Such
effects stem from the fact that the flow of electric current in a crystalline structure lacking inversion
symmetry can transfer orbital angular momentum from the lattice to the spins, giving rise to effects
which can enhance the STT or act on their own to move DWs. Enhancement of current-driven DW
motion in these systems was attributed to mechanisms such as the Rashba spin-orbit effect [77]
and the spin Hall effect (SHE) [125].

In SHE, first predicted in 1971 [126, 127], spin dependent scattering in the heavy metal layer
leads to spin accumulation at lateral boundaries of the heavy metal layer with opposite spins
accumulating on opposite boundaries [50]. This leads to a spin current perpendicular to the charge
current and interface normal, which may interact with the magnetization in the magnetic layer.
The Rashba effect arises from spin dependent scattering at the interface of the heavy metal layer
and the ferromagnet [78].

The main torques stemming from current dependent spin-orbit interactions may be modeled
as [81]:

τSOT = γHFL (~m× ûSOT )︸ ︷︷ ︸
field−like

−
Slonczewski−like︷ ︸︸ ︷

γHSL ~m× (~m× ûSOT ) (2.23)

in which ûSOT = Ĵ× n̂ is the direction of spin current when Ĵ is the direction of current flow in the
heavy metal layer and n̂ is the interface normal. These two torques are called the homogeneous
torques, as higher order torques are not included in the above model [79,80].

While both the SHE and Rashba effect contribute to these torques, it has been suggested
[80, 81, 128] that, effectively HSHE

FL << HSHE
SL = h̄θSHJ

2eMst
in which θSH is the spin Hall angle which

signifies the strength of the spin Hall effect and t is the layer thickness. It has also been suggested
that HRashba

SL << HRashba
FL = αRJP

µBMs
in which αR is a parameter outlining the strength of the Rashba

effect. The strength of the field-like and damping-like components of the torque arising from SHE
and Rashba effect are of course affected by the thickness of the layers [129].

It should be noted that some authors have argued that the above torques have a complex vector
dependence on the direction of the magnetization, and that Rashba and SHE alone are not enough
to explain such dynamics [80]. Other authors have noted that under specific circumstances (such
as thin wires), one mechanism can give rise to considerable torques in both directions [130].

The torques mentioned above could also be included as an equivalent effective field [131]:

HSOT = HFLûSOT︸ ︷︷ ︸
field−like

+

Slonczweski−like︷ ︸︸ ︷
HSL

Ms
(~m× ûSOT ) (2.24)

An example of current independent spin-orbit interaction is the interfacial Dzyaloshinski-Moriya
interaction (DMI) also known as the antisymmetric exchange interaction which stems from inter-
facial spin-orbit coupling [72,73]. This effect has the following Hamiltonian form:

HDMI = − ~D · ( ~S1 × ~S2) (2.25)

where D̃ is the DMI vector. This clearly shows that the DMI prefers the spins to lie perpendicular
to each other. The energy density associated with the DMI for a sample isotropic in the plane,
where the Dzyaloshinskii vector originated from symmetry breaking at the z surface, may be
calculated as [74,95,96]:

Edens,DMI = D(mz
~∇.~m− (~m.∇)mz) (2.26)
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where D is a uniform constant signifying the strength of the DMI.
The DMI favors DW structures of specific chirality [69,70] and stabilizes Néel-like DW structures

over the Bloch DW structure, with the final structure depending on the competition between DMI
and anisotropy [71]. Thiaville et al. later suggested that this has consequences for DW motion, as
it makes transition to the Bloch DW structure unfavorable and may increase the Walker breakdown
field, allowing larger DW velocities [74]. Experiments have found that depending on the chirality
of the DW and the stacking of the materials in the heterostructure, the DW might move along
or against the direction of electron flow in systems with spin-orbit interactions [75, 132]. As such,
many recent studies have focused on tailoring the DMI interaction [89,133] to achieve more efficient
DW motion.

2.4.1 Other Interactions

Other effects may also be included in the LLG equation. Electric fields [134–136] and mechanical
stress [137] can also be used to manipulate DW motion. Pinning due to disorder in the system is
usually modeled using a quadratic [138] or harmonic [139] pinning potential added to the energy
landscape of the system. Thermal effects and wire roughness may also be modeled as stochastic
processes changing the energy landscape of the system [140, 141]. The effect of defects may be
included using a nonlinear dry friction dissipation model [67].

2.5 Micromagnetic Simulations

The LLG equation can be numerically solved within a system to understand the response of the
system to different stimuli. Several tools for numerical solution of the LLG exist, most notably
OOMMF [142], and Mumax3 [143]. Both of these tools rely on finite difference solutions, with the
former solving the equations using CPUs, and the latter relying on CUDA-enabled GPUs to do so.
In this thesis, all simulations were performed with Mumax3, unless otherwise stated in the text.
The color code used to present the results from micromagnetic simulations is depicted in the color
wheel of Figure 2.2. Outputs of Mumax3 include the magnetic moment at each simulation cell.
Details of post-processing the images to extract information of relevance to this work are presented
in Chapter 4.

Figure 2.2: The color code used in micromagnetic snapshots presented in this work. The arrows
show the direction of the magnetization and the color is the corresponding color used to denote
that direction of magnetization. Magnetization out of the plane of the sample is shown as white
or black.

As these tools rely on discretization of the solution space, it is important to understand their
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limits. Cell sizes used in studies should be smaller than the exchange length, lex =
√

A
Keff

. At

the same time, these cells cannot be too close to atomistic limits, where the continuum theory is
no longer valid. All simulations in this work were done with a cell size of 1 nm × 1 nm unless
otherwise stated.

An additional limitation of the micromagnetic approach based on the LLG is the assumption
that the temperature is zero. Based on statistical mechanics [65,141], approaches have been devel-
oped for approximating finite temperature effects on magnetization dynamics. Such approaches are
only valid far below the Curie temperature, as the LLG equation also assumes a fixed saturation
magnetization.

2.6 LLG in Spherical Coordinates

It seems simpler to use a set of spherical coordinates to describe magnetization, as they could be
more intuitive. The spherical coordinates used to describe magnetization are depicted in Figure 2.3.
The normalized magnetization vector in this case (assuming a constant saturation magnetization,
Ms) is:

~m = (cos Φ sin θ, sin Φ sin θ, cos θ) (2.27)

This helps describe magnetization as a spinning top, aiding in the development of the Lagrangian
description of magnetization dynamics [103]. Note that, while the coordinates θ and Φ are useful
for calculations, they only posses physical meaning for magnetization (or spins), and not the DW
as a collective entity.

 m 

Φ 

θ y 

z 

x 

Figure 2.3: Spherical coordinates used in this work to describe magnetization.

The LLG equation in spherical coordinates (neglecting spin transfer and spin orbit torques)
may be written as:

θ̇ − α sin θΦ̇ = µ0γHΦ (2.28)

αθ̇ − sin θΦ̇ = µ0γHθ (2.29)

where:

Hθ = − 1

µ0Ms

δE

δθ
= − 1

µ0Ms

δE

δmi

δmi

δθ
(2.30)

HΦ = − 1

µ0Ms sin θ

δE

δΦ
= − 1

µ0Ms

δE

δmi

δmi

δΦ
(2.31)
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Based on this description, it can be shown that the following Lagrangian and Dissipation
functions could be used in the context of the Euler Lagrange equation to derive the LLG equation
equivalent above:

L = E +
Ms

γ
Φ̇ cos θ (2.32)

F =
αMs

γ
ṁ2 =

αMs

γ

(
θ̇2 + Φ̇2 sin2 θ

)
(2.33)

Additional terms need to be added to the equations above to take into account the effect of
STT and SOTs. A more complex form of this equation will be presented in Chapter 4.

2.7 Materials of Interest

In recent years, studies have focused on multilayers made of a ferromagnetic layer sandwiched
between a heavy metal layer and an oxide. The composition of the sandwiching layers affect
the magnetic properties of the ferromagnetic layer [144]. Initial interest in forming multilayers
stemmed from the fact that the addition of the underlayers helped increase anisotropy due to
interfacial effects. Later on, finding large DW velocities in systems with DMI led to further studies
in these materials.

Table 2.1 summarizes some of the material stacks studied in the literature, some of which
will be used in this work. Most properties of these stacks were determined experimentally, or
through fitting the experimental results using models. In general, the stacks can be broken down
into symmetric stacks (with the top and bottom layers being the same material and of the same
thickness) and non-symmetric stacks. The heavy metal layer (in particular its spin-orbit coupling)
and lack of symmetry in the stacks play major roles in the presence of the DMI in these systems.
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Chapter 3

Domain Wall Structures

Using a theoretical approach based on energy minimization, different static stable structures within
the magnetic material can be derived [55, 101, 102, 153]. Magnetic domains walls are formed to
minimize the energy in the system mainly owing to the effects from magnetostatics. They are
interfaces through which magnetization rotates from a specific direction in the first domain, to
another direction in the second domain; this rotation is typically 90 or 180 degrees. In recent
years, the energy minimization method has been extended to systems with DMI, showcasing a
difference in the type of DWs formed [153].

In this Chapter, we study the structure of magnetic domain walls in the materials of interest. We
will present the theoretical predictions of magnetic domain wall structures, and compare them to
micromagnetic simulations. These static structures are key to the models which will be developed
in future Chapters to describe DW dynamics.

3.1 DW Structure without DMI

In perpendicularly magnetized thin films, the main interactions playing a role in magnetic texture
of the material are exchange, anisotropy, and the dipolar interactions. Using spherical coordinates
(Figure 3.1), the total internal energy density (Edens) for a material with uniaxial crystalline
anisotropy in the absence of any external excitation may be written as:

Edens =

Exchange︷ ︸︸ ︷
A

[(
∂θ

∂x

)2

+

(
∂θ

∂y

)2

+

(
∂θ

∂z

)2

+ sin2θ

((
∂Φ

∂x

)2

+

(
∂Φ

∂y

)2

+

(
∂Φ

∂z

)2
)]

+

Anisotropy︷ ︸︸ ︷
KU sin2 θ+

Magnetostatics︷ ︸︸ ︷
µ0

2
M2
s

(
Nx sin2 θ cos2 Φ +Ny sin2 θ sin2 Φ +Nz cos2 θ

)
(3.1)

In the above equation, the demagnetizing factors may be calculated based on the geometry of the
system and ellipsoidal approximations as highlighted in Chapter 2.

3.1.1 Variation of the Perpendicular Component of Magnetization θ:
The Bloch Profile

Assuming an infinitely long wire with a flat domain wall, neglecting edge effects (or assuming a
large width), and assuming a homogeneous in-plane magnetization along the DW, we can model
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3 – Domain Wall Structures
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(b) Collective coordinates.

Figure 3.1: The coordinate systems used in this work. The collective coordinates of interest here
are the DW width parameter ∆, the DW magnetization angle φ and the geometric tilting of the
DW χ.

this system as a one dimensional system where all changes happen along the length of the wire.
The energy density in this case simplifies to:

Edens = A

(
∂θ

∂x

)2

+

(
Ku +

µ0M
2
s

2

(
Nx cos2 Φ +Ny sin2 Φ−Nz

))
sin2 θ +

µ0M
2
s

2
Nz (3.2)

The total energy density of the static system should be constant as no external excitation is applied
to the system. Hence, we need to solve the differential equation:

A

(
∂θ

∂x

)2

+

(
Ku +

µ0M
2
s

2

(
Nx cos2 Φ +Ny sin2 Φ−Nz

))
sin2 θ = constant (3.3)

A particular solution of this equation is what has been dubbed the Bloch profile:

tan

(
θ

2

)
= exp

(
±x− q

∆

)
≡ sin θ =

1

cosh
(
±x−q∆

) (3.4)

with ∆ defined as:

∆ =

√
A

Ku +
µ0M2

s

2

(
Nx cos2 φ+Ny sin2 φ−Nz

) (3.5)

and φ being a temporal measure of the spatio-temporal variable Φ.
The range for θ using this function is [0, π], which makes sense based on what is observed in ex-

periments on perpendicular systems and in micromagnetic simulations. Note that this description
of the domain wall is valid in any system (in-plane or perpendicular); only the coordinate system
should be adjusted for in-plane systems.

3.1.2 Variation of the In-plane component of Magnetization φ

To find the φ degree of freedom (or in-plane component of magnetization inside the DW), we first
need to plug in the DW profile derived in the previous section into the equations and integrate
along the length of the wire. The energy density integrated over the wire length of the wire Ex
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3 – Domain Wall Structures

will be:

Ex =
−2A

∆
− 2∆

(
Ku +

µ0M
2
s

2

(
Nx cos2 φ+Ny sin2 φ−Nz

))
+
µ0M

2
s

2
Nzl

= −4

√
A

[
Ku +

µ0M2
s

2

(
Nx cos2 φ+Ny sin2 φ−Nz

)]
+
µ0M

2
s

2
Nzl

= −4

√
A

[
Ku +

µ0M2
s

2

(
Nx −Nz + (Ny −Nx) sin2 φ

)]
+
µ0M

2
s

2
Nzl

(3.6)

where l is the length of the nanowire, which coincides with the direction along which the DW
profile changes based on the assumptions. Using energy minimization ∂Ex/∂φ = 0, we get:

−∆µ0M
2
s (Ny −Nx) sin 2φ = 0⇒ φ = 0,

π

2
, π

3π

2
(3.7)

which predicts two classes of domain walls based on the rigid model presented here. The cases
φ = 0 orπ are called Néel DWs, while the case with φ = π

2 or 3π
2 characterizes Bloch DWs. In the

Néel DW, the magnetization rotates along the direction parallel to the DW and in the plane of the
thin film, while for Bloch DWs the magnetization rotates about an axis perpendicular to the DW
and out of the plane of a thin film sample. Figure 3.2 shows these two type of DWs. Clearly, this
theoretical approach does not predict an intermediate state between Bloch and Néel. To determine
whether the Bloch structure or Néel structure is present, one should compare the energy for the
two cases; the structure with the lowest energy is the stable structure predicted by the theory.

Figure 3.2: The structure of Bloch and Néel domain walls. The domains are marked with different
shades of gray and the domain walls in white.

3.1.3 Validation of Theory

To validate the theory above, we compared the DW structure predicted from micromagnetics to
that predicted by the theory for Pt/Co/Ni/Co/Pt [150, 151] and Au/Co/Ni/TaN [152] which are
systems without DMI as listed in Chapter 2. We observed that in all cases the θ component of
magnetization followed the Bloch profile. Figure 3.3 shows the results of this comparison for the
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3 – Domain Wall Structures

magnetization angle φ and the DW width parameter ∆; the lines in this figure are a result of nu-
merically simulating the energy for different magnetization angles using the one-dimensional model
of DW structure presented here, and then finding the magnetization corresponding to minimum
energy. The squares showcase the results from micromagnetic simulations.

From Figure 3.3.b, it is clear that the model fails to reproduce micromagnetic results as the
DW becomes wider. This is understandable as a wider wall is more 2-D and has higher degrees of
freedom while the model assume all changes happening along the DW. Moreover, the assumption
of a homogeneous φ along the wall is not fully valid for a wide DW.

Figure 3.3.a shows two cases where intermediate DWs are predicted from micromagnetics while
the analytical description in one case does not predict a transition from Bloch to Néel and in the
other case predicts an abrupt one. Figure 3.3.b shows a case in which the transition takes part over
a wider range of wire widths, with an intermediate DW being stable from 200−300nm. Comparing
the width of the DWs as shows in Figure 3.3.c, we see that the gold sample has a much wider DW
with potential for potential for more local minimums where the micromagnetic simulation can stop
at. In addition, the gold sample DWs are the least 1-D, as owing to the low anisotropy and wider
DWs.

These transitory domain wall structures are in contradiction with our model and other ana-
lytical [154] and micromagnetic [154, 155] studies. This partially arises as in most micromagnetic
studies, the authors assumed that the DWs can only have Bloch or Néel structure, and only
compared the energy of these two cases.

To better understand the reason for the differences seen in Figure 3.3, we initially looked at
the changes in the energy density of the different interactions in the system with DW width as
depicted in Figure 3.4. Clearly, the source of the presence of intermediate DWs with structure
between Bloch and Néel is the change in the dipolar interaction whose energy density varies with
the DW width the most.

Looking at the variation of the demagnetizing field of the system with DW width as depicted
in Figure 3.4, we see that during transition from Bloch to Néel, the demagnetizing field along the
y and z direction dramatically changes. We also see that in the Au/Co/Ni/Co/TaN system, the
changes in the demagnetizing field take place over a longer width similar to changes in φ. While
the general behavior of the different components of the demagnetizing field is the same in all three
cases, the changes happen over a different range of wire width values as the DW gets wider.

As depicted in Figure 3.6, an increase in saturation magnetization will shift the transition
towards higher widths, while increasing the uniaxial anisotropy shifts the transition to lower widths.
This is understandable, as the major interactions playing a role in these systems are the anisotropy
and the demagnetizing field, with the demagnetizing field being directly related to Ms.

Figure 3.5 shows how the ellipsoidal approximation of the demagnetizing factors vary with the
nanowire width. Clearly, as the system gets wider, the perpendicular (Nz) and transverse (Ny)
component of demagnetizing factors increase with the longitudinal component (Nx) decreasing
until they reach a somewhat fixed value. We also see that the system with the lowest Ku has the
highest Nz (anisotropy exerts this effect by changing the domain wall width ∆). These changes in
demagnetizing factors are important, but clearly do not fit the changes in the demagnetizing fields
seen in Figure 3.4 (note that the demagnetizing field is Bi = −MsNimi for an ellipsoid where i is the
axis under consideration; as such, we verified that the demagnetizing factors and field follow almost
the same trend). While the ellipsoidal demagnetizing factors vary smoothly, the demagnetizing
fields in Figure 3.4 vary much differently; specifically Bz initially becomes negative before moving
to positive values, and By initially drops and then increases. These complex changes in the dipolar
fields seem to be the source of the inaccuracy of the one dimensional model.

To better understand the profile of the DW along the width of the wire), we plotted the changes
of the magnetization angle at the center of the DW (φ) along the width of the Pt/Co/Ni/Co/Pt
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3 – Domain Wall Structures

(a) Magnetization angle (φ) in Pt based systems. (b) Magnetization angle (φ) in a Au based system.

(c) Variation of DW width (∆).

Figure 3.3: The variation of magnetization angle and domain wall width parameter with wire width
in three different systems without DMI. The lines showcase one-dimensional predictions, while the
squares are results of micromagnetic simulation. (a) shows two cases where intermediate DWs
are predicted from micromagnetics while the analytical description in one case does not predict a
transition from Bloch to Néel and in the other case predicts an abrupt one. (b) shows a case in
which the transition takes part over a wider range of wire widths. From (c) it is clear that the
model fails as the DW becomes wider. We did not show the change in DW width for wire widths
more than 200 nm as the DW width changed negligibly for higher wire widths.

nanowire [150] in Figure 3.7. We see that at widths lower than 40nm, the DW has a Néel struc-
ture overall, with the in-plane magnetization slightly changing along the DW in an almost linear
manner. Above 40nm width, these changes become more profound, and the profile of the in-plane
magnetization changes from somewhat linear to a parabolic shape along the width (as shown in
Figure 3.7.b and c). In these intermediate DWs, the structure near the edge may have a magneti-
zation angle up to 5 degrees different from the middle of the wire. As the width increases, the DW
changes to a fully Bloch structure, with a profile showing magnetization being about 90 degrees
at a large part of the center of the DW, and slightly above or below that value at the two edges
(Figure 3.7.d).

22



3 – Domain Wall Structures

(a) Energy density variation with nanowire
width for the Pt/Co/Ni/Co/Pt sample [150].

(b) Demagnetizing field and magnetization an-
gle variation with nanowire width for the
Pt/Co/Ni/Co/Pt sample [150].

(c) Energy density variation with nanowire
width for the Pt/Co/Ni/Co/Pt sample [76].

(d) Demagnetizing field and magnetization an-
gle variation with nanowire width for the
Pt/Co/Ni/Co/Pt sample [76].

(e) Energy density variation with nanowire
width for the Au/Co/Ni/TaN sample [152].

(f) Demagnetizing field and magnetization an-
gle variation with nanowire width for the
Au/Co/Ni/TaN sample [152].

Figure 3.4: The variation of DW energy density and demagnetizing fields with the width of the wire
in three different systems without DMI from micromagnetic simulations. (a), (c), and (e) show
that the main source of difference is the demagnetizing energy. In (b), (d), and (f) we see that
in fact the changes in the demagnetizing field in the x and z direction gives rise to the transition
from Bloch to Néel DWs.
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3 – Domain Wall Structures

Figure 3.5: The variation of the demagne-
tizing factors in the one-dimensional model
with nanowire width.

Figure 3.6: Change in DW structure with
width for different material parameters
based on micromagnetic simulations.

(a) w = 10 − 50 nm (b) w = 60 nm

(c) w = 90 − 95 nm (d) w = 120 and 190 nm

Figure 3.7: Variation of the in-plane magnetization φ along the width of the Pt/Co/Ni/Co/Pt
wire [150]. (a) For Néel DWs, this variation is almost linear. (b) and (c) during the transition this
variation becomes non-linear. (d) For the cases close to a Bloch DW the variation stays nonlinear
but a less quadratic form.
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3 – Domain Wall Structures

3.2 DW Structure with DMI

We now focus on systems with spin-orbit coupling and broken inversion symmetry which give rise
to the interfacial Dzyaloshinskii-Moriya interaction. In these systems, an additional term due to
the DMI needs to be added to the one-dimensional energy of Equation 3.2:

Edens = A

(
∂θ

∂x

)2

+

(
Ku +

µ0M
2
s

2

(
Nx cos2 Φ +Ny sin2 Φ−Nz

))
sin2 θ+D cos Φ

∂θ

∂x
+
µ0M

2
s

2
Nz

(3.8)

3.2.1 DW Profile: Variation of θ

For a small enough DMI strength, the spin texture will not rotate, and the solution to the system
is a DW with the same Bloch profile as before. However, in the presence of high DMI there are
other solutions possible which are beyond the scope of this work [153].

If the domain wall tilts rigidly (which is seen in systems with DMI when the DW moves as
discussed in the next Chapter), this will simply change the terms inside the profile to:

tan

(
θ

2

)
= exp

(
± (x− q) cosχ+ y sinχ

∆

)
(3.9)

where χ is the geometric tilting angle, and the DW is assumed to tilt as a rigid line as depicted in
Figure 3.1.

Figure 3.8 highlights the effect of changing the ansatz parameters. Clearly, the DW width
defined through the ansatz is much more rigid than a real DW (with no internal degree of freedom).
This means there should be a limit for the width, after which the profile is no longer valid. A similar
effect is seen for tilting, where the wall seems to deform for χ > π

4 . In general, the profile seems
to work for moderate tilting and DW width.

3.2.2 In-plane Magnetization of the DW φ

Assuming no tilting for now (χ = 0 which is valid for static DWs), the integrated energy density
along the length of the wire has the form:

Ex = −4

√
A

[
Ku +

µ0M2
s

2

(
Nx −Nz + (Ny −Nx) sin2 φ

)]
+ πD cosφ+

µ0M
2
s

2
Nzl

(3.10)

and energy minimization (∂Ex

∂φ = 0) results in:

−2∆
µ0M

2
s

2
(Ny −Nx) sin 2φ− πD sinφ = 0⇒

cosφ = −π
2

D

µ0M2
s∆ (Ny −Nx)

= −π
2

HDMI

HK

= −π
2

D√
A

√
Ku + µ0M2

s

(
Nx cos2 φ+Ny sin2 φ−Nz

)
µ0M2

s (Ny −Nx)

(3.11)
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(a) Variation of θ in radians along the width and length for ∆ = 3 and χ = 45◦. The DW tilting angle can clearly
be seen in this figure.
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(b) Variation of θ with the DW tilt angle (χ) for ∆ = 3
and y = 0. It is clear that incleasing χ increases the
area of the system affected by the profile.
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(c) Variation of θ with DW width (∆) for χ = 45◦

and y = 0.

Figure 3.8: Variation of the θ calculated from the tilted Bloch profile with different parameters. (a)
clearly shows that the wall tilts along the width of the material. (b) shows the effect of changing
χ and (c) highlights that changing ∆ changes the width of the wall. It is clear that the profile
becomes invalid at high values of χ and ∆, as the DW can no longer be distinguished from the
surrounding.

where HDMI = D
µ0Ms∆

is the DMI field, and HK = Ms (Ny −Nx) is the shape anisotropy field [53].

Figure 3.9 visually presents this equation, showcasing that when the DMI field us about 0.65
times the shape anisotropy field, the DWs will be fully Néel. According to this equation and the
figure, for small values of the DMI, the DW will have a near Bloch structure (φ ∼ π

2 ) while for
higher values you reach a near Néel DW. After a threshold Dcrit = 2

πµ0M2
s ∆ (Ny −Nx), the DW

will always be of Néel structure.

Predictions for the critical DMI strength are shown in Figure 3.10 (assuming a length of 1µm
and thickness of 0.6nm for the ferromagnetic layer). We should first note that in the large yellow
area at the right of each figure (with high Ms and low Ku), the DW is Néel without the need for
DMI (or the system turns in-plane). We see that at high Ku and low Ms (Ku >> Ms), a low
critical DMI exists which is almost independent of the values of Ku and Ms, while for a small range
of Ku and Ms really high DMI is needed to maintain a Neel DW. Increasing the exchange constant
generally increases the range of critical DMI values achieved, while increasing the width reduced
these values. there is a set of Ms and Ku values for which really high critical DMIs are predicted
(shown similar to a line in the graphs).
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Figure 3.9: Variation of DW structure with the relative strength of DMI to the shape anisotropy
fields.

3.3 Validation of Theory

For each of the material stacks presented in Chapter 2 with DMI, we performed micromagnetic
simulations on a 1200nm long sample, with different widths. While the out-of-plane component of
magnetization followed the Bloch profile in all cases, intermediate DWs with structures in between
Bloch and Néel could be observed. In Pt/Co/AlOx [82], Pt/CoFe/MgO [85], Ta/CoFe/MgO
[85], Pt/CoSBi/Pt [146], Pt/Co/Gd [149], Pt/Co/Ni/Co/MgO/Pt [151], Ir/Co/Ni/TaN [152], and
Pt/Co/Ni/TaN [152] our micromagnetic results revealed only Néel DWs for w = 10 − 200nm.
This observation can be connected to the high DMI in these systems. One special case was
Pt/Co/Gd [149] in which the DMI was so high that single domain walls could not be stabilized for
w > 50nm.

The theoretical studies also revealed fully Néel DWs for Pt/Co/AlOx [82], Pt/Co/AlOx [77],
Ta/CoFe/MgO [85], Pt/CoSBi/Pt [146], Pt/Co/Gd [149], Pt/Co/Ni/Co/MgO/Pt [151], and Pt/Co/Ni/TaN
[152]. This is not fully in agreement with our micromagnetic results, as in some cases the one-
dimensional prediction does not match micromagnetics.

Figure 3.11 illustrates the structures predicted in systems with DMI using micromagnetic simu-
lations and our one-dimensional model. We only illustrated cases in which intermediate structures
were present (cases with only Néel DWs are not shown). The three cases where micromagnetic
simulations show intermediate DWs do not follow the smooth transition from Bloch to Néel we saw
in the systems without DMI. Instead, in these systems as the width of the wire increases the DW
seems to transition to a Néel or Néel-like structure of opposite chirality before moving towards a
Bloch-like structure. Our one-dimensional model does not predict such effects, likely as they arise
from dipolar effects which are not properly modeled in the on-dimensional approach.

3.4 DW Structure Under In-plane Fields in a system with
DMI

In recent years, several studies of magnetic DWs have focused on the behavior of DWs under
in-plane fields. For example, bubble expansion under in-plane magnetic fields is used to assess the
strength of the DMI interaction [88,89].

In this section, we study the static structure of a magnetic DW in systems with DMI under the
applications magnetic in-plane fields. This work will later connect with Chapters 6 and 7, where
the dynamics of DWs under similar conditions are being studied.

In the presence of an in-plane fields, a Zeeman term will be added to the energy equation of
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(a) A = 1pJ/m and w = 150nm. (b) A = 2pJ/m and w = 150nm.

(c) A = 1pJ/m and w = 300nm. (d) A = 2pJ/m and w = 300nm.

Figure 3.10: Variation of critical DMI values with material parameters. We see that for each width,
when Ms >> Ku or Ku >> Ms the critical DMI reaches fixed values, while there is a set of Ms and
Ku values for which really high critical DMIs are predicted (shown similar to a line in the graphs).

the DW as written in Equation 3.8 leading to:

Edens =A

(
∂θ

∂x

)2

+

(
Ku +

µ0M
2
s

2

(
Nx cos2 Φ +Ny sin2 Φ−Nz

))
sin2 θ

+D cos Φ
∂θ

∂x
+ µ0Ms (Hx cos Φ +Hy sin Φ) sin θ +

µ0M
2
s

2
Nz

(3.12)

For small enough in-plane fields and DMI, the Bloch profile presented in the past (Equation 3.9)
is still valid but the DW width parameter will adjust to:

∆ =

√
A

Ku +
µ0M2

s

2 (Nx cos2 φ+Ny sin2 φ−Nz) + µ0Ms (Hx cosφ+Hy sinφ)
(3.13)
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(a) Micromagnetic simulations. (b) One dimensional model.

Figure 3.11: Micromagnetic and collective coordinate study of DW structure in systems with DMI.
We have only included results for systems which showed intermediate structures.

3.4.1 Micromagnetic Study

To understand the effect of in-plane fields on the DW structure, micromagnetic simulations were
conducted under static conditions on a Pt/CoFe/MgO nanowire with the dimensions 2.8µm ×
160nm× 0.6nm.

Figure 3.12 shows the results of such simulations for two values of longitudinal fields (Bx), com-
pared to the case where no external field is applied. The application of Bx tilts the magnetization
in the domains into the plane, reducing the mz component (or θ). This changes the θ component
of magnetization in the domains from the neutral zero and π values, canting the magnetization in
the domains. The effect of canting does not fit the traditional Bloch profile.

It can be seen that, in the absence of in-plane fields, the Bloch profile describes the change in θ
acceptably. The Bloch profile can fit the transition from one domain to the next under longitudinal
fields, if the value of the DW width is adjusted or a prefactor is added to the profile.

It can be seen from the snapshots in Figure 3.13 that, when the DMI and Bx are supporting
each other within the DW (Bx > 0) in Figure 3.13.c-d), the DW width increases and the DW is
further stabilized. In cases where the DMI and Bx are competing (Bx < 0 in Figure 3.13.a, e, f),
a sufficiently large longitudinal field can change the chirality of the DW; as the magnetization of
the DW aligns with this field, the DW tilts in its plane (Figure 3.13.a).

Figure 3.14 shows the static DW profile under four values of transverse field (By) compared to
the Bloch profile. It is clear that the effect of transverse fields on the DW are symmetric (do not
depend of the direction of the field). The deformation of the DW at high field (|By| > 100mT)
creates large deviations from the Bloch profile. For smaller transverse fields, the Bloch profile
seems to suitability describe the DW profile. The effect of canting in the domains can also be seen
in these cases as well.

Figure 3.15 shows snapshots of DW structure under transverse fields. The elastic behavior of
the wall for |By| > 100mT could clearly be seen (with the wall curving and increasing length),
which gives rise to the well rounded profile in Figure 3.14.b. Such a DW could not be modeled as a
tilted line. However, the DW at smaller values of By could be modeled as a line. More importantly,
transverse fields seem to affect the DW tilting more prominently, changing the direction of tilting
of the DW.

Simulations under dynamic conditions revealed that the Bloch profile is not an exact predictor
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(a) Average θ around the DW position.
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(b) θ at the middle of the wire around the DW position.

Figure 3.12: Comparison of the static DW profile under different longitudinal fields as determined
by micromagnetic simulations to the Bloch Profile.

(a) Static DW structure for Bx = −225 mT. (b) Static DW structure for Bx = −100 mT.

(c) Static DW structure for Bx = 0 mT. (d) Static DW structure for Bx = 325 mT.

Figure 3.13: Snapshots of DW static structure determined by micromagnetic simulations under
longitudinal fields.

of DW structure under dynamic conditions. Figure 3.16 illustrates the DW structure after 10ns
under the application of a current density of 0.1TA/m and two different values of longitudinal fields.
In each case, it is clear that the Bloch profile can fit the transition between the two domains, if
the right parameters are selected. Note that, in the case of Bx = 325mT, while the profile fits
the transition, there is a misfit due to the canting angle (as mentioned before) and the DW width
tends to increase dramatically to 3-4 times its value when no fields are applied. As such, it seems
better profiles might be needed to study DW motion under in-plane fields.

In conclusion, under both longitudinal and transverse fields, the transition region of the wall
somewhat follows the Bloch profile (the fit can be improved by tuning ∆ or adding a prefactor to
the profile), albeit not exactly. However, the Bloch profile does not describe the magnetization in
the domains correctly under in-plane fields.

3.4.2 Analytic Characterization of the Canting in the Domains

As we mentioned in the previous section, under the application of in-plane magnetic fields the
magnetization in the domains cants into the plane. This effect could be characterized using energy
minimization. As mentioned in the previous Chapter, the micromagnetic internal energy at any
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(a) Average θ around the DW position.
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(b) θ in the middle of the wire around the DW position.

Figure 3.14: Comparison of the static DW profile to the Bloch profile for four different transverse
fields.

(a) Static DW structure for By = −150 mT. (b) Static DW structure for By = 150 mT.

(c) Static DW structure for By = −100 mT. (d) Static DW structure for By = 100 mT.

Figure 3.15: Snapshots of DW static structure determined by micromagnetic simulations under
static conditions.

location within the system may be written as:

E =

Exchange︷ ︸︸ ︷
A

[(
∂θ

∂x

)2

+

(
∂θ

∂y

)2

+

(
∂θ

∂z

)2

+ sin2 θ

(
(
∂φ

∂x
)2 + (

∂φ

∂y
)2 + (

∂φ

∂z
)2

)]
+

Anisotropy︷ ︸︸ ︷
KU sin2 θ

+

Magnetostatics︷ ︸︸ ︷
µ0

2
M2
s

(
Nx sin2 θ cos2 φ+Ny sin2 θ sin2 φ+Nz cos2 θ

)

+

DMI︷ ︸︸ ︷
D

[
cosφ

∂θ

∂x
+ sinφ

∂θ

∂y
− sin θ

(
sinφ

∂φ

∂x
− cosφ

∂φ

∂y

)] Zeeman︷ ︸︸ ︷
−µ0Ms [(Hx cosφ+Hy sinφ) sin θ]

(3.14)

Assuming a long wide wire to reduce the effects of the wire edges on the domains, the local
gradients of φ and θ will be negligible (in reality the magnetization at the edges of the system
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(c) Bx = 325mT.

Figure 3.16: Comparison of the moving DW structure to the Bloch profile (Equation 3.4) in SHE-
driven DW motion in Pt/CoFe/MgO under a current density of 1TA/m2.

are also canted into the plane). As a result, exchange and DM interactions will not play a role in
the domains. It should be emphasized that this assumption is not valid for nanowires with small
widths. The energy description may be simplified as:

E =

Anisotropy︷ ︸︸ ︷
KU sin2 θ+

Magnetostatic︷ ︸︸ ︷
µ0

2
M2
s

(
Nx sin2 θ cos2 φ+Ny sin2 θ sin2 φ+Nz cos2 θ

)
Zeeman︷ ︸︸ ︷

−µ0Ms [(Hx cosφ+Hy sinφ) sin θ]

(3.15)

φ is only dependent on the in-plane fields being applied: in the absence of in-plane fields φ = 0
while in the presence of these fields tanφ =

Hy

Hx
.

Minimization of energy means ∂E
∂θ = 0 (not ∇E = 0 since the φ degree of freedom is only

determined by applied fields) which yields:

sin θc =
µ0Ms (Hx cosφ+Hy sinφ)

2Ku + µ0M2
s

(
Nx cos2 φ+Ny sin2 φ−Nz

) (3.16)

The equation above may be used to calculate the canting angle in the domains. Figure 3.17
illustrates predictions from equation 3.16 when compared to micromagnetic simulations for the
Pt/CoFe/MgO sample studied in the previous section. While the analytical approach accurately
predicts the canting angle under longitudinal fields, it fails to do so for transverse fields unless
demagnetizing effects (estimated using ellipsoidal approximations) are neglected. The inaccuracy
in the case of transverse fields could be attributed to the geometry of the system, as edge effects
become important when a field is applied along the width due to the small width of the wire.
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Figure 3.17: Comparison of the canting angle predicted analytically to that predicted through
micromagnetic simulations.

3.4.3 A Canted Domain Wall Profile

Boulle et al. included canting in the domains as an alternative angle affecting θ [156]. However,
we take a different approach.

An alternative DW profile for systems with canted domains was proposed by Hubert [101], and
used extensively by Sobolev et al. [58–61]. This profile takes the form:

sin θ − sin θc = cos2 θc
cosh(

(x−q) cosχ+y sinχ
∆ )+sin θ0

, if x ≤ q(θc ≤ θ ≤ π/2)

sin(π − θ)− sin θc = cos2 θc
cosh(

(x−q) cosχ+y sinχ
∆ )+sin θ0

, if x > q(π/2 ≤ θ ≤ θx)
(3.17)

Through mathematical manipulation, we were able to show that this ansatz may be alterna-
tively written as:

tan
θ + θc

2
=

[exp (u) + sin θc]

cos θc
(3.18)

where u = (x−q) cosχ+y sinχ
∆ . For θc = 0 this equation is equivalent to the extended Bloch profile

(equation 3.9). As depicted in Figure 3.18, this profile is a much better fit to the DW structure
when in-plane fields are applied.

3.5 In-Plane Magnetization Angle φ

Integrating the energy along the length of the wire, and minimizing it with respect to the magne-
tization angle φ, we find the static in-plane field component of magnetization in the DW.

Taking into account canting, the Bloch profile yields:

cosφ = (π − 2θc)

D
µ0Ms∆

−Hx +Hy cotφ

2 cos θcMs(Ny −Nx)
=

(
π
2 − θc

)
cosθc

HDMI + (Hy cotφ−Hx)

HK

(3.19)
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Figure 3.18: Comparison of the static DW structure to the Bloch profile and the inherently canted
profile. It is clear that the inherently canted profile is a better fit to the actual DW structure.

while for the inherently canted profile we have:

cosφ = (π − 2θc)

D
µ0Ms∆

−Hx +Hy cotφ

2
(
cos2 θc +

(
π
2 − θc

)
sin θc cos θc

)
Ms(Ny −Nx)

=
π
2 − θc

cos2 θc +
(
π
2 − θc

)
sin θc cos θc

HDMI + (Hy cotφ−Hx)

HK

(3.20)

Both equations are similar in form to Equation 3.11 with additional terms due to the in-
plane fields and canting. Interestingly, the Hx and HDMI field have similar effects on the DW
(hence longitudinal fields in the opposite direction as the DMI field can stabilize the DW), while
transverse fields have a nonlinear effect.

Clearly, the difference between the output of the ansatz does not stem from the fields, but from
the prefactor. Dividing Equation 3.19 by 3.20 we have:

cosφBloch
cosφinherently canted

= cos θc +
(π

2
− θc

)
sin θc (3.21)

Which clearly shows that the difference between predictions from the two models increases with
increasing canting (or increasing the in-plane field applied). Figure 3.19 shows how this ration
changes with canting angle. It is clear that higher in-plane fields lead to further difference, with
positive canting angles have more effect on the ratio than negative canting angles.

3.6 Conclusion

In this chapter we presented the static structure of DWs for systems with and without DMI. In the
absence of DMI, the Bloch profile was extracted to describe the variation of the θ component of
magnetization which we found to be valid for cases with DMI as well. Under in-plane fields, canting
in the domains also affects the DW structure, and an alternative canted profile was presented to
take these effects into account.
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Figure 3.19: Comparison of the ratio between cosφ predicted from a Bloch profile with canting
assumption to that predicted from the inherently canted profile ( cosφBloch

cosφinherently canted
) for different

canting angles.

The in-plane component of magnetization was harder to elucidate. While in systems without
DMI our 1-D description predicted only Bloch or Néel DWs, we observed that micromagnetic
simulations and experiments also showcase Dws with intermediate structures between Bloch and
Néel. This was attributed to the limitations of the on-dimensional model in predicting dipolar
effects. We found similar issues under the DMI, although for systems with high DMI the predicted
structure from the on–dimensional model matched micromagnetics.

Overall, it seems that the on-dimensional prediction is valid for narrow domain walls, and in
systems with high DMI or systems under strong longitudinal in-plane fields.
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Chapter 4

Towards an Analytical Model: A
Collective Coordinates Approach
to DW Motion

While the LLG equation could be used to describe magnetization dynamics involving magnetic
domain walls, such an approach is computationally costly due to the need for discretization of the
systems and use of numerical techniques at each discrete cell.

This Chapter attempts to introduce a method to derived reduced models of magnetization dy-
namics from the LLG equation. These models are based on collective physical coordinates which
are characteristic of the DW being studies. To achieve such models, one approach is to develop
a Lagrangian description of magnetization dynamics, so coordinate changes could be properly ap-
plied. The Euler-Lagrange formulation has the added benefit of incorporating dissipative functions
relating to position and velocity, which stem from damping and Slonczewski-like torques.

With the Euler-Lagrange equations, the first step is to solve the inverse problem of finding the
Lagrangian (L) and Rayleigh dissipation function (F) that can regenerate the LLG equation if put
in the Euler-Lagrange-Rayleigh equation:

∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
+
∂F
∂q̇i

= 0 (4.1)

Note that the Lagrangian is related to the energy of the system through L = T −V where V is the
potential energy and T is the kinetic energy of the system.
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tions:

� ”Comparison between collective coordinate models for domain wall motion in PMA nanos-
trips in the presence of the Dzyaloshinskii-Moriya interaction”, Journal of Magnetism and
Magnetic Materials, vol. 449, pp. 337-352, 2018, doi: 10.1016/j.jmmm.2017.10.008 [3].
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4.1 The Lagrangian Formulation

We are interested in magnetic DW dynamics under fields and currents in perpendicularly mag-
netized systems described in Chapter 2. It can be shown that the following Lagrangian density
function can be used in the Euler-Lagrange equation to derive the LLG [82,103]:

d3L
dr3

= Ldens = Edens +

PrecessionalTerm︷ ︸︸ ︷
Ms

γ
φ̇ cos θ

STT︷ ︸︸ ︷
−Ms

γ
((~u.~∇)~m)

SOTFL︷ ︸︸ ︷
−µ0MsHFL ~m · ûSOT (4.2)

where Edens takes into account the energy density of exchange, anisotropy, demagnetizing, DM
interactions and external fields.

As our interest is in systems with STT along the length of the wire, we may simplify the STT

term assuming small angle approximation to −uMs

γ φd(cos θ)
dx where u is the electron velocity along

the length of the wire. Other forms of STT may be included as a field-like term or using the full
description.

The dissipation density function may be written as:

d3F
dr3

= Fdens =
αMs

2γ

[
d~m

dt
+
β

α
(~u · ∇)~m− µ0γHSL

α
~m× ûSOT

]2

(4.3)

Clearly, the Lagrangian includes the internal energy of the system (the derivative of which with
respect to m̃ gives the effective field) plus a precession term to model the precessional motion of
magnetization. The dissipation function is made up of the torques acting in the damping direction
(which show up as the cross product of fields with m̃ in the LLG equation). The LLG may be
retrieved from this Lagrangian and dissipation description of the system, by forming the cross
product of the Euler-Lagrange equation with the magnetization.

The Lagrangian relies on a description for the internal energy density of the system. Using
spherical coordinates, the total internal energy density (Edens) for a material with uniaxial crys-
talline anisotropy and DMI may be written as:

Edens =

Exchange︷ ︸︸ ︷
A

[(
∂θ

∂x

)2

+

(
∂θ

∂y

)2

+

(
∂θ

∂z

)2

+ sin2 θ

((
∂φ

∂x

)2

+

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2
)]

+

Anisotropy︷ ︸︸ ︷
KU sin2 θ+

Magnetostatics︷ ︸︸ ︷
µ0

2
M2
s

(
Nx sin2 θ cos2 φ+Ny sin2 θ sin2 φ+Nz cos2 θ

)

+

DMI︷ ︸︸ ︷
D

[
cosφ

∂θ

∂x
+ sinφ

∂θ

∂y
− sin θ

(
sinφ

∂φ

∂x
− cosφ

∂φ

∂y

)]
ZeemanandField−like SOT︷ ︸︸ ︷

−µ0Ms [(Hx cosφ+Hy sinφ) sin θ +Hz cos θ]

(4.4)

In the above equation, the demagnetizing factors may be calculated based on the geometry of
the system and ellipsoidal approximations [106–110]. Note that this assumption is only valid in a
coordinate system along the DW (Figure 4.1.b). The Zeeman energy term includes both effects of
applied fields and field-like spin-orbit torques with Hi = Ha,i + HFLuSOT,i is the effective field like
excitation in the i direction and uSOT,i is equal to 1 when there are field-like spin orbit effects in
direction i and zero, otherwise.
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The dissipation density function will have the following form in spherical coordinates (keeping
in mind the assumption of STT along the wire length):

Fdens =
αMs

2γ

[(
θ̇ cos θ cosφ− φ̇ sin θ sinφ− µ0γHSL

α
[sin θ sinφuz − cos θuy] +

βu

α

∂(sin θ cosφ)

∂x

)2

+

(
θ̇ cos θ sinφ+ φ̇ sin θ cosφ− µ0γHSL

α
[cos θux − sin θ cosφuz] +

βu

α

∂(sin θ sinφ)

∂x

)2

+

(
−θ̇ sin θ − µ0γHSL

α
[sin θ cosφuy − sin θ sinφux] +

βu

α

∂(cos θ)

∂x

)2
]

(4.5)

which may be further simplified to the following:

Fdens =
αMs

2γ

[
θ̇2 + φ̇2 sin2 θ + (

βu

α
)2

[(
∂θ

∂x

)2

+ sin2 θ

(
∂φ

∂x

)2
]

+ (
µ0γHSL

α
)2[
(
cos2 θ + sin2 θ sin2 φ

)
u2
x +

(
cos2 θ + sin2 θ cos2 φ

)
u2
y + sin2 θuz

− 2 sin θ cos θ (cosφux + sinφuy)uz − sin2 θ sin 2φuxuy]

+ 2
βu

α

(
∂θ

∂t

∂θ

∂x
+ sin2 θ

∂φ

∂t

∂φ

∂x

)
− 2

µγHSL

α

[
(sinφux − cosφuy)

∂θ

∂t
− (sin 2θuz + sin θ cos θ (cosφux + sinφuy))

∂φ

∂t

]
− 2

βu

α

µ0γHSL

α

[
(sinφux − cosφuy)

∂θ

∂x
−
(
sin θ cos θ (cosφux − sinφuy) + sin2 θuz

) ∂φ
∂x

]]
(4.6)

4.2 A Collective Coordinates Approach to Magnetic DW
Motion

Our aim is to develop a description of the collective motion of the DW; a description which does
not rely on the properties of single magnetic moments in the system, but the DW as a collection of
magnetic moments. To do so, we need to introduce assumptions in the system in order to connect
the spatial change of magnetization with the collective properties of the DW which only change
temporally.

As previously mentioned, the system of interest in this work is a multilayer perpendicularly
magnetized nanostrip containing a magnetic DW. Based on micromagnetic simulations and exper-
imental observations [54,62,82], the following time dependent collective coordinates were selected
to describe DW motion in such systems:

1. The position of the center of the DW (q);

2. Magnetization angle at the center of the DW (φ);

3. The domain wall width parameter (∆);
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4. The tilt angle of the wall as a whole (χ).

Using these coordinates, the DW is modeled as a thin line with four degrees of freedom. The
coordinates above are depicted in Figure 4.1.b.

The coordinate q was included as a measure of DW motion, φ was included to provide a measure
of the magnetization state which is how the DW interacts with its environment, and ∆ was included
as physically any DW has a width. The coordinate χ was added in order to model the effects of
the DMI on a moving DW, which tends to tilt the DW in its plane [82], as depicted in Figure 4.1.d
and e. This tilting has also been observed in systems without DMI under in-plane fields [156], and
is a way for the DW to adjust its internal magnetization while keeping multiple energy terms to
a minimum. Under high in-plane fields or high DMI, the DW no longer tilts rigidly and, a rigid
description based on a tilting line might no longer be suitable.
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(b) Ellipsoidal coordinates of the DW.

(c) t = 0, D = 1 mJ/m2. (d) t = 100 ps, D = 1 mJ/m2.

(e) t = 0, D = 2 mJ/m2. (f) t = 100 ps, D = 2 mJ/m2.

Figure 4.1: The selected collective coordinates and snapshots from micromagnetic simulations with
an applied field of 10mT. (b) Relevant ellipsoidal coordinates.The rectangle in solid gray shows the
initial state of the Dw and the one in dotted gray rectangle shows the DW in motion with a tilting
angle χ. Clearly, during motion the ellipsoidal axes (Ex and Ey) of the DW tilt by χ as well. (d)
and (f) clearly show the tilting of the DW, when compared to the initial DWs illustrated in (c)
and (e) respectively. Note that (f) also shows the partial deformation of the DW at high DMI.

In order to introduce a DW as an object within the system, and move from a description based
on spherical coordinates to collective coordinates, the two coordinate systems need to be linked.
To relate the spherical coordinates with the collective coordinates, we may use the profile of a
tilted Bloch or Néel wall derived in Chapter 2 (Equation 3.9) as an ansatz:

tan
θ

2
= exp

(
± (x− q) cosχ+ y sinχ

∆

)
(4.7)

The ansatz above (Eq. 4.7) is a generalization of the original ansatz used by Slonczewski [54,157]
(and derived in Chapter 2) with the additional parameter χ added to account for the tilting of the
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wall. Note that by introducing the parameter χ, the diagonal axes of the DW change, as depicted
in Figure 4.1.b.

By introducing this ansatz, magnetization dynamics is now constrained. This means that the
degrees of freedom such as as θ man no longer follow any direction they want and need to obey
this ansatz, moving them slightly away from the exact LLG equation towards a form of the LLG
with additional torques which constrain the dynamics of the magnetic moments. These constraints
are the main reason why micromagnetic simulations do not exactly match 1-D model predictions
in some cases.

The ansatz (Equation 4.7) has the following properties

∂θ

∂x
=

sin θ

∆
cosχ (4.8)

∂θ

∂y
=

sin θ

∆
sinχ (4.9)

∂θ

∂t
=

(
−q̇ cosχ

∆
+ χ̇

(q − x) sinχ+ y cosχ

∆
− ∆̇

∆

(x− q) cosχ+ y sinχ

∆

)
sin θ

=

(
−q̇ cosχ+

χ̇

cosχ
(y −∆ sinχ ln (tan (θ/2)))− ∆̇

∆
((x− q) cosχ+ y sinχ)

)
sin θ

∆

(4.10)

which shows all derivatives of θ somehow relating to sin θ/∆, simplifying spatial and temporal
integration of the energy (Lagrangian and dissipation) functions. For the DW to maintain its
shape, we must also have [59,61]:

|∆̇| � |q̇|, |φ̇| � |∆̇
∆
|, |∇φ| < 1

∆0
, |∇q| � 1 (4.11)

which are equivalent to the DW internal degrees of freedom changing slower than its collective
motion, and φ and q being almost spatially homogeneous.

To evaluate DW dynamics using the collective coordinates, we need to rewrite the energy terms
using these coordinates and the properties of the ansatz. The Lagrangian density will take the
form:

d3L
dr3

= Ldens =

Exchange︷ ︸︸ ︷
A

∆
sin2 θ+

DMI︷ ︸︸ ︷
D

∆2
cos (φ− χ) sin θ+

Anisotropy︷ ︸︸ ︷
KU sin2 θ

+

Magnetostatic︷ ︸︸ ︷
µ0

2
M2
s

(
Nx sin2 θ cos2 (φ− χ) +Ny sin2 θ sin2 (φ− χ) +Nz cos2 θ

)
Zeeman︷ ︸︸ ︷

−µ0Ms [(Hx cosφ+Hy sinφ) sin θ +Hz cos θ] +

PrecessionalTerm︷ ︸︸ ︷
Ms

γ
φ̇ cos θ

STT︷ ︸︸ ︷
−uMs

γ
φ
d(cos θ)

dx

SOTFL︷ ︸︸ ︷
−µ0MsHFL ~m · ûSOT

(4.12)

Note the change in the Magnetostatic terms from equations based on φ only, to equations based
on φ− χ. This is due to the local nature of the demagnetizing field, which acts on magnetization
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at each point within the system. In order to maintain the ellipsoidal assumption (or diagonality of
the demagnetizing factors tensor), a change of axes is required (as depicted in 4.1.b) which leads
to these new equations. The dissipation density can be written as:

Fdens =
αMs

2γ

[(
−q̇ cosχ

∆
+ χ̇

y −∆ sinχ ln (tan (θ/2))

∆ cosχ
− ∆̇

∆

(x− q) cosχ+ y sinχ

∆

)2

sin2 θ

+

[
φ̇2 +

(
βu

cosχ

α∆

)2
]

sin2 θ − 2
βu

α

µ0γHSL

α
(sinφux − cosφuy)

cosχ

∆
sin θ

+ 2
βu

α

(
−q̇ cosχ

∆
+ χ̇

y −∆ sinχ ln (tan (θ/2))

∆ cosχ
− ∆̇

∆

(x− q) cosχ+ y sinχ

∆

)
cosχ

∆
sin2 θ

+ (
µ0γHSL

α
)2
[ (

cos2 θ + sin2 θ sin2 φ
)
u2
x +

(
cos2 θ + sin2 θ cos2 φ

)
u2
y + sin2 θuz

− 2 sin θ cos θ (cosφux + sinφuy)uz − sin2 θ sin 2φuxuy

]
− 2

µ0γHSL

α
(sinφux − cosφuy) sin θ(

−q̇ cosχ

∆
+ χ̇

y −∆ sinχ ln (tan (θ/2))

∆ cosχ
− ∆̇

∆

(x− q) cosχ+ y sinχ

∆

)]
(4.13)

Next, the Lagrangian and dissipation density function need to be integrated over the length
of the wire. The properties of the ansatz help simplify the integration process. This integration
will remove the dependence of terms on θ, leading to an equation based only on the collective
coordinates and material properties. We have:

d2L
dydz

= Lx =
2A

∆2
cosχ+ π

D

∆2
cos (φ− χ) + 2

Ms

γ
φ̇ (q − y tanχ)− πuMs

γ
φ

+
2∆

cosχ

[
KU +

µ0

2
M2
s

(
Nx cos2 (φ− χ) +Ny sin2 (φ− χ)−Nz

)]
− πµ0Ms [Hx cosφ+Hy sinφ+ 2Hz (q − ytanχ)]

(4.14)

Fx =
αMs

γ

[
q̇2

∆
cosχ+

π2

12

∆̇2

∆ cosχ
+
χ̇2∆

cosχ

((
y

∆ cosχ

)2

+
π2

12
tan2 χ

)

+ φ̇2 ∆

cosχ
− 2y

q̇

∆

χ̇

cosχ
+
π2

6
∆̇

χ̇

cosχ
tanχ+ 2φ̇

µ0γHSL

α

∆

cosχ
uz

+ (
βu

α
)2 cosχ

∆
+

[
π
γHSL

α
(sinφux − cosφuy)− 2

β

α

u

∆
cosχ

] [
q̇ − y χ̇

cos2 χ

]
− πβu

α

γHSL

α
(sinφux − cosφuy)

− (
γHSL

α
)2 ∆

cosχ

(
u2
z + u2

y cos2 φ+ u2
x sin2 φ− 2uxuz sin 2φ+ constants

) ]
(4.15)

The constant terms are not all written down here to save space, specially since only terms with a
derivative of a collective coordinate play a role in the dynamics.
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The above equations still need to be integrated along the width and thickness of the wire.
Considering the DW tilts along the center of the wire, integration from −w/2 to w/2 is reasonable
along the width (if other coordinate systems are used, as they will not be inertial, inertial terms
will show up in the equations). After integration, the Lagrangian and dissipation function may be
used to derive the equations of motion using the Euler-Lagrange equation. Four models may be
developed, which will be outlined below.

4.2.1 Models without DW Tilting

The q− φ Model

The simplest model that can be derived using the approach above is the q − φ model which is
most similar to the original model proposed by Sloncweski [54]. This model assumes that the
DW width parameter ∆ is fixed and derived using the equation presented in Chapter 3. It also
neglects tilting in the DW. It consists of the following two equations describing the evolution of
the collective coordinates q and φ:

α
q̇

∆
+ φ̇ = µ0γ

(
Hz −

π

2
HSL [sinφuSOT,x − cosφuSOT,y]

)
+ β

u

∆
(4.16)

q̇

∆
− αφ̇ =

1

2
µ0γMs (Ny −Nx) sin 2φ− π

2

γD

Ms∆
sinφ

+
u

∆
+
π

2
µ0γ [Hx sinφ−Hy cosφ] + µ0γHSLuSOT,z

(4.17)

In the equations above, Equation 4.16 includes the effect of external interactions that drive the
DW, while equation 4.17 includes all interactions that change the internal structure of the DW.
Equations 4.16 and 4.17may be rewritten in explicit form as:

(1 + α2)
q̇

∆
= µ0γ (αHz +HSLuSOT,z) + (1 + αβ)

u

∆
+

1

2
µ0γMs (Ny −Nx) sin 2φ

+
π

2
µ0γ

[(
Hx −

D

µ0Ms∆
− αHSLuSOT,x

)
sinφ− (Hy − αHSLuSOT,y) cosφ

] (4.18)

(1 + α2)φ̇ = µ0γ (Hz − αHSLuSOT,z) + (β − α)
u

∆
− α1

2
µ0γMs (Ny −Nx) sin 2φ

− π

2
µ0γ

[(
α

(
Hx −

D

µ0Ms∆

)
+HSLuSOT,x

)
sinφ− (αHy +HSLuSOT,y) cosφ

]
(4.19)

The q− φ−∆ Model

Another somewhat simple models is the q − φ − ∆ model (similar to the model proposed by
Thiaville [62]) which extends the q − φ model by adding an additional equation outlining the
evolution of the DW width parameter. While the first two equations of the q − φ −∆ model are
4.16 and 4.17, an additional equation is added with the form:

π2

12
α

∆̇

∆
=

γ

Ms

[
A

∆2
−Ku −

µ0M
2
s

2

[
Nx cos2 φ+Ny sin2 φ−Nz

]]
+
π

2
µ0γ (Hx cosφ+Hy sinφ)

(4.20)
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The q− φ and q− φ−∆ models show the same dynamic behavior, since ∆ relaxes towards a
steady state value rather fast and is independent of the driving excitation.The steady state value
of the DW width parameter may be calculated at ∆̇ = 0 as:

∆∗ =

√
A

Ku +
µ0M2

s

2

[
Nx cos2 φ+Ny sin2 φ−Nz

]
+ π

2µ0γ (Hx cosφ+Hy sinφ)
(4.21)

Clearly the DW width depends directly on exchange, anisotropy, dipolar interaction and in-plane
fields, while the DMI exerts an effect on the DW width indirectly by affecting φ which is also
affected by the other interactions as well.

Due to the fast relaxation of the DW width parameter towards a steady state value, an analytical
analysis of the q−φ−∆ is valid for the q−φ model. These models are valid in the absence of DMI
(or presence of very low DMI), when negligible tilting is observed on the DW. Several observation
can be made regarding the mathematical form of the q− φ−∆ and the q− φ models:

1. Considering the relatively small changes in ∆, the dynamics is entirely determined by φ.

2. The uniaxial anisotropy only affects the dynamics of the DW width directly. As the DW
width is relatively stable when no in-plane fields are applied, the uniaxial anisotropy plays a
minimal role in DW dynamics.

3. The DMI and external excitations directly play a role in the dynamics of φ and velocity.

4. The dipolar interaction and in-plane fields are involved in all three equations.

5. The φ angle predicted by these equations is equivalent to φ− χ in models with tilting of the
DW as we will show later on in this chapter.

Closed-Form and Analytical Solutions

Steady State Condition In the case of a thin film in the absence of in-plane fields and neglecting
the smaller demagnetizing effects, the steady state DW width parameter (Equation 4.21) can be
approximated by:

∆∗ '
√

A

Ku − µ0M2
s

2 Nz
(4.22)

This approximation of the DW width parameter may be used in the q − φ with negligible errors
compared to the full q− φ−∆ model.

It is well established that a steady state condition can be reached if the excitation is lower than
the Walker excitation, with the DW moving at a constant speed [53]. Based on our equations, and
considering ∆ relaxes really fast, a steady state motion is equivalent to the magnetization stopping
its precession (φ̇ ∼ 0). We have:

φ̇ = 0⇒ α
1

2
Ms (Ny −Nx) sin 2φ∗ = (Hz − αHSLuSOT,z) + (β − α)

u

µ0γ∆∗

− π

2

[(
α

(
Hx −

D

µ0Ms∆∗

)
+HSLuSOT,x

)
sinφ∗ − (αHy +HSLuSOT,y) cosφ∗

] (4.23)

The equation above shows that the excitations need to balance out with the dipolar and DM
interactions in order to reach a steady state. Otherwise, the precession will continue. Note that
the DM field may be defined here as HDMI = D

µ0Ms∆∗ , and the STT field as HSTT = u
µ0Ms∆∗ .
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In the simplest case of field-driven DW motion without any DMI, we have:

sin 2φ∗ =
2Hz

αMs(Ny −Nx)
=

Hz

HW
(4.24)

q̇∗ =
µ0γ

α
Hz∆

∗ (4.25)

In such a case, the threshold field HW = α
2 Ms(Ny − Nx) = α

2 HK exists, above which no steady
state solution can be achieved. This field is called the Walker Breakdown field [53]. A similar
approach could be used to define the Walker breakdown current for the STT driven DW motion
or Sloncweski-like SOTs in the z direction.

With the definition of the Walker Breakdown field, the general equation for the stead state φ
may be written as:

sin 2φ∗ =
Hz

HW
− αHSLuSOT,z

Hw
+ (β − α)

HSTT

Hw

− π

2

[(
α
Hx

Hw
− αHDMI

Hw
+
HSL

Hw
uSOT,x

)
sinφ−

(
α
Hy

Hw
+
HSL

Hw
uSOT,y

)
cosφ

]
= hz − αhSLuSOT,z + (β − α)hSTT

− π

2
[(αhx − αhDMI + hSLuSOT,x) sinφ− (αhy + hSLuSOT,y) cosφ]

(4.26)

where his are each field term normalized by the Walker breakdown field (hz = Hz

Hw
, hsl = HSL

Hw
,

hSTT = Hu

Hw
= u

µ0γHw∆ , and hD = HDMI

Hw
= D

µ0Ms∆Hw
). This equation clearly shows that the relative

strength of each field compared to the Walker Breakdown is the dominating factor in DW motion.

Using this equation, the velocity of the DW may be simplified to:

q̇∗ =
µ0γ∆∗

α

[
Hz + β

u

µ0γ∆∗
+
π

2
HSL (uSOT,y cosφ∗ − uSOT,x sinφ∗)

]
(4.27)

This equation clearly shows that (assuming a fixed DW width) in field- and STT-driven DW
motion, the DW velocity should vary linearly with the applied interaction, while in SOT-driven
DW motion we expect a nonlinearity in DW velocity. Moreover, SOT fields in the y direction
cannot move Bloch DWs (φ∗ = π

2 ), while SOT fields in the x-direction cannot move Néel DWs
(φ∗ = 0). Note that the field-like component of the SOTs do not contribute to the velocity directly,
while they do have an effect on φ∗.

Linearized Solution Using a Taylor series expansion of the steady state equation 4.26, we have:

(
2φ∗ − 8φ∗3

6
+

32φ∗5

120
+ ...

)
= hz − αhSLuSOT,z + (β − α)hSTT

− π

2
[(αhx − αhDMI + hSLuSOT,x)

(
φ∗ − φ∗3

6
+
φ∗5

120
+ ...

)
− (αhy + hSLuSOT,y)

(
1− φ∗2

2
+
φ∗4

24
+ ...

)
]

(4.28)
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From these expansions we can extract a linear solution to the equation. Using only the first
term of each expansion, we have:

φ∗ =
hz − αhSLuSOT,z + (β − α)hSTT + π

2 (αhy + hSLuSOT,y)

2 + π
2 (αhx − αhDMI + hSLuSOT,x)

=
Hz − αHSLuSOT,z + (β − α)HSTT + π

2 (αHy +HSLuSOT,y)

αHK + π
2 (αHx − αHDMI +HSLuSOT,x)

(4.29)

The intriguing feature of this equation is that it shows that the internal structure of the DW is
Dependant on the ratio of interactions in the y and z directions to those interactoins acting along
the length of the DW.

Force Description During steady state motion (after the relaxation of ∆ and φ), it can be
shown that the dynamics of the system follows the equation below:

mDW q̈ + αq̇ = −µ0γ∆
(
Hz −

π

2
HSL [sinφuSOT,x − cosφuSOT,y]

)
+ βu (4.30)

This equation shows that the DW in these two models is acting as a particle with the time dependent
mass:

mDW =
1 + α2

µ0γ
[
HK cos 2φ+ π

2 [(Hx −HDMI − αHSLuSOT,x) cosφ+ (Hy − αHSLuSOT,y) sinφ]
]

(4.31)

Note that while in the case of field, field-like SOT and STT driven DW motion the mass does not
depend on excitation strength, in the case of Sloncweski-like driven DW motion, the mass depends
on the strength of the excitation. The mass, and hence inertial effects and relaxation time, are
dependant on the coordinate φ.

This is related to the Doring mass [62,158]:

mDoring = 2Ms
1 + α2

µ0γ2∆HK
(4.32)

Frequency Domain Solution As the evolution of ∆ has minimal effect on the dynamics, the
dynamics in this model is driven by φ. Equations 4.19 for the evolution of φ may be reqritten as:

1 + α2

µ0γHw
φ̇ =

(
1

α

Hz

Hw
− HSL

Hw
uSOT,z

)
+ (

β

α
− 1)

HSTT

Hw
− sin 2φ

− π

2

[((
Hx

Hw
− HDMI

Hw

)
+

1

α

HSL

Hw
uSOT,x

)
sinφ−

(
Hy

Hw
+

1

α

HSL

Hw
uSOT,y

)
cosφ

] (4.33)

Introducing the the time constant ωφ = 1
τφ

= µ0γHw

1+α2 , and using the notation for normalized fields,

we have:

1

ωφ
φ̇ =

(
1

α
hz − hSLuSOT,z

)
+ (

β

α
− 1)hSTT − sin 2φ

− π

2

[(
hx − hDMI +

1

α
hSLuSOT,x

)
sinφ−

(
hy +

1

α
hSLuSOT,y

)
cosφ

] (4.34)
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In the simplest case (absence of in-plane fields, DMI and spin-orbit torques), this simplifies to:

1

ωφ
φ̇ =

1

α
hz + (

β

α
− 1)hSTT − sin 2φ (4.35)

which can be analytically solved:

ωφt =
1√

1− h2
log |h tanφ− 1−

√
1− h2

h tanφ− 1 +
√

1− h2

h tanφ0 − 1 +
√

1− h2

h tanφ0 − 1−
√

1− h2
| (4.36)

with h = 1
αhz + (βα − 1)hSTT and noting 1 ≥ h. This equation can further be simplified to:

|h tanφ− 1 +
√

1− h2

h tanφ− 1−
√

1− h2
| = h tanφ0 − 1 +

√
1− h2

h tanφ0 − 1−
√

1− h2
exp(−

√
1− h2ωφt) = η exp(−w0t) (4.37)

Note that η > 1. To get to an analytical description three cases can be solved. When tanφ ≤
1−
√

1−h2

h or tanφ ≥ 1+
√

1−h2

h , we have:

tanφ =
1

h
−
√

1− h2

h

1 + η exp(−ω0t)

1− η exp(−ω0t)
(4.38)

Otherwise:

tanφ =
1

h
−
√

1− h2

h

1− η exp(−ω0t)

1 + η exp(−ω0t)
(4.39)

In both cases, the steady state solution (when t|∞) is:

tanφ∗ =
1

h
−
√

1− h2

h
(4.40)

4.2.2 Tilted Models

The q− φ− χ Model

Another model which may be derived assuming a fixed DW width parameter (∆) is the q− φ− χ
model which takes into account the tilting of the DW during its motions (similar to the model
proposed by Boulle [82]). In this model, the DW is seen as a rigid tilted line moving through the
system which may be described using the following three equations:

α
q̇

∆
cosχ+ φ̇ = µ0γ

(
Hz −

π

2
HSL [sinφuSOT,x − cosφuSOT,y]

)
+ β

u

∆
cosχ (4.41)

q̇

∆
cosχ− αφ̇ =

1

2
µ0γMs (Ny −Nx) sin(φ− χ)− π

2

γD

Ms∆
sin(φ− χ)

+
u

∆
cosχ+

π

2
µ0γ [Hx sinφ−Hy cosφ] + µ0γHSLuSOT,z

(4.42)

− απ
2

12

χ̇

cosχ

[( w

π∆

)2

+ sin2 χ

]
=

1

2
γµ0Ms cosχ(Nx −Ny) sin 2 (φ− χ) +

π

2

γD

Ms∆
sinφ

+
γ

Ms
sinχ

[
A

∆2
+

(
Ku +

µ0M
2
s

2

[
Nx cos2 (φ− χ) +Ny sin2 (φ− χ)−Nz

])]
− π

2
µ0γ (Hx cosφ+Hy sinφ) sinχ

(4.43)

46



4 – Towards an Analytical Model: A Collective Coordinates Approach to DW Motion

Note that the first two equations are the same as Equations 4.16 and 4.17 with the effect of tilting
on each term added in.

The equations for the evolution of each coordinate may be derived explicitly as:

(1 + α2)

µ0γ

q̇

∆
cosχ =αHz +HSLuSOT,z + (1 + αβ)

u

µ0γ∆
cosχ

+
π

2
[(Hx − αHSL) sinφ− (Hy − αHSL) cosφ]

+
1

2
Ms (Ny −Nx) sin 2(φ− χ)− π

2

D

µ0Ms∆
sin(φ− χ)

(4.44)

(1 + α2)

µ0γ
φ̇ = Hz − αHSLuSOT,z +

β − α
µ0γ

u

∆
cosχ

− π

2
[(αHx +HSLuSOT,x) sinφ− (αHy +HSLuSOT,y) cosφ]

− α
[

1

2
Ms (Ny −Nx) sin 2(φ− χ)− π

2

D

µ0Ms∆
sin(φ− χ)

] (4.45)

− α

µ0γ

π2

12

[
χ̇

cosχ

[( w

π∆

)2

+ sin2 χ

]]
=

1

2
Ms cosχ(Nx −Ny) sin 2 (φ− χ)

+
sinχ

µ0Ms

[
A

∆2
+

(
Ku +

µ0M
2
s

2

[
Nx cos2 (φ− χ) +Ny sin2 (φ− χ)−Nz

])]
+
π

2

D

µ0Ms∆
sinφ− π

2
(Hx cosφ+Hy sinφ) sinχ

(4.46)

From the equations, it can be observed that:

1. Applied field in the z direction and Slonczewski-like torques directly affect φ̇ and velocity.

2. The DMI, dipolar interaction and in-plane fields affect all three coordinates.

3. Exchange and uniaxial anisotropy only affect the evolution of the tilting angle directly.

4. In-plane fields can be used to enhance the effect of Sloncweski-like torques.

Note that our simulations of this case show that in the steady state condition non of φ̇, χ̇ or
φ̇− ˙chi are necessarily equal to zero although a steady state condition can usually be observed.

The q− φ−∆− χ Model

If all four coordinates are used, the collective coordinate model will take the following form:

α
q̇

∆
cosχ+ φ̇ = µ0γ

(
Hz −

π

2
HSL [sinφuSOT,x − cosφuSOT,y]

)
+ β

u

∆
cosχ (4.47)

q̇

∆
cosχ− αφ̇ =

1

2
µ0γMs (Ny −Nx) sin 2(φ− χ)− π

2

γD

Ms∆
sin(φ− χ)

+
u

∆
cosχ+

π

2
µ0γ [Hx sinφ−Hy cosφ] + µ0γHSLuSOT,z

(4.48)
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π2

12
α

[
∆̇

∆
+

χ̇

cosχ
sinχ

]
=

γ

Ms

[
A

∆2
−Ku −

µ0M
2
s

2

[
Nx cos2 (φ− χ) +Ny sin2 (φ− χ)−Nz

]]
+
π

2
µ0γ (Hx cosφ+Hy sinφ)

(4.49)

− απ
2

12

[
∆̇

∆
sinχ+

χ̇

cosχ

[( w

π∆

)2

+ sin2 χ

]]
=

γ

Ms
sinχ

[
A

∆2

+

(
Ku +

µ0M
2
s

2

[
Nx cos2 (φ− χ) +Ny sin2 (φ− χ)−Nz

])]

+
1

2
γµ0Ms cosχ(Nx −Ny) sin 2 (φ− χ)

+
π

2

γD

Ms∆
sinφ− π

2
µ0γ (Hx cosφ+Hy sinφ) sinχ

(4.50)

Here the first two equations are the same as the q − φ − χ model, while the latter two equations
are completely different from those seen in the q− φ−∆ and q− φ− χ models.

The equations for the evolution of each collective coordinate may explicitly be written as:

(1 + α2)

µ0γ

q̇

∆
cosχ = αHz +HSLuSOT,z + (1 + αβ)

u

µ0γ∆
cosχ

+
π

2
[(Hx − αHSL) sinφ− (Hy − αHSL) cosφ]

+
1

2
Ms (Ny −Nx) sin 2(φ− χ)− π

2

D

µ0Ms∆
sin(φ− χ)

(4.51)

(1 + α2)

µ0γ
φ̇ = Hz − αHSLuSOT,z +

β − α
µ0γ

u

∆
cosχ

− π

2
[(αHx +HSLuSOT,x) sinφ− (αHy +HSLuSOT,y) cosφ]

− α
[

1

2
Ms (Ny −Nx) sin 2(φ− χ)− π

2

D

µ0Ms∆
sin(φ− χ)

] (4.52)

π2

12
α

∆̇

∆

( w

π∆

)2

=
γ

Ms

A

∆2

(( w

π∆

)2

+ 2 sin2 χ

)
− γ

Ms

( w

π∆

)2
(
Ku +

µ0M
2
s

2

[
Nx cos2 (φ− χ) +Ny sin2 (φ− χ)−Nz

])
+
π

2

( w

π∆

)2

µ0γ (Hx cosφ+Hy sinφ)

+
1

4
γµ0Ms sin 2χ(Nx −Ny) sin 2 (φ− χ) +

π

2

γD

Ms∆
sinφ sinχ

(4.53)

− α

µ0γ

π2

12

χ̇

cosχ

( w

π∆

)2

= 2
A

µ0Ms∆2
sinχ+

π

2

D

µ0Ms∆
sinφ

+
1

2
Ms(Nx −Ny) sin 2 (φ− χ) cosχ

(4.54)
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These equations show that:

1. Only the evolution of the DW width depends on the magnetocrystalline anisotropy.

2. Exchange interaction affects both tilting and the DW width directly.

3. The DMI and dipolar interaction show up in all equations.

4. Out-of-plane fields and Sloncweskii torques affect the evolution of φ̇ and velocity directly.

5. In-plane fields do not directly affect the evolution of tilting.

Note that our simulations of this case show that in the steady state condition only ∆̇ necessarily
equals zero.

Closed-Form and Analytical Solutions

Steady State Conditions In simulations and using the model, we observed the rapid relaxation
of the DW width parameter. The steady state DW width parameter can be calculated:

∆̇ = 0⇒

0 =
γ

Ms

[
A

∆2
−
(
Ku +

µ0M
2
s

2

[
Nx cos2 (φ− χ) +Ny sin2 (φ− χ)−Nz

]) ]
+
π

2
µ0γ (Hx cosφ+Hy sinφ)

+
γ

Ms

( w

π∆

)2
[
2
A

∆2
sin2 χ+

π

2

D

∆
sinφ sinχ+

1

4
µ0M

2
s sin 2χ(Nx −Ny) sin 2 (φ− χ)

]
(4.55)

Assuming a small tilting angle of the DW χ ∼ 0, the steady state DW width may be estimated as:

∆∗ =

√
A

Ku +
µ0M2

s

2

[
Nx cos2 φ+Ny sin2 φ−Nz

]
+ π

2µ0γ (Hx cosφ+Hy sinφ)
(4.56)

which is the same as Equation 4.21. This approximation of the DW width may be used in the
q− φ and q− φ− χ models with negligible errors compared to the models that take into account
the evolution of ∆.

While we did observe the relaxation of φ and χ in micromagnetic simulations, we did not
necessarily observe them when using the CCMs. Yet, using the assumptions φ̇ = χ̇ = 0, an
approximation of steady state velocity may be extracted as:

q̇∗ =
µ0γ∆∗

α cosχ∗

[
Hz + β

u

µ0γ∆∗
+
π

2
HSL (uSOT,y cosφ∗ − uSOT,x sinφ∗)

]
(4.57)

Determining the steady state value of the φ and χ angles is somewhat more complex. Based
on our assumption, a steady state condition is equivalent to:

φ̇ = 0⇒α1

2
Ms (Ny −Nx) sin 2(φ∗ − χ∗) = (Hz − αHSLuSOT,z) +

β − α
µ0γ

u

∆∗

− π

2
[(αHx +HSLuSOT,x) sinφ∗ − (αHy +HSLuSOT,y) cosφ∗]

+ α
π

2

D

µ0Ms∆∗
sin(φ∗ − χ∗)

(4.58)
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χ̇ = 0⇒ 1

2
Ms(Ny −Nx) sin 2(φ∗ − χ∗) cosχ∗ =

2A

µ0Ms∆∗2
sinχ∗ +

π

2

D

µ0Ms∆∗
sinφ∗ (4.59)

Equation 4.58 clearly shows that the excitations need to balance out with the dipolar and DM
interactions in order to reach a steady state condition. Otherwise, the precession of magnetization
will continue. Equations 4.58 and 4.59 may only be analytically solved in the simplest cases.

The presence of DMI changes the dynamics by adjusting the applied field or current at which
Walker Breakdown happens. For simplicity, we will use HW defined in the previous section as
Walker breakdown to help visualize the effect of DMI.

Assuming a case field driven DW motion with a small angle assumption for φ − χ, equation
4.58 yields:

φ∗ − χ∗ =
Hz

α
(
Ms(Ny −Nx)− π

2
D

µ0Ms∆∗

) =
Hz

2Hw − αHDMI
(4.60)

where HDMI denotes the effective DMI field. It is clear that, depending on its sign, the DMI field
can extend the range of fields over which a steady state condition may be reached. The DW width
can be estimated using q̇ = µ0γ∆

α Hz.
A similar approach could be used to define the Walker breakdown current for the STT driven

DW motion or Sloncweski-like SOTs in the z direction. However, these cases will not be presented
here as in most heterostructures with SOC, the SOTs are in the y direction and STT has negligible
effect due to the low thickness of the system [75,85,86].

Another case which could be analytically solved is the case of Sloncweski-like driven DW motion,
with SOTs in the x-direction. Assuming a small tilting angle (χ ∼ 0) we have:

cosφ∗ =
π

2

αHDMI −HSLuSOT,x
αMs(Ny −Nx)

=
π

2

αHDMI −HSLuSOT,x
2Hw

(4.61)

Note that in the case above, DMI changes the effective field at which Walker breakdown is reached.
However, this case effectively does not lead to the motion of Néel walls as shown in [81] ad also in
our simulations.

Small SOT excitations in the y direction may also be analytically written under the χ ∼ 0
approximation, yielding:

α
1

2
Ms (Ny −Nx) sin 2φ∗ − π

2
HSL cosφ∗ − απ

2

D

µ0Ms∆∗
sinφ∗ = 0 (4.62)

This equation can only be analytically solved under the assumption of small φ:

φ∗ =
π

2

HSL

α(Ms (Ny −Nx)− π
2

D
µ0Ms∆∗ )

=
π

2

HSL

2Hw − π
2HDMI

(4.63)

Note that in this case, the DMI may reduce or increase the effective Walker breakdown field
depending on the sign of the DMI strength. The steady state velocity with small φ and the χ ∼ 0
approximation may simply be written as:

q̇ =
π

2

µ0γ

α
HSL∆∗uSOT,y (4.64)
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4.3 Comparison to Micromagnetic Simulations

To assess the accuracy of the models developed in this Chapter, simulations were preformed on
nanowires made of Pt/CoFe/MgO. In all cases, a nanowire was simulated with the dimensions
2.8µm× 160nm× 0.6nm with the material parameters outlined in Chapter 2 and reference [85].

Different methods of extracting the collective coordinates were assessed to find the most effective
way of extracting the relevant coordinates from micromagnetic simulations. These included the
Porter definition for DW width and velocity [159], the Thiele definition for DW width [62], the
fingerprinting method [160], local definitions of spherical coordinates and fitting of the data to the
Bloch profile. The most accurate description was found to be:

� DW velocity extracted following the methods in [159]: v = Lx

2
d〈mx(t)〉

dt where Lx is the length
of the nanowire. Other methods provided results with negligible difference.

� φ extracted from the local values of the x and y component of magnetization at the center
of the DW (position q and y = w/2).

� The tilting angle extracted by finding the center of the DW at the edges of the nanowire and
computing the angle of the line connecting the two points with respect to the width of the
wire through the center of the DW (q).

� DW width extracted following the Thiele definition of DW width [62]: ∆ = 2Atw∫
( ∂~m∂x )2 with Atw

denoting the cross sectional area of the wire.

Figure 4.2 compares the different coordinates as predicted by different CCMs to micromagnetic
simulations for the case of field-driven DW motion below the Walker breakdown. Clearly, the
models which include tilting of the DW predicts the DW velocity with better accuracy. The
DW width parameter was found to vary negligibly, and seems to have minimal effect on the
dynamics based on the fact that models with a varying DW width and with a fixed DW width
behave similarly. All collective coordinate models clearly predict similar values for φ− χ and the
differences could be attributed to the effect of χ as a degree of freedom.

Figure 4.2.(a) clearly shows that the collective coordinate models deviate from the trend in the
micromagnetic simulations for applied fields above 40mT. To better understand these deviations,
we calculated the goodness of fit (R2) and root mean square error (RMSE) normalized by the
average value of each parameter; the results of which are summarized in Table 4.1. Clearly, the
four coordinate model improves the accuracy in predicting DW velocity and DW magnetization
angle, while maintaining similar accuracy compared to other models in predicting the DW width
and tilting angle.

Figure 4.3 depicts the predictions of the collective coordinate models compared to micromag-
netic simulations for the case of SHE-driven DW motion below the Walker breakdown. We assumed
that the SHE-mechanism only gives rise to Slonczewski-like torques, and that contributions from
the STT mechanism are negligible. Clearly, the q − φ − χ and q − φ − χ −∆ models accurately
reproduce the DW velocity curve, while predicting the difference between tilting and magnetization
to an acceptable degree. In terms of the angle φ−χ, the predictions of q−φ−χ and q−φ−χ−∆
are only similar at high currents. This difference could be attributed to the effect of changes in the
DW width. In fact, reviewing the DW width curves (not shown here) shows that the DW width
adjusts itself for low fields in the case of SHE-driven DW motion, until it reaches a fixed value
for high fields. Normalized root mean square error (NRMSE) and goodness of fit computed for
the different models in Table 4.2 clearly show the higher accuracy of the q − φ − χ − ∆ model.
Specifically, this model improves the accuracy in predicting the DW magnetization angle and the
DW width.

51



4 – Towards an Analytical Model: A Collective Coordinates Approach to DW Motion

 q- - -
 q- -
 q- -
 q-
 Linear approx

D
W

 V
el

oc
ity

 (m
/s)

Bz (mT)

(a) DW velocity (q̇).

 q- - -
 q- -

(b) DW width (∆).

 q- - -
 q- -

(c) DW tilting angle (χ).

 q- - -
 q- -
 q- -
 q-
 Small angle approx.

(d) φ− χ.

Figure 4.2: Comparison of the 1-D model predictions to micromagnetic simulations for field driven
DW motion below Walker breakdown.

The inability of the q−φ and q−φ−∆ models in reproducing the micromagnetic results in this
case could be attributed to the more complex coupling between the interactions and the angles.
The Slonczewski-like field in the y-direction is directly multiplied by cosφ (Eqs. 4.51 and 4.52),
while the other interactions simulated here relate to φ− χ.

Based on the relative errors in Tables 4.1 and 4.2, it can be concluded that the collective
coordinate model developed in this work with four coordinates (q − φ − χ − ∆) can reproduce
micromagnetic simulations with acceptable accuracy, and is particularly suited for current-driven
studies. Specifically, this model improves the accuracy in predicting the DW magnetization angle,
while maintaining the accuracy in predicting other DW properties. However, for most purposes
the q− φ− χ model also has acceptable accuracy, with errors less than 10%.

A study using this model was also performed on STT-driven DW motion, highlighting the high
accuracy of the Lagrangian models in replicating STT-driven DW motion, with errors lower than
1% in predicting velocity and DW tilting, and less than 10% fo other collective coordinates [3].
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Table 4.1: R2 and normalized root mean square error (NRMSE) for field driven DW motion. The
small angle approximations are (Eqs. 4.57, and 4.60). The bold values show the lowest NRMSE
achieved (if significant).

Model/ NRMSE [R2] Velocity φ χ φ− χ ∆

q− φ 23.38% 54.65%
-

7.06%
-

[99.92%] [93.31%] [99.87%]

q− φ−∆
23.73% 12.16%

-
6.89% 3.12%

[99.92%] [93.45%] [99.88%] [71.35%]

q− φ− χ 12.93% 54.86% 12.58% 7.06%
-

[99.98% ] [98.78%] [99.94%] [99.87%]

q− φ− χ−∆
12.49% 11.86% 12.59% 6.89% 3.12%
[99.98%] [98.81%] [99.95%] [99.88%] [71.35%]

Small angle 19.31%
- -

10.01%
-

approximation [99.92%] [99.68%]

Table 4.2: R2 and normalized root mean square error (NRMSE) for field driven DW motion. The
small angle approximations are Eqs. 4.57, and 4.63. The bold values show the lowest NRMSE
achieved (if significant).

Model/ NMRSE [R2] Velocity φ χ φ− χ ∆

q− φ 24.98% 29.94%
-

106.15%
-

[99.57%] [96.26%] [90.43%]

q− φ−∆
24.78% 30.08%

-
105.70% 15.98%

[99.58%] [96.45%] [90.42%] [95.73%]

q− φ− χ 2.61% 6.83% 6.67% 23.77%
-

[99.93%] [90.63%] [97.03%] [57.94%]

q− φ− χ−∆
2.6% 1.79% 6.67% 12.97% 15.75%

[99.93%] [99.85%] [97.04%] [94.11%] [97.09%]
Small angle 161.39% 4.87%

-
99.61%

-
approximation [95.82%] [88.56%] [78.20%]

4.4 Conclusion

In this Chapter we presented the Euler-Lagrange approach to developing collective coordinate
models. This approach was used to develop four collective coordinate models to describe DW
motion. We found that in systems with DMI use of three collective coordinates (q, φ and χ) leads
to acceptable results while a four coordinate model with the addition of ∆ only slightly improves
the accuracy of the models compared to micromagnetic simulations. We also showed some of the
closed-form results of these models which may be useful for back-of-the-envelope calculations or
extracting material parameters from experiments.
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Figure 4.3: Comparison of the 1-D model predictions to micromagnetic simulations for SHE driven
DW motion below the Walker breakdown.
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Chapter 5

DW Motion in Nanowires Under
the Application of In-plane Fields

As outlined in Chapters 1 and 2, recent studies on DW motion have focused on perpendicular mag-
netic anisotropy (PMA) heterostructures of ultrathin ferromagnets sandwiched between a heavy
metal layer and an oxide. In these structures, spin-orbit coupling (SOC) and broken inversion
symmetry (BIC) contribute to DW motion [75, 121–124]. Specifically, the Dzyloshinskii-Moriya
interaction (DMI) present in these systems stabilizes Néel DW structures of specific chirality. SOC
has also been linked with enhanced current induced DW motion, with the spin Hall effect (SHE)
suggested as the dominant mechanism for this observation [75].

In perpendicularly magnetized heterostructures with DMI, applied fields in-plane of the sample
could be used to control DW chirality and the behavior of the DW [82–87, 156]. Micromagnetic
simulations of such systems are in agreement with experiments [85], showing an increase in DW
velocity with fields parallel to the internal magnetization of the DW. However,conventional CCMs
(q− φ [54] and q− φ− χ [82]) fail to reproduce these results [82,85].

Despite this shortcoming of collective coordinate models, two of the most prominent methods
of assessing the strength of the DMI rely on DW motion under in-plane fields. The method used by
most investigators to measure DMI strength is studying the expansion of magnetic bubbles under
the application of in-plane and out-of-plane fields [88, 89]. This method assumes that the points
with significant Néel character are located on the axis of the in-plane field applied, and the DMI
field is assumed to be equal to the in-plane field which reverses the chirality of the DW. In an
alternative method, a critical longitudinal field in current-driven DW motion in systems with DMI
is used at which the DW is locked in place, and does not move irrespective of applied current [4].

Most experimentalists rely on the q− φ− χ model in such measurements for determining the
DMI strength; however, as mentioned previously, this model cannot reproduce the micromagnetic
results. This calls for improvements in collective coordinate modeling of DW motion, both to
reproduce micromagnetic results and to help in the assessment of DMI strength in material stacks.

We initially applied the models developed in Chapter 4 to a case of current-driven DW motion
in a Pt/CoFe/MgO sample under longitudinal in-plane fields [4]. As depicted in Figure 5.1, none of
our models were able to accurately predict DW behavior under in-plane fields, while the q−φ−χ−∆
model seems to be the most close in replicating the qualitative behavior of the DW. This is partially
due to changes in the DW structure under in-plane fields, as presented in Chapter 3.

In this Chapter, we look at the impact of in-plane fields on field- and current-driven DW motion,
presenting two extended collective coordinate models that take into account canting in the domains
as an additional parameter. We compare these model to other CCMs for DW motion [4,54,62,82],
showcasing its improved accuracy. Critical points in the behavior of the DW under in-plane

55



5 – DW Motion in Nanowires Under the Application of In-plane Fields

magnetic fields are also identified, along with closed form solutions for these critical points which
could be used to estimate different material properties based on experimental measurements.

Acknowledgment: Parts of the content in this Chapter were published in the following
publications:

� S. Ali Nasseri, Eduardo Martinez, Gianfranco Durin, ”Collective Coordinate Descriptions of
Magnetic Domain Wall Motion in Perpendicularly Magnetized Nanostructures under the Ap-
plication of In-plane Fields”, Journal of Magnetism and Magnetic Materials (under review),
arxiv: 1804.00569 [1].

� S. Ali Nasseri, Simone Moretti, Eduardo Martinez, Gianfranco Durin, Claudio Serpico, ”Col-
lective Coordinate Models of Domain Wall Dynamics in PMA Materials under Spin Hall
Effect and Longitudinal in-Plane Fields”, Journal of Magnetism and Magnetic Materials,
vol. 426, pp. 195-201, 2017, doi: 10.1016/j.jmmm.2016.11.081 [4].

Please use these papers in any citations.

5.1 Materials under study

We study two 2.8µm long, 160nm wide nanowires with the magnetic properties listed in Table
5.1 and a 0.6nm thickness for the ferromagnetic layer. These samples were selected as they both
have DMI and PMA; however, the DMI strength of the Pt/CoFe/MgO sample is twice that of the
Pt/Co/Ni/Co/MgO/Pt sample, while its PMA constant is 1/3 that of the later sample. This helps
us better understand the effects of these two parameters on the structure and dynamics of DWs.

Table 5.1: Material parameters of the two systems studied in this work. The DMI strength of the
Pt/CoFe/MgO sample is twice that of the Pt/Co/Ni/Co/MgO/Pt sample, while its PMA constant
is 1/3 that of the later sample. This difference in material properties helps better understand their
effects on DW dynamics.

Pt/CoFe/MgO [86] Pt/Co/Ni/Co/MgO/Pt [151]
Saturation magnetization Ms 700 837
(kA/m)
Exchange constant A 10 10
(pJ/m)
Uniaxial perpendicular anisotropy 0.48 1.310
constant Ku (MJ/m3)
DW width parameter (nm) 7.2 3.39

∆ ∼
√

A
Ku−µ0M2

s/2

Gilbert damping α 0.3 0.15
SHE angle θSH 0.07 0.07 (assumed)
DMI strength D -1.2 0.6
(mJ/m2)

5.2 Extended Collective coordinate Models

In this section we will present two approaches to improve the accuracy of the CCMs for cases
in which in-plane fields are applied. We will rely on the same collective coordinates presented in
Chapter 4 to model the DW under in-plane fields.
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(a) DW velocity (q̇). (b) DW width (∆).

(c) DW tilting angle (χ). (d) DW in-plane angle (φ).

(e) φ− χ.

Figure 5.1: Comparison of results from the collective coordinate models presented in Chapter four
to micromagnetic simulations for SHE-driven DW motion under the application of longitudinal
in-plane fields. Clearly, non of the models can reproduce the micromagnetic results fully. Only the
four coordinate q − φ − χ −∆ model qualitatively matches the results of micromagnetics with a
point of inflection predicted in the velocity curve.
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As mentioned in the previous Chapter, an ansatz is needed to link the collective coordinates with
the spherical coordinates for the magnetization in order to write the Lagrangian and dissipation
functions in terms of these coordinates. As highlighted in Chapter 3, the structure of the DW under
in-plane fields is affected as the domains will be canted into the plan of the sample. In the presence
of an applied in-plane field in the domains, the magnetization in the domains may be described

in spherical coordinates as φ = atan
(

Hy

Hx

)
and sin θc = sgn(Hx,Hy)

µ0Ms(Hx cosφ+Hy sinφ)
2Ku+µ0M2

s (Nx cos2 φ+Ny sin2 φ−Nz)

where θc is the canting angle. Note that, as we are projecting the 3-D magnetization angle onto
a plane, a sign for the canting angle θc also needs to be included in the model; we defined the
angle to be negative for negative in-plane fields and positive for positive in-plane fields (which is
equivalent to clock-wise/counter clockwise convention for the sign of angles in 2-D); comparison to
cases where this sign was not taken into account later revealed the importance of this convention
to improve model accuracy.

As such, in addition to the models presented in Chapter 3, we can derive two additional groups
of models in this Chapter:

1. Integrating the tilted Bloch profile [82] tan θ
2 = exp (u) from θc to π − θc: This model

approximates the effect of the canting in the domains and was the first model we developed
to take into account this effect.

2. Integrating the inherently canted profile tan
(
θ+θc

2

)
= exp(u)+sin θc

cos θc
from θc to π − θc: We

expected this model to be the most accurate, as it takes into account the effect of canting
not just in the domains but on the DW structure.

In both profiles u = (x−q) cosχ+y sinχ
pw∆ . The parameter pw can take the value of ±1 to adjust for

top-down vs bottom-up DWs. In both cases, we also assume that magnetization is homogeneous
within the DW, hence φ(r, t) = φ(t). The two profiles were already presented in Chapter 3 and
compared to the static structure of the DW.

In order to evaluate DW dynamics using the collective coordinates, we need to rewrite the
energy terms using these coordinates and the properties of the ansatz. The energy and dissipation
function then need to be integrated along the length and width of the wire, and plugged into the
Euler-Lagrange equation. This process will result in four equations:

αI1
q̇

pw∆
cosχ+ I2φ̇ = µ0γ (I2Hz − I3HSL [sinφuSOT,x − cosφuSOT,y]) + βI1

u

pw∆
cosχ (5.1)

I2
q̇

pw∆
cosχ− αI4φ̇ = I4

µ0γMs

2
(Ny −Nx) sin 2(φ− χ) + I5

u

pw∆
cosχ

+ I6µ0γ [Hx sinφ−Hy cosφ]− I3
γD

Mspw∆
sin(φ− χ)

(5.2)

αI7

[
∆̇

pw∆
+ χ̇ tanχ

]
=

γ

Ms

[
I1

A

(pw∆)2
− I4pwK

]
+ I6µ0γpw (Hx cosφ+Hy sinφ) (5.3)

−αI7

[
∆̇

pw∆
sinχ+

χ̇

cosχ

[
I1
6I7

(
w

Pw∆

)2

+ sin2 χ

]]
= I3

γD

Mspw∆
sinφ

+ I4
µ0γMs

2
cosχ(Nx −Ny) sin 2 (φ− χ)

+
γ
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where K = Ku +
µ0M2

s

2

[
Nx cos2 (φ− χ) + Ny sin2 (φ− χ)−Nz

]
.

Note that the equations 5.1-5.4 above may be further simplified into two coordinate models
(assuming χ = 0 and a fixed ∆ leads to a model similar to the q−φ model [54]), or three coordinate
models (χ = 0 leads to a model similar to the q−φ−∆ [62] model, while assuming a fixed ∆ leads
to a model similar to the q− φ− χ [82] model).

In the equations above, Iis are integration constants which depend on the ansatz used and
relate to the amount of canting in the domains. Three classes of models were derived based on the
ansatz used and how they were integrated:

1. Integrating ansatz 1 from 0 to π: This model does not take into account the canting in the
domains, and was presented in one of our previous works [3].

2. Integrating ansatz 1 from θc to π − θc: This model approximates the effect of the canting in
the domains and was presented in our past work [4].

3. Integrating ansatz 2 from θc to π − θc: We expect this model to be the most accurate, as it
takes into account the effect of canting not just in the domains but on the DW structure.

Equations 5.1-5.4 are rather interesting as they show that the ansatz used does not affect the
functionality in terms of the collective coordinates. Instead, the effect of the ansatz (including
canting) is taken into account in the Ii parameters.

Table 5.2: Summary of model parameters derived from integration for the three different models.
Model 1 is the model based on the Bloch profile without canting, model 2 is also based on the Bloch
profile but takes into account canting in the domains through the canting angle in the domains
(θc), and model 3 is based on an inherently canted ansatz. The column labeled Model 3/ Model 2
shows the ratio of the parameter in model 3 to the one in model 2.

Model 1 Model 2 Model 3 Model 3 / Model 2

I1 1 cos θc 1−
(
π
2 − θc

)
tan θc sec θc

(
1−

(
π
2 − θc

)
tan θc

)
I2 1 1 cos θc sec θc

I3
π
2

π
2 − θc

π
2 − θc 1

I4 1 cos θc cos2 θc +
(
π
2 − θc

)
sin θc cos θc cos θc +

(
π
2 − θc

)
sin θc

I5 1 cos θc cos θc 1
I6

π
2

π
2 − θc

π
2 − θc 1

I7
π2

6 Equation 5.5 Equation 5.6 -

Table 5.2 summarizes the value of the Iis for the three different groups of models, which are
parameters included in th model to account for the effect of the ansatz and the canting in the
domains. For model 2, the closed form of the I7 constant is:
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(5.5)
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where Li2 is the polylogarithm function of order 2.
A closed form for I7 could not be derived for model 3. Instead, the integral was numerically

solved and fitted to the following polynomial function (R2 = 1, RMSE = 3.82× 10−4):

I7 = 0.568θ3
c − 0.4232θ2

c − 1.47θc + 1.649 (5.6)

The mathematical form of the Iis reveal the differences between the model families. Figure
5.2 visually depicts the differences between these constants. While both model families 2 and 3
reproduce the constants for model 1 in the limit θc = 0, there is considerable difference between the
models for the behavior of constants I1, I2, I4, and I7 for non-zero canting angles. Not only these
parameters for model 2 and 3 do not predict the same value for the same amount of canting, but
also their behavior as a function of the canting angle is considerably different for negative canting
angles. As I1 and I2 directly multiply q̇ and φ̇ in the equations, and I4 affects the demagnetizing
field, there should be a dramatic difference between the predictions from the two models.

It should also be noted that with ansatz 2, several divergent terms were neglected in the integra-

tion of some of these factors. Specifically, parameter I4 had the additional term− sin2θc
2 ln (−sinθccosθc),

and parameter I6 had the additional term + tanθc
2 ln(−sinθccosθc). These terms will likely affect the

accuracy of the models, specially when canting is not playing a role in the dynamics.
The models may also be written in explicit form as well, leading to equations for the evolution

of the 4 collective coordinates:(
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(a) I1. (b) I2 or I5.

(c) I3 and I6. (d) I4.

(e) I7.

Figure 5.2: Variation of the Ii parameters of the collective coordinate models with canting angle.
The equations corresponding to each parameter may be found in Table 5.2.
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5.3 Collective Coordinate Models: Differences and Accu-
racy

5.3.1 Current-driven DW Motion in Pt/CoFe/MgO

To compare all the models to each other, we analyzed the case of current-driven DW motion in
Pt/CoFe/MgO sample using the extended models.

Figure 5.3 illustrates predictions of model 2 compared to micromagnetic simulations. Including
an approximation of canting improves the accuracy of the q−φ−χ−∆ model to an extent, while
other models still fail. This shows that canting in the domains is playing an important role in DW
motion.

Figure 5.4 illustrates predictions of model 3 (model with canted ansatz) compared to micro-
magnetic simulations on the Pt/CoFe/MgO sample. Interestingly, the q − φ form of model 3 has
the largest range of applicability, and predicts the right trend in DW velocity. The four coordinate
form of this model also shows acceptable accuracy for −75mT < Bx < 100mT. This shows that
the profile used for the DW is much more important than the additional degrees of freedom.

Finally, in Figure 5.5 we compare the best models from each model set together in predicting
DW behavior. Clearly, models with inherent canting show superior capability in replicating the
micromagnetic results, and require a lower number of degrees of freedom for accurate predictions
(only q and φ). This shows the important effect of canting on the DW motion.

The application of the in-plane field does not just add a new term in the equations, but also
affects the relative strength of the other interactions in the system. The Lagrangian density of the
system and the Dissipation function describe the energy landscape of the system. Figure 5.5.(f)
illustrates the energy landscape of the Pt/CoFe/MgO system for a current density of 1PA/m2 under
the application of longitudinal in-plane fields using the Lagrangian description with four collective
coordinates. We can see that with increasing Bx, the role of anisotropy and demagnetization
energy increase, while the exchange and DMI energy decrease in magnitude. These changes are
modulated by changes in DW width, DW tilting angle and the canting protractors (which affect
all energy terms above), along with changes in the magnetization angle (which effects the DMI
and demagnetizing energies). The effect of other energy terms on the energy landscape is minimal.
Moreover, there seems to be a correlation between increase in the proportion of exchange interaction
and DMI, and the speed of the DW, with the speed increasing as the proportion of these two
interactions decreases.
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(a) DW velocity. (b) DW width parameter ∆.

(c) DW tilting angle χ. (d) DW magnetization angle φ.

(e) φ− χ.

Figure 5.3: Predictions of different forms of model 2 compared to micromagnetic simulations in
the case of current-driven DW motion with a current density of Jx = 0.1TA/m2.
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(a) DW velocity. (b) DW width parameter ∆.

(c) DW tilting angle χ. (d) Magnetization angle φ.

(e) φ− χ.

Figure 5.4: Predictions of different forms of model 3 compared to micromagnetic simulations in
the case of current-driven DW motion with a current density of Jx = 0.1TA/m2.
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(a) DW velocity in m/s. (b) DW width parameter ∆ in degrees.

(c) DW tilting angle χ in degrees. (d) DW tilting angle χ in degrees.

(e) φ− χ in degrees.
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(f) Contributions of different energy terms.

Figure 5.5: Predictions of the best collective coordinate models of each group compared to
micromagnetic simulations in the case of current-driven DW motion with a current density of
Jx = 0.1TA/m2.
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5.3.2 Other Cases

We also performed simulations for field-driven DW motion under longitudinal fields in the Pt/Co/Ni/Co/MgO/Pt
sample, and current-driven DW motion under transverse fields in the Pt/CoFe/MgO, the results
of which are presented in Figure 5.6.

In the Pt/Co/Ni/Co/MgO/Pt sample (which has stronger anisotropy and lower DMI which
lead to smaller canting and tilting), according to Figure 5.6. (a) we see that the DW tilting
has minimal effect on accuracy of the models, while DW width plays an important role in these
narrower DWs. We verified this in other models as well, observing that in this case models without
canting are better suited to reproduce micromagnetic results likely due to the smaller value of the
canting and the fact that ansatz three had some divergent terms. We also observe that the models
are able to predict the Walker Breakdown initiation and cessation properly, and showcase the right
qualitative trends.

In summary, it seems that narrower DWs are better modeled by CCMs that include DW width
while for wider DWs this parameter plays a minor role. In addition, in systems with high anisotropy
canting effects can be neglected. In the next section, we provide a more detailed analysis of different
cases of DW motion under in-plane field using the models verified here.

Applications of the models in the case of transverse fields as shown in Figure 5.6. (b) highlighted
that in those cases more rigid models are better able to reproduce micromagnetic simulations. This
is likely due to the strong interaction between tilting and DW width when transverse fields are
applied, with the DW adjusting these two parameters in concert to reduce energy. The models
did predict the magnetization angle of the DW (φ), and φ − χ well as highlighted in Figure 5.6,
specially for the critical case φ− χ ∼ 0.

(a) (b)

Figure 5.6: Comparison of the DW velocity among the most accurate CCMs of each class. (a)
instantanuous velocity predictions for PtCoNiCoMgOPt under an applied field of Bz = 10mT, and
(b) prediction of tilting in Pt/CoFe/MgO under a current density of Jx = 0.1TA/m2.
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5.4 Characteristics of Domain Wall Motion Under in-plane
Fields in Nanowires

Micromagnetic simulations were performed on the two nanowires outlined in Table 5.1 with DWs
driven by fields or Slonczewski-like spin-orbit torques under the applications of longitudinal (Bx)
and transverse (By) magnetic fields. To interpret the results of the micromagnetic simulations, we
used the four time dependent collective coordinates identified earlier.

It is well-known from micromagnetic studies that the motion of the DW reaches steady state
conditions after a period of transient behavior, which we also verified for our systems. In our
simulations, steady state conditions were reached after about 2.5ns in most cases, with φ̇ ∼ χ̇ ∼
∆̇ ∼ 0. While we found the evolution of the micromagnetic model to not exactly match the CCMs,
a steady state condition was identified in the CCMs as well. In CCMs without the tilting of the
DW, a steady state condition was observed with φ̇ ∼ ∆̇ ∼ 0, while in tilted models we found only
∆̇ ∼ 0 (although in many cases φ̇ ∼ χ̇ < 1). In steady state conditions, the collective coordinate
models may be simplified to better understand the critical points which can be identified in the
micromagnetic simulations. In this section we use a ∗ to denote steady state values of the collective
coordinate.

In the next subsections, we will show which CCMs were able to better predict the micro-
magnetic results for different combinations of in-plane fields and drive interactions, and use these
models to highlight features or critical points in the dynamics of the DW. By better predicting the
micromagnetic results, we mean reproducing the results with the lowest error over a wider range of
fields. Note that the range of in-plane field values over which different collective coordinate models
can be solved with a convergent solution is different for different materials and drive-conditions;
we only show cases where a solution could be calculated.

5.4.1 General Observations

We identified several general features in the simulations. First, as outlined in our previous work
[4], one notes that domains under large in-plane fields can no longer be assumed to be fully
perpendicularly magnetized, but clearly show some canting of the magnetization into the plane of
the sample. This effect was much smaller in Pt/Co/Ni/Co/MgO/Pt compared to Pt/CoFe/MgO,
due mainly to the difference in the uniaxial magnetic anisotropy of the two samples.

Second, in the Pt/Co/Ni/Co/MgO/Pt sample we observed limited tilting of the DW (only
up to 10 degrees in many cases) which likely is due to the much lower DMI compared to the
Pt/CoFe/MgO sample. As a result, we expect the χ coordinate to play a small role in modeling
this system.

Third, we found that DW shape and rigidity (lack of elasticity) are affected by in-plane fields.
As depicted in Figure 5.7, depending on the combination of drive interaction and in-plane fields,
the DW might have a rigid line shape, or a curved shape (either S-shaped or an arch of a circle).
With large in-plane fields (longitudinal and transverse), the DW might lose its rigidity, and instead
extend elastically through the system. In Pt/CoFe/MgO system, we found both longitudinal and
transverse fields where the DW starts to elongate instead of moving rigidly. Thess fields were
dependent on the material properties, and also the driving interaction applied to the system. In
the Pt/Co/Ni/Co/MgO/Pt system, these effects were not observed, likely due to the high uniaxial
anisotropy of the system which helps maintain the DW shape. However, in this material the DW
shape was disrupted due to other features which will be discussed later.
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(a) Bx = −200mT (b) Bx = 300mT (c) By = −100mT (d) By = 100mT

Figure 5.7: Snapshots of different shapes of the DWs observed under a current density of 0.1TA/m
in Pt/CoFe/MgO after 5ns. (a) and (b) show a rigidly moving linear DW, while the DW in (c)
and (d) is rather S-shaped.

5.4.2 Domain Wall Motion Under Longitudinal in-plane Fields

Field-Driven Case

The two samples were studied under drive fields of Bz = 5mT, 30mT. Longitudinal in-plane fields
in the range Bx = −225mT to 325mT were used for Pt/CoFe/MgO, while a range of Bx = −500mT
to 500mT was used for Pt/Co/Ni/Co/MgO/Pt. The results of these micromagnetic simulations
are presented in Figures 5.9 and 5.10, and compared to the most accurate collective coordinate
models.

Comparing the variation of velocity for the two samples, as depicted in Figure 5.9.a and 5.10.a,
we see that in both cases the general trend with the drive field is the same; the velocity and
nonlinearity of the curve increases with increasing drive field (Bz), while changing Bx tunes the
velocity to an extent (with the curve having a minimum with respect to the longitudinal field).
The DW velocity predictions are qualitatively in agreement the behavior observed in experiments
[161, 162]. However, the Pt/Co/Ni/Co/MgO/Pt sample shows the additional effect of a sudden
drop in DW velocity for a range of in-plane fields applied. This Walker Breakdown (WB) like
behavior [53] was verified by looking at the snapshots of the moving DW (depicted in Figure 5.8),
where we can see local precession of the magnetization and formation of vertical Bloch lines arising
from the edge that modify the DW structure [151]. This behavior could be attributed to the
higher anisotropy of this material, which reduces the local field needed to reach WB. Note that
this behavior is local; the DW does not oscillate back and forth as a single object (unlike an actual
WB behaviour during which the DW moves back and fourth rapidly), but the overall effect of the
local precession of magnetization over time is equivalent to the DW moving back and forth rigidly
and slowing down, which is why the collective coordinate model can replicate this effect to an
extent.

In terms of the CCMs, we found models without canting to better reproduce the results for
Pt/Co/Ni/Co/MgO/Pt (where canting and DW tilting are small). However, in this material the
DW width parameter ∆ was important in predicting the DW behavior properly. In Pt/CoFe/MgO
with its higher canting and tilting of the DW, we found that q− φ form of model 3 (with inherent
canting) is better suited in predicting the DW behavior.

Looking closely at Figures 5.9.b and 5.10.b, we find a serious flaw in model set 3; this model
set seems to not be able to predict the DW width correctly, which in turn can affect its outputs.
As such, when a two coordinate form of this model is used, it is able to better predict the DW
motion. This also shows why this model set is not suitable for the Pt/Co/Ni/Co/MgO/Pt sample
where lack of canting and tilting mean ∆ is one of the main variables affecting the DW. Overall,
this observation suggests that the q − φ form of model 3 is the most suitable for studying DW
motion in these systems.

A major difference between the two cases can be observed in the DW’s tilting behavior; while
Pt/CoFe/MgO DWs always maintain a positive tilting, in the case of Pt/Co/Ni/Co/MgO/Pt
negative tilting can be observed which is likely due to the lower DMI strengths and the higher
applied fields used (see Figures 5.9.e and 5.10.e). Another notable feature of the DW behavior
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could be seen in Figure 5.9.c where at a specific field φ − χ ∼ 0 independent of the drive field,
while in Figure 5.10.c a point could be observed for which φ − χ ∼ π

2 . We label these points as
critical in-plane fields which will be discussed in details in later sections.

(a) Bz = 10 mT, Bx = 225 mT. (b) Bz = 30 mT, Bx = 225 mT. (c) Bz = 30 mT, Bx = 100 mT.

Figure 5.8: Snapshots of the moving DW under different conditions in the Pt/Co/Ni/Co/MgO/Pt
sample. The rapid change of magnetization along the DW owing to the Walker Breakdown can be
observed.

Current-Driven Case

Figures 5.11 and 5.12 illustrate the results of micromagnetic simulations for current-driven DW
motion under longitudinal fields. The trends observed in the velocity of current-driven DW motion
(Figures 5.11.a and 5.12.a) are in general agreement with published experimental results [76,86,87,
152]. A somewhat linear behavior is observed for low longitudinal fields, which becomes non-linear
as the in-plane field increases. The non-linearity in behavior also seems to increase with increasing
current. In terms of the CCMs, we saw results similar to the field-driven case, with models without
canting being more suitable for the high anisotropy system and those with canting more suitable
for the low anisotropy high DMI system.

We also observe a point where the DW velocity is zero in both cases; the in-plane field at which
this happens is another critical point of interest. For the system with lower DMI the nonlinearity
in the DW velocity seems to be observable mainly around this point, while in the system with
larger DMI this nonlinear behavior is observed over all in-plane fields studied. Interestingly, this
in-plane field seems to have an additional feature: the DW will have the same tilting angle χ for
different drive interactions ((Figures 5.11.e and 5.12.e)). In the system with the higher anisotropy
and lower DMI (namely Pt/Co/Ni/Co/MgO/Pt), we also observe that at this point φ − χ ∼ 90◦

(a fully Bloch DW).
One unexpected result was the presence of Walker Breakdown in our initial current-driven sim-

ulations of Pt/Co/Ni/Co/MgO/Pt; however, in these cases while a vertical Bloch line is nucleated,
it is short-lived and simulating for longer durations shows that this is just a transitory effect. One
point with such an effect can be observed in Figure 5.12.a as an outlier at Bx = 250mT.

In terms of angles, an in-plane field exists for which φ − χ ∼ 0 (Figures 5.11.c and 5.12.c);
in the Pt/CoFe/MgO sample we also see a case of φ = 0 (Figures 5.11.d) which is absent in the
Pt/Co/Ni/Co/MgO/Pt sample. These could be points of interest for further analytical studies.
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(a) DW velocity. (b) DW width parameter (∆).

(c) φ− χ (d) DW magnetization angle (φ).

(e) DW tilting angle (χ).

Figure 5.9: Instantaneous steady state DW characteristics for field-driven DW motion in
Pt/CoFe/MgO with different out of plane and longitudinal fields applied. Only the collective
coordinate models with highest accuracy in predicting the DW velocity are shown.
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(a) DW average speed. (b) Instantaneous DW width parameter (∆).

(c) Instantaneous φ− χ (d) Instantaneous DW magnetization angle (φ).

(e) Instantaneous DW tilting angle (χ).

Figure 5.10: DW characteristics for field-driven DW motion in Pt/Co/Ni/Co/MgO/Pt with dif-
ferent out of plane and longitudinal fields applied. Only the collective coordinate models with
highest accuracy in predicting the DW velocity are shown. We decided to show the average DW
speed in place of the instantaneous velocity of the DW, due to the walker breakdown behavior;
this behavior is observed in panels (b)-(e) for 50 mT < Bx < 300 mT.71
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(a) DW velocity. (b) DW width parameter (∆).

(c) φ− χ (d) DW magnetization angle (φ).

(e) DW tilting angle (χ).

Figure 5.11: Instantaneous steady state DW characteristics for SHE-driven DW motion in
Pt/CoFe/MgO with different currents and longitudinal fields applied. Only the collective co-
ordinate models with highest accuracy in predicting the DW velocity are shown.
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(a) DW velocity. (b) DW width parameter (∆).

(c) φ− χ (d) DW magnetization angle (φ).

(e) DW tilting angle (χ).

Figure 5.12: Instantaneous steady state DW characteristics for SHE-driven DW motion in
Pt/Co/Ni/Co/MgO/Pt with different currents and longitudinal fields applied. We found that
the best models in these cases were two coordinate models. Canting has a minimal effect on the
outputs. We also observed Walker Breakdown in these cases. Only the collective coordinate models
with highest accuracy in predicting the DW velocity are shown.73
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5.4.3 Domain Wall Motion Under Transverse Fields

Figures 5.13 and 5.14 show the results of field-driven DW motion under the application of transverse
fields in the materials under study, while figures 5.15 and 5.16 show the results of current-driven
DW motion under transverse fields.

As observed from Figures 5.13.e, 5.14.e, 5.15.e, and 5.16.e, the DW tilting angle changes dra-
matically under transverse fields with a behavior different compared to what was observed under
longitudinal fields. While under longitudinal fields we only observed positive or negative tilting
for a specific material, under transverse fields we can observe both types of angles; in a sense the
transverse fields could be used to control the tilting of the DW. Obviously, under these conditions
the tilting of the DW is an important coordinate. Yet we see that the collective coordinate models
are accurate in predicting the behavior of the DW, with and without the tilting included in the
models.

In the Pt/CoFe/MgO sample (Figures 5.13.c, and 5.15.c) , we can identify a critical transverse
fields at which φ ∼ χ ∼ 0. In the Pt/Co/Ni/Co/MgO/Pt system (Figures 5.14, and 5.16 panels c,
d, and e), we instead have a point where χ = 0 and φ = 180. These points coincide with when the
DW is fully Néel, with the difference in magnetization being due to the different chirality of the
DW in the two systems.

5.4.4 Analysis of the critical points

In the micromagnetic simulations and collective coordinate results of Figures 5.9-5.16, we were
able to identify several points where the DW behavior showed features that could be reproduced
irrespective of material properties. These points could be used to derive simplified forms of the
DW dynamic equations.

We observed that in several cases (field- and current-driven DW motion under longitudinal
and transverse fields in Pt/CoFe/MgO, and field-driven case under transverse fields and field- and
current-driven cases under transverse field for Pt/Co/Ni/Co/MgO/Pt), an in-plane field exists for
which φ − χ ∼ 0 or 180◦. In addition, under longitudinal fields this point is independent of the
drive interaction. We observed in Figures 5.9-5.16 that the CCMs can accurately predict the DW
behavior at this point. From a CCM perspective, this is the point where the DW has a fully Néel
like structure. This means the contributions from the DMI and magnetostatic terms become zero,
and we have:

(
I2 + α2 I1I4

I2

)
I1

q̇

µ0γpw∆
=



α
(
I4

Hz
cosχ −

I3I4
I2
HSL [tanχuSOT,x − uSOT,y]

)
+
(
αβ I1I4I2

+ I5

)
u

pw∆ + I6 [Hx tanχ−Hy] for φ− χ ≡ 0

α
(
I4

Hz
cosχ + I3I4

I2
HSL [tanχuSOT,x − uSOT,y]

)
+
(
αβ I1I4I2

+ I5

)
u

pw∆ − I6 [Hx tanχ−Hy] for φ− χ ≡ 180◦

(5.11)

Under the application of transverse fields, the equations become slightly more simplified, as at
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the same time χ = 0, which yields:

(
I2 + α2 I1I4

I2

)
I1

µ0γpw∆
q̇ =



α
(
I4Hz + I3I4

I2
HSLuSOT,y

)
+
(
αβ I1I4I2

+ I5

)
u

pw∆ − I6Hy if φ− χ ≡ 0 (D < 0)

α
(
I4Hz − I3I4

I2
HSLuSOT,y

)
+
(
αβ I1I4I2

+ I5

)
u

pw∆ + I6Hy if φ− χ ≡ 180◦ (D > 0)

(5.12)

Equations 5.11 and 5.12 are thought-provoking, as they connect measured properties of the
DW (DW velocity and tilting) to parameters arising from material properties such as the DW
width parameter. These equations can be used to measure specific properties of the DW. Recent
experiments have shown the visualization of DW tilting under experimental conditions [163]. In
an experimental setting, first a transverse field should be identified at which the DW tilting is
negligible; in this condition one may assume based on our results that φ ∼ χ ∼ 0. Using field-
driven DW motion measurements, equation 5.12 may be used to measure the DW width parameter,

which can in turn help estimate the exchange constant through ∆ =
√

A
K . In a current-driven case,

the same equation could be used to estimate the SHE angle.

In current-driven DW motion, we identified a longitudinal field for which DW velocity is zero. In
Pt/CoFe/MgO, this field was about Bx ∼ −200 mT, while in Pt/CoFe/MgO it was Bx ∼ 200 mT.
We had shown in our previous work that this field is related to the DMI strength [4]. Under these
conditions, the DW velocity equation simplifies to:

α
I3I4
I2

HSL [cosφuSOT,y − sinφuSOT,x] +

(
αβ

I1I4
I2

+ I5

)
u

pw∆
cosχ =

1

2
I4Ms (Nx −Ny) sin 2(φ− χ)

+ I3
D

µ0Mspw∆
sin(φ− χ)

− I6 [Hx sinφ−Hy cosφ]

(5.13)

Looking at Figures 5.11 and 5.12, we also observe that at this in-plane field φ and χ seem to
be independent of the drive interaction, and φ ∼ 90◦. Using this assumption, we have:

−αI3I4
I2

HSLuSOT,x+

(
αβ

I1I4
I2

+ I5

)
u

pw∆
cosχ =

1

2
I4Ms (Nx −Ny) sin 2χ+I3

D

µ0Mspw∆
cosχ−I6Hx

(5.14)

Equation 5.14 could be used to measure DMI under conditions which the DW is stationary under
applied currents. Plugging observations from the micromagnetic simulations into a two coordinate
form of model 3 (and assuming J = 0.1 TA/m2), we predict a DMI strength of D = −1.1 mJ/m2

for Pt/CoFe/MgO and D = 0.57 mJ/m2 for Pt/Co/Ni/Co/MgO/Pt, which are very close to the
values used in the micromagnetic simulations.

In the Pt/Co/Ni/Co/MgO/Pt sample, in field-driven DW motion (Bz = 30 mT), we observed
initiation of Walker Breakdown at Bx = 50 mT and cessation of this behavior at Bx = 325 mT.
This scenario could be studied using our CCMs. Assuming small tilting for the DW (which is valid
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in this case), we can simplify the steady state equation as:

cosφ =
I2Hz + I3HSL cosφ

α
I2
4

I2
Ms (Ny −Nx) sinφ

+ α

I3I4
I2

D
µ0Mspw∆ + I4I6

I2
(Hy cotφ−Hx)

α
I2
4

I2
Ms (Ny −Nx)

=
1

2

[(
I2
I4

)2
Hz

Hw sinφ
+
I2I3
I2
4

HSL

Hw
cotφ+ α

I3
I4

HDMI

Hw
− αI6

I4

Hx

Hw
+ α

I6
I4

Hy

Hw
cotφ

] (5.15)

where Hw is the conventional Walker Breakdown field [53], and HDMI is the DMI field. Walker
Breakdown happens when the right side of the equation above is larger than 1 or smaller than -1.
While in systems without DMI, only the drive interaction and the demagnetizing field played a
role in this solution, in a system with DMI and in-plane fields additional terms are introduced; the
relevant strength of these terms compared to each other determined whether Walker breakdown
will take place or not. Note that magnetocrystalline anisotropy plays a role in this through the Ii

values, as these values depend on θc which in turn depends on Ku.
Finally, we also observed in-plane fields that led to switching of the system through the elastic

extension of the DW. The threshold for this switching field seems to relate to the canting angle
reaching θc = 45◦ at which point the DW does not maintain a rigid structure as the domains try

to fully align with the external magnetic field. This leads to Hx,s =
√

2
2

[
2Ku

µ0Ms
+ Ms(Nx −Nz)

]
for

the longitudinal switching field and Hy,s =
√

2
2

[
2Ku

µ0Ms
+ Ms(Ny −Nz)

]
for transverse fields. These

equations are expected to over-predict the switching field, as they do not take into account edge
effects in the system and the effect of the drive interaction.

For the Pt/CoFe/MgO system, Bx,s ≈ ±354mT which is only 25− 50mT higher than the field
at which the system switched in micromagnetic simulations for positive longitudinal fields. For
negative longitudinal fields, switching could not be observed due to the nucleation of a new DW.
The transverse switching field was found to be By,s ≈ ±359mT depending on the width of the
system; however, we observed elongations in the DW prior to reaching such high fields, albeit
these elongations were seen in conjunction with translational motion of the DW. The nature of
these elongations and their modeling is beyond the scope of this work, as our CCMs assume the
DW is a rigid object. We did not observe any of these effects for the Pt/Co/Ni/Co/MgO/Pt cases;
we verified that the switching field for this sample under both longitudinal and transverse fields is
about ±1.48T, well above the in-plane field values studied.
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(a) DW velocity. (b) DW width parameter (∆).

(c) φ− χ (d) DW magnetization angle (φ).

(e) DW tilting angle (χ).

Figure 5.13: Instantaneous steady state DW characteristics for field-driven DW motion in
Pt/CoFe/MgO with different out of plane and transverse fields applied. Only the collective coor-
dinate models with highest accuracy in predicting the DW velocity are shown.
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(a) DW velocity. (b) DW width parameter (∆).

(c) φ− χ (d) DW magnetization angle (φ).

(e) DW tilting angle (χ).

Figure 5.14: Instantaneous steady state DW characteristics for field-driven DW motion in
Pt/Co/Ni/Co/MgO/Pt with different out of plane and transverse fields applied. Only the col-
lective coordinate models with highest accuracy in predicting the DW velocity are shown.
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(a) DW velocity. (b) DW width parameter (∆).

(c) φ− χ (d) DW magnetization angle (φ).

(e) DW tilting angle (χ).

Figure 5.15: Instantaneous steady state DW characteristics for SHE-driven DW motion in
Pt/CoFe/MgO with different currents and transverse fields applied. Only the collective coordinate
models with highest accuracy in predicting the DW velocity are shown.
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(a) DW velocity. (b) DW width parameter (∆).

(c) φ− χ (d) DW magnetization angle (φ).

(e) DW tilting angle (χ).

Figure 5.16: Instantaneous steady state DW characteristics for SHE-driven DW motion in
Pt/Co/Ni/Co/MgO/Pt with different currents and transverse fields applied. Only the collective
coordinate models with highest accuracy in predicting the DW velocity are shown.
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5.4.5 Effect of Combinations of transverse and longitudinal fields

All our simulations involved addition of a transverse or longitudinal field in the absence of the other.
To better understand the effect of combinations of these fields, we used the collective coordinate
models to study the Pt/CoFe/MgO system for a current density of Jx = 0.1TA/m2 when both
longitudinal and transverse fields are applied simultaneously. Figure 5.17 shows the results of this
study. Clearly, transverse fields can be used for fine tuning properties such as DW velocity with
an almost linear effect, while longitudinal in-plane fields showcase a rather nonlinear effect on DW
motion, and can be used to make major changes to the motion. This was also understandable
from the micromagnetic simulations in the previous section, where a nonlinear effect is seen when
longitudinal fields are used, with a more linear effect in the case of transverse fields.

(a) DW average velocity in m/s. (b) DW tilting χ in degrees.

(c) DW width parameter (d) DW magnetization angle

(e) φ− χ

Figure 5.17: Effect of combinations of longitudinal and transverse fields on DW motion for a fixed
current density of Jx = 0.1TA/m2. The effect were modeled using the CCM with four collective
coordinates and a canted ansatz.
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5.4.6 Effect of Sample Width

The dimensions of the system also play a role on the motion of the DW. We studies the effect of
increasing the dimensions of the wire on the motion of the DW. Figure 5.18 shows that doubling
the width of the wire to 300 nm reduces the DW velocity only slightly, while the DW velocities
drop dramatically when we reach a width of 500 nm for the wire at the same current density. This
could be attributed to the structure of the DW. A larger width stabilizes domain walls with less
Néel character, reducing the effect of the SHE torques on the DW and reducing the DW velocity.
This fact was verified in Figure 5.18, where clearly the magnetization angle of the DW is much
lower for a width of 500 nm compared to the other two cases. These effects can be attributed to
the change in demagnetizing field within the system.

(a) DW velocity. (b) DW magnetization angle.

(c) DW tilting angle. (d) DW width parameter.

Figure 5.18: Effect of changing the width of the nanowire on DW motion.

5.5 Selecting the Right CCM

The results of the micromagnetic simulations presented in Figures 5.9-5.16 highlighted the impor-
tance of using the right CCM when studying different systems.
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First, we found that canting in the domains should be included in the model only if canting in
the domains is larger than about 10◦; otherwise its inclusion does not add value to the models and
can overcomplicate the study. Hence, we recommend using the canted models only when θc > 10◦

is expected.
We also found that model set 3 is more applicable without the ∆ degree of freedom, as it does

not predict this parameter correctly and seems to be of a more rigid nature than the Bloch profile.
This is understandable from a modeling perspective, as ∆ in a way determines the transition from
DW to domain, and canting impacts the domain’s structure.

Finally, most of our models are adept at predicting the right tilting and magnetization angles
at the critical in-plane fields identified. As such, use of these critical points when trying to identify
material properties from the collective coordinate models is recommended.

Overall, it seems that when studying the velocity of the domain wall under longitudinal fields,
use of the q − φ form of model 3 is sufficient, while under transverse fields or other cases where
predicting the DW tilting is of interest, the q− φ− χ form of model 3 or the q− φ− χ−∆ form
of model 2 should be used.

5.6 Conclusion

In this Chapter, we showed that the models developed in Chapter 4 fail when applied to DW
motion under in-plane fields, and then presented two extended models which better replicated
micromagnetic results in these cases. Through these models, we observed the important role
played by canting in the domains on the motion of the domain walls. This showed that profile
used to derive the DW is much more important that the number of collective coordinates and we
were able to show that the best results are observed when a canted profile is used with only two
collective coordinates.

We showed how the application of moderate in-plane fields could change the dynamics of domain
walls by adjusting the internal structure of the DW (magnetization and DW width) along with the
tilting of the DW. The collective coordinate models were used to describe certain critical points
in the dynamics of the DW under in-plane fields, including points where the DW velocity reaches
zero or the DW does not tilt. The collective coordinate description at these points may be used
to measure the strength of different interactions in the system.
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Chapter 6

Collective Coordinate Modeling of
Magnetic Bubbles

In the previous Chapters we derived collective coordinate models for domain wall motion in PMA
nanowires. Specifically, our results show the importance of canting when DW motion is studied
under in-plane fields, showcasing that the impact of canting should always be included in collective
coordinate descriptions when in-plane fields are applied [1, 4, 8].

Bubble memory sparked initial interest in studying magnetic bubbles in the 1970s [43, 44].
Many models of DW motion currently in use such as the Slonczewski [54] or Thiele models [56,57]
stem from bubble memory studies in the 1970s.

Today, behavior of a magnetic bubble is used both in devices to code information [34], and as
a means to measure the strength of specific interactions including the DMI. The strength of the
DMI is assessed using expansion of magnetic bubbles under the application of in-plane and out-
of-plane fields [88–90]. This method assumes significant Néel character on the axis of the in-plane
field applied, an assumption that can be debated. Moreover, the measurement relies on collective
coordinate descriptions of DW motion.

In this Chapter, we study the applicability of collective coordinate models to the study of DW
motion in expanding magnetic bubbles under in-plane and out-of-plane fields. We will present a
method for extending models developed in the previous Chapter to magnetic bubbles, and assess
the accuracy of these models.

Acknowledgment: Parts of the content in this Chapter were published in ”Dynamics and
morphology of chiral magnetic bubbles in perpendicularly magnetized ultra-thin films with the
Dzyaloshinskii-Moriya Interaction”, Journal of Magnetism and Magnetic Materials, vol. 456, pp.
433-438, 2018, doi: 10.1016/j.jmmm.2018.01.075 [2]. Please use this paper for citations.

6.1 Toy Model

Based on the principles presented in Chapter 2 and assuming that there is no interaction between
different points on a bubble (an assumption valid for a static bubble), the energy of the domain
wall along the local x and y coordinate systems defined in 6.1 along any radius of the bubble may
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Figure 6.1: The local x,y coordinates and the global X,Y coordinates.

be written as:

Er =

Exchange︷ ︸︸ ︷
2I1A

∆
+

DMI︷ ︸︸ ︷
2I3D cosφ+

Anisotropy︷ ︸︸ ︷
2I4∆KU

+

Magnetostatic︷ ︸︸ ︷
2I4

µ0M
2
s

2

(
Nzl + 2∆

[
Nx, eff cos2 φ+Ny, eff sin2 φ−Nz

])
Zeeman︷ ︸︸ ︷

−2µ0Ms [I6∆ (Hx, eff cosφ+Hy, eff sinφ) + I2Hzq]

(6.1)

Here we assumed the DW follows the profiles presented in Chapter 2 along each radius. φ is the
angle with the radial axis at each point, and the Ii factors are the same factors defined in Chapter
5. The local x and y coordinate system is defined as a right handed coordinate system with the
x-axis along the radius and the y-axis perpendicular to the radius (Figure 6.1).

In Equation 6.1, the effective applied fields in the x and y direction on the wall depend on the
applied field and the position along the bubble. Assuming the radius of interest makes an angle Ω
with the global X and Y coordinates, the effective local x and y field may be calculated as:

Hx, eff = HX cos Ω +HY sin Ω

Hy, eff = −HX sin Ω +HY cos Ω
(6.2)

The same concept should be applied to demagnetizing factors, if the demagnetizing factors of
the system are taken into account in the global coordinate system.

This energy description forms the basis of our toy model. In this model, we are assuming that
each segment of the DW on the bubble is acting as if it was a DW moving in a nanowire pointing
along the radius. Clearly, this means that the DW segments are unaware of the existence of other
segments, and they are decoupled from each other; as such, this reduced model loses some realism
but can provide some initial insights into the behavior of magnetic bubbles.
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6.2 Static Structure of the DW

In the static case (Hz = 0), the energy equation simplifies to:

Er =

Exchange︷ ︸︸ ︷
2I1A

∆
+

DMI︷ ︸︸ ︷
2I3D cosφ+

Anisotropy︷ ︸︸ ︷
2I4∆KU

+

Magnetostatic︷ ︸︸ ︷
µ0M

2
s

2

(
Nzl + 2I4∆

[
Nx, eff cos2 φ+Ny, eff sin2 φ−Nz

])
+

Zeeman︷ ︸︸ ︷
−2µ0Ms [I6∆ (Hx, eff cosφ+Hy, eff sinφ)]

(6.3)

Minimizing this energy can give us the equilibrium structure of the DW. Figure 6.4 shows the
magnetization angle of the a bubble DW in a Pt/CoFe/MgO sample under different applied in-
plane fields as predicted by model 1 (the model without canting). The effect of in-plane fields can
clearly be seen and seems to match what one would expect taking into account the interaction of
local spins with the local in-plane field. We did not observe any major effect from canting when
comparing models 1-3 in the static case. The in-plane fields also affect the DW width, as depicted
in Figure 6.2; however, these changes are less than 0.13% of the DW width.

Figure 6.3 illustrates the local energy of the bubble DW, highlighting that the points of minimal
energy occur for Ω = 0◦, 180◦ in the case of fields in the x-direction and Ω = 90◦, 270◦. This seems
to be the evidence experimentalists provide for the way they measure DMI.

Energy minimization can also be done mathematically to find the equilibrium angle φ for the
DW. Assuming a fixed DW width (which seems acceptable due to the negligible changes in DW
width), we have:

dEr
dφ

= 0→ −I3D sinφ+µ0M
2
s I4∆ (Ny, eff −Nx, eff ) sin 2φ−µ0MsI6∆ (Hy, eff cosφ−Hx, eff sinφ) = 0

(6.4)

which yields the equilibrium DW magnetization:

cosφeq =
I3

D
µ0Ms∆

− I6Hx, eff + I6Hy, eff cotφ

2I4Ms(Ny, eff −Nx, eff )
=
I3HDMI + I6 (Hy, eff cotφ−Hx, eff )

2I4HK

=
I3
2I4

hDMI +
I6
2I4

(hy, eff cotφ− hx, eff )

(6.5)

with HK denoting the shape anisotropy field, and the his being the relevant field normalized
by the shape anisotropy field. It is clear that, in the absence of applied fields, the DW structure
is determined by the competition between the DMI and in-plane fields normalized by the shape
anisotropy. The equation above will only be valid when numerator is less than or equal to Hk;
for all other cases, φeq = 0 and the wall will be Néel. Interestingly, the same equation may be
recovered from the dynamic equations developed in the previous section if no excitation is driving
the wall. A solution taking into account the changes in the DW width may also be derived, but
has a complex form.
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(a) Fields in the x-direction.
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(b) Fields in the y-direction.

Figure 6.2: Variation of static DW width of the bubble at different points along the bubble in the
presence of in-plane fields. Clearly, the width varies negligibility around the bubble and is only
slightly affected by the in-plane fields applied.
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(a) Fields in the x direction.
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(b) Fields in the y-direction.

Figure 6.3: Variation of static DW energy of the bubble at different points along the bubble in the
presence of in-plane fields.
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(a) No inplane field.
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(b) Bx = 50 mT.
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(c) Bx = −50 mT.
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(d) By = 50 mT.
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(e) By = −50 mT.

Figure 6.4: Internal structure of the static bubble under different in-plane fields. The material
properties used are those of a Pt/CoFe/MgO system. The arrows show the local direction of
magnetization at each position along the circular bubble.
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6.3 Dynamics: Extension of CCMs to Bubbles

The equations of motion developed in the previous Chapter could be extended to a magnetic
bubble. Specifically the q − φ and q − φ − ∆ equations could be extended to the bubble, by
applying them at each point around the bubble. These equations could also be derived from the
energy description highlighted earlier in this Chapter.

Simplifying the collective coordinate equations in the presence of an applied field (or minimizing
the system energy in Equation 6.1 with ∂Er

∂φ ∼ 0), the steady state DW magnetization may be
extracted as:

cosφeq =
I3

D
µ0Ms∆

− I6Hx, eff + I6Hy, eff cotφeq

2I4Ms(Ny, eff −Nx, eff )
+

I2Hz

αI4Ms(Ny, eff −Nx, eff ) sinφeq

=
I3
2I4

HDMI

HK
− I6

2I4

Hx, eff

HK
+

I6
2I4

Hy, eff

HK
cotφeq +

I2
I4

Hz

αHK sinφeq

=
I3
2I4

hDMI −
I6
2I4

hx,eff +
I6
2I4

hy,eff cotφeq +
I2
I4α

hz cscφeq

(6.6)

with the velocity defined as q̇ = µ0γ
α Hz∆∗. A description for the steady state DW width (∆∗) was

already extracted in Chapter 3 and remains valid.

While we postulated that applying these equations without a constraint taking into account
the fact that the points are connected would be unfruitful, preliminary results show that the model
works for the bubble. As shown in Figure 6.5, the relevant strength of the in and out of plane
fields seems to play a role in the evolution of the bubble. First, it is notable that the bubble
is not of Néel character at time zero, as the in-plane fields disrupt the static structure of the
bubble. Addition of the out-of-plane field clearly leads to additional changes in the magnetization.
Even for the 10mT out-of-plane field, clearly under the application of in-plane fields the Néel
point is no longer on the axis, being at 15◦ axis for Bx = 150 mT, Bz = 10 mT, and −5◦ axis for
Bx = −150 mT, Bz = 10 mT. Clearly, as the out-of-plane field increases, part of the DW reaches
Walker breakdown, which in a real interface will give rise to Bloch lines at which point our model is
invalid. This effect can be better visualized in Figure 6.6 which shows the location of the interface
at each position along the bubble under in-plane fields. Clearly, there are always two points which
are least deviating from the case without in-plane fields; however, these points move along the wire
with time. For high drive field of Bz = 90 mT we can clearly see the deformation of the bubble as
the interface shows breaking points.

In conclusion, in the dynamic case, Bz leads to a shift in the axis on which the DW maintains
Néel structure. This shift will shed some doubt on whether the bubble expansion approach for
DMI measurement [89] is accurate or not, specially since the amount of shift depends not only on
the field applied, but the properties of the material system being studied. In addition, vertical
Bloch lines may form and propagate along the bubble; the effects of these Bloch lines require a
two dimensional description of the bubble and are not well predicted by our collective coordinate
model.

6.4 Comparison to Micromagnetic Simulation

To assess the accuracy of the model presented for realistic systems, we performed micromagnetic
simulations on a 2.048µm × 2.048µm × 0.6 nm film. Material constants used were saturation
magnetization Ms = 1353 kA/m, uniaxial anisotropy constant Ku = 1.5 MJ/m3 along positive
z-axis, exchange constant Aex = 13 pJ/m, and Gilbert damping = 0.2.
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(a) Bz = 10 mT, Bx = −150 mT. (b) Bz = 10 mT, Bx = 0 mT. (c) Bz = 10 mT, Bx = 150 mT.

(d) Bz = 90 mT, Bx = −150 mT. (e) Bz = 90 mT, Bx = 0 mT. (f) Bz = 90 mT, Bx = 150 mT.

Figure 6.5: Evolution of the bubble magnetization under different combinations of in- and out-of-
plane fields for a Pt/CoFe/MgO sample. The bubbles have been rescaled to the original bubble
size to show the difference in magnetization. Clearly, addition of the Bz field disrupts the DW
structure from the predicted static structure (shown as t = 0).

During deposition of realistic materials, disorders such as grain boundaries, dislocations, and
lattice vacancies can be introduced into the material. To mimic a realistic system, disorders
was introduced into the system following the method presented in reference [164] using randomly
distributed grains of size 10 nm with exchange constant varied at the border of the grains by 43%.

In the simulations, a magnetic bubble of radius 256 nm was initialized in the system. Then
an out-of-plane field and an in-plane field are applied simultaneously. The bubble was allowed to
expand until it reaches the boundary of the system. An infinitely large system with one bubble
was mimicked by replacing the dipolar energy of the film with that of an infinite system.

We compared the model presented in this Chapter to the results of micromagnetic simulations
to assess whether these models are accurate especially considering the disorder included in the
model. As depicted in Figure 6.7, we found that by reducing the exchange constant to 57% of the
actual value (equivalent to reducing it by the amount of exchange constant variation at the grain
boundaries) we are able to almost reproduce the micromagnetic results. As such, the toy model
seems to be valid at least for cases with low drive field.

The micromagnetic simulations showed some rippling effects on the DW, which is the reason
for the sudden drop in DW velocity in Figure 6.7.a. The CCM can be used to understand what
happens at the ripple points. In the absence of the DMI and in-plane fields, the drive field
determines whether Walker breakdown happens. However, in the presence of the in-plane field and
DMI, there are two additional parameters that play a role in whether or not precession continues.
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(a) Bz = 10 mT, Bx = 150 mT. (b) Bz = 10 mT, Bx = −150 mT.

(c) Bz = 90 mT, Bx = 150 mT. (d) Bz = 90 mT, Bx = −150 mT.

Figure 6.6: Evolution of the bubble radius under different combinations of in- and out-of-plane
fields for a Pt/CoFe/MgO sample. The dashed lines show the position of the bubble in the absence
of in-plane fields. Clearly, the in-plane fields make the bubbles look ellipsoidal, with some parts
moving faster than in the absence of these fields and some parts of the bubble slower. At high out
of plane fields, the formation of vertical Bloch lines along the bubble disrupts this motion, leading
to a Walker breakdown like behavior which can be seen as non-smooth points in the graphs (for
example Bx = 150 mT in (c)) .

The fact that the in-plane fields are locally determined means that points of precession can nucleate
within the bubble locally, showing local Walker breakdown behavior. Physically speaking, such
precessional motion will lead to 2-D effects on the bubble, affecting the spin texture around that
point and giving rise to the ripple like shape of the bubble. Even though the CCM is effectively a
one-dimensional model, such ripples can be observed in the results as well.

6.5 Conclusion

We presented a toy model that can elucidate to the structure of magnetic bubbles to an extent.
This model showed that the Néel points on a magnetic bubble depend on the relative strength
of the DMI, applied in-plane fields and the out=of-plane field applied. Moreover, as previously
mentioned, canting in the domains can play a role and our model took this effect into account.
This casts some doubt on the assumptions used by experimental groups in measuring DMI [88–90].
Of course, these experiments are usually done in the creep regime where the assumptions could be
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(a) DW velocity. (b) DW width parameter.

Figure 6.7: Comparison between the micromagnetic simulations and collective coordinate model
for a drive field of Bz = 17mT. The velocity was calculated for the left side of the bubble along
the axis of the in-plane field.

valid due to the very low value of the out-of-plane field; however, thresholds need to be identified
based on material properties for when these assumptions are valid.

We also verified that these models fit micromagnetic simulations well and could account for the
effects of disorder and pining in the system. The collective coordinate model and micromagnetic
simulations both show ripelling effects in the bubble due to the formation of vertical Bloch lines.
These effects are further studied in reference [2].
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Chapter 7

Comparison with a
Semi-analytical Model

In this Chapter, the collective coordinate models derived using the Euler-Lagrange equation in
Chapter 4 are compared to a semi-analytical approach based on taking averages of the magne-
tization [3, 5, 160]. These semi-analytical approaches are effectively a method to post process
micromagnetic simulation; yet they can also shed some light on shortcomings of the collective
coordinate models presented in the previous Chapters, and the effect of the ansatz.

Acknowledgment: Parts of the content in this Chapter were published in the following
publications:

� ”Comparison between collective coordinate models for domain wall motion in PMA nanos-
trips in the presence of the Dzyaloshinskii-Moriya interaction”, Journal of Magnetism and
Magnetic Materials, vol. 449, pp. 337-352, 2018, doi: 10.1016/j.jmmm.2017.10.008 [3].

� ”The effect of the Dzyaloshinskii-Moriya interaction on field-driven domain wall dynamics
analysed by a semi-analytical approach”, Journal of Physics D: Applied Physics, vol. 49 (46)
no. 465003, 2016, doi: 10.1088/0022-3727/49/46/465003 [5].

Please use these papers for citations.

7.1 The semi-analytical approach

Based on the LLG-equation and using statistical averages, a semi-analytical collective coordinate
model could be developed [3, 5, 160]. While in micromagnetic simulations the LLG-equation de-
scribes the local magnetization dynamics in each finite difference cell, the semi-analytical collective
coordinate model developed using statistical averages describes DW dynamics in terms of the av-
erage value of magnetization along different axes. By performing a few simulations and identifying
which combinations of these average magnetization values remain constant, one can develop a
fingerprint of DW behavior in the system under study in the form of a few equations.

7.1.1 The Effective Field on the Domain Wall

To derive the semi-analytical model, the effective field presented in Chapter 2 should be properly
averaged over the DW volume and substituted in the LLG equation. The effect field on the DW
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will have the form:

Heff,DW =Hext + HR +
1

〈|mip|〉2
〈m2

ip〉

[〈Hanis〉+ 〈Hms〉+ 〈HDMI〉+ 〈Hexch〉+ 〈HSH〉]

∼=Hext, xex +Hext, yey +Hext, zez +HRey +
2Ku

µ0Ms

〈m2
ip〉

〈|m2
ip|〉
〈mzm

2
ip〉

〈m2
ip〉

ez

− Ms

〈m2
ip〉
[
Neff, x〈mxm

2
ip〉ex +Neff, y〈mym

2
ip〉ey +Neff, z〈mzm

2
ip〉ez

]
+

2D

µ0Ms

〈m2
ip〉

〈|m2
ip|〉

[〈∂xmz〉ex + 〈∂ymz〉ey − 〈∂xmx + ∂ymy〉ez]

+
2A

µ0Ms

〈m2
ip〉

〈|m2
ip|〉

[〈∂xxmx〉ex + 〈∂yymy〉ey + 〈∂zzmz〉ez]

+HSHE

〈m2
ip〉

〈|m2
ip|〉

[−〈mz〉ex + 〈mx〉ez]

(7.1)

with Hext the external magnetic field, HR = αRP
µ0µBMs

jx the Rashba field strength, Hanis the
anisotropy field, Hms the magnetostatics field, HDMI the DMI field, Hexch the exchange field,
and HSHE = h̄θSHE

2eMsLzµ0
jx the SHE strength. Note that the demagnetizing factors in the equation

above are effective and are calculated by diagonalizing the demagnetizing tensor along the x-, y-,
and z-direction [3, 5]. The vector ei denotes the unit vector in the i direction.

The spatial averages used in the field definition above are calculated over the Dw volume; for
example 〈f〉 denotes a spatial average of the function f over the domain wall volume VDW

〈f〉(t) =
1

VDW

∫ ∫ ∫
VDW

f(r, t) dV. (7.2)

The DW volume VDW is defined based on a parameter ε, with the left boundary of this volume
defined so that |∂xmz| ≥ ε, maintaining the changes in the z-component of magnetization larger
than a threshold in the computational window. The right boundary of the volume is defined by
fulfilling

∫
DW

mz(r, t) dx = 0 along every row in y. A too large ε means that only part of the DE
is taken into account. A value of ε = 0.002 was found to work best based on experience [5].

In Equation 7.1, mip is the in-plane magnetization vector

mip ≡ mxex +myey. (7.3)

with the properties

〈m2
ip〉 = 〈m2

x +m2
y〉 (7.4)

and

〈|mip|〉 ≡ 〈
√
m2
x +m2

y〉. (7.5)

Note that
〈m2

ip〉
〈|m2

ip|〉
in the first line of Equation 7.1 is a scaling factor to ensure that Heff and

Heff,DW are physically equivalent when locally interacting with the DW magnetization from the
perspective of the DW, despite one being defined over the Dw and the other at every point within
the system. Due to their uniformity, the external field Hext and the Rashba field HR are not
scaled.
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7.1.2 The Collective Coordinates and Other Model Parameters

Equation 7.1 can be thought of as the ansatz for the semi-analytical model. In the context of this
model, after substituting equation (7.1) in the LLG-equation different collective coordinated may
be introduced. Here we first introduce the collective coordinate:

� The DW position may be defined as:

Q(t) =
1

−〈∂xmz(r, t)〉
〈mz(r, t)〉, (7.6)

from where we can derive the DW velocity as:

v(t) ≡ dQ(t)

dt
=

1

−〈∂xmz(r, t)〉
d〈mz(r, t)〉

dt
, (7.7)

� The averaged DW magnetization angle may be defined as:

Φav = arctan
〈my〉
〈mx〉

= arctan
〈mipsinφ〉
〈mipcosφ〉

(7.8)

To define Φav unambiguously, we impose that Φav = 0 corresponds to a Néel wall character-
ized by 〈my〉 = 0 and 〈mx〉 > 0 while Φav = π corresponds to a Néel wall characterized by
〈my〉 = 0 and 〈mx〉 < 0.

� The averaged DW width is defined as:

∆av = 2
〈m2

ip〉
−〈∂xmz〉

, (7.9)

� The averaged DW geometrical tilting is defined as:

Xav = arctan
〈∂ymz〉
〈∂xmz〉

, (7.10)

In the derived equations for DW motion in this system, several rescaling factors show up,
including:

κav =
〈m2

ip〉
〈|mip|〉

(7.11)

κav,w =
〈|mip|3〉
〈m2

ip〉
(7.12)

gi,av =
∂iimi

〈|mip|〉
∀i ∈ {x, y, z} (7.13)

κav and κav,w characterize the DW shape, while gi,av are related to effects from the exchange
interaction.
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7.1.3 Equations of Motion

Based on the descriptions above, the equation describing DW velocity will have the following form:

1 + α2

γ0

2

∆av
v(Hext) =αHz +

2

∆av

1 + αβ

γ0
ux +

1

κav
[Hx sin Φav −Hy cos Φav]

+ ακavHSH cos Φav +
κav,w
κav

Hdemag
sin 2Φav

2

− 4κavHDMI [sin Φav − tanXav cos Φav]

+Hexch

[
2∆2

av (gx,av sin Φav − gy,av cos Φav)
]

+ asymetric terms

(7.14)

The magnetization angle of the DW will be evolve according to the following equation:

1 + α2

γ0

〈m2
ip
∂φ
∂t 〉

〈m2
ip〉

(Hext, jx) =Hz +
2

∆av

β − α
γ0

ux −
α

κav
[Hx sin Φav − (Hy +HR) cos Φav]

+ κavHSHE cos Φav − α
κav,w
κav

Hdemag
sin 2Φav

2

+ α4κavHDMI [sin Φav − tanXav cos Φav]

− αHexch

[
2∆2

av (gx,av sin Φav − gy,av cos Φav)
]

+ asymetric terms

(7.15)

with φ the local magnetization angle, the shape anisotropy field Hdemag = Ms(Neff, y −Neff, x), the
DMI-field HDMI = D

µ0Ms∆av
and the exchange field Hexch = A

µ0Ms∆2
av

. The asymmetric terms may

be found in reference [3]; they do not have an equivalent term in the Lagrangian based models
as symmetry of the ansatz and assumptions on the DW structure lead to their removal from the
equation.

7.1.4 Analytical Comparison of the Models

The velocity equation from the semi-analytical collective coordinate model can be written as:

1 + α2

γ0

2

∆av
v =αHz +

2

∆av

1 + αβ

γ0
ux + ακ (HSHE, y cos Φav −HSHE, x sin Φav)

+
1

κ
[(Hx +HR, x) sin Φav − (Hy +HR, y) cos Φav]

+Ms(Neff,y −Neff,x) cos Φav sin Φav

− 2κ
D

µ0Ms

2

∆av
[sin Φav − tanXav cos Φav]

+
A

µ0Ms
∆2
av

4

[
∆2
av

2
(gx sin Φav − gy cos Φav)

]
(7.16)
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which can be directly compared to the equation for q̇ in the collective coordinate models presented
in Chapter 5:

(I2 + I1I4
I2
α2)

γ0

cosχ

pw∆
q̇ =αI4Hz +

cosχ

∆

1 + αβ

γ0
u+ ακSH [HSLuSOT,y cosφ−HSLuSOT,x sinφ]

+
1

κfield
[(Hx +HFLuSOT,x) sinφ− (Hy +HFLuSOT,y) cosφ]

+Ms(Ny −Nx) sin (φ− χ) cos (φ− χ)

− 2κDMI
D

µ0Ms

sin(φ− χ)

∆
,

(7.17)

Similarly, the change in averaged magnetization angle in the semi-analytical model can be
written as

1 + α2

γ0

〈m2
ip
∂φ
∂t 〉

〈m2
ip〉

(Hext, jx) =Hz +
2

∆av

β − α
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− α A

µ0Ms
∆2
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4
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∆2
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2
(gx sin Φav − gy cos Φav)

]
(7.18)

which could be compared to the analytical equations for the evolution of the DW magnetization
angle

(1 + α2)

γ0
φ̇ =Hz +HFLuSOT,z +

cosχ

∆

β − α
γ0

u

+ κSH [HSLuSOT,y cosφ−HSLuSOT,x sinφ]

− α 1

κfield
[(Hx +HFLuSOT,x) sinφ− (Hy +HFLuSOT,y) cosφ]

− αMs(Ny −Nx) sin (φ− χ) cos (φ− χ)

+ α2κDMI
D

µ0Ms

sin(φ− χ)

∆

(7.19)

While both models include almost equivalent terms for each interaction, the semi-analytical
model has additional terms relating to the exchange interaction (in Brown in Equations 7.16 and
7.18) which do not exist in the Lagrangian-based models. Further studies revealed the sum of these
terms to be relatively small compared to the other terms.

Table 7.1 outlines the results of comparing the equations for velocity (or magnetization angle) in
the two types of models. The comparison shows that, while the terms related to the Zeeman energy
are identical, there are slight differences in the two descriptions in terms of magnetostatic terms. In
fact, the magnetostatic terms suggest that the semi-analytical model takes into account the effect
of changes in the DW plane by varying the demagnetizing factors, while the Lagrangian based
model takes this change into account by including it as an additional tilt in the magnetization.
The DMI terms in the two models, while at first sight not identical, can be connected based
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on the definitions for DW width, magnetization angle and geometrical tilting angle in the semi-
analytical model. On the other hand, κ in the semi-analytical model (with values close to 2/3
in micromagnetic simulations) is equivalent to three different constants in the Lagrangian-based
model.

semi-analytical q− φ− χ−∆

general ∆av

2
∆

cosχ

DMI/field/Rashba/SHE
Φav

φ
ms φ− χ

DMI
κ

κDMI = π/4
field/Rashba κfield = 2/π

SHE κSH = π/2
DMI Xav χ
ms Neff,y −Neff,x Ny −Nx

exch gx sin Φav − gy cos Φav 0

general
〈m2

ip
∂φ
∂t 〉

〈m2
ip〉

φ̇

Table 7.1: Equivalent collective coordinates and factors in the Lagrangian-based and semi-
analytical models based on comparison of the velocity/DW magnetization angle equations.

7.2 Numerical Comparison

To quantitatively understand the correspondence between the coordinates defined in the two
models, a case of field-driven DW motion was studied. Simulations were performed using the
micromagnetic software package Mumax3 [143] on a nanostrip with the following properties:
Ms = 1090 × 103 A/m, A = 1 × 10−11 J/m, Ku = 1.25 × 106 J/m3 in the z-direction, α = 0.2,
D = −0.7 mJ/m2, width = 100 nm, thickness = 0.6 nm and infinite length. Discretization cells
with dimensions ∆x×∆y ×∆z = 1.5625× 1.5625× 0.6 nm3 were used.

Figure 7.1 summarizes the results of comparing the collective coordinates. Previous studies
have highlighted that both models are able to predict DW velocity accurately, as such DW velocity
results were omitted. While the two models seem to predict almost similar magnetization angles
(φ and Φav), their predictions of tilting (χ and Xav) differ. In spite of this, the two models predict
φ− χ accurately.

As depicted in Figure 4.2, the definition of the DW width also differs in the two models. While
the Lagrangian-based models are in agreement with the Thiele definition [62], ∆av seems to follow
the same trend but at almost twice the value. Detailed analysis showed that ∆av

∆TH
∼ [1.903,1.912]

while ∆av

∆ ∼ [1.910,1.960].
Observations:

1. The velocity calculated from the semi-analytical model is lower than that of the Thiele
definition.

2. Note that the q− φ− χ and q− φ models predict early Walker Breakdowns.

3. The Thiele definition for velocity works perfectly with the analytical models.

4. Largest error in predicting velocity is about 3% which is acceptable for an analytical model.

5. The semi-analytical and Lagrangian-based definitions of the tilting angle and φ seem to be
almost the same (except at very high fields).
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6. The Lagrangian-based models predict higher values of tilting. The analytical moels that
include tilting predict φ within 10% accuracy. However, all analytical models fail when
φ = 45degrees.

7. The DW width defined in the semi-analytical model is between 1.9 and 1.91 times the Thiele
DW width.

7.3 Conclusion

The analysis presented in this Chapter showed that similar models for DW motion can be derived
using two different approaches, namely the Lagrangian approach based on an ansatz, and a method
based on statistical averages of the LLG equation. Introducing the ansatz clearly assumes some
symmetries which remove some assymetric terms from the LLG. Moreover, the semi-analytical ap-
proach showed that some small terms based on exchange are removed when the ansatz is introduced
in the Lagrangian approach.
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Figure 7.1: Comparison of the 1-D model predictions to micromagnetic simulations for field driven
DW motion below Walker breakdown.
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Chapter 8

Modeling Realistic Systems

Real devices differ from the ideal models presented in the previous Chapters. The working tem-
perature of these devices is finite, as opposed to the T = 0 assumption of the LLG equation. In
addition, the quality of material deposition can affect the performance of devices. In this Chapter,
we comment on how these effects can be included in the models.

8.1 Pinning

The ability to control the motion of domain walls within a device is crucial to reaching the required
levels of performance. As devices become smaller, the effects of material edges and the quality of
material deposition become important in DW motion. These properties can lead to the pinning of
magnetic domain walls. Pining of DWs can be used to control the location of data coded in the
magnetic memories, while it can also affect switching of data bits in devices such as the MRAM.

Past studies on DW pinning in materials such as permalloy focused on pinning due to geometric
constrictions. The strength of pinning was found to be related to the notch depth [165, 166] with
minimal contributions from the notch shape [167–169] (although this is not the case in triangular
notches [170,171]). Square notches were found to be most suitable for transverse DWs [169]. The
position of the notch was also a factor as the pinning strength at the notch is high when the
spins in the wall oppose the direction of the magnetostatically determined spins around the notch
showcasing a chirality dependence in the pinning potentials [27, 167, 171–175].Such studies found
a pinning depth saturation effect when the notch size reaches 60-70% of the nanowire width or
larger [167, 171] and a minimum depth of around 18% for pinning [165]. Studies on antinotches
have suggested they might be more effective at pinning DWs [176]. A symmetric set of double
notches was presented as the best technological solution [170]. The deppining for transverse DWs
was characterized into three different categories [169] depending on notch size and geometry.

Other studies on permalloy have used the stray field from an external magnet or transverse
fields as a means of pinning DWs [27,177–179].

While study of notches in PMA is not common, one study found the pinned DW forms a
circular arc when a field is applied before deppining [180], which was a feature we could reproduce
in micromagnetic simulations as well. Bruno et al. analytically studied geometrically constrained
magnetic DWs in such systems, proposing that such a configuration constitutes a new kind of DW,
different from the Bloch and Néel walls [181]. Other features which may induce pinning include
linear defects [93], structural defects [67,68,182,183], and edge roughness [184–186].
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8.1.1 Defects and Disorder in Micromagnetics

To model pinning arising from material property changes within the system due to imperfections in
micromagnetic simulations, one can introduce grains in the material using 2D Voronoi tessellation
[143, 164, 187]. This methods lets the user define regions within the material where material
properties change, simulating grains with different material properties and is well accepted in the
community. In Chapter 6, we presented some results from micromagnetic simulations on a bubble
in which the effects of imperfections in the material were taken into account. When matching
micromagnetic simulations to experimental results, the difficulty is determining the amount of
material property changes from grain to grain to reproduce the experimental results.

Another way to model the effect of defects and disorder in the system is adding an additional
damping term based on dry friction to the LLG equation of the form [67,68]:

Td = ζ ~m× ~̇m

| ~̇m|
(8.1)

Where the phenomenological parameter ζ accounts for the average distribution of defects in the
material and, for a nonhomogenous material, may be replaces by a tensor accounting for anisotropy.

8.1.2 Modeling Pinning in Collective Coordinate models

Previous attempts at characterizing pinning in collective coordinate models used a parabolic pin-
ning potential of the following form in the equations [66,141]:

Vpin =

{
− 1

2KNx
2 for|x| ≤ LN

0 for|x| ≥ LN
(8.2)

Where x is the DW position, LN denoted the spatial extension of the pinning potential, and KN

was the elastic constant of the pinning potential. This model was applied to pinning at notches
where KN was extracted from micromagnetic simulations.

By analogy with a mechanical oscillator, the DW in this approach is considered as a particle
confined in a simple parabolic potential, the bottom of which is assumed to correspond to the
physical center of the notch.Derivation of the collective coordinate models with this equation leads
to an additional term linear with position in the equations for the evolution of q and φ.

8.1.3 Pinning due to Anisotropy Variation

Recent studies on magnetic domain wall motion have focused on the use ion irradiation to tailor
material properties and modify DW motion by creating magnetic soft spots due to alloying effects
[91–94]. This helps reduce pinning at areas of the material such as edges where the material growth
is not perfect, and may also be used to create areas in the material to pin the DW.

In one such study, irradiation by He+ ions reduced uniaxial anisotropy to 1/3 its original value,
reducing saturation magnetization up to 30% and increasing the depinning field more than two
fold [94]. These studies have revealed that the determining factors in DW pinning are the width
of the nanowire and the irradiation fluence [92,94].

We performed micromagnetic simulations to recreate these effects. A Pt/CoFe/MgO nanowire
with dimensions 2.8µm× 160nm× 0.6nm was simulated with the uniaxial anisotropy changing 5,
10, 15 and 20 percent in it at 10, 20, 40, and 80 nm intervals. Figure 8.1 shows the results of
anisotropy variation in the case of field driven DW motion. Micromagnetic simulations reveal a
pinning effect due to the change in anisotropy, which is mildly effected by the size of the regions
with fixed anisotropy. The mobility curves from micromagnetics make sense, taking into account
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that the DW width calculated from simulations with anisotropy variation is 3 to 4 times that of
no anisotropy variation. The full collective coordinate model based on four coordinates fails to
reproduce the results. Further investigation in the micromagnetic simulations revealed a lack of
tilting. However, the q − φ − ∆ model which does not include the tilting degree of freedom still
fails to reproduce the micromagnetic results as well. In both cases, collective coordinate models
predict faster DW motion likely due to inability to predict the increase in DW width.
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(a) Micromagnetic simulations for different anisotropy varia-
tions.
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(b) Micromagnetic simulations for different variation region
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(c) Predictions of the q − φ− χ− ∆ model.
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(d) Predictions of the q − φ− ∆ model.
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Figure 8.1: Effect of anisotropy variation on field driven DW motion.

After the initial study of adding anisotropy variation directly to the equations, we rederived
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the equations, assuming anisotropy varies with the DW position.

α
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In the above Keff(q) = (1 + η(q))Ku where η(q) is a random variation defined for each region
along the nanowire and Kvar is defined as:

Kvar =
dKeff

dq
=

{
ηKu
∆q , if passed into new region

0, if in old region
(8.7)

However, this model failed to reproduce the micromagnetic results as well.

8.2 Finite Temperature Effects

The LLG equation is valid only at zero temperature; however, real systems work at finite tem-
perature. Thermal fluctuations can induce changes in DW motion, making it stochastic. More
importantly, thermal fluctuations may depin a DW from a pinning point. Changes in temperature
may also lead to changes in saturation magnetization. As such, it is important to include these
effects in models, specially when low excitations are used to manipulate the DW. Thermal effects
on DW motion have been investigated in PMA material [66, 188] and in permalloy [141,189,190].

The first attempts to include thermal fluctuations in the LLG equation were those of Brown,
where he applies fluctuations in the effective field (modeled using a random white noise thermal
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field) to single domain particles [191, 192]. Both the Fokker Planck equation and fluctuation-
dissipation theorem may be used in this context to derive the right terms to be included in the
stochastic form of the LLG. Brown’s method is still the method used to date to include thermal
effects in micromagnetics.

Fan et al. studied the effect of finite temperature on DW motion [193]. The results showed
that the velocity of the DW is almost independent of temperature until the Walker breakdown.
They also showed that the thermal field can suppress Walker breakdown and makes domain wall
move faster.

Another important effect when currents are used is Joule heating, which can have additional
consequences for DW motion [194]. While initial studies postulated that this effect is negligible,
recent studies have confirmed that such high temperatures could be reached that the magnetic
order is lost [195].

8.2.1 Stochastic LLG

Thermal fluctuations have traditionally been added to the LLG as a thermal field in the effective
field [141,191,192] . This field had a Guassian distribution with zero mean value and uncorrelated
in time and space [65]:

< Hth,i(~r, t) >= 0

< Hth,i(~r, t)Hth,j(~r′, t′) >= 2Dµmδijδ(~r − ~r′)δ(t− t′)
(8.8)

Where Dµm characterizes the strength of the fluctuation and may be calculated from the fluctuation
dissipation function as:

Dµm =
αKBT

µ0γ0Ms∆x3
(8.9)

Where ∆x is the cell size, KB is the Boltzman constant and T is the temperature. Note that this
formulation assumes that the saturation magnetization is unaffected by the temperature, which is
valid at temperatures much lower than the Curie temperature. This method is already included
in simulation tools such as Mumax [143].

8.2.2 Stochastic Collective Coordinate Models

The effect of the above thermal fluctuations has been introduced in the 1-D model as a thermal
force [65] or a field of the following form [66]:

< Hth(t) >= 0

< hth(t)Hth(t′) >= 2Danδ(t− t′)
(8.10)

Where Dan characterizes the strength of the fluctuation and may be calculated from the fluctuation
dissipation function as:

Dan =

√
αKBT

µ0γ0MsVDW
(8.11)

Where VDW = ∆Lw is the DW volume, KB is the Boltzman constant and T is the tempera-
ture. Note that this formulation assumes that the saturation magnetization is unaffected by the
temperature, which is valid at temperatures much lower than the Curie temperature.
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8.2.3 The LLB Equation

When high temperature closer to the Curie temperature are reached, the assumption of a fixed
saturation magnetization is no longer valid. In such cases, the effects of enhanced damping and
the change in saturation magnetization need to be taken into account [196]. Such a model should
include both transverse and longitudinal relaxation terms and interpolate between the Landau-
Lifshitz equation at low temperatures and the Bloch equation at high temperatures [197].

Torrey introduced diffusive terms in the LL equation to take into account the relaxation of
magnetization LLB with diffusive terms [198]:

d ~M

dt
= −γ ~M × ~H

eff −
~M

T2
+ χ0

~H
eff

T1
+

~M · ~H
eff

~H
eff

H2
eff

[
1

T2
− 1

T1
] +∇ · ∇( ~M − ~M0) (8.12)

In case spin-exchange diffusion is not negligible, an additional term ∇ · ∇(M̃− M̃0) · H̃
effH̃

eff/H
2
eff

needs to be added to the right side of the above equation.
One stochastic form of the LLB equation reads [199]:

ṁ = γ(m× (Heff + ζ)) +
γα‖

m2
(m · (Heff + ζ‖))m−

γα⊥
m2

m× (m× (Heff + ζ⊥)) (8.13)

where m = M/Ms(T) and α‖ and α⊥ are dimensionless longitudinal and transverse damping
coefficients. The stochastic fields in the LLB-Langevin equation above can be, in fact, introduced
in many different ways.

α‖ = λ
2T

3Tc
, α⊥ = λ(1− T

3Tc
)forT < Tc (8.14)

For T > Tc, α‖ = α⊥. Here λ is the parameter describing the coupling of the spins to the heat
bath on an atomistic level.

Perpendicular and longitudinal noise parameters have the following properties:

< ζµ >= 0

< ζµi (0)ζνj (t) >=
2KBT

γM0
s V αµ

δijδµνδ(t)
(8.15)

where µ, ν =‖,⊥, iandj denote x,y,z components and V is the particle volume.
Evans et al. proposed another stochastic form for the LLB equations [200], claiming it to be

more proper than that proposed in [199] as it is consistent with the Boltzmann distribution at high
temperatures. This equation has the form [200]:

ṁ = γ(m×Heff) +
γα‖

m2
(m ·Heff)m− γα⊥

m2
m× (m× (Heff + η⊥)) + η‖ (8.16)
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< η
‖
i η
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j >= 0

(8.17)
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8.3 Conclusion

Pinning and temperature are rather important factors specially when low excitations are concerned.
These effects can be studied using modified forms of the LLG equations as presented here, and are
already available in micromagnetic codes. There are methods for including these effects in collective
coordinate models; however, these methods will need further study and require extension to the
four coordinate model.
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Chapter 9

Conclusion and Future Work

This dissertation was initiated as part of the ITN-WALL project, with the aim of improving
collective coordinate models for magnetic domain wall motion. In this Chapter, a summary of the
main finding are provided, along with areas where improvements are needed.

9.1 Summary of Findings

This report summarized a study on the motion of magnetic domain walls in perpendicular mag-
netic anisotropy (PMA) materials with DMI using collective coordinate models developed using a
Lagrangian approach. Specifically, we showed:

� Magnetic domain walls can be of Bloch, Néel or intermediate structure depending on the
strength of the different interactions involved. While intermediate structures in between
Bloch and Néel are not predicted using analytical models for systems without DMI, they
were observed in micromagnetic simulations.

� The profile describing the change in the out-of-plane component of magnetization changes
under in-plane fields. While the Bloch profile (Equations 3.4 and 3.9) is valid for systems
with or without DMI, in systems under in-plane field a canted profile (Equation 3.18) should
be used.

� The collective behavior of the domain wall may be characterized by four collective coordinates
(position q, magnetization angle φ, tilting χ and domain wall width parameter ∆). Using an
Euler Largrange equation the q− φ, q− φ−∆, q− φ− χ, and q− φ− χ−∆ models were
derived based on the Bloch profile and compared to micromagnetic simulations.

� Models based on the Bloch profile cannot reproduce micromagnetic results of DW motion
under in-plane fields for systems with high DMI and low anisotropy. In these systems canting
plays an important role. We developed models based on canted profile (Equation 3.18) which
better reproduce the micromagnetics. This shows that canting and the profile play a more
important role in these models. We also functional form of the equations in terms of collective
coordinates is unaffected by the profile used, and the profiles only affect prefactors in the
equations.

� Several features of DW motion under in-plane fields in nanowires may be used to measure
specific material properties. Critical points include a point of zero velocity under longitudinal
fields for current driven DW motion, and a point of zero tilting under transverse fields. Closed
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form equations were presented to describe the dynamics of these critical points. We also
observed the formation of vertical Bloch lines in systems with low DMI and high anisotropy.

� The collective coordinate models were extended to magnetic bubbles. These models for
bubbles may be used in the measurement of DMI using bubble expansion experiments. We
showed that some of the assumptions of bubble expansion experiments are only valid at very
low drive fields.

9.2 Future Work

While the models developed in this work helped improve accuracy of previous models, and shed light
on the importance of canting in the domains, they had inherently complex equations. Simplification
of these equations can help with the dissemination and use of these equations by experimental
groups.

Additionally, there is much more work that could be done in including the effects of pinning
and thermal fluctuations in the models. Models for magnetic bubbles which took into account the
elliptical shape of the bubble were unsuccessfully attempted and could be an additional topic of
study.

Some of the equations presented in this work presented potential for measurement of specific
material properties. Experimental verification of these methods is the next step in verifying the
applicability of the equations presented.

Finally, close form equations can be useful for the design of devices. While our current equations
can be used to develop conceptual understanding, additional aspects of performance of real devices
could be integrated in them to lead to more application focused models.
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