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Frequency and mode change in the large deflection and
post-buckling of compact and thin-walled beams

A. Pagani∗, R. Augello†, E. Carrera‡

Mul 2 Group
Department of Mechanical and Aerospace Engineering, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Abstract: This paper deals with the investigation of normal modes change of metallic struc-
tures, when subjected to geometrical nonlinearities in the large displacement/rotations field.
Namely, a unified framework based on the Carrera Unified Formulation (CUF) and a total
Lagrangian approach are employed to formulate higher order beam theories including geomet-
ric nonlinearities. Thus, a finite element approximation is used along with a path-following
method to perform nonlinear analyses. Linearized vibration modes around equilibrium states
and along the whole equilibrium path of structures subjected to bending and compression load-
ings are evaluated by solving a linear eigenvalue problem. In order to show the capabilities
of the proposed methodology, both solid and thin-walled cross-section beams are considered.
The analyses demonstrate that, with some differences depending on the geometry and both
boundary and loading conditions, natural frequencies and modal shapes may change ruinously
as the structure is subjected to large displacements and rotations.

Keywords: Carrera unified formulation; Geometrical nonlinearities; Nonlinear vibrations;
Mode aberration.

1 Introduction

Determination of natural frequencies and associated mode shapes play a crucial role in struc-
tural verification and analysis. Inherently, external loading and service condition may signif-
icantly cause large displacements and rotations, which eventually lead to considerable pre-
stress states within the structure. As a consequence, because the modal behavior of structures
are evidently a property of the equilibrium state, natural frequencies are subjected to changes.
In this regard, Biot [1] provided a nonlinear theory of elasticity and showed the effects that
high initial stress has on the equilibrium and vibrations; similarly Herrmann [2] and Odgen
and Roxburgh [3] investigated the pre-stress infleunce on the vibration and stability of elastic
and viscoelastic plates. Similar approaches can be found in real applications and in the recent
literature, see Abramovich et al. [4] and Lurie [5]. These authors introduced a non-destructive
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methodology for measuring the buckling condition. Essentially, the stability loads were de-
termined by interpolating, until singularity, the natural frequency of the structure subjected
to progressive higher loadings.
Regardless of nonlinear effects, vibrations of structures have been widely studied from scien-
tists and researchers. Leissa [6, 7, 8] described classical plate and shell theories for various
shapes and material. Many other authors applied the free vibration method to their study to
evaluate dynamic properties of structures, with different loading and boundary cases. As an
example, Tseng and Dugundji [9] analyzed nonlinear vibration of a buckled beam, while Ya-
maki [10, 11] investigated clamped beams subjected to bending. Bhashyam and Prathap [12]
used Galerkin finite element method for nonlinear beam vibrations showing the main differ-
ences of the eigenvalue problems between linear and nonlinear vibrations. Lacarbonara et al.
[13] performed nonlinear vibrations of buckled beams and made comparisons with analytical
solution and experiments. Other researches were conducted in the field of free vibration, like
the work of Fallah and Aghdam [14] about functionally graded beams, and the work of Asadi
and Aghdam [15] about composite beams, for example.
The nonlinear analysis proposed in this work is based on the Carrera Unified Formulation
(CUF) [16, 17], according to which any theory of structures can degenerate into a general-
ized kinematics that makes use of an arbitrary expansion of the generalized viariables. In
this manner, the nonlinear governing equations and the related finite element arrays of the
generic geometrically-exact beam theory are written in terms of fundamental nuclei. These
fundamental nuclei represent the basic building blocks that, when opportunely expanded, al-
low for the straightforward generation of low- and high-order finite beam elements. CUF has
been utilized for many engineering problems over the last few years; e.g., composite structures
[18], rotating blades and rotors [19], civil engineering structures [20], aerospace constructions
[21, 22],and multi-field problems [23], among the others. CUF has been recently extended to
geometric nonlinear problems, for both metallic and composite structure [24],[25]. Here, the
formulation is further extended to deal with vibrations.
This paper is organized as follows: (i) first, some preliminary and introductory information
are given in Section 2, including the constitutive expressions for elastic metallic materials, the
Green-Lagrange nonlinear geometrical relations, CUF, and the related finite element; (ii) sub-
sequently, Section 3 introduces the eigenvalue problem and briefly describes the fundamental
nuclei of secant and tangent matrices. Moreover, it discusses the resolution of the vibration
problem and explains the methodology applied in this work to investigate the evolution of
the natural frequencies; (iii) then, numerical results are discussed for different loading and
structural cases in Section 4; (iv) finally, the main conclusions are drawn.

2 Unified finite beam element

2.1 Preliminaries

Consider a beam structure whose cross-section Ω lays on the xz-plane of a Cartesian reference
system. As a consequence, the beam axis is placed along y and measures L. The transposed
displacement vector is introduced in the following:

u(x, y, z) =
{
ux uy uz

}T
(1)

The stress, σ, and strain, ε, components are expressed in vectorial form with no loss of
generality,

σ =
{
σxx σyy σzz σxz σyz σxy

}T
, ε =

{
εxx εyy εzz εxz εyz εxy

}T
(2)
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In this work, linear elastic metallic beam structures are considered. Hence, the Hooke’s
law providing the constitutive relation holds as follows:

σ = Cε (3)

where C is the material matrix.
As far as the geometrical relations are concerned, the Green-Lagrange nonlinear strain

components are considered. Therefore, the displacement-strain relations are expressed as

ε = εl + εnl = (bl + bnl)u (4)

where bl and bnl are the linear and nonlinear differential operators, respectively. The complete
form of these two matrices can be found in [24].

2.2 Carrera Unified Formulation

Within the framework of the Carrera Unified Formulation (CUF), the three-dimensional dis-
placement field u(x, y, z) can be expressed as a general expansion of the primary unknowns.
In the case of one-dimensional theories, one has:

u(x, y, z) = Fs(x, z)us(y), s = 1, 2, ....,M (5)

where Fs are the functions of the coordinates x and z on the cross-section, us is the vector of
the generalized displacements which lay along the beam axis, M stands for the number of the
terms used in the expansion, and the repeated subscript s indicates summation. The choice of
Fs determines the class of the 1D CUF model that is required and subsequently to be adopted.
The research work proposed in this paper makes use of nine-point polynomials to approximate
the cross-sectional displacement field, and it is depicted in Fig. 1. As widely shown and
demonstrated in [26] this approximated but refined kinematics can describe accurately a wide
range of classes of structures.

x

z

Figure 1: L9 polynomial cross-section

The displacement field given by one single L9 approximation is:

ux = F1ux1 + F2ux2 + F3ux3 + F4ux4 + F5ux5 + F6ux6 + F7ux7 + F8ux8 + F9ux9
uy = F1uy1 + F2uy2 + F3uy3 + F4uy4 + F5uy5 + F6uy6 + F7uy7 + F8uy8 + F9uy9
uz = F1uz1 + F2uz2 + F3uz3 + F4uz4 + F5uz5 + F6uz6 + F7uz7 + F8uz8 + F9uz9

(6)

where ux1, . . . , uz9 are the displacement variables of the problem. They represent the trans-
lational displacement components of each of the nine points of the L9 element. For further
details on LE (Lagrange Expansion) models utilized in this paper, interested readers can refer
to [26].
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2.3 Finite element formulation

The Finite Element Method (FEM) is adopted to discretize the structure along the y axis.
Thus, the generalized displacement vector us(y) is approximated as follows:

us(y) = Nj(y)qsj j = 1, 2, . . . , p+ 1 (7)

where Nj stands for the j-th shape function, p is the order of the shape functions and j
indicates summation. qsj is the following vector of the FE nodal parameters:

qsj =
{
qusj qusj qusj

}T
(8)

For the sake of brevity, the shape functions Nj are not reported here. They can be found
in many reference texts, for instance in Bathe [27]. However, it should be underlined that
the choice of the cross-section polynomials sets for the LE kinematics (i.e. the selection
of the type, the number and the distribution of cross-sectional polynomials) is completely
independent of the choice of the beam finite element to be used along the beam axis. In this
work, classical one-dimensional finite elements with four nodes (B4) are adopted, i.e. a cubic
approximation along the y axis is assumed.

3 Free vibrations of nonlinear structures

3.1 Secant and tangent stiffness matrices

Equations of motion of an elastic body undergoing undamped free vibrations can be obtained
with ease by using the principle of virtual work, which in this case states that:

δLint − δLine = 0 (9)

where Lint stands for the strain energy, Line is the work of the inertial loads, and δ
represents the virtual variation operator. Given the stress (σ) and strain (ε) vectors, the
virtual variation of the internal strain energy can be written as

δLint =< δεTσ > (10)

where < (·) >=
∫
V

(·) dV . Under the hypothesis of small deformations, V = Ω× L is the
initial volume of the beam structure. Introducing the CUF (Eq. 5) and FEM (Eq. 7) relations
into Eq. 4, the strain vector can be written in algebraic form as follows:

ε = (Bsj
l + Bsj

nl)qsj (11)

where Bsj
l and Bsj

nl are the linear and nonlinear algebraic matrices with CUF (Eq. 5) and
FEM (Eq. 7) formulations.
Substituitting the Eq. 11 and the constitutive equations for elastic materials (Eq. 3) into
Eq. 10, one has:
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δLint = δqTτi <
(
Bτi
l + 2 Bτi

nl

)T
C
(
Bsj
l + Bsj

nl

)
> qsj

= δqTτi K
ijτs
0 qsj + δqTτi K

ijτs
lnl qsj + δqTτi K

ijτs
nll qsj + δqTτi K

ijτs
nlnl qsj

= δqTτi K
ijτs
S qsj

(12)

where the secant stiffness matrix is Kijτs
S = Kijτs

0 + Kijτs
lnl + Kijτs

nll + Kijτs
nlnl. In Eq. 12, Kijτs

0

is the linear component of KS (i.e., it is the linear stiffness matrix), Kijτs
lnl and Kijτs

nll represent
the nonlinear contributions of order 1, and Kijτs

nlnl contains the nonlinearities of order 2. These
are the fundamental nuclei (FN), which 3 x 3 matrices that, given the theory approximation
order (i.e., given the cross-sectional functions (Fτ = Fs, for τ = s) and the shape functions
(Ni = Nj, for i = j), can be expanded by using the indexes τ, s = 1, ...,M and i, j = 1, ..., p+1
in order to obtain the element stiffness matrices of any arbitrarily refined beam model. In
other words, by opportunely choosing the beam kinematics, classical to higher-order beam
theories and related stiffness array can be implemented in an automatic manner by exploiting
the index notation of CUF. The explicit derivation of the stiffness FN is not provided here
for the sake of brevity, but it can be found in [24].
In a similar manner, the FN of the linear mass matrix can be obtained from the virtual
variations of the inertial loadings as follows:

δLine =< δqTρ q̈ >= δqTsjM
ijτs q̈τi (13)

where Mijτs is the FN of the maxss matrix.
It is fairly obvious that the modal behavior of any system is a property of the equilibrium, and
not merely of the structure geometrical/mechanical characteristics. Inherently, free vibration
analysis needs to be made about a linearized equilibrium state along the equilibrium path.
For this purpose, Eq. 9 needs to be properly linearized in order to obtain the modal behaviour
of the structure about given states of the equilibrium path. Assuming as linear the virtual
variation of the inertial work, we need to linearize the virtual variation of the nonlinear,
internal strain energy to obtain the tangent stiffness matrix (for a deeper treatment of the
topic, see [24]):

δ(δLint) = < δ(δεTσ) >

= < δεT δσ > + < δ(δεT )σ >

= δqTτi(K
ijτs
0 + Kijτs

T1
+ Kijτs

σ )δqsj

= δqTτiK
ijτs
T δqsj

(14)
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where Kijτs
T1

= 2 Kijτs
lnl + Kijτs

nll + 2 Kijτs
nlnl is the nonlinear contribution of the fundamental

nucleus of the tangent stiffness matrix due to the linearization of the Hooke’s law. Kijτs
0 ,

Kijτs
lnl , Kijτs

nll , and Kijτs
nlnl are the same 3 × 3 FNs as given in Eq. 12. Kσ comes from the

linearization of the nonlinear form of the strain-displacement equations and is often called
the geometric stiffness.

3.2 Linearized eigenvalue problem

By using Eqs. 14 and 13 into the linearization of Eq. 9 and assuming harmonic displacements,
the equations of motion for free vibrations hold the form of a linear eigenvalue problem, which
in unified form reads:

(Kijτs
T − ω2Mijτs) qτi = 0 (15)

where ω is a natural period and qτi the related amplitude eigenvecture.
This formulation comports some simplifications; important aspects should be underlined

for the sake of completeness:

• The accuracy of the proposed methodology, of course, depends on the capability of the
structural theory to describe nonlinear analysis in an accurate manner, which is the case
of the present CUF methodology.

F

u

KT(u1)

KT(u3)

u
1

u
2
u
3

Equilibrium path

Equilibrium states

[KT(u1)-w
2M]q=0

KT(u2)

(a) Eigenvalue problem at equilibrium states

Hz

u

1

2

u1 u2 u3

f
f

(b) Natural frequencies trend

Figure 2: Natural frequencies evaluation from eigenvalue problems solving about some equi-
librium states of nonlinear equilibrium path.

• The nonlinear vibrations have low amplitudes, so the linearization around some states
of the equilibrium path and the assumption of harmonic oscillations are legit.

• Inertial work is neglected in the evaluation of the equilibrium path.

• The proposed method is able to identify bifurcations, elastic instabilities or buckling
phenomena as those conditions which render the tangent stiffness matrix singular, see
Fig. 2.
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4 Numerical results

In this section, various problems are addressed for demonstrating: 1) how large deflection
fields and rotations affect the natural frequencies; 2) the enhanced capabilities of the proposed
nonlinear refined formulation. Large deflection and elastica-like analyses of one-dimensional
solid cross-section structures are considered. Here, the attention is focussed on the capability
of the proposed geometrically nonlinear CUF beam model to account for natural frequencies
evaluation in a unified framework. For the cases analyzed, two kinds of section are considered,
square cross-section and thin-walled unsymmetric C-section. Also two loading conditions, i.e.
bending and compression. Regarding bending on square cross-section beam, both short and
slender beam are considered.

4.1 Cantilever beams subjected to flexure

In the first analysis case, a cantilever, square cross-section beam subjected to large deflection
due to a transverse loading is considered. The beam is made of an aluminum alloy with
Young modulus E equal to 75 GPa and Poisson ratio ν = 0.33, and is subjected to clamped-
free boundary conditions. A loading P is applied at the free end as shown in Fig. 3. Two
beams are considered with the same cross-section but with two different lenghts, L1 = 2m and
L1 = 20m. In all the analyses, the side of the cross-section, w = 20mm, remains unchanged
in order to simulate both thick and slender beams. For all the subsequent discussions, 20
cubic beam elements are used along the longitudinal axis, whereas one single L9 polynomial
is used to approximate the theory kinematics on the cross-section. This model was already
validated in [24] for static response nonlinear analysis.

w

P

(a)

x

z

(b)

Figure 3: Cross-section geometry (a) and discretization with 1L9 Lagrange polynomials (b)
of the unsymmetric channel beam and loading condition.

Fig. 4 shows the equilibrium curves for short and slender beam structures, and the results
of the present beam model are compared to those from linear and nonlinear Euler-Bernoulli
beam models. From the solution iterates (circles in Fig. 4), it is clear that an arc-length
method is used to find the equilibrium curves of the 1L9 beam model. In the figure, also the
equilibrium deformation of some nonlinear analysis steps are depicted.
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Figure 4: Equilibrium curves of the square cross-section beam subjected to vertical loading.
Reference solution from [28]. P ∗ = l2

EI

The natural frequencies of the nonlinear analysis are analyzed subsequently. At each step
of the analysis, free vibrations are evaluated as described in Section 3 and by using the local
tangent stiffness of the deformed structure. Table 1 and Table 2 show the values of the nat-
ural frequencies for two bending and one torsional modal shapes, for both short and slender
beams. Step numbers are referred to Fig. 4. In the case of short beam, these modes are the
1st, 2nd and 5th ones, while in the slender beam case they are the respectively modes 1st, 2nd

and 13th. The values of the bending natural frequency increase as the load rises, for both
short and slender beam. Furthermore, considering that the applied load is along the z axis,
the natural frequency of the bending mode along this axis (the fourth column of the tables)
increases more than the frequency associated to the bending mode along x. This aspect is
mainly due to the fact that the stress concentration caused by the external load has the same
nature (and direction) of the one caused by the modal shape. In other words, the nonlinear
geometric stiffness Kσ due to the external load directly affects the bending mode along z. On
the other hand, as far as the bending mode along x is concerned (the third column of the
tables), the applied load and the modal shape have different directions, so their stress fields
are not strongly related each other; thus, geometric nonlinear effects on this mode are less
considerable, see Fig. 5. The natural frequency of the bending modal shape with the same
direction of the applied external load increases by the 123.37% for the short beam and by the
142.39% for the slender beam. In contrast, for the bending mode along x, the percentages
of variation are lower, 107.56% for the short beam and 120.84% for the slender beam, as
highlighted in Fig. 6

For the sake of completeness, Fig. 7 shows the variation of the first 10 natural frequencies
as function of the beam tip deflection. It can be pointed out that the trends of the short and
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L/h = 10

Step uz/L f1 f2 f3
0 0.000 42.56 42.56 403.9
1 0.040 42.66 42.80 406.3
2 0.106 43.31 43.98 415.6
3 0.214 43.41 44.41 410.7
4 0.343 44.92 47.08 414, 5
5 0.489 48.11 52.09 418.8
6 0.643 54.67 61.15 420.9
7 0.762 65.78 74.49 421.4
8 0.851 88.39 95.89 521.6

Table 1: Natural frequencies (Hz) values at various steps of the nonlinear analysis for bending
modes and torsional mode. Short beam case.

L/h = 100

Step uz/L f1 f2 f3
0 0.000 0.427 0.427 40.39
1 0.039 0.427 0.427 40.41
2 0.089 0.428 0.430 40.43
3 0.151 0.431 0.435 40.47
4 0.227 0.437 0.445 40.53
5 0.318 0.448 0.462 40.54
6 0.405 0.463 0.486 40.56
7 0.487 0.484 0.519 40.77
8 0.577 0.525 0.573 42.27
9 0.657 0.613 0.670 51.63
10 0.725 0.720 0.789 65.33
11 0.781 0.839 0.921 79.48
12 0.827 0.943 1.035 79.95

Table 2: Natural frequencies (Hz) values at various steps of the nonlinear analysis for bending
modes and torsional mode. Slender beam case.

9



0

0

0

0

0

P

Z

X

Pre - Stress

Stress field 
due to II mode

Stress field 
due to I mode

Figure 5: Stress fields on beam section due to both external load (pre-stress) and modal
shape. Plus sign stands for traction, minus sign for compression.
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Figure 6: Natural frequencies trend of first two bending modes and torsional mode for both
short (a) and slender (b) beam. The frequency is adimensionalized with the correspondent
linear frequency to highlight the growth due to the increase of the external load.

the slender beams are different. For the thick beam it can be observe a more irregular trend.
The first two couples of modes (f1, f2 and f3, f4) change their frequencies values when the
vertical displacement is between 20% and 30% of the length of the beam, which is the same
value when the beam start to have a nonlinear behavior (as it can be observed in Fig. 4). All
the natural frequencies increase at higher steps of the nonlinear analysis, except f6, which is
the axial one. In addition, f6 and f8 start to change from the first steps of the analysis, where
the beam has a linear behavior trend. About the slender beam, each couple of normal modes
has almost the same behavior, starting to change when the vertical displacement reaches the
30%-35% of the length of the beam. In this case, in fact, the first modes are dominated by
bending, and axial/shear modes are not present.

To trace the trend of the natural frequency of the torsional modal shape, higher modes
must be analyzed, see Fig. 8. As the analysis goes on and the applied load increases, the
frequency of the torsional mode has a regular trend until the value of the adimensionalized
displacement reaches the value of 0.6. Then, the torsional frequency starts to increase and is
affected by crossing phenomena.

In Fig. 9, significant MAC (Modal Assurance Criterion) graphical representations are
reported. MAC is a scalar representing the comparison and correspondence between two sets
of mode shapes. Significant steps of the nonlinear analysis are considered, and they are all
related to the step 0, which represents the linear case. For the short beam (Fig. 9a), the three
figures compare the first 10 modes for progressively increasing displacement configurations,
from nearly-linear (step 1 of the analysis) to moderate (step 3) and higly-nonlinear (step 7).
As shown from the figures, natural modes in the case of low load (step 1, first of the three
figures in Fig. 9a) are very similar to those related to the linear case: black boxes are only
in the diagonal. There are some grey boxes for the modes 8 and 10 and this denotes that the
behavior slightly differs from the linear one. Step 3 starts to be different from step 0, and
dark boxes appears in other spots of the grid, which indicates that the beam has a concrete
different behavior from the linear theory. Finally, in step 7, the state is completely nonlinear,
and dark boxes appears spread within the grid.
The same approach is repeated for the slender beam, where the last step considered is the
10th. First two figures are very similar each other: in fact, until step 3 the beam’s behavior
is very close to the linear one. The last figure suggests a nonlinear behavior.
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Figure 7: First 10 natural frequencies trends for both thick and slender beam.
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Figure 9: Values of MAC between the modes of the undeformed structure and those of the
deformed structure for both thick and slender beam.
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4.2 Post-buckling of beam-columns

The post-bukling behavior of the same slender beam structure (Fig. 3) as considered in the
previous analysis case is addressed. Post-buckling curve of the clamped-free configuration
L/h = 100 is shown in Fig. 10, which gives the transverse displacement versus the loading P
according to the high-order 1L9 beam model. It must be clarified that the displacement is
measured at the free end. The unstable solution branches have been enforced by applying a
small load defect d as depicted in the figure and the arc-length method has been employed.
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Figure 10: Equilibrium curves of the square cross-section beam subjected to compression
loading. P ∗ = 4L2

π2EI

Then, in each step of the nonlinear analysis, highlighted by circles in Fig. 10, first 10
natural frequencies of modal shapes were calculated. Table 3 shows the values of natural
frequencies of the first 10 modes of this case at significant steps (whose numbering refers to
Fig. 10).

Fig. 11 shows natural frequencies trends for the first 4 modal shapes. An interesting fact
is the oscillating behavior of the first natural frequency. This is also clear from the Table 3:
the frequency of the MODE 1 has his minimum value at step 12, 0.025Hz, it grows up until
step 16 to 0.193Hz, decreased to 0.030Hz of the 17th step, and increase to 0.301Hz on the
step 21. This particular behavior of the natural frequency value could be explained looking at
stress fields on the beam during the overall analysis. In fact stress condition due to external
loading changes continuously: from total compression stress in the first step, to more complex
stress condition in the last step, which consists in traction/compression, compression/traction
and full traction stress simultaneously. This means that the stress condition keep changing
during the deformation, and in particular what is changing is the position of the neutral
axis on the cross-section of the beam. In fact, when the beam is post-buckled, the loading
condition is (analougsly to the stress condition) similar to a bending case. Hence, neutral axis
appears (from the total compression stress condition in the beam before buckling) and, as the
structure buckles, the traction condition fraction increases in the beam section. The trend
of the neutral axis coordinate increasing, as the external load is applied, is shown in Fig. 12.
The figure shows the trend at 3 different sections of the beam: at L/6, at L/2 and at L. One
thing that has to be highlighted is the fact that the neutral axis coordinate at y = L goes
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MODE
1 2 3 4 5 6

Step −uz/L f1 f2 f3 f4 f5 f6
0 0.000 0.427 0.427 2.674 2.674 7.481 7.481
1 0.033 0.308 0.308 2.561 2.561 7.387 7.387
2 0.100 0.178 0.178 2.481 2.481 7.322 7.322
3 0.180 0.135 0.135 2.465 2.465 7.309 7.309
4 0.340 0.098 0.098 2.454 2.454 7.300 7.300
5 0.532 0.078 0.079 2.449 2.450 7.296 7.297
6 0.821 0.063 0.065 2.446 2.447 7.292 7.295
7 1.253 0.051 0.055 2.443 2.446 7.286 7.293
10 3.586 0.030 0.070 2.422 2.444 7.232 7.291
11 4.669 0.026 0.087 2.407 2.445 7.191 7.290
12 5.939 0.025 0.110 2.385 2.446 7.132 7.288
15 10.88 0.106 0.239 2.267 2.472 6.802 7.291
16 12.75 0.193 0.328 2.227 2.517 6.657 7.310
17 14.48 0.030 0.330 2.097 2.478 6.411 7.272
21 14.27 0.301 0.746 1.967 2.753 5.880 7.428
22 24.18 0.457 0.929 2.087 3.018 6.037 7.678

Table 3: Natural frequencies (Hz) values at most significant steps of the nonlinear analysis
for the first 6 modes.

from positive to negative after the beam is bucked, while in the other sections of the beam
this coordinate is 0. All this continuous change on the stress condition over the cross-section
of the beam causes the natural frequencies trend shown in Fig. 11.

To better understand the complicated stress field evolution in the beam subjected to a
compression load, in Fig. 13 the stress field of three section of the beam is shown, together
with the position of the coordinate of the neutral axis of the beam. The result is that the
stress field continues to change in the beam, going from a traction-compression case (neutral
axis coordinate equal to 0) to a full compression case (neutral axis coordinate equal to −0.1).
Section C has a parabolic trend because the external load is applied as a single force at the
center of the section.

4.3 Thin-walled channel-section beams

As a final example, thin-walled unsymmetric C-section cantilever beam structure is addressed.
The beam is made of the same aluminium alloy as in the previous sections (E = 75GPa,
ν = 0.33), it is 1m long, and is subjected to clamped-free boundary conditions. A loading P
is applied at the free end as shown in Fig. 14. According to this figure, which also shows the
cross-sectional dimensions, b = 100mm, h1 = 48mm, h2 = 88mm, and t = 8mm, 7 quadratic
L9 polynomials are employed to discretize the beam kinematics on the cross-section and, on
the other hand, 20 B4 beam elements are used along the beam axis.

Fig. 15 shows both linear and nonlinear trends of the z-coordinate displacement of point
A, previously shown in Fig. 14. In addition, the deformation of the beam are depicted for
initial, middle and final steps of the nonlinear analysis. As can be seen from the figure, in
step 9 the beam rotates, and this has consequences on the evolution of the modal shapes,
as will be highlighted later. Fig. 16 and Table 4 show natural frequencies trends and values,
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respectively, of the first 5 modes. As can be seen from the figure, natural frequencies of the
first two modal shapes have a more regular trend then the other three modes. Although this
phenomena, modal shapes of first two modes are changing at progressive steps of the analysis.
Fig. 17 and Fig. 18 show modal shapes at various step of the analysis: it can be observed
that due to the fact that the beam rotates, modal shapes drastically change.
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Figure 15: Displacement z component at point A on the tip cross-section vs. load. Behavior
of the unsymmetric C-section beam in the large displacement range, with both linear and
nonlinear LE beam models.

5 Conclusions

The unified formulation of geometrically nonlinear and elastic beam theory has been briefly
introduced and utilized in this work. By employing the Carrera Unified Formulation (CUF),
the nonlinear governing equations and the related finite element approximation have been
formulated using the principle of virtual work. Nonlinear vibrations method have been em-
ployed to investigate natural frequencies evolution in nonlinear analysis, by linearizing some
equilibrium states on the nonlinear equilibrium path of certain structures. The results related
to solid as well as thin-walled cross-section beam structures have widely demonstrated the
versatility of the proposed methodology and a not negligible changing of the modal shapes
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MODE
1 2 3 4 5

Step −uz/L f1 f2 f3 f4 f5
0 0.000 63.67 70.28 176.33 271.19 386.41
1 0.042 80.78 121.15 357.36 416.60 613.81
2 0.080 83.05 119.25 359.00 443.26 586.67
3 0.109 57.75 90.34 249.25 324.29 401.91
4 0.165 36.18 67.91 175.69 237.88 301.15
5 0.227 42.42 79.64 267.28 365.94 435.62
6 0.294 27.75 63.93 193.11 259.55 314.12
7 0.360 28.43 62.14 209.26 257.86 314.21
8 0.425 30.95 61.92 219.93 256.20 314.85
9 0.513 33.91 62.09 246.68 248.81 307.72
10 0.595 41.39 64.72 223.00 230.79 333.85
11 0.655 52.51 72.36 239.23 295.08 413.81
12 0.694 39.69 54.68 169.72 292.50 315.89
13 0.715 45.13 58.40 169.66 355.78 414.82
14 0.738 51.16 64.09 174.78 383.30 470.38
15 0.766 51.16 64.09 174.78 383.30 470.38
16 0.794 47.35 58.22 131.35 213.41 293.21
17 0.831 66.62 79.45 173.07 279.55 344.16

Table 4: Natural frequencies (Hz) values at most significant steps of the nonlinear analysis
for first 5 modes.
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(a) uz = 0mm (b) uz = 0.513mm (c) uz = 0.831mm

Figure 17: Modal shapes for first natural frequency, at load steps 0, 9 and 17.

(a) uz = 0mm (b) uz = 0.513mm (c) uz = 0.831mm

Figure 18: Modal shapes for second natural frequency, at load steps 0, 9 and 17.

(and subsequently of the associated natural frequencies) of the structure subjected to large
deformations.
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