
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Visual Analysis Algorithms for Embedded Systems / Rizvi, SYED TAHIR HUSSAIN. - (2018 May 17).
Original

Visual Analysis Algorithms for Embedded Systems

Publisher:

Published
DOI:10.6092/polito/porto/2707423

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2707423 since: 2018-05-18T13:32:10Z

Politecnico di Torino



Doctoral Dissertation

Doctoral Program in Computer and Control Engineering (30thcycle)

Visual Analysis Algorithms for
Embedded Systems

By

Syed Tahir Hussain Rizvi
******

Supervisor(s):
Prof. Gianpiero Cabodi

Doctoral Examination Committee:
Prof. M. Grangetto , Referee, Università degli Studi di Torino, Italy
Prof. A. J. Telmoudi , Referee, University of Sousse, Tunisia
Prof. M. Matteucci, Politecnico di Milano, Italy
Prof. A. G. Bottino, Politecnico di Torino, Italy
Prof. S. Mattoccia, Università di Bologna, Italy

Politecnico di Torino

2018



Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Syed Tahir Hussain Rizvi
2018

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).



I would like to dedicate this thesis to my loving family for their constant support and
encouragement.



Acknowledgements

I would like to thank my thesis supervisor, Prof. Gianpiero Cabodi, for allowing
me to work under his supervision and constantly supporting me during my Ph.D.
studies. I would also like to thank my research group members at the Joint Open
Lab (JOL) Visible, especially Gianluca Francini and Alfonso Di Salvo, for all the
help they provided. I am grateful to TIM, former Telecom Italia for financing my
Ph.D. studies. I must also thank Denis Patti for his help regarding the realization of
proposed framework on Android devices.



Abstract

The main contribution of this thesis is the design and development of an optimized
framework to realize the deep neural classifiers on the embedded platforms. Deep
convolutional networks exhibit unmatched performance in image classification.
However, these deep classifiers demand huge computational power and memory
storage. That is an issue on embedded devices due to limited onboard resources.
The computational demand of neural networks mainly stems from the convolutional
layers. A significant improvement in performance can be obtained by reducing the
computational complexity of these convolutional layers, making them realizable on
embedded platforms.

In this thesis, we proposed a CUDA (Compute Unified Device Architecture)-
based accelerated scheme to realize the deep architectures on the embedded platforms
by exploiting the already trained networks. All required functions and layers to repli-
cate the trained neural networks were implemented and accelerated using concurrent
resources of embedded GPU. Performance of our CUDA-based proposed scheme
was significantly improved by performing convolutions in the transform domain.
This matrix multiplication based convolution was also compared with the traditional
approach to analyze the improvement in inference performance.

The second part of this thesis focused on the optimization of the proposed frame-
work. The flow of our CUDA-based framework was optimized using unified memory
scheme and hardware-dependent utilization of computational resources. The pro-
posed flow was evaluated over three different image classification networks on Jetson
TX1 embedded board and Nvidia Shield K1 tablet. The performance of proposed
GPU-only flow was compared with its sequential and heterogeneous versions. The
results showed that the proposed scheme brought the higher performance and enabled
the real-time image classification on the embedded platforms with lesser storage



vi

requirements. These results motivated us towards the realization of useful real-time
classification and recognition problems on the embedded platforms.

Finally, we utilized the proposed framework to realize the neural network-based
automatic license plate recognition (ALPR) system on a mobile platform. This
highly-precise and computationally demanding system was deployed by simplifying
the flow of trained deep architecture developed for powerful desktop and server
environments. A comparative analysis of computational complexity, recognition
accuracy and inference performance was performed.
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Chapter 1

Introduction

Visual analysis is an ever-growing field with real-time applications reaching out
into daily life. Convolutional neural networks (CNN) have recently enjoyed a great
success in a range of visual applications. Deep convolutional neural networks exhibit
unmatched recognition and classification accuracy in visual analysis applications
[1–5]. This accuracy mainly comes from the deeper architecture [6, 7]. As the
network grows deeper, the computational complexity of both training and testing
stages of neural networks increase exponentially.

The requirements of both training and testing stages are slightly different. Train-
ing of a neural network is more intensive due to a huge number of input samples,
parallel classifications and numerous iterations required for learning large datasets,
it can only be performed offline on a powerful desktop workstation or using a cluster
of computational accelerators. However, a trained network usually needs to classify
only single images in its testing phase. This actual image classification may has to
be performed online on an embedded device for the real-time visual analysis [8].
With the ongoing traction of embedded computing, deployment of deep classifiers
on mobile devices is getting more and more attention. There are numerous practi-
cal real-time applications where the hand-held devices can be more useful due to
their compact size and integrated resources (like Graphics Processing Unit (GPU),
Camera, etc) [9, 10].

Due to the increasing demands of parallel computing in various fields, GPU
has evolved from a graphics accelerator into a programmable computer. GPU
is an efficient accelerator with the good price per performance ratio. There are



2 Introduction

different programming environments available (e.g. OpenCL and CUDA) to perform
and assign the general purpose tasks to a GPU. The computational power of the
embedded GPUs can be exploited to deploy complex general-purpose applications
on the hand-held devices [11, 12].

1.1 Problem Statement

Many frameworks like Torch and Caffe are currently available for implementing the
neural classifiers [13–16]. These frameworks exploit the computational power of
modern GPUs for faster training and deployment of deep neural networks. However,
most of such libraries are designed for desktop and server environments; therefore,
do not consider the unique peculiarities of embedded platforms and cannot be directly
used on a mobile device due to software/hardware constraints and dependences.

Some of these constraints are limited computational resources and battery life
of the mobile devices. Furthermore, the embedded platforms have limited storage
capacity; so the size of trained models, computing framework and required com-
putational packages must also be considered as limiting factor for the realization
of neural classifiers on the embedded devices. Due to these massive computational
and storage requirements, the realization of deep architectures on the embedded
platforms is still a challenging problem.

1.2 Contribution

The goal of the thesis is to design and develop an optimized framework that can
be used to deploy the deep classifiers on the embedded platforms. The CUDA
computing framework is used for the realization of identical neural architectures on
embedded devices to exploit the already trained networks. The CUDA computing
language is selected to design the proposed scheme because it is widely used by the
deep learning community and more mature than the OpenCL language in terms of
performance. The main contributions of our research activities are:

• Development of a CUDA-based framework that supports nearly all layer types
of deep neural architectures and suitable for deploying complex state-of-the-art
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deep classifiers. Intermediate frameworks and memory consuming computa-
tional packages are avoided using the proposed CUDA-only scheme to resolve
the problem of software dependencies and reduce the storage requirements.
The proposed framework can be easily integrated into an Android application
for actual classification and provides compatibility for models trained with
other desktop or server frameworks.

• Optimization of proposed framework to improve the inference performance,
storage requirements and energy efficiency. Only CUDA-based functions and
libraries are used to optimize the framework. An efficient memory transfer
scheme is employed to optimize the flow of implemented functions. Addition-
ally, the proposed framework is further accelerated and optimized using the
hardware-dependent selection of GPU resources.

• Utilization of proposed optimized framework to realize the neural network-
based real-time classification problems on embedded GPUs. A comparative
analysis of arithmetical complexity and inference performance is performed by
simplifying the flow of trained deep architecture developed for computationally
powerful desktop and server environments.

1.3 Organization of the thesis

A brief description of each chapter is presented here.

Chapter 2 presents a short overview of the recent evolution of deep convolu-
tional neural networks and their contributions to image classification.

Chapter 3 gives a description of OpenCL and CUDA Programming Lan-
guages for GPU based computing. Different concepts like the arrangement of
computational resources and memory model of CUDA language are explained.

Chapter 4 discusses the architecture of deep neural classifiers and our pro-
posed scheme to realize them on embedded platforms. This is done by replicat-
ing all required functions to construct neural architecture in CUDA computing
framework and exploiting the computational power of the embedded GPUs.
This chapter also discusses the relevant literature concerning deep neural
networks on mobile devices.
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Chapter 5 describes the optimization techniques that we used to improve the
performance of our proposed framework, making deep classifiers applicable
to embedded applications.

Chapter 6 presents a practical application of the proposed framework where
a neural network-based automatic license plate recognition (ALPR) system is
realized on a mobile platform.

This research work is finally concluded in Chapter 7 along with a brief
description of the future directions to further improve the performance of
proposed framework.

1.4 Publications

This section provides a list of publications which are the result of our research
activities carried out in the Ph.D. program.

Journals:

1. Rizvi, S.T.H.; Cabodi, G.; Patti, D.; Francini, G. GPGPU Accelerated Deep
Object Classification on a Heterogeneous Mobile Platform, Electronics, 2016,
5, 88.

2. Rizvi, S.T.H.; Cabodi, G.; Francini, G. Optimized Deep Neural Networks for
Real-Time Object Classification on Embedded GPUs, Applied Sciences, 2017,
7, 826.

3. Rizvi, S.T.H.; Patti, D.; Björklund, T.; Cabodi, G.; Francini, G. Deep Classifiers-
Based License Plate Detection, Localization and Recognition on GPU-Powered
Mobile Platform, Future Internet, 2017, 9, 66.

4. Rizvi, S.T.H.; Cabodi, G.; Patti, D.; Gulzar, M.M. A General-Purpose Graphics
Processing Unit (GPGPU)-Accelerated Robotic Controller Using a Low Power
Mobile Platform, Journal of Low Power Electronics and Applications, 2017,
7, 10.
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Conference proceedings:

1. Rizvi, S.T.H.; Cabodi, G.; Gusmao, P.; Francini, G. Gabor Filter based Image
Representation for Object Classification, Proc. of IEEE International Confer-
ence on Control, Decision and Information Technologies (CoDIT), 2016, pp.
628-632.

2. Rizvi, S.T.H.; Cabodi, G.; Patti D.; Gulzar, M.M. Comparison of GPGPU
based robotic manipulator with other embedded controllers, Proc. of IEEE
International Conference on Development and Application Systems (DAS),
2016, pp. 10-15.

3. Rizvi, S.T.H.; Cabodi, G.; Arif, A.; Javed M.Y.; Gulzar, M.M. GPGPU based
concurrent classification using trained model of handwritten digits, Proc. of
IEEE International Conference on Open Source Systems & Technologies
(ICOSST), 2016, pp. 142-146.

4. Rizvi, S.T.H.; Cabodi, G.; Francini, G. GPU-only unified ConvMM layer
for neural classifiers, Proc. of IEEE International Conference on Control,
Decision and Information Technologies (CoDIT), 2017, pp. 0539-0543.



Chapter 2

Deep Learning for Image
Classification

Neural networks have the ability to perform analysis of different types of data such
as text, image, audio and video [1, 17–20]. However, the field of image processing
is heavily impacted by the neural networks.

An Artificial Neural Network (ANN) is a computational model composed of
interconnected units called Neurons. A neuron receives inputs from other neurons
or sources and computes an output. Each Neuron has associated weights for its
inputs and a threshold value (bias). The weighted sum of inputs, bias and activation
function of neuron define the final output as shown in Figure 2.1.

Fig. 2.1 A single neuron of ANN.
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These neurons are arranged in layers and form a directed graph known as feedfor-
ward neural network. Neurons of these adjacent layers are normally fully intercon-
nected and have weights associated with them as shown in Figure 2.2. A feedforward
neural network is composed of input, hidden and output layers. Input and output
layers of these feedforward neural networks are used to get the input data and provide
the final output. There can be multiple hidden layers in a neural network to perform
computations and transfer information from the input layer to the output layer.

Fig. 2.2 Feedforward neural network.

Deep models are composed of multiple hidden processing layers stacked together
to extract the meaningful information from the input data [21]. These networks
contain millions of trainable parameters (weights and biases). Deep classifiers learn
from the input data using an iterative learning procedure by reducing the difference
between the actual and the target values with help of an objective function. During
training, the trainable parameters (weights and biases) of classifiers are adjusted
repetitively to reduce the error or difference.

Convolutional neural networks (CNN) exhibit unmatched performance in classi-
fication tasks. Convolutional neural networks are also feedforward ANNs, but with a
special structure having shared weights that help to capture the local properties of
the input data or signal. A typical convolutional neural network (CNN) is composed
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of two stages as shown in Figure 2.3. The first stage of CNN is for feature extraction
while other is trained for feature classification. The first stage is mainly composed
of convolutional and pooling layers. Convolution operation extracts the features by
convolving a trainable filter (weights) with the input image. Convolutional layers
preserve the spatial resolution of input data (image) and provide feature maps while
pooling layers are responsible for reducing the resolution of feature maps for the
manageable representation. Fully connected layers in the second stage classify the
features and provide the final output. There are also some others layers for regu-
larization and normalization in both of these stages that improve the performance
of a neural network. The deep architectures and their basic components are further
discussed in detail in Chapter 4.

Fig. 2.3 The architecture of a typical CNN.
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2.1 Deep Architectures

The neural networks have largely remained neglected till last few years. From
2012, a yearly competition ILSVRC (ImageNet Large-Scale Visual Recognition
Challenge) diverted the attention of researchers to neural classifiers through some
ground-breaking results and competitive solutions. However, these recent deep
architectures demand massive storage capacity and computational power for training
and realization. With the evolution of processing units, the computationally and
memory intensive neural classifiers can be easily trained and deployed using the
powerful desktop workstations and GPU servers often in multi-GPU configuration.
This section presents a short overview of the recent evolution of deep classifiers and
their contributions to the image classification.

2.1.1 AlexNet

It all started with a very deep convolutional network that was proposed and won
the ILSVRC competition in 2012 [1]. This deep classifier was comprised of five
convolutional layers and three fully connected layers as shown in Figure 2.4. The
network was trained using a dataset of about a million images to classify 1000
different categories.

Fig. 2.4 AlexNet.

Results proved the effectiveness of deep classifiers over other state-of-the-art
techniques. This success was made possible by the efficient use of GPU, Rectifier
Linear unit and a regularization technique ’dropout’ [22]. This was the first time
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when such a deep network is trained efficiently using the GPU and performed very
well on a large and difficult dataset like ImageNet.

2.1.2 OverFeat

In 2013, a multi-scale, sliding window based deep learning approach was proposed
for object classification, localization and detection with a single network [23]. This
network obtained some astonishing results that proved the effectiveness of CNN for
localization and detection tasks. These points were not addressed in previous works.

2.1.3 VGG Net

This research work proposed and evaluated the importance of depth in visual rep-
resentation [2]. In this work, very small (3x3) convolutional filters were used to
steadily increase the depth of a network. Instead of using large receptive fields
like previous networks, small filters were used to achieve very deep convolutional
networks (having up to 19 layers). Figure 2.5 shows the architecture of a VGG-16
network having 16 convolutional layers. These networks were trained over Ima-
geNet dataset and showed state-of-the-art performance in ILSVRC 2014 challenges.
Achieved results reinforced the notion that the classification accuracy of a neural
network can be improved significantly by increasing the depth of network.

Fig. 2.5 Architecture of VGG-16.
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2.1.4 GoogLeNet

Google proposed a computationally efficient deep architecture named GoogLeNet
having 22 convolutional layers [6]. A new module known as inception was intro-
duced and used to increase the width and depth of this architecture by keeping
the computational complexity constant. The structure of inception module can be
visualized using Figure 2.6. Instead of stacking convolutional and pooling layers on
each other in sequential manners, inception module concatenated layers in serial and
parallel structure to improve the performance and computational efficiency. Using
inception module, the GoogLeNet achieved state-of-the-art results for classification
and detection in ILSVRC 2014.

Fig. 2.6 The inception module.

2.1.5 ResNet

A new deep architecture named Residual network (ResNet) was proposed by Mi-
crosoft Research Asia in late 2015 [7]. This network used the concept of shortcut
connections to learn the difference of representation using residual block shown in
Figure 2.7. The purpose of these shortcut connections in the residual network is to
force the layers to refine the features [24].

Residual network set the new record in terms of number of layers in a deep archi-
tecture and also significantly reduced the number of trainable parameters compared
to other networks like VGG Net. The 152-layer ResNet model won ILSVRC classifi-
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cation competition in 2015. These residual networks are the current state-of-the-art
on ImageNet dataset.

Fig. 2.7 Residual block.

Table 2.1 and Figure 2.8 present a comparative analysis of depth, number of
parameters and error rate of previously discussed neural architectures. Since 2012,
the error rates of image classifiers have reduced significantly and at the same time,
the number of convolutional layers has also increased with the reduction in trainable
parameters. State-of-the-art deep neural architectures (Like GoogLeNet and ResNet)
have human-level classification accuracy and, are less computationally and memory
demanding due to the reduced number of parameters. These deep architectures can
be realized on an embedded platform for the real-time image classification with the
help of an optimized framework.

Table 2.1 Comparison of convolutional neural networks (ILSVRC challenges).

Model No. of Layers Top-5 Error Rate Number of Parameters

AlexNet 8 16.4 % 60 million
OverFeat 8 11.7 % 145 million

VGG 19 7.3 % 144 million
GoogLeNet 22 6.7 % 6.8 million

ResNet 152 3.57 % 1.7 million
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Fig. 2.8 Evolution of deep convolutional neural networks.



Chapter 3

Overview of GPGPU Programming

With the rapidly evolving computing technology, the General-Purpose Graphics
Processing Unit (GPGPU) has emerged as a competitive accelerator for computa-
tionally demanding applications like training of neural networks. The architecture
of a GPGPU is highly parallel and can provide massive computational power than
the CPUs. A GPGPU can be programmed using a high-level programming language
to exploit its multi-core multi-thread structure for accelerating the general-purpose
applications.

3.1 Programming Languages for GPU Computing

A GPGPU can be programmed using two different programming interfaces, Compute
Unified Device Architecture (CUDA) and Open Computing Language (OpenCL)
[25, 26]. OpenCL is an open standard that can be used to program various devices
(GPUs, CPUs etc.) from different vendors, while CUDA is proprietary language that
can only be used to program Nvidia GPUs.

A GPU program is composed of the device (kernel) and the host codes. A
kernel code is only executable on the device (GPU) and can only be called by host
side, while the host code is executed by the CPU and manages the resources like
initialization of device, allocation of memory, transfer of data and launch of kernel
etc.
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Both OpenCL and CUDA launch the kernel from host side (CPU) and execute it
on the device (GPU). Porting the kernel code from one language to the other requires
minimal modifications. However, the host code for both languages is substantially
different and needs to be completely rewritten according to the syntax and libraries of
the required programming environment. Both languages provide some similar host
functions to set up the GPGPU for execution of the kernel code. Context initialization,
data allocation and data transfer are few examples of these host functions.

Although OpenCL is a portable language and supports a variety of devices, but it
is less efficient than the CUDA-based libraries and functions in terms of execution
time due to its generality [27, 28]. OpenCL functions need to be optimized carefully
for a specific hardware. Furthermore, OpenCL is not directly supported on Android
Operating system from version 4.3 onwards. An intermediate library is required
to access the mobile GPU and its resources. Such a library not only adds extra
computational overhead, but also increases the storage requirements and complexity
of source application. Therefore, it is not feasible to use the standalone OpenCL for
the realization of deep classifiers on mobile devices. In addition, CUDA libraries
are widely used by the deep learning community. In this work, CUDA computing
language is used to realize the deep classifiers on embedded platforms. The next
sections of this chapter briefly discuss the thread and memory hierarchy.

3.2 Arrangement of Computing Resources

As a device code is invoked, the GPU launches a number of threads to concurrently
execute the instructions of the kernel function; while the same program written for
CPU executes the instructions sequentially using a single thread. As shown in Figure
3.1, the required operation of increment is performed concurrently on a GPU using a
block of threads. The concurrent execution of threads can significantly improve the
performance of the data independent applications.

GPGPU is a multi-core, multi-thread system where these threads are organized
into a multi-dimensional grid of independent blocks. Each block is comprised of
concurrent threads that operate cooperatively within each block as shown in Figure
3.2. The Single instruction multiple threads (SIMT) programming model of GPU
is an extension of single instruction multiple data (SIMD) approach. In SIMD
programming model, the same operation is applied to all data items, while SIMT
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execution model provides flexibility by combining the SIMD model with multi-
threading where a group of threads (called warp) perform the same operation. A
group of 32 threads forms a warp.

Fig. 3.1 Structure of a CUDA program.

Depending on the architecture of GPGPU, there is a limit on the number of
threads per block. There can be maximum 1024 threads in a block, so multiple
blocks may be required to execute a single kernel. Total number of threads invoked
during execution can be calculated using following formula:

Total number o f T hreads = T hreads/block×Number o f blocks (3.1)
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The number of blocks in a grid is defined with accordance to the size of data to
be processed. These blocks execute independently across the different cores of a
GPU.

Fig. 3.2 Arrangement of GPU resources.

3.3 CUDA Memory Model and Hierarchy

For GPU-based computations, the input data to be processed must be copied from
the host (CPU) memory to the device (GPU) memory and the output data (final
results) must be retrieved from the GPU memory to the CPU memory. CUDA
devices have different types of memory spaces which offer various performance
characteristics. Data from these different memory spaces may be accessed by threads
during execution. Hierarchy of CUDA memory model can be visualized using Figure
3.3.
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Every thread has registers or private local memory that is only available to one
thread. Each block has its own shared memory that is available and visible to all
threads within the same block. Data present in global memory can be accessed
by all threads of an application. Figure 3.4 presents a visual representation of
threads, blocks and grids with corresponding per-thread private, per-block shared
and per-application global memory spaces.

Constant and texture memory spaces are two additional read-only memory por-
tions in CUDA processors that are generally used to store the constants, kernel
arguments and to support optimized 2D access pattern.

Fig. 3.3 CUDA memory types.

The global memory is the main and largest memory space in the graphics pro-
cessing unit. The computational data is usually stored and transferred between the
host (CPU) and the device (GPU) through global memory. The latency to access
global memory is generally higher. However, its performance can be improved by
coalescing the memory accesses. Shared memory is on-chip and faster than global
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memory, but it is limited and its performance is subject to bank conflicts among
threads.

Fig. 3.4 CUDA hierarchy of threads, blocks and grids with corresponding memory spaces.

Proper utilization of computing and memory resources can significantly improve
the performance of CUDA-based general purpose applications. The next chap-
ter presents the adopted methodology to realize the deep classifiers on embedded
platforms using CUDA computing framework.



Chapter 4

Neural Architecture and
CUDA-based Proposed Realization

This chapter describes the most common layers required by the neural networks to
perform image classification and our proposed approach to realize the deep classifiers
on the embedded platforms1. In this work, the CUDA computing language is used
to replicate the neural architectures and exploit the computational power of the
embedded GPUs. Namely, our proposed framework relies on a GPU-only scheme
for performing convolutions in the transform domain. The performance of this GPU-
only scheme is compared with the heterogeneous and sequential versions. Different
neural architectures are considered to evaluate the performance of the proposed
CUDA-based scheme.

4.1 Introduction

Image classification via convolutional neural networks (CNN) involves two stages.
The first stage is an offline learning state to train the required neural architecture over
a set of labeled input data (images) and the second stage is testing or inference phase
where a proper image classification can be performed using the trained network.
During training stage, the network parameters are iteratively updated to predict the

1Part of the work described in this chapter has been previously published in Electronics Journal as
"Rizvi, S.T.H., Cabodi, G., Patti, D. and Francini, G. "GPGPU Accelerated Deep Object Classification
on a Heterogeneous Mobile Platform," Electronics 2016, 5, 88.
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output values corresponding to the input labels. A trained network can classify the
new images using the learned set of parameters (weights and biases).

Deep convolutional neural networks demand high computational power and
memory storage. These are the constraints that limit the possibility to realize the
deep classifiers on the embedded devices. Due to the huge demand of resources,
the training stage can only be performed offline on a dedicated GPU or server
infrastructure. However, the actual image classification may has to be performed
online on an embedded device for the real-time visual analysis [8]. There are
numerous practical real-time applications where the hand-held devices can be more
useful due to portability and on-board resources [29, 30].

Recent embedded devices employ the heterogeneous architectures and are well
suited for challenging real-time applications [31–34]. As mentioned earlier, training
and testing phases are computationally intensive problems, so heterogeneous (GPU-
CPU) resources of an embedded platform can be exploited to accelerate the sequential
and concurrent processes in such problems. GPUs can be exploited to accelerate the
concurrent processes, whereas the CPUs can execute the sequential tasks efficiently
due to their higher operational frequencies. Training and classification time of neural
classifiers can be largely improved by proper scheduling of computational resources
of the heterogeneous architectures [32, 33, 35–37].

4.2 Related Work

As mentioned earlier, many computing frameworks like Torch and Caffe are currently
available for implementing the neural networks. These frameworks rely on a number
of third-party libraries to leverage the computational resources of modern GPUs for
faster training and deployment of deep neural classifiers. However, such libraries are
designed for computationally powerful environments like desktop workstations and
server platforms. Therefore, these libraries do not consider the unique peculiarities
of embedded platforms and cannot be directly used on a mobile device. Realization
of neural architectures on a low power embedded platform is still a challenging
problem, and there have been very few studies conducted on this.

An OpenCL-based deep CNN framework is proposed for mobile devices in [38].
This scalable framework leverages a variety of optimization techniques like memory
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vectorization and half floating-point processing to execute several CNN models in
real-time, with no or marginal accuracy tradeoffs. However, this scheme relies on
OpenCL language, which is less efficient than the CUDA-based same libraries and
built-in functions in terms of execution time; therefore, demand much optimization
[28]. Furthermore, OpenCL is not directly supported on Android Operating system
from version 4.3 onwards.

An efficient mobile GPU-accelerated Deep Neural Network flow is presented
in [39]. Different optimization techniques to increase the computing efficiency are
discussed. This DNN flow shows significant speedup and higher energy efficiency
over the CPU-based sequential version. However, the information that is presented
is not enough to reproduce the results.

An open source GPU-based library “CNNdroid” is introduced in [40]. This
library is designed to realize the trained neural classifiers on Android-based mobile
devices. However, this library does not provide support for all CNN layers required
to realize the state-of-the-art neural classifiers like ENet and Residual Network.

An efficient embedded framework named “Quantized CNN” is proposed in
[41]. This framework simultaneously improves the computation time and reduces
the storage/memory overhead and power consumption. This gain in performance
is achieved by compressing the convolutional neural networks for realization on
mobile devices. However, results also show that the quantization and compression
of parameters jeopardize the precision of results [42–44]. Furthermore, state-of-the-
art deep classifiers can be directly used on a mobile platform without any need of
quantization, because these classifiers already have fewer parameters and provide
state-of-the-art classification accuracy [45].

Above mentioned schemes focus on the efficient realization of testing/inference
phase on the embedded platforms, however, a lot of research work is also going on
the training of memory efficient neural architectures [46–48]. These works propose
that more computationally and memory efficient deep neural architectures can be
constructed by approximating, quantizing or compressing some of the parameters
during the training phase.

Concluding, the contributions of our proposed framework and improvements
over the above-mentioned schemes can be summarized as follows. First of all, the
proposed scheme has the merit of supporting nearly all layer types of deep neural
architectures and suitable for deploying complex state-of-the-art deep classifiers. All
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required layers and functions are realized using CUDA computing framework. Inter-
mediate frameworks and memory consuming computational packages are avoided
using the proposed CUDA-only scheme to resolve the problem of software dependen-
cies and reduce the storage requirements. In addition, the accuracy of our proposed
scheme is similar to the existing desktop and server frameworks. Furthermore, the
proposed framework can be easily integrated into an Android application for actual
classification and provides compatibility for models trained with other desktop or
server frameworks.

4.3 Adopted Methodology

Figure 4.1 presents the proposed flow to realize a deep classifier on an embedded
platform. First of all, Torch computing framework is used to train the state-of-the-art
deep neural classifiers. These neural classifiers are trained using the powerful desktop
workstation or GPU server depending on the required computational power. Some
preprocessing techniques are performed to enhance the computational efficiency of
training process and accuracy of results [49]. Neural networks are normally trained
on a fixed size of training data, while the training data can be of various sizes and
dimensions because of its collection from different sources. Therefore, the training
images are required to be scaled or cropped to fit the defined architecture. Scaling
and cropping can be performed using different approaches.

Normalization of input and target data is also an important preprocessing step for
proper training of a neural network. Data normalization is generally useful to map
the widely-spaced scale data to a uniform scale. It is performed here by normalizing
the data to have zero mean and unity variance, also called mean-standard deviation
normalization.

Since the deep networks need a large amount of training data to improve the
performance and classification accuracy, data augmentation is used to artificially
increase the amount of training data. This image augmentation is performed through
different augmenting techniques like color jittering, random crops, horizontally
flipping, etc. Finally, the neural architectures are trained and can be used for classifi-
cation purposes in the field.
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Fig. 4.1 Block diagram of the CUDA-based neural classifier for embedded platform.

Once a network is trained, its trained parameters can be imported for the actual
classification. In this work, the CUDA programming framework is used to replicate
the trained neural architectures on the embedded platforms. All required layers and
activation functions are implemented in CUDA to realize the identical architectures.
The computational power of GPGPU is exploited to accelerate these CUDA-based
identical functions (Convolution, pooling, batch normalization, rectifier linear unit,
etc.). Convolution is the most computationally intensive layer of neural classifiers.
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Two versions of convolution operation are implemented to perform a comparative
analysis and support the different neural architectures trained in torch framework.
The trained parameters from Torch framework are formatted in different ways de-
pending on the used convolution method. So it is important to perform the format
conversion of imported parameters to achieve the same results on the embedded
platforms. By importing the trained parameters and realizing the identical architec-
ture, these CUDA-based deep classifiers are executed on the embedded platform.
Furthermore, these classifiers are realized on a portable embedded device as a part
of the Android application.

The onboard/integrated camera of the embedded platforms is used to acquire the
input image as shown in Figure 4.1. Real-time image classification is performed
on this captured image using the trained networks. Same preprocessing steps are
required to be performed on the captured image as done at the time of training. As
the trained classifiers are designed for a specific input dimension and the captured
image can be of different aspect ratio depending on the camera of the embedded
platform, so it is essential to crop or scale the image to the exact size required by a
neural network. Similarly, it is necessary to normalize the input image to minimize
the bias towards different features and map the input/output values to a specific
range. After these steps, the captured image is fed and classified by the CUDA-based
replicated networks on the embedded platform using imported trained parameters.
Final classification results can be displayed on the screen of a portable embedded
device or can be used by another application for the further developments.

4.4 Architecture of the Convolutional Neural Networks

This section presents the architecture of deep classifiers and the entailed layers.

4.4.1 Convolutional Layer

The convolutional layer is core building block of deep classifiers. It extracts the
robust pattern or features from the input images. Mathematically, convolution can be
expressed as the summation of point-wise multiplication of filter/mask coefficients
with the input image/function. A filter is an integral component of the layered
architecture. Convolution operation extracts the features by convolving a filter
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with the input image. These features or output of convolution operation are called
activation maps. Filters are trainable parameters that are adjusted during the training
to predict the meaningful aspects of the input data.

State-of-the-art deep classifiers are composed of multiple convolutional layers [6,
7, 23]. By stacking a number of convolutional layers, accuracy of a neural classifier
can be significantly improved [1, 6]. However, convolution is a computationally
intensive operation and demands high computational power and memory storage.
Therefore, these factors limit the realization of convolutional neural networks on
the embedded platforms. By an effective and efficient realization of the convolution
operation, the computational burden of these layers can be reduced and an embedded
GPU can be exploited to accelerate the neural classifiers.

There are different methods to compute the convolution operation. In this work,
two approaches to compute the multi-channel convolution operation are discussed,
realized and compared for the adaptation of torch-based trained networks on the
embedded platforms.

The first and traditional approach is full convolution. In this approach, convo-
lution is computed by the sum of products of the filter and the input image. This
operation is extended to perform the multi-dimensional convolutions as required by
the neural classifiers.

Both input and output images are three dimensional. If the input and output
images have C and D channels respectively and sizes of the trained filter bank and
the input image are X x Y and I x J respectively, then the output of a multi-channel
fully-convolutional layer can be expressed by the following equation:

Out put_mapi, j,d =
C

∑
c=1

X

∑
i1=1

Y

∑
j1=1

Input_mapc,i+i1, j+ j1Filtersd,c,i1, j1 (4.1)

Figure 4.2 illustrates the example of a fully convolutional layer where the pixels
of input maps, output maps and filters are defined by their index positions. As both
input and output maps have three dimensions, so their pixels are represented by (row,
column and channel number) while the pixels of filter banks are represented as (row,
column, input channel number and output channel number) because the filter bank
is 4 dimensional. The index value (3,2,1) of input map represents the pixel present
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on the first channel of the input image at the third row and second column. In this
particular example, the input image is of size 3 x 3 and has 3 channels. There are
2 filter banks each having 3 channels. Size of each filter is 2 x 2. The number of
channels in a filter bank depends on the channels of input maps while the number
of filter banks defines the number of channels of output map. So for this particular
example, output map would have 2 channels and size of output map would be defined
by the size of the filter and few other parameters defined in Section 4.4.6. In this
approach, filters and input maps have to convolve in a sliding manner that can be a
slow process which cannot fully exploit the concurrent resources of a GPU [50].

Fig. 4.2 Multi-dimensional full convolution.

The second approach realized for the computation of convolution is based on
Matrix Multiplication. In this Matrix Multiplication based Convolution (ConvMM)
approach, first, the input maps and filter banks are transformed into two-dimensional
matrices and then directly multiplied [51, 52]. Figure 4.3 illustrates the matrix
multiplication based version of the convolutional layer where the input image and
filters are arranged as the matrices in the transform domain.



28 Neural Architecture and CUDA-based Proposed Realization

Fig. 4.3 Matrix multiplication based convolution (ConvMM).

Figure 4.3 also explains the mapping of pixel values from the multi-dimensional
input maps and filter bank to the two-dimensional matrices. Figure 4.3 represents
the pixels shown in Figure 4.2 in two-dimensional transformed form. Resultant
matrix (output map) can be calculated by multiplying these transformed input and
filter matrices. Values of the resultant matrix can be arranged to achieve the output
representation equivalent of the traditional convolutional layer.

Convolution can also be computed using other approaches like Winograd minimal
filtering algorithm, fast Fourier transformation and lookup table-based approaches
[42, 51–55]. Using fast Fourier transformation (FFT)-based approach, convolution
can be computed as point-wise products in the Fourier domain [53]. This FFT-
based convolution requires large memory space to store the transformed data that
can be a problem for existing GPUs having a limited amount of on-chip memory.
Furthermore, FFT-based approach is fast for large filters, while state-of-the-art deep
classifiers use small filters [7]. For networks having small filters, minimal filtering
algorithm pioneered by Winograd can be employed to compute the convolution
over small tiles [42]. This algorithm is memory friendly and fast for small filter
and batch sizes. The Winograd technique minimizes the complexity by performing
element-wise multiplication instead of matrix multiplication and reduces the number
of arithmetic operations. Some optimization techniques can also be used to improve
the performance of these convolution approaches [56–58].
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4.4.2 Pooling Layer

In a traditional convolutional network, every convolutional layer is followed by a
pooling layer. Convolutional layers preserve the spatial resolution of input data
(image) while pooling layers are responsible for reducing the resolution of feature
maps for the manageable representation. This down-sampling doesn’t affect the depth
(Channels) of feature maps. The most common pooling approaches are max- and
average-pooling. These layers do not have any trainable parameter like convolution.
There are also other pooling techniques and regularization methods that can be used
to improve the training speed and classification accuracy of the convolutional neural
networks [50, 59].

4.4.3 Batch Normalization

Batch normalization is also an important part of state-of-the-art deep classifiers.
It dramatically speedup the training of neural classifiers [60]. By adding some
extra trainable parameters, batch normalization preserves the representation ability
of the network. Furthermore, the resulting networks do not require any further
regularization. This function can be expressed as follows:

BN(x) =
x−mean√

Var
∗gamma+beta (4.2)

In batch normalization layer, values of mean and variance are estimated from the
training data; while beta and gamma are the trainable parameters. This layer first
normalizes each scalar feature by making it have the zero mean and unit variance,
and then gamma and beta are used to scale and shift the normalized output.

4.4.4 Activation Functions (ReLu, Tanh and Threshold)

There are several activation functions for neural networks, like the rectifier linear unit,
threshold unit and tangent hyperbolic unit. Activation function is one of the important
components of a neural network. It is a non-linear decision-making function that
determines the presence of a particular feature. It improves the training of a neural
network and further eliminates the problems like vanishing gradient [61].
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4.4.5 Linear or Fully Connected Layers

As the name implies, this layer is fully connected to the output of the previous layer.
These layers are typically used in the last stages of a classifier. Where convolutional
layers extract the robust features, these fully connected layers (multilayer perceptron)
perform the feature classification and provide the final output. These layers also have
trainable parameters (weights and biases) like convolutional layers. Furthermore,
most of the parameters of a network are in the fully connected layers.

4.4.6 Sizing Convolutional Neural Networks

The size of the output map of a convolutional or pooling layer is dependent on the
size of the filter,the striding size and the number of padding bits used in the input
image.

The stride size controls the movement of the filter around the input map in the
convolution/pooling operation. It defines the amount by which the filter shifts and
directly affects the size of the output map as shown in Figure 4.4.

Fig. 4.4 Effect of stride length on the size of output maps.
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It can be visualized from the previous figure that the size of output map would
always decrease after the convolution and pooling operations. In some cases, it is
required to preserve and attain the size of maps. Zero padding is used to resolve
this problem and achieve the desired size of output maps. As shown in Figure 4.5,
the size of output map is same as the input map after required operation due to
additionally padded zeros around the border of input maps.

Fig. 4.5 Effect of padding and stride length on the size of output maps.

4.5 CUDA-based Proposed Framework

This section discusses the CUDA-based realization of the deep architecture for image
classification on embedded devices.

4.5.1 GPGPU-accelerated Fully Convolutional Layer

The CUDA computing language is used to implement the traditional fully convo-
lutional layer. The computational power of GPGPU is exploited to accelerate this
layer. A 3-dimensional grid of blocks and threads is used to offload the complete
workload into the GPU and concurrently compute the convolution operation. To
realize the Torch-based identical classifier, formatting of the acquired input image
and trained parameters is one of the most important tasks. As mentioned earlier,
trained parameters of the fully-convolutional layer and matrix multiplication based
convolution have structurally different format. So format conversion of imported
parameters is essential to acquire the same results as provided by the Torch-based
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model. The row-major layout is used to store and access the multi-dimensional
trained parameters, input image and results. This contiguous memory allocation
speedup the access of array elements. Padding function is also implemented and
accelerated using GPGPU. This CUDA-based padding function is realized to provide
the identical functionality and architecture as provided by the convolutional layers
of Torch framework.

Fig. 4.6 Flow of GPGPU-based convolutional and pooling layers.

The realized convolutional and pooling layers have same flow because both are
composed of two kernels. The first kernel performs the concurrent padding of input
data and the second kernel executes the selected operation of pooling or convolution
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on this padded input. All others layers like the batch normalization and threshold
unit, where the padding function is not required are computed using a single kernel.
The flow of both convolutional and pooling layers is depicted in Figure 4.6. First
of all, upon execution, padding is performed on the input data. And if it is not
required to perform padding, then directly the second kernel is called for execution.
This second kernel can be either convolution or padding function depending on the
defined flag. There are two further options in both convolution and pooling kernels.
In case of convolution kernel, it is checked that either full convolution or matrix
multiplication based convolution is required to be performed. Similarly, in case of
pooling function, average or max function is invoked depending upon the defined
flag.

4.5.2 Heterogeneously Accelerated ConvMM Layer

Matrix multiplication based convolutional layer is also realized using CUDA lan-
guage. Heterogeneous resources of the embedded platform are fully utilized to
compute the solution of the ConvMM layer. This layer is accelerated by offloading
the appropriate computations between the CPU and the GPGPU of the embedded
platform. The sequential tasks like the transformation of input maps and filters into
two-dimensional matrices are assigned to the powerful CPU, and the concurrent
matrix multiplication of this transformed data is performed using the GPU. In this
transformation step, pixel values from the multi-dimensional input maps and filters
are required to be placed on the distinct locations of matrices in a specific sequence.
As CPUs are best suited for sequential computations, this sequence sensitive trans-
formation can be performed efficiently using the CPU. An algorithm like this can
benefits from the heterogeneous accelerators in terms of execution time [33, 62, 63].

Figure 4.7 illustrates the scheduling of workload between the GPU and the CPU
for the full convolutional approach and heterogeneous ConvMM layer. As shown
in Figure 4.7, fully convolution layer is executed homogeneously on the GPGPU,
therefore, data is transferred two times between the device and the host memory,
to copy the input data to the GPU and to provide the final result. GPU-accelerated
padding followed by full convolution is performed on the input data to compute the
desired solution. While in case of heterogeneous ConvMM layer data is transferred
four times between the GPU and the CPU memories, first copied to the device
memory to perform the concurrent padding, then transferred back to the CPU side to
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perform the sequential transformation, then again to the device memory to perform
the GPU-based matrix multiplication and finally to the CPU memory.

Fig. 4.7 (a) Flow of heterogeneous ConvMM layer; (b) Flow of full convolutional layer.

4.5.3 GPU-only ConvMM Layer

Instead of just comparing the execution time of the same kernel on the CPU and the
GPU, cost of moving data should also be considered. Extra memory transfers across
the PCI-express bus can break the performance of an application. The Number of
data transfers should be minimized, even if the GPU version get little or no speedup
compared to the CPU version.

Figure 4.7 (a) also depicts that the data is transferred four times between the
GPU and the CPU memories to realize the heterogeneous ConvMM layer. Out
of four, two transfers are done to perform the CPU-based transformation. These
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transfers can break the overall performance of the system in case of slower memory
bandwidth. If this CPU-based transformation step of heterogeneous ConvMM layer
is parallelized and performed using the GPU, so these extra memory transfers can
be avoided [64]. Figure 4.8 shows the proposed flow of GPU-only ConvMM layer
where both transformation and multiplication steps can be performed using the GPU.

Fig. 4.8 Flow of GPU-only ConvMM layer.

Following formula can be used to transform the multi-dimensional input map
into two-dimensional input matrix concurrently.

Input_matrix(row,col) =
o_Row

∑
i=1

o_Col

∑
j=1

(
i_Dim

∑
k=1

k_h

∑
h=1

k_w

∑
w=1

Input_map(i+h, j+w,k)

)
(4.3)
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where o_Row = i_Row - k_h + 1 ; o_Col = i_Col - k_w + 1;

row = i × (o_Col) + j ; col = (k × k_w × k_h + (h × k_w) + w);

In this formula, width and height of the filter are represented by k_w and k_h.
i_Row, i_Col and i_Dim are representing the number of rows, columns and dimen-
sions (channel) of the input image. Rows and columns of the output matrix are
represented by the o_Row and o_Col.

4.5.4 GPU-Accelerated Max and Average Pooling Layers

Both max and average pooling layers are implemented to realize the different neural
architectures on the embedded platform. The CUDA programming language is
used to concurrently compute the solution of these sub-sampling approaches. The
computational power of GPU is exploited to surpass the sequential version of pooling
layers in terms of execution time. The CUDA-based padding function is also
implemented and employed in these pooling layers to support the same options and
architectures as provided by the Torch framework.

4.5.5 GPU-Accelerated Batch Normalization and Other Layers

All remaining layers (Fully connected, tangent hyperbolic unit, Threshold and ReLu)
are also implemented in CUDA and accelerated using the three-dimensional grid of
parallel blocks and threads. The fully connected layer is computed by the GPU-based
concurrent matrix multiplication followed by a bias offset [65]. Trained weights and
biases are used to perform this operation. The batch normalization layer also has
trainable parameters (beta, gamma. variance and mean). These parameters are also
imported from Torch-based trained models to normalize the feature maps using the
CUDA-based version of batch normalization layer.

4.5.6 Neural Network Architectures implemented in CUDA

Three different deep classifiers are implemented using proposed CUDA-based
scheme: (ResNet-34, OverFeat network and Alex Krizhevsky’s network for CIFAR-
10) [7, 23]. Performance of these deep classification networks is evaluated on two
different embedded platforms for both convolution approaches. Torch computing
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framework is used to construct and train these classifiers. CIFAR-10 (Canadian
Institute For Advanced Research 10) dataset is used to train the Alex’s CIFAR-10
network, while other two networks are trained on ImageNet dataset. These different
architectures of different depth are selected to verify the performance of proposed
CUDA-based framework for embedded GPUs.

These deep networks have different architecture and components as listed in Table
4.1. All these functions and architectures are required to be replicated for image
classification on an embedded GPU. These classifiers are composed of multiple
layers and have different pooling and regularization functions. ResNet-34 has two
additional layers than other architectures, batch normalization and average pooling.
All these layers are implemented in CUDA to replicate the trained classifiers on
embedded platforms.

Table 4.1 Neural Architectures used for implementation and evaluation.

Model No. of Layers Required Functions

Alex’s CIFAR-10 5 Conv. + tanh + Max Pool
OverFeat 8 Conv. + ReLu + Max Pool

ResNet-34 34 Conv. + Max Pool + Batch Normalization + ReLu + Avg.Pooling

Trained parameters are imported from the Torch software, so can be used by
our CUDA-based identical architectures for image classification. Size of the trained
classifier (trainable parameters) is also an important factor to consider for successful
realization.

As Embedded devices have limited storage capacity, so the sizes of trained
models, frameworks (like Torch), computational packages and their operating system
can affect the performance of the required network. By using our CUDA-based
proposed framework, installation of additional computational packages and source
framework can be avoided. The imported trained parameters include weights and
biases from the convolutional and fully connected layers or values of mean, variance,
gamma and beta for the batch normalization layers. Sizes of these parameters depend
on the dimensions of features maps fed to the next layers and sizes of the filters of
convolutional layers. The sizes of these parameters are listed in Table 4.2. These
imported parameters are of double data type.
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Table 4.2 Size of parameters imported form Torch Computing framework.

Model Size of File
Double

Alex’s CIFAR-10 41 MB
OverFeat 1190 MB

ResNet-34 215 MB

4.6 Experiments and Results

Experiments are performed on two different types of embedded platforms. The first
platform is Nvidia Jetson TX1 embedded board. This board has quad-core ARM
Cortex A57 CPU, Nvidia Maxwell GPU with 256 CUDA cores and 4 GB of shared
RAM. It provides 16 GB of embedded MultiMediaCard (eMMC) for storage. The
second platform used for the performance evaluation is Nvidia Shield K1 tablet. This
tablet is powered by the Nvidia Tegra K1 processor. It has Nvidia Kelper GPU with
192 CUDA cores and ARM Cortex A53 CPU. It has 2 GB of RAM memory.

4.6.1 Performance Evaluation of Proposed Scheme on Jetson TX1
Board

First of all, comparison of both convolutional layers is performed on the Jetson TX1
embedded board. This comparison is done to analyze the performance of both GPU-
based traditional convolution and matrix multiplication based approaches. The matrix
multiplication based approach (ConvMM) is also implemented using heterogeneous
resources and pure CPU-based functions. In GPU- and CPU-only versions of
ConvMM layer, both steps of transformation and multiplication are performed using
homogeneous GPU or CPU systems while in heterogeneous ConvMM layer, the
transformation is performed using the CPU and multiplication is computed using the
GPU. All results are listed in Table 4.3.

Figure 4.9 depicts that for the smaller image sizes, traditional convolution ap-
proach performs well and outperforms the GPU-only ConvMM layer. However, as
the size of image increases, the matrix multiplication based approach outperforms the
fully convolution method and gains significant speedup. Thus, it concludes that the
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GPU-only ConvMM layer would always show better performance where a greater
number of output maps have to be computed, or convolution has to be performed on
an input image with larger dimension.

Table 4.3 Comparison of different convolution layers under various computational loads on
Jetson TX1 Board, best results are written in bold.

Required Output Maps = 16

Image Size

Fully GPU-only Hetero ConvMM ConvMM
Convolution ConvMM (CPU+GPU) (CPU-only)

Double
(Milliseconds)

CIFAR(32 × 32 × 3) 1.53 5.12 8.03 11.17
ImageNet (224 × 224 × 3) 33.23 35.61 89.39 348.67

VGA (640 × 480 × 3) 275.23 215.74 375.02 2048.63
SVGA (800 × 600 × 3) 459.06 369.91 584.13 3212.65

SXGA (1280 × 1024 × 3) 1074.62 582.35 1294.56 8783.52

Different Image Sizes (No. of Pixels)
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Fig. 4.9 Full convolution vs. GPU-only ConvMM as a function of input image size (Jetson
TX1 Board).
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The execution time of different versions of ConvMM layer can be visualized in
Figure 4.10. Results depict that the heterogeneous and CPU-only ConvMM layers
show poor performance and cannot match the computational capability of the GPU-
only version. Furthermore, GPU-only ConvMM layer is approximately 2x faster
than the heterogeneous approach and 10x faster than the CPU-only ConvMM layer.
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Fig. 4.10 Comparison of different versions of convolution operation as a function of the input
image size (Jetson TX1 Board).

After this, the performance comparison of rectifier linear unit (ReLU) is per-
formed for the GPU-based parallelized version and CPU-based sequential version.
The sequential version is computed using a single thread of embedded CPU, while the
GPU-based version is computed using the two-dimensional and three-dimensional
grids, which is an important constraint for the GPU-based implementations. Results
of this experiment are listed in Table 4.4.
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Table 4.4 Execution time of rectifier linear unit under various computational loads on Jetson
TX1 Board, best results are written in bold.

Image Size
CPU GPU (2D Grid) GPU (3D Grid)

Double
(Milliseconds)

CIFAR (32 × 32 × 16) 5.16 3.30 1.42
ImageNet (224 × 224× 16) 46.12 25.45 18.06

VGA (640 × 480 × 16) 271.72 128.81 106.83
SVGA (800 × 600 × 16) 477.23 172.62 161.43

SXGA (1280 ×1024 × 16) 2559.91 400.57 373.52

Figure 4.11 shows that the GPU-based Rectifier Linear unit is approximately
7x faster than the CPU-based version. Furthermore, there is not a significant per-
formance difference in case of three-dimensional grid-based implementation over
the two-dimensional grid-based version. So an embedded GPU supporting only
2D-grids can also be used for the realization of these CUDA-based functions.
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Fig. 4.11 Performance comparison of rectifier linear unit on Jetson TX1 board as a function
of input image size.
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Table 4.5 and Figure 4.12 show the execution time of max pooling layer. The
GPU-based accelerated version is approximately 4x faster than the sequential version.

Table 4.5 Execution time of both versions of pooling layers under various computational
loads (Jetson TX1 Board), best results are written in bold.

Image Size
CPU GPU

Double
(Milliseconds)

CIFAR (32 × 32 × 16) 2.33 2.03
ImageNet (224 × 224× 16) 53.12 18.51

VGA (640 × 480 × 16) 306.53 93.24
SVGA (800 × 600 × 16) 469.67 162.53

SXGA (1280 ×1024 × 16) 1892.31 621.82
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Fig. 4.12 Performance comparison of pooling layers on Jetson TX1 board as a function of
input image size.

After evaluating individual functions, three trained deep classifiers (ResNet-34,
OverFeat network and Alex Krizhevsky’s network for CIFAR-10) are implemented
using discussed layers. Performance of these CUDA-based replicated networks can
be compared using Table 4.6.
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Table 4.6 Classification time of deep models on Jetson TX1 board, best results are written in
bold.

Model Layers

ConvMM Fully Conv Hetero ConvMM GPU-only Speedup
(CPU-only ) (GPU) (CPU+GPU) ConvMM over

Double Sequential
(Milliseconds)

Alex’s CIFAR-10 5 7814.25 149.43 129.90 107.03 73×
OverFeat 8 254,285.12 3250.57 2492.94 1924.41 132×

ResNet-34 34 190,054.39 2838.01 2361.18 1217.33 156×

Results show that the GPU-accelerated deep classifiers are hundred times faster
than the CPU-based sequential versions. Results also point out that even the heteroge-
neous ConvMM layer-based models are faster than the traditional convolution based
classifiers and can further be accelerated with faster CPU. In case of CUDA-based
realizations, amount and number of memory transfers are the lower bounds on the
expected gain, as results show that the GPU-only ConvMM layers-based networks
are significantly faster than the heterogeneous versions because of eliminated data
transfers required by sequential transformation.

It can be noted that the trainable parameters imported from the Torch computing
framework are of double data type and discussed results are of same data type
due to the double precision arithmetic operations performed on these parameters.
Performance of these deep classifiers can be further improved using single precision
data storage and arithmetic. This conversion does not affect the accuracy of the
trained networks. Some research works have already proved that the high accuracy
can be achieved with extremely low precision neural networks as the fixed-point
representation or even only 2 bits per weight are enough to improve the performance
and efficiency of the convolutional classifiers without impacting their accuracy [66–
69]. A research group from IBM experimented with rounding schemes, their results
showed that the neural classifiers can be trained using low precision (16-bit wide)
fixed-point representation and can achieve the same performance as that obtained
using 32-bit floating point representation [68]. Another research group from Intel
Labs experimented with Residual Networks and by training a ResNet-34 network on
the ImageNet dataset with 2-bit weights achieved similar accuracy (90.37 % Top-5)
than the full precision version (91.26 % Top-5) [69]. The deep neural classifiers
are numerically robust, so that small differences in precision do not affect the



44 Neural Architecture and CUDA-based Proposed Realization

classification accuracy. The differences introduced by low-precision representations
are well within the tolerances a neural network has learned to deal with.

Execution time of double- and single-precision ConvMM layers can be compared
using Table 4.7 and Figure 4.13. Results show that the single-precision ConvMM
layer is approximately 2× faster than the double-precision version.

Table 4.7 Comparison of double- and single-precision ConvMM layers on Jetson TX1 board,
best results are written in bold.

Image Size
GPU-only ConvMM GPU-only ConvMM

Double Single
(Milliseconds)

CIFAR (32 × 32 × 16) 5.12 3.20
ImageNet (224 × 224× 16) 35.61 21.63

VGA (640 × 480 × 16) 215.74 119.17
SVGA (800 × 600 × 16) 369.91 162.80
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Fig. 4.13 Performance comparison of double- and single-precision ConvMM layers on Jetson
TX1 Board as a function of input image size.
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Table 4.8 further validates that the single-precision models are significantly faster
than the original versions. This conversion is also profitable in terms of storage
requirement that is an important constraint for the embedded devices.

Table 4.8 Classification time of double- and single-precision deep models on Jetson TX1
Board, best results are written in bold.

Model Layers
GPU-only ConvMM GPU-only ConvMM

Double Single
(Milliseconds)

Alex’s CIFAR-10 5 107.03 76.36
OverFeat 8 1924.41 1212.74

ResNet-34 34 1217.33 887.53

4.6.2 Performance Evaluation of Proposed Scheme on Mobile
Shield K1 Tablet

The second platform used for measuring the performance of our CUDA-based
proposed scheme is Nvidia Shield K1 tablet. This embedded device is powered by
Tegra K1 GPU having 192 CUDA cores. Same experiments are performed to verify
the previous results and measure the performance of realized deep classifiers.

First of all, the performance comparison of different versions of convolution
layers is performed on this second embedded GPU. All parameters are converted
to single-precision. This is done to reduce the arithmetical complexity and storage
requirement. The execution time of all convolutional layers can be compared using
Table 4.9 and Figure 4.14. Results show that the GPU-only ConvMM layer is
significantly faster than all other layers. It can also be noted that for smaller workload,
all versions including the GPU-only ConvMM layer are outperformed by the fully
convolution approach, while this traditional approach is much slower for larger
workloads that even heterogeneous ConvMM layer can outperform it.

Figure 4.14 also shows that the GPU-only ConvMM layer is approximately 2×
faster than the heterogeneous ConvMM layer. This speedup in execution time is due
to the elimination of extra memory transfers required by the sequential transformation
step of Heterogeneous ConvMM layer.
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Table 4.9 Comparison of different convolution layers under various computational loads on
Nvidia Shield K1 tablet, best results are written in bold.

Required Output Maps = 16

Image Size

Fully GPU-only Hetero ConvMM ConvMM
Convolution ConvMM (CPU+GPU) (CPU-only)

Single
(Milliseconds)

CIFAR(32 × 32 × 3) 2.31 3.95 4.20 37.21
ImageNet (224 × 224 × 3) 28.23 28.01 62.27 1570.98

VGA (640 × 480 × 3) 170.94 154.32 327.53 10,055.24
SVGA (800 × 600 × 3) 276.16 231.95 519.08 15,852.86

SXGA (1280 × 1024 × 3) 1960.57 495.19 1040.48 44,969.71
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Fig. 4.14 Comparison of different versions of convolution operation as a function of input
image size (Nvidia Shield Tablet).

After this, the performance of sequential and CUDA-based Rectifier Linear
layer is measured and results are listed in Table 4.10. As mentioned previously, the
sequential version is computed using a single thread of embedded CPU while the
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three-dimensional grid of blocks is exploited to parallelize the GPU-based version.
Figure 4.15 shows that the GPU-based version is approximately 13× faster than the
CPU-based version.

Table 4.10 Execution time of rectifier linear unit under various computational loads on Nvidia
Shield K1 tablet, best results are written in bold.

Image Size
CPU GPU

Single
(Milliseconds)

CIFAR (32 × 32 × 16) 5.75 1.47
ImageNet (224 × 224× 16) 39.73 13.02

VGA (640 × 480 × 16) 294.84 36.09
SVGA (800 × 600 × 16) 496.16 97.14

SXGA (1280 ×1024 × 16) 4059.09 313.85
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Fig. 4.15 Performance comparison of rectifier linear unit on Nvidia Shield K1 tablet as a
function of input image size.
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Table 4.11 and Figure 4.16 show the execution time of max pooling layer. The
GPU-accelerated max pooling layer is approximately 4x faster than the CPU-based
version.

Table 4.11 Execution time of both versions of pooling layers under various computational
loads (Nvidia Shield K1 tablet), best results are written in bold.

Image Size
CPU GPU

Single
(Milliseconds)

CIFAR (32 × 32 × 16) 1.83 1.10
ImageNet (224 × 224× 16) 45.72 10.57

VGA (640 × 480 × 16) 275.43 68.58
SVGA (800 × 600 × 16) 413.85 101.83

SXGA (1280 ×1024 × 16) 1231.20 329.03
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Fig. 4.16 Performance comparison of pooling layers on Nvidia Shield K1 tablet as a function
of the input image size.

Table 4.12 tabulates the performance of the different version of convolutional
layers over the same deep classifiers. Results show that the GPU-only ConvMM
layer boosts the performance of deep classifiers and outperforms the other versions.
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The GPU-only ConvMM layer based deep classifiers are hundreds of times faster
than the CPU-based sequential versions.

Table 4.12 Classification time of deep models on Nvidia Shield K1 tablet, best results are
written in bold.

Model Layers

ConvMM Fully Conv Hetero ConvMM GPU-only Speedup
(CPU-only ) (GPU) (CPU+GPU) ConvMM over

Single Sequential
(Milliseconds)

Alex’s CIFAR-10 5 10,449.21 584.75 419.67 144.23 73×
OverFeat 8 440,631.27 12,582.54 5792.54 3899.43 113×

ResNet-34 34 252,955.27 11,481.74 3319.34 2545.83 99×

Furthermore, a hand-held mobile device is powered by a rechargeable battery
which is limited in capacity due to its smaller size, while the energy consumption
goes up with the usage of computational resources and can reduce the life of a battery.
Therefore, the power consumption is also an important constraint to consider when
performing image classification using a mobile device. However, GPUs can compute
the solution of a given task in less time than a CPU-based version by utilizing the
computational resources for a shorter period; it can significantly reduce the energy
consumption. The Nvidia Shield K1 tablet is powered by a battery of 19.75 Wh
and 5192 mAh. A software profiler is used to measure the energy consumption of
realized deep classifiers. Table 4.13 lists the energy consumption per image frame
by the android application through hardware.

Table 4.13 Energy consumed by different deep classifier on Nvidia Shield K1 tablet (joule),
best results are written in bold.

Model
Sequential Fully GPU-only Improvements
ConvMM Convolution ConvMM over Sequential

Alex’s CIFAR-10 16.0 0.430 0.373 43×
OverFeat 850.8 13.2 2.13 399×

ResNet-34 480.0 2.5 1.2 400×

Results show that the CPU-based sequential versions consume more energy than
the GPU-based concurrent versions because of longer execution times. Namely,
the ConvMM-based classifiers are consuming hundred of times lesser energy than



50 Neural Architecture and CUDA-based Proposed Realization

the sequential versions and are more energy efficient than the fully convolution
based networks. The proposed framework can be further accelerated and optimized
by employing an efficient memory transfer scheme and exploiting the hardware-
dependent resources of an embedded GPU. These techniques and proposed optimized
scheme are presented in the next chapter.



Chapter 5

Optimization of Deep Neural
Classifiers for Embedded GPUs

A developed framework needs to be highly optimized to run the deep classifiers on
the embedded devices. It is only possible by overcoming the limiting constraints
and improving the overall results including energy efficiency, storage requirement
and inference performance. This chapter discusses the optimization of our proposed
framework where a set of techniques are employed and hardware capabilities of
embedded GPUs are exploited to improve the performance of deep neural networks,
making them applicable to embedded applications1. The flow of our CUDA-based
framework is optimized using unified memory scheme and hardware-dependent
matrix multiplication approach. The performance of proposed optimized networks is
measured, and results are compared with Torch computing framework.

5.1 Introduction

In a CPU-GPU environment, different important factors and parameters (like amount
and number of data transfers between the host and the device, etc.) can make or break
the performance of an application. The performance of a GPU-based framework can
be improved by following few general guidelines. First, the number of data transfers

1Part of the work described in this chapter has been previously published in Applied Sciences
Journal as "Rizvi, S.T.H.; Cabodi, G.; Francini, G. Optimized Deep Neural Networks for Real-Time
Object Classification on Embedded GPUs. Appl. Sci. 2017, 7, 826.
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between the CPU and the GPU should be minimized, even if that means running
kernels on the GPU that get little or no speedup compared to running them on the
CPU. Furthermore, higher bandwidth can be achieved between host and device
by using pinned or page-locked memory. By loading the required parameters or
constants at the start of an application, the transfer overheads can also be avoided.

As discussed in Chapter 4, there are different approaches to compute the con-
volution operation and matrix multiplication based solution is one of them. Our
proposed framework uses this matrix multiplication based convolution approach
where the transformed input and filter matrices can be multiplied efficiently using the
concurrent resources of a GPU. There are various software libraries that also provide
high-performance matrix multiplication subroutines; however, it still remains a chal-
lenge to utilize these computational packages having the near-optimal performance
for the realization of deep classifiers on the embedded platforms.

In this work, an optimized and accelerated scheme for image classification is
proposed for the embedded platforms [70]. The results show that the proposed
scheme significantly improve the inference performance, storage requirements and
energy efficiency. Only CUDA-based functions and libraries are used to optimize
the framework presented in the previous chapter. Unified memory transfer scheme is
employed to optimize the flow of our GPU-only ConvMM layer and all other required
functions (Pooling, batch normalization, etc.). By using this data-transfer scheme,
factors like double allocation of parameters, memory access latency and the explicit
data movements are eliminated. Additionally, the proposed framework is further
accelerated and optimized using the hardware-dependent selection of resources and
matrix-multiplication operation for the convolution layers of deep architectures.

5.2 Optimized Data transfer schemes

In this section, various data transfer schemes are discussed and unified memory
scheme is proposed to optimize the architectures of all CUDA-based layers presented
in Chapter 4.
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5.2.1 Data Allocations using Pinned Memory

For CUDA-based neural classifiers proposed in the previous chapter, the input data to
be processed (filters, input images etc) must be copied from the host (CPU) memory
to the device (GPU) memory and the output data (final results) must be retrieved from
the GPU memory to the CPU memory. These memory-transfers may be required
several times depending on the architecture of a neural network and can affect the
performance of the application. Host allocations are pageable by default, and the
GPU cannot get data directly from the pageable memory. Therefore whenever a data
transfer is requested, CUDA driver must copy the data from the pageable memory to
a temporary host array in the pinned memory and then data can be finally transferred
to the Device memory via PCIe (Peripheral Component Interconnect-Express) bus
as shown in Figure 5.1. The pinned memory acts as a staging area between the host
and device memories.

Fig. 5.1 Pinned and pageable memories on the host (CPU) side.

The overhead caused by this extra memory transfer between the host memories
can be avoided by allocating the input data in the pinned memory. CUDA provides
the feature to directly allocate the host data into the pinned memory as shown in
Figure 5.2.
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Fig. 5.2 Data transfer directly from the Pinned memory.

It is a common practice to utilize the pinned memory for acceleration of GPU-
based desktop and server frameworks [71]. However, some constraints (like the size
of input data, output data, and trainable parameters) need to be considered before
using pinned memory on an embedded platform. Pinned memory should not be
over-allocated because it can break the performance of the used system by reducing
the amount of physical memory (Random Access Memory) to its operating system
and other programs. Unlike pageable memory, pinned memory cannot be paged
out by the Operating system. Therefore, usage of pinned memory on embedded
platforms can affect the performance of neural networks because embedded devices
have limited storage capacity.

5.2.2 Proposed flow using Unified Memory-based Allocations

In a typical desktop workstation or GPU server, host (CPU) and device (GPU)
memories are physically separated by the PCIe bus as shown in Figure 5.3. Data must
be allocated in both memories and explicitly transferred between them. As discussed
earlier, these data transfers are very frequent, and speed of these transactions is
dependent on the PCIe bus. These data transfers add memory overhead and increase
the structural complexity of an algorithm. Figure 4.8 shows the flow of GPU-only
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ConvMM layer and it can be noted that at least two data transfers are required
for every layer, to copy the input data from the CPU to the GPU for the required
computations, and to retrieve the output data from the GPU memory for the next
layer or operation.

Fig. 5.3 Physically separate Host and device memories.

Unified memory is introduced from the CUDA version 6.0, which creates a pool
of shared memory between the host (CPU) and device (GPU) as shown in Figure
5.4. This shared memory is accessible to both host (CPU) and device (GPU) using
a single pointer so that the same data can be used by a CPU function as well as a
GPU kernel according to the requirement of the program. By migrating the data to a
shared pool, unified memory offers the performance of local data on the GPU and
can enhance the performance of an algorithm [72]. However, shared data needs to
be synchronized after execution of every GPU kernel.

Most of the embedded devices have physically unified memories, so this includes
both CPU as well as GPU memory requirements. Before CUDA v6.0, two copies of
input data were required in both CPU and GPU memories. However, by using unified
memory scheme, only a single copy of data elements is needed that can be allocated
to a shared pool of memory. This single allocation of parameters can be beneficial
for the realization of deep neural networks on low storage embedded platforms.
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Fig. 5.4 Shared pool of Unified memory.

Fig. 5.5 The flow of GPU-only Unified ConvMM Layer.
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This unified memory scheme is employed to optimize the flow of our CUDA-
based neural architectures. Using unified memory, the flow of all required layers
and functions is simplified and optimized. Figure 5.5 shows the flow of GPU-only
Unified ConvMM layer. All trainable parameters, inputs and outputs are allocated
in the unified memory space to achieve this simplified flow. By using this scheme,
the output of one layer can be directly fed to the next layer without any explicit data
transfer.

5.3 Accelerated Matrix Multiplication for GPU-only
Unified ConvMM layer

The proposed framework can be further optimized by improving the performance
of matrix multiplication operation required by the convolutional layer. In this
section, two different approaches to accelerate the matrix multiplication operation
are presented for real-time image classification. Our proposed framework selects
one of the accelerated matrix multiplication (AMM) scheme depending on the
compute capability of the used embedded device as shown in Figure 5.6. Compute
capability (C.C) defines the available features and restrictions of a GPU hardware.
These accelerated matrix multiplication approaches are used to exploit the hardware-
dependent resources of the embedded platforms.

5.3.1 cuBLAS-Accelerated Matrix Multiplication Convolution

The CUDA toolkit includes a set of high-performance libraries which provide stan-
dard mathematical functions. CUDA Basic Linear Algebra Subroutines (cuBLAS) is
one of them. The cuBLAS library provides the various GPU-accelerated subroutines
and shows tremendous speedup over other available libraries [73, 74]. It also pro-
vides a wide range of General Matrix-Matrix Multiply (GEMM) subroutines that
support different type of operands (double-precision, single-precision, half-precision,
etc) that can be useful to speed-up different algorithms [75, 76]. The performance of
convolution operation can also be improved using cuBLAS-Accelerated Matrix Mul-
tiplication (CAMM), but some important aspects need to be taken into consideration
before using this library.
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Fig. 5.6 Flow of the accelerated matrix multiplication based ConvMM layer with unified
memory.

The first constraint is the compute capability (C.C) of the used GPU platform,
as the computational power of cuBLAS subroutines cannot be exploited on a GPU
hardware having compute capability less than 3.5.

The storage layout of the cuBLAS library is the next important constraint to take
into consideration. The data storage layout of commonly used C/C++ languages
is row-major order while the matrix multiplication subroutines of cuBLAS library
follow the column-major order. So, a data transformation step is essential to covert
the data from row-major layout to column-major order for using every cuBLAS sub-
routine. This transformation between different layouts can reduce the performance
of an algorithm instead of improving it.
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In the proposed framework, the GEMM subroutine of the cuBLAS library is
employed to accelerate the matrix multiplication of convolutional layer (for GPU
platforms having C.C greater than 3.5). A comparison of different GEMM subrou-
tines (single- and half-precision) is performed to analyze the performance gain. This
cuBLAS-Accelerated Matrix Multiplication (CAMM) is employed in the proposed
flow of neural architectures.

The issue of storage layout is resolved for the required cuBLAS subroutines.
Since the matrix multiplication routines follow the column-major layout and always
suppose that the matrices would be structured and passed in the same format, so
the input and output matrices are transformed inherently before forwarding to the
multiplication subroutine and after retrieving the resultant matrix. This does not
cause a buffer overrun and efficaciously transposes the data without actually moving
the matrices around in the memory. Thus, the issue of storage layout is resolved by
passing the input matrices in the reverse order (To compute C= A x B, matrices are
passed as C

′
= B

′
x A

′
), and as the resultant matrix would always be transposed

implicitly by the cuBLAS library before passing to main application, the resultant
matrix ((C

′
)
′
=C) is achieved in row-major layout without any extra transformation.

5.3.2 Shared Memory-based Matrix Multiplication Convolution

As discussed earlier, CUDA devices have different types of memory spaces which
offer various performance characteristics. The current version of GPU-only ConvMM
layer shown in Figure 4.8 is using the global memory which is much slower than the
shared memory space. In this section, shared memory based matrix multiplication
(SAMM) is proposed to accelerate the GPU-only Unified convolutional layer (for
devices having compute capability less than 3.5). By dividing the global data into
tiles or blocks, these subsets can be copied into shared memory to reduce the global
access latency and achieve the memory level parallelism.

In naive matrix multiplication approach, many redundant global memory accesses
can be reduced using shared memory space as shown in Figure 5.7. Every element
of matrix A and B is required to be fetched N times from the global memory in naive
approach. It can be noted that the same row and column elements of input matrices
A and B are needed to compute every row and column element of output matrix (C)
respectively.
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Fig. 5.7 (a) Naive matrix multiplication approach; (b) Shared memory-based matrix multipli-
cation approach.

In shared memory-based proposed scheme, input matrices (A and B) are divided
into the sub-matrices (tiles) to assign to the thread blocks, and then these tiles are
multiplied independently as shown in Figure 5.7(b). Finally, the elements of the
resultant matrix (C) are computed by summing up the results of these multiplications.
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Data residing in shared memory can be accessed faster in a concurrent manner as
compared to global memory; therefore, shared memory-based matrix multiplication
is profitable to avoid the memory latency by reusing the shared data. In addition, the
selection of tile size is an important performance factor for this shared memory-based
approach which is kept variable in the proposed flow.

5.4 GPU architecture based Exploitation

Recent GPU architectures support the half-precision floating point (FP16) data
storage and arithmetic operations that can be useful to increase the training and
inference performance of a deep classifier [38, 77, 78]. The main advantage of using
half-precision data format over 32-bits single-precision format is that it requires half
the storage and bandwidth at the expense of no or marginal loss in accuracy. The
composition of different floating point representations can be visualized using Figure
5.8.

Fig. 5.8 Format of floating point representation (IEEE754).

Nvidia recently introduced support for the FP16 storage and arithmetic into
their Pascal GPUs [79]. With the introduction of these architectures, Nvidia is
expanding the set of libraries and tools available for mixed-precision computing.
Embedded boards like Jetson TX1 and TX2 also support FP16 arithmetic and storage.
By converting the complete proposed framework and variables (input, output and
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trainable parameters) to half-precision format, arithmetic complexity and storage
requirements are further reduced for the embedded platforms having Pascal GPUs.

5.5 Experiments and Results

In this work, only CUDA-based function and libraries are used to optimize and
accelerate the deep neural classifiers discussed in the previous chapter. All required
layers and functions to construct the neural classifiers are optimized using Unified
memory scheme. Same three classification networks (ResNet-34, OverFeat model
and Alex Krizhevsky’s network for CIFAR-10) are used to evaluate the performance
of proposed flow. Experiments are performed on Nvidia Jetson TX1 embedded board
and Nvidia Shield K1 tablet. Compute capability of Jetson TX1 embedded board
and Nvidia Tegra K1 GPUs are 5.3 and 3.2 respectively.

5.5.1 Performance Evaluation on Jetson TX1 embedded board
(For GPUs having C.C. > 3.5)

First of all, the performance of GPU-only Unified ConvMM layer is measured on
Jetson TX1 embedded board, and a comparison is performed with the previous
versions of ConvMM layers (presented in Chapter 4). Table 5.1 lists the execution
speeds of different convolutional layers.

Table 5.1 Comparison of different versions of ConvMM layers under various computational
loads on Jetson TX1 Board, best results are written in bold.

Required Output Maps = 16

Image Size

ConvMM Hetero ConvMM GPU-only GPU-only
(CPU-only) (CPU+GPU) ConvMM Unified ConvMM

Double Single
(Milliseconds)

CIFAR(32 × 32 × 3) 11.17 8.03 3.20 2.53
ImageNet (224 × 224 × 3) 348.67 89.39 21.63 9.67

VGA (640 × 480 × 3) 2048.63 375.02 119.17 38.76
SVGA (800 × 600 × 3) 3212.65 584.13 169.80 59.38

SXGA (1280 × 1024 × 3) 8783.52 1294.56 582.35 112.26
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Results show that the there is a significant gain in performance when the flow
of GPU-only ConvMM layer is optimized by combining it with unified memory
scheme. Figure 5.9 shows that this optimized ConvMM layer is 5× faster than the
GPU-only version and is approximately 12× faster than the heterogeneous ConvMM
layer.

Different Image Sizes (No. of Pixels)
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Fig. 5.9 Performance Comparison of GPU-only Unified ConvMM layer and other versions
of Convolutional layer on Jetson TX1 Board as a function of input image size.

Table 5.2 presents the performance comparison of this GPU-only Unified memory
based classifiers with previously discussed versions. Results validate that a significant
gain in inference performance is achieved by using proposed memory optimization
scheme.
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Table 5.2 Performance comparison of different ConvMM layers based deep models (Jetson
TX1 embedded board), best results are written in bold.

Model Layers

ConvMM Hetero ConvMM GPU-only GPU-only
(CPU-only ) (CPU+GPU) ConvMM Unified ConvMM

Double Single
(Milliseconds)

Alex’s CIFAR-10 5 7814.25 129.90 76.36 41.56
OverFeat 8 254,285.12 2492.94 1212.74 512.40

ResNet-34 34 190,054.39 2361.18 887.53 652.28

After this memory-optimized flow, the cuBLAS library is used to further accel-
erate the proposed scheme. cuBLAS-accelerated matrix multiplication (CAMM)
is employed to compute the matrix multiplication operation required by the convo-
lutional layer. As the compute capability (C.C) of TX1 embedded board is higher
than 3.5, the cuBLAS library can be used to exploit the computational power of its
embedded GPU.

As mentioned earlier, there are various General Matrix-Matrix Multiply (GEMM)
subroutines in the cuBLAS library to support different data types and representations.
In this work, single-precision (SGEMM) routine is employed in GPU-only ConvMM
layer because the complete framework and related variables(input maps, output
results, and trainable parameters) are converted to and now in single-precision format
to reduce the memory bandwidth and storage requirements. Table 5.3 compares the
inference performance of this cuBLAS-based ConvCAMM layer over same deep
neural architectures. It can be noted that the ConvCAMM layer is approximately 2×
faster than the GPU-only ConvMM layer.

Table 5.3 Performance comparison of ConvCAMM layers on the deep architectures (Jetson
TX1 embedded board), best results are written in bold.

Model Layers

GPU-only GPU-only
ConvCAMM

ConvMM Unified ConvMM
Single

(Milliseconds)

Alex’s CIFAR-10 5 76.36 41.56 33.53
OverFeat 8 1212.74 512.40 496.83

ResNet-34 34 887.53 652.28 577.66
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After testing the performance of ConvCAMM layer, the unified memory scheme
is employed to further optimize and accelerate the flow of this cuBLAS-accelerated
layer. Results of this experiment are listed in Table 5.4. Results show that the Unified
ConvCAMM layer is tens of times faster than the heterogeneous (CPU-GPU) version
and achieves a speedup of hundreds of times over the CPU-based sequential version.

Table 5.4 Performance Comparison of Unified ConvCAMM layer over deep classifier (Jetson
TX1 Board), best results are written in bold.

Model Layers

ConvMM Hetero ConvMM Unified
(CPU-only ) (CPU+GPU) ConvCAMM Speedup Over

Double Single Sequential Hetero
(Milliseconds)

Alex’s CIFAR-10 5 7814.25 129.90 19.13 408× 7×
OverFeat 8 254,285.12 2492.94 122.90 2069× 20×

ResNet-34 34 190,054.39 2361.18 423.86 448× 6×

As Jetson TX1 board has Pascal GPU and supports the half-precision storage
and arithmetic operations; so by converting the proposed framework to FP16 format,
the half-precision General Matrix-Matrix Multiply (HGEMM) subroutine can be
exploited to gain some additional speedup in performance. For this, all imported
parameters and allocations are converted from float- to half-precision data types.
Table 5.5 presents the comparison of different versions of GPU-only ConvMM layers.
The half-precision GPU-only ConvMM layer is approximately 4× faster than the
double-precision version and shows a speed-up of 2× over the single-precision
scheme as shown in Figure 5.10.

Table 5.5 Comparison of double-, single- and half-precision ConvMM layers on Jetson TX1
Board, best results are written in bold.

Image Size
GPU-only ConvMM Layer
Double Single Half

(Milliseconds)

CIFAR (32 × 32 × 16) 5.12 3.20 2.76
ImageNet (224 × 224× 16) 35.61 21.63 17.20

VGA (640 × 480 × 16) 215.74 119.17 52.03
SVGA (800 × 600 × 16) 369.91 162.80 96.26
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Different Image Sizes (No. of Pixels)
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Fig. 5.10 Performance Comparison of double-, single- and half-precision ConvMM layers
on Jetson TX1 Board as a function of input image size.

Table 5.6 further validates that the half-precision deep classifiers are significantly
faster than the other versions and can be used to accelerate the performance of
proposed framework.

Table 5.6 Classification time of double-, single- and half-precision deep models on Jetson
TX1 Board, best results are written in bold.

Model Layers
GPU-only ConvMM Layer
Double Single Half

(Milliseconds)

Alex’s CIFAR-10 5 107.03 76.36 50.41
OverFeat 8 1924.41 1212.74 836.03

ResNet-34 34 1217.33 887.53 724.47

The flow of these half-precision classifiers is further optimized using cuBLAS-
accelerated matrix multiplication (CAMM)-based convolution approach and pro-
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posed data transfer scheme. Table 5.7 tabulates the results achieved by half-precision
GEMM routine and unified memory for all three classification networks. Results
show that the half-precision models are faster than the single-precision scheme, and
can also be useful to reduce the storage consumption and memory bandwidth which
are the crucial constraints for embedded platforms.

Table 5.7 Performance of ConvCAMM and Unified ConvCAMM layers on the deep models
(Jetson TX1 Board), best results are written in bold.

Model Layers
ConvCAMM Unified ConvCAMM

Single Half Single Half
(Milliseconds)

Alex’s CIFAR-10 5 35.53 26.37 19.13 12.85
OverFeat 8 496.83 435.3 122.9 88.02

ResNet-34 34 577.66 474.90 423.86 362.76

This support for FP16 storage and arithmetic on Pascal GPUs is mainly beneficial
as a storage format that provides a significant reduction in data transfer time from
the host to device side. However as the unified memory is proposed and employed in
our embedded framework, this speedup in transactions is not contributing enough
to improve the inference performance. This half-precision feature can be further
exploited using some specific techniques [80].

5.5.2 Performance Evaluation on Nvidia Shield K1 tablet (For
GPUs having C.C. < 3.5)

Performance of proposed scheme is also evaluated on the second embedded platform,
Nvidia Shield K1 tablet. This embedded device has Kepler K1 GPU with 192 CUDA
cores, and its compute capability is 3.2. Same experiments are performed to measure
the performance of proposed framework for embedded devices having compute
capability less than 3.5.

First of all, the performance of memory-optimized ConvMM layer is compared
with its sequential, heterogeneous and GPU-only versions. Results of this experiment
are listed in Table 5.8. It can be noted that for more extensive workloads, GPU-
only Unified ConvMM layer is significantly faster than all other ConvMM layers.
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However, this memory-based optimized layer is outperformed by the GPU-only
and heterogeneous ConvMM layers for smaller workloads due to lengthy context
initializations of the unified scheme as shown in Figure 5.11.

Table 5.8 Performance Comparison of different versions of convolutional layer under various
computational loads on Nvidia Shield tablet, best results are written in bold.

Required Output Maps = 16

Image Size

ConvMM Hetero ConvMM GPU-only GPU-only
(CPU-only) (CPU+GPU) ConvMM Unified ConvMM

Single
(Milliseconds)

CIFAR(32 × 32 × 3) 37.21 4.20 3.95 12.52
ImageNet (224 × 224 × 3) 1570.98 62.27 28.01 26.59

VGA (640 × 480 × 3) 10,055.24 327.53 154.32 116.85
SVGA (800 × 600 × 3) 15,852.86 519.08 231.95 181.85
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Fig. 5.11 Comparison of Hetero, GPU-only and memory optimized ConvMM layers on
Nvidia Shield K1 tablet as a function of input image size.
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As stated previously, cuBLAS-accelerated ConvCAMM layer cannot be used on
Nvidia Shield K1 tablet because its compute capability is less than 3.5. Therefore,
Shared memory-based matrix multiplication (SAMM) is proposed to be employed
and exploited on these types of embedded devices. The flow of this shared memory-
based ConvSAMM layer is further simplified and accelerated using unified memory
scheme. Results of this experiment are summarized in Table 5.9. It can be noted that
the GPU-only ConvMM layer is outperformed by the ConvSAMM layer for each
case of workload and its performance for higher computational loads can be further
improved by using unified memory scheme.

Table 5.9 Performance Comparison of different versions of accelerated and optimized
ConvMM layers (Nvidia Shield tablet), best results are written in bold.

Required Output Maps = 16

Image Size

GPU-only
ConvSAMM

Unified
(ConvMM) ConvSAMM

Single
(Milliseconds)

CIFAR(32 × 32 × 3) 3.95 3.20 29.15
ImageNet (224 × 224 × 3) 28.01 19.91 34.75

VGA (640 × 480 × 3) 154.32 127.32 62.98
SVGA (800 × 600 × 3) 231.95 143.45 102.69

Tables 5.10 and 5.11 list the inference performance of shared memory-based
ConvSAMM layer and its memory-optimized version (Unified ConvSAMM layer)
over the same three classification models.

Table 5.10 Classification time of optimized deep models on Nvidia Shield K1 tablet, best
results are written in bold.

Model Layers

ConvMM Hetero ConvMM GPU-only
ConvSAMM

Unified
(CPU-only ) (CPU+GPU) ConvMM ConvSAMM

Single
(Milliseconds)

Alex’s CIFAR-10 5 10,449.21 419.67 144.23 74.20 38.57
OverFeat 8 440,631.27 5792.54 3899.43 1784.24 632.91

ResNet-34 34 252,955.27 3319.34 2545.83 1210.16 767.53
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Results show that the Unified ConvSAMM layer-based deep classifiers outper-
form the other versions and achieve significant speedup in inference performance of
image classifiers.

By using the shared memory-based accelerated matrix multiplication and opti-
mized unified memory scheme, the proposed Unified ConSAMM layer is hundreds
of times faster than the sequential version and 4×-11× faster than the heterogeneous
version.

Table 5.11 Performance gain achieved by proposed optimized scheme on Nvidia Shield K1
tablet, best results are written in bold.

Model Layers
Speedup over

Sequential Hetero

Alex’s CIFAR-10 5 271× 11×
OverFeat 8 696× 9×

ResNet-34 34 330× 4×

Furthermore, energy consumption of proposed flow is also evaluated as it is an
important performance metric of mobile devices. A comparison is performed with
sequential and heterogeneous versions, and results are listed in Table 5.12. Results
show that the proposed Unified ConvSAMM layer is consuming up to 75% less
energy than the heterogeneous approach. It validates that the proposed scheme
significantly reduces the energy consumption per image frame.

Table 5.12 Power consumption of optimized scheme on Nvidia Shield K1 tablet (joule), best
results are written in bold.

Model Layers
ConvMM Hetero ConvMM Unified Efficiency over

(CPU-only ) (CPU+GPU) ConvSAMM Sequential Hetero

Alex’s CIFAR-10 5 16.0 0.410 0.202 79× 2×
OverFeat 8 850.8 3.2 0.529 1608× 6×

ResNet-34 34 480.0 1.8 0.432 1111× 4×

5.5.3 Performance Comparison with Torch framework

All these experiments are conducted on three different neural architectures (ResNet-
34, OverFeat model and Alex Krizhevsky’s network for CIFAR-10). These deep
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classifiers are trained using Torch computing framework and the trainable parameters
are imported to be used by the proposed scheme. Table 5.13 presents a performance
comparison of Torch-based models and proposed optimized networks utilizing the
trained parameters imported from the former models. This comparative analysis is
performed on Jetson TX1 embedded board which has 4 GB of RAM, a Maxwell
GPU having 256 CUDA cores and 16 GB of embedded MultiMediaCard storage.

The performance of Torch’s cuDNN (Nvidia CUDA Deep Neural Network)
library is evaluated for the same three deep classifiers. The cuDNN is a GPU-based
library of highly tuned primitives for neural networks.

The results show the comparable performance of proposed scheme and torch-
based library for OverFeat and Alex’s CIFAR-10 networks, while the proposed
scheme is slower than the cuDNN library for ResNet-34 architecture having small
filters. However, the proposed framework can also be accelerated for such networks
by using Winograd’s filtering algorithm.

Table 5.13 Comparison of proposed scheme with torch computing framework on Jetson TX1
embedded board.

Model Layers Input Image Size
Proposed Unified Torch
ConvCAMM Flow (cuDNN)

(Milliseconds)

Alex’s CIFAR-10 5 (1,3,32,32) 12.85 37.11
OverFeat 8 (1,3,231,231) 88.02 140.78

ResNet-34 34 (1,3,224,224) 362.76 102.10

As Embedded platforms have limited storage capacity; so the size of trained mod-
els, computing framework and required computational packages must be considered
as limiting constraints for the realization of neural classifiers on embedded devices.
Table 5.14 tabulates and compares the size of trained models imported from the torch
computing language and converted parameters for the proposed framework.

It can be noted that the installation of computing framework, its libraries (in this
particular case, 828 MB is consumed by the Torch and its packages on Jetson TX1
embedded board) and a complete model with trained parameters need a significant
amount of storage space. While just using the trained parameters on the embedded
platform, proposed CUDA-based optimized scheme can provide comparable infer-
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ence performance without installing any extra memory consuming computational
package.

Table 5.14 Size of Model/Parameters.

Model Layers
Trained Parameters

Torch
(float)
(Megabytes)

Alex’s CIFAR-10 5 19 41
OverFeat 8 556 1190

ResNet-34 34 83 215

All these results illustrate that the proposed optimized scheme can perform image
classification in real time on embedded platforms with significant improvement in
overall results including inference performance, energy efficiency and storage re-
quirements over the sequential and heterogeneous versions. This suggests promising
future work towards the realization of useful visual analysis tasks on the embedded
platforms [10, 29, 81, 82]. The next chapter discusses the realization of neural
network-based automatic license plate recognition (ALPR) system on a mobile
platform [83].



Chapter 6

Automatic License Plate Recognition
System on Mobile Platform

The realization of trained neural networks on the embedded platforms can open a
wide range of applications, especially in the computer vision field. This chapter
presents the realization of neural network-based automatic license plate recognition
(ALPR) system on a mobile platform1. Trained parameters of a highly precise
Italian license plate detection and recognition system are imported to be used by
our CUDA-based framework. This ALPR system is realized on a mobile platform
by simplifying the flow of trained deep architecture developed for computationally
powerful desktop and server environments.

6.1 Introduction

The principle responsibility of an ALPR system is to recognize an on-road vehicle
using its license plate. A complete ALPR system is commonly subdivided into
various computational blocks that execute sequentially, such as (i) acquisition of
image and its preprocessing, (ii) detection and localization of license plate and (iii)
character segmentation and recognition. The detection and recognition of license
plate is an important research area in the intelligent transportation system (ITS) and

1Part of the work described in this chapter has been previously published in Future Internet
Journal as "Rizvi, S.T.H.; Patti, D.; Björklund, T.; Cabodi, G.; Francini, G. Deep Classifiers-Based
License Plate Detection, Localization and Recognition on GPU-Powered Mobile Platform. Future
Internet 2017, 9, 66.
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is widely employed in numerous practical applications, such as electronic payment
systems, traffic surveillance, etc [84, 85].

Owing to its significance, several computer vision algorithms and techniques have
been proposed for the detection and recognition of a license plate and its contents
[86–91]. Although the deep classifiers can provide outstanding results in detection,
localization and recognition of a license plate like other computer vision tasks, but it
would be challenging to realize a computationally intensive deep architecture-based
ALPR system on an embedded platform.

As discussed earlier, the requirements of training and inference phases of a
deep classifier are slightly different. The training phase cannot be performed on an
embedded platform due to a huge number of input samples, parallel classifications
and numerous iterations required for learning. The state-of-the-art deep architectures
cannot be trained without support of powerful desktop stations and GPU clusters.
However, a trained network usually needs to classify only the single images in its
inference phase. Thus, it is possible to realize a neural network-based application on
a mobile platform by utilizing the computational resources of its embedded GPU and
simplifying the flow of a trained deep architecture developed for computationally
powerful environments (like a desktop workstation or GPU cluster). By importing
the trained parameters of a neural network and replicating the same flow using an
optimized framework, a mobile device can perform image classification in real-time
when there is no network connectivity or back-end support.

6.2 Related Work

Many approaches have been proposed recently for detection and recognition of
license plates [86–91]. However, there are very few realizations of these automatic
license plate recognition approaches on the embedded platforms. Several memory-
consuming computational libraries and packages are required to realize an image
classifier on an embedded platform. Realization of these approaches is a challenging
task due to limited computational power and storage resources of an embedded
device [92]. In addition, an approach must be efficient and effective to satisfy the
computational and memory constraints of an embedded device.
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A license plate recognition system for embedded platforms is proposed in [93].
A simple neural classier "AlexNet" is used and trained for recognition of Korean
License plates. This system is realized on Jetson TX1 embedded board and shows
high recognition accuracy. However, the Korean license plate contains only digits
that are easier to recognize than the alphanumeric characters.

A digital signal processor (DSP) kit-based real-time embedded ALPR system
is presented in [94]. Different hardware modules are interfaced with a digital
signal processor to perform the real-time detection and recognition of license plates.
However, results such as inference performance and recognition accuracy are not
discussed that can be used for comparison with other embedded platform-based
realizations.

An embedded plate recognition system for Brazilian vehicle identification is pre-
sented in [95]. This system is implemented using C language and can be deployed on
the embedded platforms having Linux operation system. This real-time recognition
system has some limitations for challenging imaging conditions, such as perspective
distortion, light intensity, etc.

Some research work has also been done on deep classifier-based license recogni-
tion systems, but these systems require computationally powerful desktop worksta-
tions and GPU servers to perform the real-time recognition [10, 96]. The realization
of a neural network-based automatic license plate recognition system is not well
explored for a mobile platform.

In this chapter, we presented an embedded platform based Italian license plate
recognition system. This deep neural network-based ALPR system is realized on a
mobile platform by simplifying its flow [10]. The CUDA-based framework presented
in previous chapters is used to replicate the neural classifiers. Trained parameters
are imported to be used by the replicated network. By exploiting the computational
resources of an embedded GPU, visual analysis tasks can be performed on a hand-
held device without any need of network connectivity. Other resources (e.g, the
camera, Bluetooth and WiFi) of a mobile device can also be utilized for acquisition
of input data and communication of results.
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6.3 Plate Recognition System Developed for Desktop
and Server Environments

Training of a fully convolutional deep neural network is performed using a synthetic
dataset having images of a broad diversity [10]. The accuracy of this network is
tested on a dataset of real images, it is done to assure that the learned features
are robust to the various image capturing conditions. The neural network-based
architecture for an Italian license plate recognition system is constructed and trained
using Torch framework. The detection and localization of plates and characters are
performed using two different classifiers as shown in Figures 6.1 and 6.2.

Fig. 6.1 Italian plate detector and localizer.

The task of detection and localization can be performed simultaneously for both
networks (for plates and characters) using shared connections of convolutional layers.
The same neural classifiers with minor modifications can be trained on a new dataset
to recognize the multi-style license plates [97].



6.3 Plate Recognition System Developed for Desktop and Server Environments 77

Fig. 6.2 Character detector and localizer.

These neural networks attach weights in a convolutional pattern instead of using
fully connected layers for classification stage. These fully convolutional layers with
max-pooling functions keep only the strongest features, by decreasing the spatial
resolution and relevance. An input image of any size can be classified by reorganizing
the fully connected layers to fully convolutional layers. The output of this network
becomes a matrix where the classification of each window in the original image
corresponds to a specific element of the output matrix.

Figure 6.3 shows the flow of a deep neural architecture-based Italian plate
recognition system developed for running on computationally powerful desktop
and server environments. The accuracy of this system is 98% on real images. This
highly precise ALPR system is composed of numerous computationally intensive
image processing blocks that perform different important operations, such as multi-
scale detection and localization of a single input frame for the license plates and
then characters. This complete architecture is highly complex and demands high
computational power. Realization of a computationally demanding deep neural
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architecture on a mobile platform is very challenging due to limited computational
power and storage resources of an embedded device.

Fig. 6.3 Flow of neural network-based license plate recognition system developed for desktop
and server environments.

The computationally demanding architectures like these can be realized on a
low-power mobile platform by simplifying the flow of the trained architecture and
exploiting an optimized library for the neural networks. However, there would be a
direct trade-off between the classification accuracy and the inference performance
for the simplified architecture.

6.4 Simplified Flow for Mobile Platform

This section presents our simplified flow of the Italian license plate recognition
system for the low-power mobile platforms. Trained parameters are imported from
the plate and character networks discussed in the previous section. These parameters
are imported to be used by the identical classifiers realized using our CUDA-based
framework. The GPU of the mobile platform is exploited using the CUDA-based
functions to accelerate the detection and localization of plate and characters.

Figure 6.4 shows the flow of the simplified architecture. The trained network for
the plate detection and localization is realized in its original form, this is done to
correctly localize a single license plate in a complex scene. In order to reduce the
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memory consumption and improve the inference performance, the trained parameters
are converted from double to float data type. However, this conversion does not
affect the accuracy of the plate detection. Since the original network discussed in the
previous section demands multiple classifications for plate and character recognition
that can be computationally and memory intensive for an embedded platform, so the
multiple classifications are avoided to simplify the flow of the original network by
sacrificing some classification accuracy. An error correction block is also introduced
in the simplified flow to improve the recognition performance. This error correction
scheme is based on the position of the detected characters, as the Italian license plates
have a specific format, so some errors can be corrected by verifying the position of
the characters in the license plate.

Fig. 6.4 Simplified Flow of neural network-based license plate recognition system.

The original network discussed in Section 6.3 is entirely scale-independent by
carrying out the multiple classifications through scaling down the input image in
steps by a factor of 2, while the simplified network for the mobile platform is limited
to a scale factor of 2 between the minimal and maximal recognizable scale. It
significantly reduces the computational complexity but also restricts the user to
capture the correct image by applying the appropriate zoom. The license plate should
span about 30 to 90% of the captured image and may be rotated up to 45 degrees.
Light conditions must be such that the license plate should be readable in captured



80 Automatic License Plate Recognition System on Mobile Platform

image by a human. Figure 6.5 shows some examples of such challenging imaging
conditions.

(a)

Input Image Plate Detection and Skew
Correction

BW 063GM

(b)

Input Image Plate Detection and Skew
Correction

BW 063GM

(c)

Input Image Plate Detection and Skew
Correction

BW 063GM

Fig. 6.5 Images captured at night in different imaging conditions: (a) image captured with
perspective distortion; (b) image captured with insufficient illumination; (c) image captured
with over-exposure and reflections due to speed-light.

6.4.1 Simplified flow for Plate Classification

First of all, the size of the input image is scaled down to simplify the flow of the
trained deep architecture discussed in Section 6.3. The input image is resized to
128 × 64 to allow a single license plate classification per image as shown in Figure
6.6. Then, the license plate classification is performed to detect the plate and find
its position inside the input image. This detection and localization network consists
of 16 convolutional layers as shown in Figure 6.1. Out of 16 convolutional layers,
the first 10 layers are to provide shared connections for simultaneous license plate
detection and localization. The other 6 layers are to perform either plate detection or
localization (3 convolutional layers for each task). The plate detector has 2 outputs
while the plate localizer provides 8 values. The output of plate detector indicates that
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a license plate is detected or not, while the output of localizer represents the x- and
y- coordinates of 4 points that enclose the detected license plate.

Fig. 6.6 Rescaled input image.

The output of plate localizer normally generates a simple quadrilateral (paral-
lelogram). The skewness of license plates negatively affects the performance of
subsequent characters detection and localization steps. Besides other factors, the per-
formance of character classification also depends on the skew correction of detected
plate and can be improved using a reliable approach [98]. Thus, the input image is
un-rotated to convert this parallelogram to a perfect rectangle for accurate character
classification.

After skew correction, it is essential to acquire the updated coordinates of the
detected plate, to obtain better results from character detection and localization. It
can be achieved either by reclassifying the license plate or by computing the updated
coordinates based on the rotation (skew correction). The plate reclassification helps
to obtain more accurate license plate localization but also increases the overall
computational time. So, the plate reclassification is performed, and detected plate is
cropped from the original input image based on the updated localization results.

6.4.2 Simplified flow for Character Classification

The next part of the simplified automatic license recognition system is the classifica-
tion of characters in the cropped image. The character classifier shown in Figure 6.2
is composed of 12 convolutional layers and can also perform simultaneous detection
and localization of characters as the plate classifier. The character detector yields
33 outputs per classification that represent the possibility of different alpha-numeric
characters for Italian license plates, while the character localizer provides 4 values
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per classification that represent the x- and y-coordinates of the top-left and the
bottom-right vertices of the rectangle that encloses the detected character.

First of all, the cropped image from the plate classification stage is resized to
188 × 40. This is done to acquire the appropriate classifications of characters. It
can be noted that the dimension of this crop is higher than the input image used for
the plate detection and localization because higher resolution of characters is not
required for plate classification. The character detection and localization network
has 3 max-pooling layers and the stride between the classifications are 8 pixels. The
complexity of network is significantly reduced by rescaling the crop to a height of
40 pixels that reduces the classifications to a single line. This yields a crop of 188 ×
40 pixels due to the aspect ratio and provides 21 partly overlapping slots as shown in
Figure 6.7.

Fig. 6.7 Overlapping classifications and selection of alpha-numeric characters for final result.

A single slot or classification represents a 24 × 40 portion of the input image that
may contain an alpha-numeric character. The highest output value of the character
detector yields the final result out of 33 values representing the Italian alphabets (22),
digits (0-9) and a null (background) value.

There are total 7 characters in an Italian license plate as shown in Figure 6.8.
Out of 21 partly overlapping classifications, the simplified Italian plate recognition
system must select 7 characters (4 alphabets and 3 digits). A heuristic approach is
adopted to find the final result. The 21 slots (classifications) are divided into 7 small
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clusters each having 3 slots as shown in Figure 6.7. The highest output values within
each cluster are selected for the final result.

Furthermore, the output of character detector is directly affected by the size of
the cropped image. The number of classifications and the accuracy of character
classifier can be varied by selecting an offset on plate localization step defining the
character input crop. It can be visualized from Figure 6.8 that the cropped license
plate with an offset of 4 pixels yields exactly 7 classifications of an Italian license
plate.

Fig. 6.8 Detected Characters in output image.

6.5 Experiments and Results

First of all, the performance of original network discussed in Section 6.3 is measured
on two different types of GPU platforms. The first platform is a powerful desktop
workstation equipped with Intel Core i7 processor at 3.40 GHz and 16 GB of RAM
memory. This workstation is connected to a Nvidia Quadro K2200 graphic card
having 640 CUDA cores and 4GB of GPU memory via a PCI express bus. The
second platform is powerful Nvidia Jetson TX1 embedded board. As mentioned
earlier, this embedded board comes with ARM Cortex A-57 processor, 4 GB of RAM
and a Maxwell GPU having 256 CUDA cores. The execution time of Torch-based
original network is examined on both platforms for performance analysis.

An input image of size 640 × 480 is selected for evaluation of multi-scale
classification of Italian license plates. As listed in Table 6.1, there can be two cases in
the original ALPR system. It can be visualized from Figure 6.3 that if a license plate
is not detected in the input image, then there is no need to carry out the remaining
processes of plate and character classification. This restriction significantly reduces
the inference time, as can be observed from Table 6.1. Conversely, execution of all
processing blocks like reclassification and merging of results would be performed in
case of a detected license plate. As mentioned previously, the accuracy of original
plate recognition system is 98% on real photos. However, it can be noted that in
case of positive classification, the execution time of the original ALPR system is
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higher (1.45 + 3.24 = 4.69 seconds) on a powerful embedded platform like Jetson
TX1 board.

Table 6.1 Performance analysis of original and simplified networks.

Quadro K2200 Jetson TX1 Nvidia Shield K1
Network Original Simplified Original Simplified Simplified

(Milliseconds)

Plate Classification
150 26 1450 244 300

Time
Character Classification

510 27 3240 248 250
Time

The inference performance of the original network can be much worse on the
mobile platforms that have limited computational resources than the powerful desk-
top workstations and embedded boards. At expense of some recognition accuracy,
the inference performance of an ALPR system can be improved significantly by sim-
plifying the original flow and eliminating the computationally intensive processing
blocks.

The simplified flow of ALPR system proposed in Section 6.4 is first evaluated on
same GPU platforms, Quadro K2200 and Jetson TX1 board. This is done to compare
the inference performance of proposed simplified flow with the original network.
Results show that the execution time is reduced significantly due to elimination
of intensive tasks like merging of results and reclassifications in the simplified
flow. Then the performance of this proposed flow is evaluated on Nvidia Shield
K1 tablet that is equipped with Tegra K1 GPU having 192 CUDA cores. For an
input image of size 128 × 64, the plate detection and localization is performed in
around 300 milliseconds. Additionally, the character classification of a cropped
license plate of size 188 × 40 is performed approximately in 250 milliseconds.
Results show that the inference performance of a license plate recognition system
can be significantly improved by using the input images of smaller dimensions and
single-scale classification.

As mentioned earlier, the size of trained models, computing framework and
required computational packages must be considered as limiting constraints for the
realization of neural classifiers on the low storage embedded platforms like a mobile
device. A complete model with trained parameters needs a significant amount of
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storage space. By importing the trained parameters and replicating a neural network-
based system using our CUDA-based scheme, there is no need of any other memory
consuming framework or computational packages. Table 6.2 compares the size
of trained parameters imported from the torch computing language and converted
parameters for the simplified flow of automatic license recognition system. It can
be noted that the proposed flow is consuming half storage space as compared to the
original network, because the trained parameters are converted to float data type to
reduce the memory consumption and improve the inference performance.

Table 6.2 Size of Parameters.

Trained Parameters Converted Parameters
Network Double Float

(Megabytes)

Plate Classifier 75.70 37.85
Character Classifier 65.63 32.81

However, the simplification of architecture indeed affects the recognition per-
formance. Table 6.3 lists the classification accuracy of full plate detection (all 7
alpha-numeric characters) and a single character detection. The testing dataset is
comprised of real-world images of Italian license plates downloaded from the Inter-
net [99]. Total 788 crops of aspect ratio 2:1 roughly centered around license plates
are used to test the performance of simplified slow.

Results listed in Table 6.3 show that the classification accuracy can be increased
by selecting a suitable offset value. After finding the best offset value (=4), the
coordinates generated by the plate localizer (for cropping the input images) are
moved some pixels in both horizontal directions to analyze the effect of shifting on
the classification accuracy. Different offset and shifting values are tested and the
results show that the best classification accuracy is obtained by cropping the detected
license plate with offset 4 outside the localization values and shifting 2 pixels to the
right.



86 Automatic License Plate Recognition System on Mobile Platform

Table 6.3 Classification accuracy of character detection and localization.

Offset Full Single
for Plate Character

Cropping Detected Plates Accuracy Accuracy

0 17% 68%
2 28% 78%
4 30% 82%
8 25% 79%

4 (+2) (21 detected characters) 54% 90%
4 (+2) + Error correction 61% 92%

Original Network 94% 98%

Furthermore, a new block for error correction is employed in the simplified flow
to increase the classification accuracy. As Italian license plates have a specific format
that can be visualized using Figure 6.8, an error correction scheme based on the
position of characters is applied. Table 6.4 tabulates some rules defined for correction
of characters based on their position in the Italian license plate. The classification
accuracy after error correction is also listed in Table 6.3. It can be noted that there is
an increase of 13 % in full plate accuracy and an increase of 2 % in single character
accuracy after position-based error correction.

Table 6.4 Error correction based on position.

Original Character Correction

B 8
D 0
Z 2
J 1
G 6

The accuracy of this mobile device-based ALPR system can be further improved
by increasing the resolution of the input image and employing the multi-scale classi-
fication and other eliminated processing blocks from the deep neural architecture
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developed for desktop and server environments. The execution time of these compu-
tational blocks and neural architectures can be significantly improved by compressing
or reducing the computational complexity of convolutional layers.

In this work, the computational power of embedded GPU is utilized to accelerate
the image classification on a hand-held device. A Graphics processing unit (GPU)
is not specialized for only Visual analysis tasks, the computational resources of
an embedded GPU can also be exploited to accelerate the other general purpose
(non-computer vision) applications [12, 100].



Chapter 7

Conclusions and Future Work

In this thesis, we presented an optimized scheme to deploy trained neural archi-
tectures on embedded platforms. The first part of this thesis was related to the
development of a CUDA-based framework to perform image classification via deep
classifiers on embedded devices. Required networks were trained using the desktop
workstation or GPU clusters depending on the required computational power. Then,
the trained parameters were imported and fed to the identical deep architectures
constructed using our CUDA-based implemented functions without any precision
loss. The CUDA computing language was used to implement and accelerate all
required functions, including matrix multiplication based convolutional (ConvMM)
layer. The performance of realized networks is evaluated on two different type of
embedded platforms: on Jetson TX1 embedded board and Nvidia Shield K1 tablet.
Results showed that the GPU-accelerated ConvMM layer based deep classifiers were
hundreds of times faster than the CPU-based sequential versions.

The second part of this thesis is the extension of first work, where we optimized
the proposed scheme to deliver higher inference performance and energy efficiency
with lesser memory requirements. A set of optimization techniques were proposed
and employed in our embedded framework to bridge the gap towards the real-time
image classification on the hand-held devices. Optimized data transfer scheme,
hardware dependent matrix multiplication and GPU architecture based exploitation
of resources significantly improved the performance of proposed framework. Results
illustrated that the proposed scheme can perform real-time image classification on
embedded platforms.
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These results motivated us to explore the other possible image classification
problems that can benefit from a portable mobile device. An automatic license plate
recognition (ALPR) system was realized on the mobile platform by simplifying the
flow of a trained neural architecture developed for running on the desktop and server
environments. The performance of already trained networks was measured on a
powerful desktop workstation equipped with Quadro K2200 GPU card and Jetson
TX1 board. Results showed that this neural network-based ALPR system cannot
be realized on a low power mobile platform in its original forms. By reducing the
architectural complexity of network and resolution of the input image, the task of
license plate recognition was performed on Nivida Shield K1 tablet. However, this
reduction in architectural complexity directly affected the recognition accuracy. A
comparative analysis of arithmetical complexity and inference performance was
performed. Experimental results concluded that the even computationally complex
neural network can be deployed on the embedded platforms by sacrificing some
recognition performance.

All these results suggest promising future directions towards the realization of
neural network-based image recognition and classification problems on the embed-
ded platforms. The performance of developed framework can be further improved by
reducing the computational complexity of the convolution operation. Different ap-
proaches like Winograd’s minimal filtering technique can be adopted to minimize the
arithmetic complexity of the convolution operation over small tiles. The Winograd
technique minimizes the complexity by performing the element-wise multiplication
instead of matrix multiplication and reduces the number of arithmetic operations
compared to traditional convolutions approach. This technique can further improve
the performance of proposed framework for small filter and batch sizes as used by
the recent deep architectures.
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