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Abstract

Modern methodologies for the analysis of composite structures are demanded to satisfy the

accuracy requirements at different scales, from micro to macro and possibly in a global/local

sense. In this domain, the present paper proposes a hierarchical, component-wise approach for

the linear static analysis of layered structures. By employing the Carrera Unified Formulation

and a variational statement, finite element arrays of refined beam models are expressed in

terms of fundamental nuclei. Legendre-based polynomials are utilized to implement, in a

hierarchical form, higher-order beam kinematics. Also, curved cross-section geometries are

formulated in a correct and consistent manner through mapping blending functions. Mapping

and refined kinematics beam models are, thus, inherently combined to give the component-wise

method, according to which each component of the structure (e.g., layer, fibres, and matrix) is

modeled independently and with its geometric and mechanical characteristics. This approach

is demonstrated to provide enhanced accuracy for the analysis of composite structures, from

layer scale to fibre-matrix level, but still with low computational costs.

Keywords: Refined beam theories, Finite element method, Carrera unified formulation,

Hierarchical Legendre expansions, Blending functions, Laminated structures, Fiber-reinforced

composites, Global-local methods.

∗Professor of Aerospace Structures and Aeroelasticity, e-mail: erasmo.carrera@polito.it
†Marie Curie PhD Student, e-mail: alberto.garcia@polito.it
‡Research Assistant, e-mail: alfonso.pagani@polito.it

1



1 Introduction

Composite materials have been increasingly employed during the last decades for the in-

troduction of novel structural components in all types of engineering fields, specially in the

aerospace. The advantages of laminated composite structures in terms of specific stiffness

and strength in comparison with traditional metal alloys are widely known, see for instance

the book of Reddy [1], and many aerospace companies are employing these advanced mate-

rials in major structural parts of their latest products. However, in order to fully exploit the

capabilities of composites there are still many problems that need to be addressed, such as

the correct understanding of failure, damage or fatigue, among others. A proper research of

these problems goes through the development of enhanced modeling techniques that aim to

capture the complex phenomena that is involved in the mechanical behavior of composites

at different scales, from the macro-structure to the fiber-matrix scale, in the most efficient

manner. This paper proposes a novel method for the global-local analysis of fiber-reinforced

laminated structures based on the use of refined beam models.

A common practice for the stress analysis of composite structures is the use of 3D finite

elements to mesh in detail all the different components to a desired level of accuracy. Nev-

ertheless, the size of the computational problem is a limiting factor of solid analysis due to

the several scales that play a role in the behavior of these materials. Many efforts have been

focused on the development of efficient methods for the accurate analysis of composites with

acceptable computational costs. The literature is vast on enhanced 1D and 2D formulations

for the analysis of laminated structures. A comprehensive review of these refined methods

was presented by Kapania and Raciti [2, 3]. Some of the well-established methods for the

analysis of laminates are: higher-order models [4, 5, 6, 7, 8, 9], trigonometric theories [10],

zig-zag models [11, 12, 13, 14], mixed variational theories [15, 16] and layer-wise methods

[17, 18, 19, 20, 21, 22, 23]. Many of the aforementioned refined methods provide highly ac-

curate stress solutions at the layer level. However, their use is usually limited to the global

structural analysis since they cannot deal with the phenomena involved at the fiber scale.

Multi-scale approaches provide a tool to study the damage and failure of composites, in

which the local phenomena at the scale of the constituents affects the global behavior of the

structure. Multi-scale methods are usually based in a decomposition of the structural problem

in a global analysis at the macro-scale, and a micromechanical analysis at the constituent level.

Over the years, different micromechanical theories have been proposed and still nowadays

there is a huge investment of resources in the field. Some of those methods are the self-

consistent model [24], the Generalised Method of Cells (GMC) [25, 26, 27], the Mathematical

Homogenization Theories (MHT) [28], the Representative Volume Element (RVE) [29, 30, 31]

and the Mechanics of Structure Genome (MSG) [32]. Usually, the validity of the multi-scale

approach relies on the accuracy of the micromechanical model. In this sense, one of the major

concerns of the researchers remains to maintain the size of the micromechanical model under

certain limits to make the study feasible in terms of computational efforts.

This paper presents a novel approach for the efficient global-local analysis of composite
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structures based on the Component-Wise method and hierarchical advanced 1D models. The

Component-Wise (CW) method can be defined as a modeling technique in which the differ-

ent components of a composite are individually and independently modeled by means of a

unique formulation. This methodology was devised in the framework of the Carrera Unified

Formulation (CUF) in [33] for the analysis of composite laminates including layers, fibers and

matrix, and then extended to the study of multi-component aircraft structures [34, 35], civil

structures [36] and more recently for the evaluation of failure parameters in composites [37].

The CW method allows one to study the same structural problem using different scales. A

particular laminated structure can be analyzed following global approach, i.e accounting for

the properties of the homogenized layers, or at a local scale, i.e. selecting the components

in which a detailed stress analysis is desired. Different beam theories can be employed to

generate CW models. In this work, the Hierarchical Legendre Expansions (HLE) [38, 39]

are used for the kinematic description of the cross-sectional domain. These models present

some advantageous characteristics such as non-local expansion capabilities and hierarchical

refinement of the beam kinematics, which make them an ideal tool for the CW analysis of

composites. In addition, a novel mapping technique [40] for the cross-sectional expansions is

used to capture the correct geometry of curved components, such as fibers, without the need

of further refinements of the model and, therefore, optimizing the modeling phase.

The paper is organized as follows: first, a brief description of the 1D CUF formulation

is provided in Section 2, with a focus on the HLE beam theories; then, the cross-sectional

mapping technique is presented and a some insights about the CW-HLE modeling are high-

lighted; subsequently, the finite element approximation employed in this work is described

in Section 3, with special attention to the derivation of the stiffness matrix in the form of

fundamental nuclei; the numerical assessment of the proposed method can be found in Section

4; and finally, the main conclusions are drawn in Section 5.

2 CUF 1D theories

The high computational costs of solid models that are usually demanded for the accurate

analysis of multi-component structures remains as one of the main limitations of the research

field. As a consequence, the introduction of efficient models that can deal with the complex

phenomena involved at multiple scales is of major importance. In this context, the Carrera

Unified Formulation establishes a framework for the study and implementation of novel refined

beam models that provide 3D-like solutions with great savings in computational costs. This

section describes the main ideas of the CUF methodology and proposes a recent theory of

structure for the global-local analysis of composites.

The Cartesian coordinate system adopted in this paper for a generic beam structure is

illustrated in Fig. 1. The beam is placed along the y-axis in 0 ≤ y ≤ L, whereas the cross-

section, Ω, is described over the xz-plane. In the CUF framework, the generalized unknowns

of the structural problem are expanded over the cross-section domain by arbitrary functions,
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Figure 1: Coordinate reference frame.

as follows

u(x, y, z) = Fτ (x, z)uτ (y) τ = 1, 2, ...,M, (1)

where u(x,y,z) is the displacement vector, Fτ (x, z) corresponds to the expanding functions of

the cross-section coordinates, and uτ (y) is the vector of the generalized displacements of the

beam. The repeated subscript τ denotes summation and M is the total number of terms of

the expansion. The choice of Fτ (x, z) and M is arbitrary and is introduced as an input of the

model, defining the beam theory adopted. Since the introduction of the CUF, many beam

theories of structure have been developed and applied to the analysis of compact, thin-walled,

multi-component and composite structures, among others. Two of the most investigated 1D

CUF models are the Taylor Expansions (TE) [9] and the Lagrange Expansions (LE) [41],

although they are not described in this paper for the sake of brevity. The research activity

of the present work is focused on the recently introduced Hierarchical Legendre Expansions

(HLE) and its applications for the global-local analysis of composite materials.

2.1 Hierarchical Legendre Expansions (HLE)

The HLE theory of structure makes use of hierarchical sets of Legendre-based polynomials

to expand the mechanical variables over the cross-section coordinates. The model was first

introduced by Carrera et al. [38] and then extended to the layer-wise analysis of laminated

structures by Pagani et al. [39]. Its main features include: the hierarchical structure of the

beam kinematics, which is inspired in the definition of the 2D set of interpolation polynomials

of the work of Szabò and Babuska [42]; and the dislocation of the expansion domains above

the cross-section. These characteristics make HLE beam models a suitable candidate for the

accurate analysis of structures that feature heterogeneities in the xz-plane, as the one shown

in Fig. 1. The set of Legendre-based polynomials employed in the model are included in Fig.

2. They can be classified in vertex, side and internal expansions, which are described in the

following.

• Vertex expansions: analogue to the bi-linear Lagrange polynomials. They are defined
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as follows:

Fτ =
1

4
(1− rτr)(1− sτs) τ = 1, 2, 3, 4, (2)

where r and s vary over the natural domain between −1 and +1, and rτ and sτ represent

the vertex location in the natural system of coordinates.

• Side expansions: introduced for p ≥ 2, where p is the polynomial order and, con-

sequently, defines the beam theory approximation. They are null at all edges of the

domain but one, being their expressions:

Fτ (r, s) =
1

2
(1− s)φp(r) τ = 5, 9, 13, 18, ... (3)

Fτ (r, s) =
1

2
(1 + r)φp(s) τ = 6, 10, 14, 19, ... (4)

Fτ (r, s) =
1

2
(1 + s)φp(r) τ = 7, 11, 15, 20, ... (5)

Fτ (r, s) =
1

2
(1− r)φp(s) τ = 8, 14, 16, 21, ..., (6)

where φp are the one-dimensional Legendre-type internal polynomials, as described in

[42, 38], for instance.

• Internal expansions: included for p ≥ 4, they vanish at all the edges of the quadrilateral

domain. In total, there are (p−2)(p−3)/2 internal polynomials. For the sake of clarity,

the three internal expansions correspondent to the sixth-order model are written here:

F28(r, s) = φ4(r)φ2(s) (7)

F29(r, s) = φ3(r)φ3(s) (8)

F30(r, s) = φ2(r)φ4(s). (9)
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Figure 2: Linear to seventh-order, hierarchical Legendre-type expansion polynomials used for
HLE beam models.
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In HLE beam theories, the accuracy of the model is controlled by the polynomial order of

the expansion, that is introduced in the analysis as an user input. The kinematics enrichment

procedure can be easily explained with the support of Fig. 2: the first order model, denoted

to as HL1, employs only the vertex expansions (first row); the second order model, HL2,

adds the first 4 side expansions (second row); the third-order model incorporates other four

expansions (third row) in a hierarchical manner; and so for the higher-order models. In this

manner, the seventh-order model, HL7, includes all the polynomials shown in Fig. 2 for the

formulation of the beam kinematics. Refined beam theories exploiting step-wise higher-order

expansions of the displacement field can be implemented by dividing the cross-section domain

in different sub-domains, each of which with its own HLE approximation, geometry, and

material heterogeneity, in case. It is clear that, due to the high polynomial orders employed

for the kinematics, the discretization of the physical domain of the cross-section should be

coarse. Therefore, it is necessary to capture the correct shape of the structural components

with a minimum number of segments, which leads to the introduction of advanced mapping

techniques for the expansion domains.

2.2 Cross-sectional mapping

In HLE beam theories cross-sectional expansion sub-domains are large. The computation of

the stiffness matrix terms requires the correct evaluation of the integrals of the expansion

functions, Fτ , over the cross-section physical domain, Ω. So it comes necessary to accurately

represent the curved boundaries of the sections with a reduced number of edges. The blending

function method, introduced by Gordon and Hall [43], is an adequate approach to meet this

demand. The main advanatge of this method is that it allows one to define the geometry of the

physical surfaces, fibers and laminas for instance, independently of the kinematic refinement in

a non-isoparametric sense. The technique here proposed is illustrated in this section, although

a more detailed description of the different mapping techiques used for refined beam theories

can be found in Pagani et al. [40].

The coordinates of a generic expansion domain in the global reference system are defined

in the xz -plane through the mapping functions, Q, as:

x = Qx(r, s) (10)

z = Qz(r, s), (11)

where r and s define in the natural plane of the quadrilateral domain. For illustrative purposes,

first let us consider a domain with only one side curved, for instance side 2. The coordinates

of this edge can be described by parametric functions of the type x = x2(s) and z = z2(s).

The polynomial order of the parametrization can be chosen by the user depending on the
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shape of the edges to be represented. For a third-order mapping, these functions read:

x2(s) = ax + bxs+ cxs
2 + dxs

3 (12)

z2(s) = az + bzs+ czs
2 + dzs

3. (13)

They are are defined in −1 < (r, s) < 1 so that x2(−1) = X2, x2(1) = X3, z2(−1) = Z2 and

z2(1) = Z3, being (Xτ , Zτ ) the coordinates of the τ -th vertex of the quadrilateral domain in

the global reference systems. The blending function method adds the geometrical description

of the curved edge to the isoparametrical mapping functions, as follows:

x = Qx(r, s) = Fτ (r, s)Xτ +
(
x2(s)−

(1− s
2

X2 +
1 + s

2
X3

))1 + r

2
(14)

z = Qz(r, s) = Fτ (r, s)Zτ +
(
z2(s)−

(1− s
2

Z2 +
1 + s

2
Z3

))1 + r

2
, (15)

where τ = 1, ..., 4. The first term maps the quadrilateral straight domain through the vertex

expansions, whereas the second accounts for the difference between the curve described by the

parametric functions, x2(s) and z2(s), and the straight edge of the domain. This procedure

can eventually be extended to all the edges of the expansion domain, resulting in the following

mapping expressions:

x = Qx(r, s) =
1

2
(1− s)x1(r) +

1

2
(1 + r)x2(s) +

1

2
(1 + s)x3(r) (16)

+
1

2
(1− r)x4(s)− Fτ (r, s)Xτ (17)

z = Qz(r, s) =
1

2
(1− s)z1(r) +

1

2
(1 + r)z2(s) +

1

2
(1 + s)z3(r) (18)

+
1

2
(1− r)z4(s)− Fτ (r, s)Zτ . (19)

In this manner, one can capture the exact shape of the integral domains above the cross-

section of the beam and therefore nullify the geometrical error of the model. Figure 3 shows the

application of the blending function method to the section of a generic fiber. The introduction

of HLE beam models with mapping capabilities can be suitable for the accurate modeling of

composites at several scales, such as laminates or fiber-reinforced structures, as described in

the next section.

2.3 Component-Wise approach for the global-local analysis of com-

posites

The multi-scale analysis of composite structures is dominated by the use of 3D brick elements

for the representation of the geometry of the material constituents. However, the elevated

number of layers, the different geometrical scales of the components or aspect ratio constrains

of solid elements, can lead to prohibitive computational costs if accurate analysis are desired.

The Component-Wise approach aims at alleviating this issue by modeling each component
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Figure 3: Mapping of a generic fiber cross-section by the blending function method.

of the composite by means of a refined 1D model. HLE beam theories can be employed to

model the constituents (geometry and material properties) of a fiber-reinforced composite

at different scales using a unique kinematic scheme. Homogenized parts, layers, fibers and

matrices can be studied following a global-local approach, allowing the researcher to increase

the accuracy of the model in the zones of interest while reducing the computational effort

of the rest of the analysis. In addition, generic fibers can be modeled by means of a single

HLE expansion (see Fig. 3) leading to an optimized computation of the stress fields in the

fiber-matrix cells embedded in the analysis of the laminated structure. Figure 4 illustrates

the different approaches that can be considered for the HLE modeling of composite materials,

which are:

1. Equivalent Single Layer (ESL). The properties of the constituents are merged into one

equivalent layer. The refinement of the model is controlled by the polynomial order of

the HLE expansion and remains independent of the number of layers of the original

composite. In ESL models, the continuity of the transverse stresses across the lami-

nate and the piece-wise discontinuity of the displacements derivatives is generally not

satisfied.

2. Layer-Wise (LW). Each layer is modeled independently using non-local HLE expansions

and the continuity of transverse stresses is satisfied if high-order polynomials are used

for the beam kinematics. It neglects the high gradients of the stresses at the fiber-matrix

scale.

3. Component-Wise (CW). This approach gives the user the freedom to tune the accuracy

of the analysis in two manners: first, by the description of the geometrical characteristics

of the model (layers, fiber and matrix can be accounted in a unique formulation), and

second, by the hierarchical enrichment of the kinematics through the HLE expansion

order in desired areas of the problem domain.
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Figure 4: HLE beam analysis of composite materials: modeling approaches.

On the right-hand side of Fig. 4, the reader can observe two possible simulation approaches

for the CW analysis of a laminated structure. One accounts for the fibers and matrix of each

layer, and other follows a global-local approach including homogenized layers, some fibers and

the surrounding matrix. The focus of the present work is about the use of HLE beam theories

for the development of LW and CW models. Although the ESL approach is described here

for the sake of completeness, it is not considered for the numerical assessments.

3 Finite element formulation

In this work, the Finite Element Method (FEM) is used solve the structural problem in the

framework of CUF. The generalized displacements unknowns, uτ , are interpolated over the

beam axis by means of classical FEM shape functions, Ni, as:

uτ (y) = Ni(y)uτi, i = 1, 2, ..., n, (20)

where uτi = {uxτi uyτi uzτi}T is the nodal unknown vector and n is the number of nodes per

element. Now, introducing the FEM approximation of Eq. 20 into the CUF kinematics of

Eq. 1, one obtains the following displacement field:

u(x, y, z) = Fτ (x, z)Ni(y)uτi. (21)

Four-node Lagrangian 1D elements are used in this paper to discretize the beam axis, which

lead to a cubic approximation of the unknown variables along the y-coordinate. For a more

detailed description of the FEM applications of CUF, the reader is referred to Carrera et al.

[44]. It is important to note that the choice of the theory of structure (TE, LE, HLE) and the

kinematics (i.e. discretization of the cross-section and polynomial order of the expansion) are

independent of the finite element discretization employed to solve the governing equations.

It is of common knowledge that beam elements, as well as other FEM formulations, are

prone to suffer from shear locking, specially in bending-dominant problems when thin struc-
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tures are considered. Many different methods can be found in the literature that mitigate this

numerical issue. Among those, the reduced integration schemes [45, 46] might be the most

widely spread. In the present work, the MITC method [47, 48] is employed in all numerical

cases to eliminate the detrimental effects of the shear locking and to obtain highly accurate

solutions for the shear components of the stress field. This capability remains of major im-

portance for the correct understanding of the complex phenomena that occur in composite

materials at the fiber scale. For more details about the implementation of the MITC method

on refined beam theories, interested readers are referred to Carrera et al. [49].

3.1 Fundamental nucleus of the stiffness matrix

The problem arrays, i.e. stiffness matrix and loading vector, are obtained via the principle of

virtual displacements. For linear static analysis, it reads

δLint =

∫
L

∫
Ω

δεεεTσσσ dΩ dy = δLext, (22)

where δLint is the virtual variation of the strain energy and δLext corresponds to the virtual

variation of the work of the external loads. L is the length of the beam and Ω is the surface

of the cross-section. In this work, the strain vector, εεε, is related to the displacements through

the 3D linear geometrical relation, whereas the stress vector, σσσ, is obtained through the

constitutive equations. Using these definitions and introducing the displacement field of Eq.

21, the virtual variation of the strain energy can be rewritten as

δLint = δuTτiK
τsijusj, (23)

where Kτsij is the fundamental nucleus of the stiffness matrix. This array has a 3×3 arrange-

ment and contains the basic information of the structural model. For illustrative purposes,

a diagonal and an out-of-diagonal components of the fundamental nucleus are provided in

the following for the case of transversely isotropic materials with arbitrary orientations in the

xy-plane (e.g. fiber-reinforced laminae).

K τ sij
xx = C̃22 I ij Eτ,xs,x + C̃44 I ij Eτ,z s,z + C̃26 I ij,y Eτ,xs + C̃26 I i,y j Eτ s,x + C̃66 I i,y j,y Eτ s

K τ sij
xy = C̃23 I ij,y Eτ,xs + C̃45 I ij Eτ,z s,z + C̃26 I ij Eτ,xs,x + C̃36 I i,y j,y Eτ s + C̃66 I i,y j Eτ s,x .

(24)

It can be easily demonstrated that the other seven terms of the fundamental nucleus can be

obtained by permutations from Eq. 24, see [50]. In Eq. 24, the terms I ij, I ij,y , I i,y j , and

I i,y j,y refer to the integrals of the shape functions along the y-axis, e.g. I ij,y =
∫
l
NiNj,y dy;

whereas the E terms refer to the integrals of the transverse expansions above the cross-section

surface, such as for example Eτ,xs,z =
∫

Ω
Fτ,xFs,z dΩ. The comma indicates partial derivation

with respect to the global coordinates x, y and z. All the integrals are computed numerically
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by means of the Gauss-Legendre quadrature. For the sake of brevity, the derivation of the

loading vector is not included here, but it can be found in [44]. One can notice that, according

to the notation here employed, any refined beam model can be straightforwardly generated

by expanding the fundamental nucleus, Kτsij, over τ , s, i and j.

4 Numerical results

Several numerical assessments are included in this section. First, the HLE models are em-

ployed to analyze a L-angle laminated beam using a pure layer-wise approach. Secondly, a

comprehensive mechanical analysis is performed on fiber-matrix volumes, with a focus on the

stress distributions over the section and fiber-matrix interface.. Finally, the Component-Wise

method is exploited to study a cross-ply beam that includes fiber, matrix and equivalent

layers. The numerical solutions are in all cases confronted against those from shell and solid

elements generated in the commercial software MSC Nastran.

4.1 L-angle beam

The first numerical example, selected to test the capabilities of the proposed formulation in

dealing with curved laminated structures, is an L-angle thin-walled beam composed of two

plies of different metals. L-angle beams are often used for secondary structural applications,

such as stiffeners or junctions, and their geometrical features make analyses with layer-wise

accuracy usually computationally expensive. The length of the structural body is L = 1

m, and the cross-sectional geometry is represented in Fig. 5 (a), where h1 = 15 mm is the

dimension of both flanges, t = 2 mm is the total thickness of the laminate and r = 5 mm

is the outer radius of the curvature of the angle. The slenderness ratio of the body is as

high as L/h = 50. The two metallic plies have the same thickness and they are modeled as

isotropic materials with the following characteristics: Young’s modulus, E, equal to 75 GPa

and Poisson’s ratio, ν, equal to 0.33, for the inner ply; whereas E = 200 and ν = 0.29 for the

outer ply. The structure is clamped at one end and a vertical load of magnitude Fz = −50 N

is applied at the top corner of the free-edge, corresponding to point A in Fig. 5 (a).

Figure 5 (b) shows the modeling procedure adopted for the HLE theories of structure with

mapping capabilities. The cross-sectional surface is represented with six expansion domains,

three per layer, with no geometrical loss of accuracy. A single HLE curved domain is used per

each layer to describe the angle of the section. The accuracy of the model is then tuned by the

polynomial order of the expansion functions, that is selected as an input of the analysis. The

1D finite element mesh consists of ten cubic (B4) MITC beam elements along the longitudinal

axis. As discussed before, the introduction of the MITC formulation has the double purpose

of eliminating the shear locking and computing the correct distribution of the transverse shear

components, see [49]. Cubic MITC beam elements are used in all the assessments presented

hereinafter.
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Figure 5: L-angle laminate structure.

Table 1 shows the results in terms of displacements and stresses of the L-angle laminate for

an increasing order of the cross-sectional expansions, from quadratic to 8th order. Solid and

plate models have been generated using the commercial software MSC Nastran [51] and are

used here as reference solutions. The 3D model makes use of 8-node brick elements (HEXA8)

and it includes a distribution of four elements across the thickness per ply. On the other

hand, two plate models of increasing number of 4-node plate elements (QUAD4) are included

for convergence purposes, referring QUAD41 to the coarse one and QUAD42 to the refined

one. The location of the solution points is indicated in Fig. 5 (a). The stress components are

evaluated at the center of the layer in the thickness direction and points C and D are placed

at the middle of the height and width, respectively.

Model ux × 102 uy × 104 uz × 102 σyy × 10−8 σyz × 10−7 σxy × 10−6 DOFs
Point A Point A Point A Point B Point C Point D

MSC Nastran solutions
HEXA8 4.867 -3.750 -7.823 1.480 -1.025 9.738 232200
QUAD41 4.992 -4.736 -7.987 1.183 -2.170 20.275 43750
QUAD42 4.990 -4.734 -7.981 1.183 -2.146 20.044 161250

HLE beam models
HL2 5.789 -6.789 -6.374 1.488 0.103 -0.486 2697
HL3 4.831 -3.730 -7.771 1.472 -1.029 9.784 4278
HL4 4.832 -3.731 -7.774 1.472 -1.007 9.581 6417
HL5 4.832 -3.731 -7.776 1.471 -1.019 9.698 9114
HL6 4.832 -3.731 -7.778 1.471 -1.039 9.883 12369
HL7 4.832 -3.731 -7.778 1.471 -1.028 9.780 16182
HL8 4.832 -3.731 -7.779 1.471 -1.027 9.769 20553

Table 1: Results in terms of displacements [m] and stresses [Pa] for the L-angle laminated
beam. The displacements are evaluated at y = L, whereas the stresses at y = L/2.

To complete the assessment of the accuracy of the stress solutions obtained from HLE

beam models, Figs. 6, 7 and 8 show the distribution of longitudinal, σyy, and shear, σyz

and σxy, stresses over the surface of the section at midspan cross-section. In Figs. 6(a),
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7(a) and 8(a), the reader can find the plots of these stress components across the thickness

of the laminate at the location of the evaluating points (B, C and D, respectively). The

solid (HEXA8) and plate (QUAD42) solutions are also included in the graphs for comparison

purposes. The following comments can be made on the basis of the results obtained:

• According to the solutions of Table 1, it is possible to state that the HLE beam models

provide acceptable solutions already for the third order expansion (HL3), both in terms

of displacements and stresses. The maximum relative error in comparison with the solid

model is 0.66 %, corresponding to the vertical displacement, uz. These results show that

HLE beam models can deal not only with classical bending and torsional effects, but

also more complex phenomena such warping and in-plane deformations with a 3D-like

accuracy.

• While typical commercial plate elements only foresee constant distributions of strains

and stresses across the laminate stack of plies (see QUAD42), HLE distributions show a

3D like accuracy in representing the stress distributions of the laminate, being in good

agreement with the solid model (HEXA8) for all cases included in Fig. 6, 7 and 8. On

the other hand, the computational costs in comparison with the solid model remain

lower than 9 % in terms of degrees of freedom for all polynomial orders considered.
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Figure 6: Distribution of longitudinal stresses, σyy, of the laminated beam at midspan.

4.2 Fiber-matrix analysis

As second numerical example, the capabilities of the HLE mapped models are employed to

perform a structural analysis of a fiber-matrix cell at the micro-scale. The fiber is considered

as cylindrical and the matrix is bounded around it conforming a square pack, as shown in
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Figure 7: Distribution of shear stresses, σyz, of the laminated beam at midspan.
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Figure 8: Distribution of shear stresses, σxy, of the laminated beam at midspan.
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Fig. 9 (a). The length of the body, L, is as high as 1 mm, whereas the diameter of the

fiber, d, is equal to 0.08 mm and the total width of the section, b, is equal to 0.1 mm. Both

components have been considered as isotropic materials for the sake of simplicity and with

no loss of generality. For the fiber, the Young’s modulus, E, is equal to 202.038 GPa and the

Poisson ratio, ν, is equal to 0.2128, whereas for the matrix, E = 3.252 GPa and ν = 0.355.

d

b

L

(a) Fiber-matrix beam geometry

z

x

(b) Cross-section HLE
modeling

Figure 9: Fiber-matrix representative structure and cross-sectional domain subdivision for
HLE beam models.

Fig. 9 (b) shows the cross-section domain discretization for the HLE beam model. One

of the main advantages of the proposed approach for the study of fiber-reinforced structures

at the micro-scale is the possibility of modeling the fibers using only one single HLE expan-

sion with curved edges, allowing one to reduce greatly the complexity of the model while

representing the correct geometry of each component. The accuracy of the analysis is then

selected by the user by trimming the polynomial order of the theory of structure, without the

need of iterative refinements of the domain discretization. For the numerical assessment, a

clamped-free configuration is selected and a vertical point force of magnitude Fz = −0.1 N

is applied at the center of the fiber at y = L. The longitudinal axis is discretized with ten

cubic MITC beam elements, which, on the basis of analysis performed in previous works [49],

provide convergent results in terms of the finite element mesh.

HLE beam solutions of vertical displacements and stresses at various points are included

in Table 2, together with the number of degrees of freedom of each model. Results from the

literature of the same study case, obtained from Taylor Expansions and Lagrange Expan-

sions in Carrera et al. [33], are also included for comparison reasons. Three Nastran solid

element solutions are used as references as well. These models have been generated using

different mesh discretizations of an increasing number of linear HEXA8 brick finite elements

(HEXA81, HEXA82 and HEXA83, respectively, in Table 2). The distributions of longitudinal

and transverse shear components of the stress field along the thickness of the fiber-matrix

body are shown in Fig. 10. The solutions included correspond to the 3rd, 6th and 8th poly-

nomial expansions and the most refined Nastran model (HEXA83). In addition, the surface

plots of those stress components are included in Fig. 11 for illustrative purposes. The results

obtained in the present assessment suggest the following:
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model uz × 105 σyy × 10−8 σyy × 10−8 σyz × 10−5 DOFs
[0, L, 0] [0, L/2, d/2] [0, L/2, 0.03] [−d/2, L/2, d/2]

MSC Nastran models
HEXA81 -7.910 9.677 7.179 -3.798 47790
HEXA82 -7.879 9.626 7.148 -3.487 96300
HEXA83 -7.857 9.555 7.122 -3.394 296160

Classical and refined models based on TE [33]
EBBT -7.811 9.469 7.102 -1.962 363
TBT -7.835 9.469 7.102 -1.962 605
N=1 -7.835 9.469 7.102 -1.962 1089
N=2 -7.774 9.358 7.019 -2.311 2178
N=3 -7.777 9.358 7.019 -2.464 3630
N=4 -7.794 9.327 7.090 -2.454 5445
N=5 -7.795 9.327 7.090 -2.375 7623
N=6 -7.800 9.315 7.105 -2.373 10164
N=7 -7.800 9.315 7.105 -2.304 13068
N=8 -7.804 9.346 7.117 -2.301 16335

LE models [33]
12L9+8L6 -7.933 9.450 7.046 -2.500 7533

HLE models
HL1 -0,459 0.100 0.073 1.903 744
HL2 -2.616 2.532 1.861 10.930 1860
HL3 -7.763 9.358 7.092 -3.224 2976
HL4 -7.771 9.400 7.071 -3.022 4557
HL5 -7.773 9.383 7.070 -2.997 6603
HL6 -7.774 9.412 7.080 -3.025 9114
HL7 -7.775 9.365 7.073 -3.445 12090
HL8 -7.775 9.361 7.071 -3.558 15531

Table 2: Displacements [m] and stress [Pa] solutions of the fiber-matrix beam at various
points.
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• According to the displacements results in Table 2, one can notice that, against of what

one could expect, the solid models become stiffer when the mesh is refined. The reason

is that the linear edges of the solid bricks are not adequate to represent the curved

geometry of the fiber, and very fine discretizations are needed to evaluate properly its

volume. This issue is eliminated in HLE models, since the geometry of the fiber is

introduced as an input for the computation of the integrals of the problem. Obviously,

the polynomial order of the cross-sectional expansions used for the fiber should be at

least the same as the order of the mapping functions used to describe the geometry. This

fact explains why the linear HL1 and quadratic HL2 models fail also for the computation

of the primary solutions.

• HLE beam models show a remarkable performance in capturing the stress fields within

the fiber-matrix body. The longitudinal stresses plotted in Fig. 10 (a) are almost on top

the solid solutions for all polynomial orders considered. On the other hand, regarding

the transverse shear stresses plotted in Fig. 10 (b), the HL3 model provides a quadratic

distribution along the z-axis, which in this particular case is not enough to fulfill the

equilibrium conditions at the interface of the fiber-matrix. Higher-order polynomial

expansions overcome this issue, showing similar distributions as the solid model.
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Figure 10: Longitudinal and transverse shear stresses along the z-axis at [0,L/2,:].

In reality, a more complete understanding of the mechanics at the micro-scale of fiber-

reinforced composites comes from having into account the interaction between the different

components that are present in the material in form of clusters of fibers or tows. To obtain

a more representative model of the micro-structure, an increasing number of fibers is usually

accounted for the mechanical analysis. However, the huge computational costs required to

capture in detail the heterogeneities at the fiber-scale remains as one of the main limitations
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Figure 11: Normal and transverse shear stress distributions [Pa] of the fiber-matrix beam at
midspan, HL6 model.

of the multi-scale analysis. Following this direction and in order to show the potential of

the present formulation in this matter, a double-fiber set is generated now by placing two

fiber-matrix bodies, like the one considered in the previous analysis case, side-by-side along

the x-axis, see Fig. 12. Again, each fiber is modeled using one single HLE mapped domain at

the cross-sectional level and a 6th order expansion is considered for the numerical solutions.

In order to present a generic loading case, two forces are applied at the free-edge on different

directions, as shown in Fig. 12, having both of them a magnitude of 1 N. As for the previous

case, the structure is clamped at y = 0 and 10 cubic MITC beam elements are used for the

longitudinal finite element mesh.

z

x

2b

Fx
Fz

Figure 12: Cross-section of the double-fiber beam.

The numerical results of displacements and stresses are included in Table 3, and compared

against those from a Nastran solid model. The accuracy of the proposed model for this

structural case is undoubtedly equivalent to the solid model, although it requires only the

3.2 % of the number of degrees of freedom. The distribution of the relevant components

of the stress field along the x-coordinate for these two models are plotted in Fig. 13 and

14. One can notice the good agreement of the solutions in all the cases considered. The
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use of MITC high-order beam elements enhances the interpolation of the transverse shear

components along the longitudinal axis and, therefore, the correct derivation of the integrals

of the stiffness matrix, leading to a very accurate computation of the complete stress fields.

Particularly interesting is the graph of Fig. 13 (b), which shows the σxz shear stresses at a

section close to the loaded edge, y = 0.9L. HLE model solutions are sensible of the local

effects due to the vertical point force, Fz, applied in the vicinity at [b, L, 0]. In fact, when a

higher expansion order is employed (HL8), the local effects become more visible.

Model ux × 105 uy × 106 uz × 104 σyy × 10−8 σxy × 10−7 σyz × 10−8 σxz × 10−7 DOFs
[b, L, 0] [b, L/2, 0] [b/2, 0.9L, 0]

MSC Nastran model
HEXA8 -7.280 3.979 -3.973 8.346 -7.784 -1.375 -3.270 548550

HLE beam model
HL6 -7.239 3.960 -3.925 8.308 -7.700 -1.340 -3.274 17577

Table 3: Results of displacements [m] and stresses [Pa] of the micro-scale fiber doublet.
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Figure 13: Longitudinal and in-plane shear stresses along the x-axis.

4.3 Cross-ply beam

For the last numerical assessment, a global-local analysis is carried out on a cross-ply lami-

nated beam that includes fibers, matrix and homogenized layers as components. The Component-

Wise method is employed here to locally select the level of accuracy of the stress analysis

within the structural body. The geometry of the model is described in Fig. 15. The total

length of the beam, L, is equal to 40 mm, the height, h is as high as 0.06 mm and the width,

b, is equal to 0.08 mm. A symmetric cross-ply [0◦, 90◦, 0◦] is studied and a total of 4 fibers
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Figure 14: Transverse shear stress components along the x-axis.
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Figure 15: Geometry of the cross-ply beam.
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Component E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

Fiber 202.038 12.134 12.134 8.358 8.358 47.756 0.2128 0.2128 0.2704
Layer 103.173 5.145 5.145 2.107 2.107 2.353 0.2835 0.2835 0.3124
Matrix 3.252 1.200 0.355

Table 4: 1 ≡ longitudinal, 2 ≡ orthogonal and 3 ≡ transverse.

are considered per layer, with a diameter of 0.016 mm each one. The mechanical properties

of each component accounted in the analysis are presented in Table 4. The material of the

fiber is considered as transversely isotropic, whereas the matrix is composed by an isotropic

material. The engineering constants of the equivalent layer are calculated by means of the

widely spread hybrid Rules of Mixtures. A clamped-free configuration is selected and a ver-

tical point load of magnitude Fz = −1 N is applied at [b/2, L ,0] (see the coordinate frame

in Fig. 15). Three different modeling approaches are considered for the structural analysis,

which are:

1. HLE model 1. The cross-ply is analyzed in a layer-wise sense, i.e. the homogenized

properties are used for the three layers. See Fig. 16 (a).

2. HLE model 2. The fiber-matrix cells are modeled for the top and bottom layers, whereas

the homogenized properties are applied to the middle layer. See Fig. 16 (b).

3. HLE model 3. Only one single fiber-matrix cell of the bottom layer is modeled. See

Fig. 16 (c).

(a) HLE model 1 (b) HLE model 2 (c) HLE model 3

Figure 16: Cross-section domain distributions of the cross-ply beam

Table 5 presents the results in terms of displacement and stresses for all three approaches

followed and for an increasing polynomial order of the HLE expansions. A Nastran 3D model

with the geometry and properties of the second approach (model 2) has been generated and

its results are displayed as reference solutions. The vertical displacement is measured at the

loading point, whereas the longitudinal and transverse stresses are evaluated at the position

of the center of the fiber accounted in model 3 (see Fig. 16 (c)), at the midspan section. The

distribution of these components across the thickness at that location are shown in Fig. 17 for

all three refined beam models and the solid one used as reference. In addition, Figs. 18 and
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19 show an interesting comparison of the stress distributions over the cross-section obtained

with the HL6 model for the three modeling approaches considered. The main conclusions of

the present numerical example are:

• The numerical values of Table 5 exhibit a general good agreement of the HLE solutions

in comparison with the Nastran model. Displacements solutions are less dependent

on the choice of the modeling approach than stress solutions, although they slightly

diverge from the reference solutions when global approaches are employed due to the

simplifications introduced when the fiber-matrix set is homogenized.

• The HL2 model provide good solutions for the layer-wise approach, although it should

be avoided when higher-order mapped expansions are included. It is possible to state

that at least a third-order HL3 model must be employed for mapped domains.

• The use of solid brick elements for this type of multi-component structures can become

highly expensive if a detailed mechanical analysis is required at the component level.

HLE mapped models naturally overcome some of the constrains of solid modeling, such

as the aspect ratio or the geometrical accuracy of the mesh, for structural problems

featuring 2D heterogeneities. In this example, the maximum relative difference between

the numerical values of model 2 and the Nastran model remain in all cases under 3.5 %

(HL2 excluded), while keeping the number of degrees of freedom less than 5 % of those

of the solid model.

• The main advantage of the Component-Wise approach for the efficient stress analysis

of composite materials is that it allows to enrich the kinematics of the beam model in

particular zones of interest. The efficiency of the modeling procedure can be greatly

enhanced taking advantage of these capabilities of the CUF. For instance, one can

see in Fig. 17 that the layer-wise approach (model 1), although computationally very

advantageous, fails on predicting the maximum stresses of the structure, whereas model

2 and 3 provide a 3D-like accuracy at the fiber-matrix level with acceptable increments

in computational costs. This statement is further supported by the stress distributions

shown in Fig. 18 and 19.

5 Conclusions

This paper presents the application of HLE beam theories with advanced mapping capabili-

ties for the accurate analysis of composite structures that include components with arbitrary

curved sections. The Carrera Unified Formulation is employed to generate a class of refined

beam elements that make use of hierarchical Legendre-based polynomials to expand the me-

chanical variables non-locally over the cross-section domain. Laminates and fiber-reinforced

bodies are analyzed and the results are compared with those from solid models generated
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uz × 102 m σyy × 10−8 Pa σyz × 10−6 Pa DOFs
[b/2, L, 0] [5b/2, L/2, -0.2] [5b/2, L/2, -0.2]

MSC Nastran model
HEXA8 -1.569 -5.928 -2.147 1579653

HLE model 1
HL2 -1.491 -2.880 -1.577 4743
HL3 -1.491 -2.880 -1.710 7626
HL4 -1.491 -2.879 -1.712 11625
HL5 -1.491 -2.879 -1.655 16740
HL6 -1.491 -2.880 -1.654 22971

HLE model 2
HL2 -0.348 -0.838 -43.008 13671
HL3 -1.547 -5.849 -2.142 22506
HL4 -1.548 -5.848 -2.169 35433
HL5 -1.548 -5.848 -2.211 52452
HL6 -1.548 -5.848 -2.212 73563

HLE model 3
HL2 -1.046 -3.717 -124.390 5859
HL3 -1.498 -5.661 -2.384 9486
HL4 -1.498 -5.659 -2.381 14601
HL5 -1.498 -5.659 -2.412 21204
HL6 -1.498 -5.659 -2.408 29295

Table 5: Displacements and stresses of the cross-ply beam for the different models.
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Figure 17: Longitudinal and shear stresses across the thickness of the section at [5b/2,L/2,:]
for all the approaches considered. HL6 expansion.
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Figure 18: Normal stress distribution at midspan of the cross-ply for the different models
considered. HL6 expansion.
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Figure 19: Transverse shear stress distribution at midspan of the cross-ply for the different
models considered. HL6 expansion.

with the commercial software Nastran and the literature, when possible. On the basis of the

results obtained, the following comments can be highlighted:

• The HLE beam formulation can be used to provide advanced layer-wise models for the

study of laminated structures. The use of the blending function method to curve the

expansion domains at the cross-sectional level leads to a more efficient analysis in which

the geometrical description is fixed and the accuracy of the model is controlled by the

polynomial order of the theory of structure, in a non iso-parametric sense.

• HLE beam models have demonstrated to be a powerful tool for the Component-Wise

analysis of composite structures. The kinematics of the structural model can be enriched

locally in critical zones within the cross-section in a hierarchical manner with no need

of further refinements of the physical description of the body, which can lead to huge

savings in the modeling time.

• The potential of the proposed model for the structural analysis of fiber-reinforced com-

posites at the micro-scale is clear. The HLE models can deal with the complex stress

fields that appear at the fiber-matrix level for general loading cases with the same accu-

racy as solid models, while reducing drastically the size of the computational problem.

The results obtained in this work provide a good basis for further analysis of more complex

models dealing with other realistic cases of interest, such as clusters of randomly place fibers
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or different fiber sections, which is currently one of the major concern in micro-mechanics and

multi-scale analyses.
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