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A discrete particle model reproducing collective

dynamics of a bee swarm

Sara Bernardi1, Annachiara Colombi2 and Marco Scianna3

Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi
24, 10129 Torino, Italy

Abstract

In this article, we present a microscopic discrete mathematical model describ-
ing collective dynamics of a bee swarm. More specifically, each bee is set to
move according to individual strategies and social interactions, the former
involving the desire to reach a target destination, the latter accounting for
repulsive/attractive stimuli and for alignment processes. The insects tend in
fact to remain sufficiently close to the rest of the population, while avoid-
ing collisions, and they are able to track and synchronize their movement
to the flight of a given set of neighbors within their visual field. The re-
sulting collective behavior of the bee cloud therefore emerges from non-local
short/long-range interactions. Differently from similar approaches present
in the literature, we here test different alignment mechanisms (i.e., based
either on an Euclidean or on a topological neighborhood metric), which have
an impact also on the other social components characterizing insect behav-
ior. A series of numerical realizations then shows the phenomenology of the
swarm (in terms of pattern configuration, collective productive movement,
and flight synchronization) in different regions of the space of free model
parameters (i.e., strength of attractive/repulsive forces, extension of the in-
teraction regions). In this respect, constraints in the possible variations of
such coefficients are here given both by reasonable empirical observations and
by analytical results on some stability characteristics of the defined pairwise
interaction kernels, which have to assure a realistic crystalline configuration
of the swarm. An analysis of the effect of unconscious random fluctuations
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of bee dynamics is also provided.

Keywords: Bee swarm, Collective dynamics, Swarming, H-stability,
Alignment mechanisms

1. Introduction

Self-organization and collective dynamics and behavior are ubiquitous
phenomena in many biological and physical systems formed by populations
of individuals, e.g., from colonies of bacteria to human crowds, see, for in-
stance, [9], [32], [44] and references therein. The description of swinging and
coordinate movements of groups of animals, such as birds, fishes, insects, or
certain mammals, has indeed increased in the last decades the multidisci-
plinary interest of various research communities, e.g., biologists, ecologists,
sociologists, and applied mathematicians.

In this perspective, the theoretical and computational literature presents
a wide range of approaches. For instance, in discrete models, characteristic
of a microscopic point of view, the interacting individuals are described by
localized particles, which move according to individual rules involving their
position and velocity (or acceleration). The evolution of the overall system is
indeed defined by proper sets of (first or second order) ordinary differential
equations (ODEs). In this respect, discrete approaches are able to provide
a detailed description of the dynamics of each agent and therefore represent
a natural tool to investigate animal world-related collective phenomena (see,
for instance, [10], [16], [17], [23], [26], [28], [31], [36], [38]).

However, when the number of component particles is significantly large,
as in the case of fishes [37] or myxobacteria [29], [33], the solution of the
resulting system of ODEs becomes computationally expensive and therefore
different methods are needed. In this respect, continuous models, character-
istic of a macroscopic point of view, rely on the definition of a proper density
of agents, which evolves following (typically nonlinear) partial differential
equations (PDEs). They are indeed based on conservation laws and phe-
nomenological assumptions for their closure, see for example [3], [45], [46],
[47]. It is useful to remark that the rules of motion underlying discrete and
continuous approaches often coincide: however, in the former case, they are
related to the behavior of the single agents, whereas, in the second case, they
account for the dynamics of the overall population density.
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A bridge between the microscopic word and the macroscopic represen-
tation of the system is represented by kinetic models. Characteristics of
a mesoscopic point of view, they are able to derive, employing hydrody-
namic arguments, Boltzmann-like evolution laws for statistical distribution
functions which describe the position and velocity of the components of the
population of interest [5], [7], [34].

Some of the previous-cited mathematical approaches deal with the col-
lective behavior of bee swarms, which represent an interesting problem to be
studied. Such insect populations, which are typically composed by the old
queen and by 10000 to 30000 worker individuals, in fact undergo a synchro-
nized flight when they have the specific purpose of reaching the new nest
site [42]. All colonies are subjected to this natural phenomenon, and every
year beekeepers have to deal with it in late spring and early summer. In this
period, as the weather warms up and flowers begin to bloom, the colony is in
fact at the peak of its capacity and ready to produce a new hive. Entering
in more details, when the migrating bees leave the original hive they first
temporarily settle on a tree branch a few meters away from the old nest.
There, they cluster around the queen, and a given set of bees (called scout)
starts exploring the surrounding area. Each of the scout individuals finds a
suitable location for the community to live: then, it returns to the rest of
the population and performs the waggle dance to broadcast the information
about the possible new nest, e.g., how suitable it is for the colony. Nest
proposals coming from the scout bees may be different but, after some hours
(sometimes days), an agreement is finally found. The whole swarm, orga-
nized in a well-defined pattern, finally takes off and flies towards the chosen
destination, following the guidance of the scout/informed individuals (see
[42] for more details).

Selected characteristics of such a bee collective migration are here re-
produced by a microscopic-discrete approach. In particular, the component
insects of a representative swarm are individually described by their position
and velocity. Each bee is then set to behave following an individual strategy,
i.e., the aim to reach a target destination, and social interactions. The latter
involves repulsive/attractive stimuli (the desire to remain close to the rest of
the population while maintaining a comfort space), as well as the ability of
bees to synchronize their movement with a given set of surrounding individ-
uals. Such insect behavioral rules have been of course previously proposed
in the computational literature (cf. [17], [18], [26], [28], see the conclusive
section for more detailed comments): however, we here test and provide a
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comparison, in terms of numerical outcomes relative to selected swarming
characteristics, of different combinations of alternative assumptions under-
lying flight alignment mechanisms and bee pairwise interactions. Further,
theoretical results are used to derive proper parameter estimate.

Entering in more details, the rest of this paper is organized as follows. In
Section 2, we clarify the assumptions on which our mathematical approach is
based and present the model components. More specifically, we first explain
the characteristic representation of model bees; then, we give the equations
of motion and introduce the relative velocity components. Sections 3 deals
with different assumptions underlying flight synchronization mechanisms. In
particular, we focus either on an Euclidean metric-based or on a topological
neighborhood metric-based alignment process within the swarm. In this
respect, we discuss how these two mutually exclusive hypothesis impact on
the repulsion/attraction velocity contributions (which in turn have to satisfy
a stability condition to assure a realistic crystalline patterning of the particle
system). Different series of numerical realizations then analyze the swarm
behavior in different parameter regimes and show that our approach is able to
capture selected experimentally-observed swarm phenomenology (e.g., flight
synchronization and productive motion). After discussing in Section 4 the
effect of the inclusion of random contributions on the particle system, we
review in Section 5 the results obtained in this paper. Finally, we compare our
approach with similar discrete models presented in the literature dealing with
bee dynamics and propose some possible improvements and developments of
the work.

2. Mathematical model

2.1. Bee representation and characteristics

A population of N bees is modeled in the two-dimensional space R2. We
are indeed considering a planar section, parallel to the ground, of a typical
swarm (see Fig. 1, left panel). Each bee i = 1, ..., N is intended as an
autonomous particle and represented by a dimensionless material point with
concentrated unitary mass. The generic i-th individual has the phase-space
coordinates identified by (xi(t),vi(t)) ∈ R2×2, where the vectors xi, and vi

denote its actual position and velocity, respectively. We further define, for
each insect i, a proper visual, as reproduced in Fig. 1, right panel:

Ωvis
i (t) =

{
x ∈ R2 : |x− xi(t)| ≤ Rvis

}
. (1)
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It is a round region centered in xi(t) with radius Rvis, i.e., represents a vision
depth which is hereafter set equal to 10 m according to the characteristic
dimensions of swarm migration considered in this work.

2.2. Bee dynamics

The dynamics of a generic bee i can be described starting from a general
second-order particle model:

mi
d2xi

dt2
(t) + λi

dxi

dt
(t) = Fi(t), (2)

where mi is the individual mass and λi a friction coefficient. Fi denotes
instead the resultant of the forces that affect insect behavior. However, it
is worth to notice that bees (such as most living entities, e.g., from cells
and bacteria to big animal species and humans) are not passively prone to
the Newtonian laws of inertia. They are in fact intelligent individuals able to
actively develop behavioral strategies, which depend both on intrinsic stimuli
and on the interactions with the surrounding environment. For instance,
bees can control their movement without undergoing inertial effects: in other
words, they can suddenly decide to stop and change direction of motion, at
least for reasonable speeds. These concepts allow to neglect the inertial term
in Eq. (2), i.e., to assume, in mathematical terms, that λi >> mi and to
obtain

mi

λi︸︷︷︸
→ 0

d2xi

dt2
(t) +

dxi

dt
(t) =

Fi(t)

λi

⇒ dxi

dt
(t) =

Fi(t)

λi

= ṽi(t)︸︷︷︸
bee

velocity

. (3)

Eq. (3) gives the so-called overdamped force-velocity response relation, which
states that the velocity of an individual, and not his/her acceleration, is
proportional to the acting forces: it is employed in a number of discrete/IBM
approaches (see [14], [19], [27] and [41] and references therein for comments)
and allows to describe selected bee behavior by a direct phenomenological
postulation of the velocity contributions, i.e., by a first-order model.

The individual velocity ṽi has then to be characterized by a realistic
modulus, which has to be subjected to physical constraints and limitations.
In this respect, the equation of motion of the generic bee i (with i = 1, ..., N)
is finally assumed to be

dxi(t)

dt
= ṽi(t) = min {vmax, |vi(t)|}︸ ︷︷ ︸

speed control

vi(t)

|vi(t)|
(4)
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In Eq. (4), vmax is indeed a maximal speed characteristic of flying bees: it
is set equal to 9.4 m/s [42] and allows to consistently control the modulus of
individual velocities.

To completely determine the behavior of the population of bees, we have
then to phenomenologically specify the individual velocity. In this respect, we
take into account and enrich the set of basic rules called the “first sociological
principles of swarming” [9], i.e., for each insect i we define:

vi(t) = vtarg
i (t)︸ ︷︷ ︸

individual strategy

+ vsoc
i (t)︸ ︷︷ ︸

social interactions

+ ξflucti (t)︸ ︷︷ ︸
noise

. (5)

The first term in Eq. (5) describes the attempt of a bee to reach a target
destination while minimizing the effort, e.g., to cover the shortest possible
path at a comfort speed (other strategic behavior may of course be taken into
account). The third velocity contribution is a random fluctuation term, that
implements the impossibility of an individual to apply the ideal set of rules,
e.g., to take the correct and productive decision in a very short time. Finally,
the social velocity contribution vsoc

i includes different individual behaviors:

vsoc
i (t) = vrep

i (t) + vattr
i (t) + valign

i (t). (6)

The repulsive component vrep
i models the tendency of the generic i-th bee of

staying sufficiently far away from its neighbours, typically in order to avoid
physical collisions, while maintaining a minimal comfort space within the
swarm. The second contribution in Eq. (6) implements the desire of each
individual to keep a connection with the groupmates, i.e., to be close enough
to the rest of the population. Finally, the third social velocity contribution
describes the alignment process of bees, i.e., the adaptation and synchroniza-
tion of their movement with at least a given part of the swarm.

Entering in more details, the repulsive/attractive behavior of the i-th bee
is described by proper kernels Hrep

ij ,Hattr
ij : R2 × R2 7−→ R2, which define its

pairwise interaction instances with the generic j-th individual falling within
a given surrounding region, say Ωrep

i or Ωattr
i , respectively. We then assume

that the above-introduced kernels do not depend on the specific couple of
bees, i.e., Hrep

ij = Hrep and Hattr
ij = Hattr for any (i, j), that the resulting

velocity contributions have an effect on the direction ideally connecting the
interacting insects and finally that they depend on individual relative dis-
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tance. In this respect, we can write:

vrep
i (t) =

∑
j∈Ωrep

i (t)

Hrep(xj(t),xi(t))

=
∑

j∈Ωrep
i (t)

hrep(|xj(t)− xi(t)|)
xj(t)− xi(t)

|xj(t)− xi(t)|
;

(7)

vattr
i (t) =

∑
j∈Ωattr

i (t)

Hattr(xj(t),xi(t))

=
∑

j∈Ωattr
i (t)

hattr(|xj(t)− xi(t)|)
xj(t)− xi(t)

|xj(t)− xi(t)|
,

(8)

where the continuous and Lebesgue integrable functions hrep, hattr : R+ 7−→ R
are such that

hrep(|xj(t)− xi(t)|) ≤ 0; (9)

hattr(|xj(t)− xi(t)|) ≥ 0, (10)

for all pairs of bees (i, j) and corresponding positions (xi,xj). The combina-
tion of attractive/repulsive mechanisms has to assure that the swarm does
not collapse nor unrealistically explode. Rather, the component bees have to
find an optimal spacing during motion, as experimentally observed [42]. In
this respect, previous works [9], [22] showed that a particle system reaches
and maintains a crystalline-like configuration, i.e., a configuration character-
ized by a finite, strictly positive, minimal interparticle distance regardless of
the number of component agents, if the relative individual interaction po-
tential is H-stable in the sense of statistical mechanics [39]. In the following,
taking advantage of the analytical study in [4], which has been recently ap-
plied for the first time to the case of cell aggregates in [6], we will indeed give
a set of conditions both on the form of hrep and hattr and on the correspond-
ing characteristic parameters that will certainly result in realistic, H-stable,
bee patterns.

The alignment contribution in the dynamics of the generic i-th bee results
instead from a mean over the velocity of a given set of its neighbours, i.e.,

valign
i (t) =< vj(t) >j∈Ωaling

i (t) . (11)

The specification of each social velocity component, as well as the definition
of the corresponding set of interacting particles, results in different models of
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Table 1: Model parameters and corresponding references.

Parameter Description Value [Unit] Reference

Rvis bee visual depth 10 [m] estimated
Rrep repulsion range 0.3 [m] [42]
Rattr attraction range 10 [m] estimated
vmax bee maximal speed 9.4 [m/s] [42]
N number of bees 100

bee collective behavior. In this respect, in the next sections, we will propose
different hypothesis on the alignment mechanism, which impact also on the
expression of the other terms included in Eq. (6).

3. Social velocity components: Assumptions and corresponding
simulations

3.1. Euclidean metric-based alignment mechanism

We first assume that the alignment mechanism, as well as the individual
repulsive/attractive behavior, relies on Euclidean metric arguments, i.e., for
any i = 1, . . . , N , it involves all the bees j = 1, . . . , N , with i ̸= j, whose
distance from the i-th insect falls within a given range. In particular, we
identify three concentric regions such that each of them characterizes one of
the social velocity components (see Fig. 2, left panel):

Ωrep
i (t) =

{
x ∈ Ωvis

i (t) : 0 < |x− xi(t)| ≤ Rrep
}
; (12)

Ωalign
i (t) =

{
x ∈ Ωvis

i (t) : Rrep < |x− xi(t)| ≤ Ralign
}
; (13)

Ωattr
i (t) =

{
x ∈ Ωvis

i (t) : Ralign < |x− xi(t)| ≤ Rattr
}
, (14)

where Ωvis
i is the actual visual field of the i-th bee, as defined in Eq. (1). In

this perspective, in Eqs. (7), (8), and (11), the notation j ∈ Ω•
i (t) has to be

intended as j : xj(t) ∈ Ω•
i (t), where • ∈ {“rep”, “attr”, “align”}.

To completely determine individual dynamics, we have finally to define
the interaction kernels. In this respect, although there are several possible
options, we take advantage of some published results [12], [13] and set, for
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each couple of bees (i, j):

hrep(r) =

 F rep

(
1

Rrep
− 1

r

)
, if 0 < r ≤ Rrep;

0, otherwise;
(15)

hattr(r) =

 − 4F attr (r −Rattr) (r −Ralign)

(Rattr −Ralign)2
, if Ralign < r ≤ Rattr

0, otherwise.
(16)

The functions defined in Eqs. (15)-(16), and plotted in Fig. 2 (right panel),
are intrinsically multiparametric, since they are characterized by the follow-
ing set of coefficients:

(Rrep, Ralign, Rattr, F rep, F attr) ∈ R5
+.

To decrease the complexity of the problem, we can reduce the dimension of
the free parameter space with phenomenological arguments and observations.
First of all, Rrep can be intended as the comfort distance that each bee
tends to preserve in order to fly without colliding with other components of
the swarm. According to several experimental measurements, we estimate
Rrep = 0.3 m [42]. On the opposite, Rattr is the extension of the long-range
attraction, i.e., of the desire of each individual to remain sufficiently close to
the rest of the population. In this respect, it is consistent to assume Rattr =
Rvis = 10 m, i.e., each bee is attracted by the groupmates that it is able to
see (and that do not fall within the alignment and repulsion regions). In this
respect, given the estimated extension of the three interaction neighborhoods,
we have that

Ωrep
i (t) ∪ Ωalign

i (t) ∪ Ωattr
i (t) = Ωvis

i (t),

for each insect i and time t, see again Fig. 2 (left panel).
The above considerations allow us to reduce the parameter space of the

problem to
(Ralign, F rep, F attr) ∈ [Rrep, Rattr]× R2

+.

Given the form of hattr(r), F attr ∈ [0, vmax] can be interpreted as the maximal
attraction speed, whereas F rep > 0 determines the slope of the hyperbolic
part of hrep(r) (cf. Fig. 2, right panel).

Further, the swarm has to maintain a realistic crystalline configuration
during the collective flight. In this respect, it has been shown that the large-
time asymptotic collective pattern of discrete particle systems depends on
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the stability characteristics of the potential relative to individual pairwise
interactions [39]. In particular, we use and extend to our case the criterium
introduced in [4], recently applied to the case of cell aggregates in [6], in order
to identify the regions of the free parameter space that assure the H-stability
of a particle system. We can indeed prove:

Theorem 3.1. If the following parametric relation

F rep

F attr
>

2(Rattr −Ralign)

5(Rrep)2

(
3(Ralign)2 + 4RattrRalign + 3(Rattr)2

)
(17)

holds, the potential related to the pairwise interaction kernel hint(r) = hrep(r)+
hattr(r), with r = |xi(t) − xj(t)|, defined in Eqs. (15)-(16) is H-stable. As
shown in [4], [9], [22], for a finite number of agents, as in the case of
our interest, this implies that, at each time t ∈ R+, there exist two finite
and positive quantities dmin(t) = min

(i,j)∈{1,...,N}
i ̸=j

|xi(t) − xj(t)| and Dmax(t) =

max
(i,j)∈{1,...,N}

i̸=j

|xi(t)− xj(t)| such that dmin(t) ≤ |xi(t)− xj(t)| ≤ Dmax(t) for all

pairs (i, j) of bees, i.e., at each time t ∈ R+ the swarm does not collapse nor
explode. In particular, for t → +∞, the minimal relative distance between
bees dmin(t) tends to the limit value d∞, whereas the maximal relative dis-
tance Dmax(t) (which also represents the diameter of the swarm) tends to the
value D∞: in other words, the particle population asymptotically organizes
in a stable crystalline-like pattern.

Proof. Following the analytical study in [4] and the calculations introduced
in [6], we have first to define a potential uint : R 7−→ R associated to our
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pairwise interaction kernels, i.e.,

uint(r) =

∫
hint(r)dr =

∫
hrep(r)dr +

∫
hattr(r)dr =

=



F rep
( r

Rrep
− log r

)
+ C1,

if 0 < r ≤ Rrep;

C2,
if Rrep < r ≤ Ralign;

−
2F attr

(
2 r3 − 3 (Rattr +Ralign) r2 + 6RattrRalign r

)
3(Rattr −Ralign)2

+ C3,

if Ralign < r ≤ Rattr;

C4,
otherwise,

where the constants C1, C2, C3, C4 have to satisfy the following conditions

C1 = C2 − F rep (1− logRrep) ;

C2 = C3 −
2F attr

(
2 (Ralign)3 − 3 (Rattr +Ralign) (Ralign)2 + 6Rattr (Ralign)2

)
3 (Rattr −Ralign)2

;

C3 = C4 +
2F attr

(
2 (Rattr)3 − 3 (Rattr +Ralign) (Rattr)2 + 6 (Rattr)2Ralign

)
3 (Rattr −Ralign)2

,

to assure its continuity. To fully apply the characterization of H-stable po-
tentials given in [4], uint has to be essentially negligible for large interparticle
distances (i.e., lim

r→∞
uint(r) = 0). Without loss of generality, we indeed assume

C4 = 0. As a consequence, with simple algebraic calculations, we have that

C3 = −
2F attr(Rattr)2

(
Rattr − 3Ralign

)
3 (Rattr −Ralign)2

;

C2 = − 2

3
F attr (Rattr −Ralign);

C1 = − 2

3
F attr (Rattr −Ralign)− F rep (1− logRrep) .
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The pairwise interaction potential therefore rewrites in the following explicit
form

uint(r) =



F rep
( r

Rrep
− log

( r

Rrep

)
− 1
)
− 2

3
F attr (Rattr −Ralign),

if 0 < r ≤ Rrep;

− 2

3
F attr (Rattr −Ralign),

if Rrep < r ≤ Ralign;

−
2F attr

(
2r3 − 3(Rattr +Ralign)r2 + 6RattrRalignr + (Rattr)2

(
Rattr − 3Ralign

))
3(Rattr −Ralign)2

,

if Ralign < r ≤ Rattr;

0,
otherwise.

(18)
Now, recalling the Definition 1.1 in [4], we can say that uint (and consequently
hint) is H-stable if ∫ +∞

0

uint(r) r dr >
1

2
lim

r→+∞
uint(r) = 0.

In this respect, let us calculate the value of the integral of interest:∫ +∞

0

uint(r)r dr =

=

∫ Rrep

0

(
F rep

(
r2

Rrep
− r log

( r

Rrep

)
− r

)
− 2

3
F attr(Rattr −Ralign)r

)
dr

−
∫ Ralign

Rrep

(
2

3
F attr(Rattr −Ralign)r

)
dr

−
∫ Rattr

Ralign

(
2F attr

(
2r4 − 3(Rattr +Ralign)r3 + 6RattrRalignr2 + (Rattr)2

(
Rattr − 3Ralign

)
r
)

3(Rattr −Ralign)2

)
dr

=
F rep(Rrep)2

12
− F attr

30
(Rattr −Ralign)

(
3(Ralign)2 + 4RattrRalign + 3(Rattr)2

)
,

which is non-negative (assuring indeed the H-stability of the system) if the
parametric relation in Eq. (17) holds.
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Theorem 3.1 allows to better identify the parameter space, that is drawn in
Fig. 3 (for the sake of clarity, we recall that Rattr = 10 m and that Rrep = 0.3
m). Specifically, only the points above the plotted surface are able to satisfy
both the experimental observations and the relation (17) (that assure the
H-stability of the system). Each point of this area leads, in principle, to a
different system evolution.

In this respect, we now turn to analyze swarm dynamics upon permitted
variations of the model coefficients, i.e., within the region of H-stability. In
particular, we study the behavior of a population formed by N = 100 bees.
The swarm is initially arranged in an almost round pattern of radius equal to
2 m and centered at (2.5 m, 2.5 m), i.e., we initially account for a reasonable
density of ≈ 8 bees/m2 [42] (see Fig. 4, left panel). The group of insects
behaves following the system (4). In particular we set:

v1(t) = vtarg
1 (t) + vrep

1 (t) + vattr
1 (t); (19)

vi(t) = vrep
i (t) + vattr

i (t) + valign
i (t), ∀ i = 2, ..., N. (20)

With the phenomenological rules given in Eqs. (19)-(20), we are assuming
that all bees are characterized by repulsive/attractive interactions, which are
given in Eqs. (15)-(16). Further, only one bee, identified with the index 1, is
set to have a target velocity component, i.e., it is the only one informed of
the destination of the entire swarm (e.g., of the presence of a possible nest).
On the opposite, all the other individuals undergo alignment process, which
is defined in Eq. (11) and allows a flight synchronization within the insect
population. The presence of a small group of leader bees within a swarm,
which are able to guide the rest of the population is widely known from the
ecological literature [42]. Entering in more details, assuming xd = (10 m, 2.5
m) as the target point (e.g., the location of the nest), we set

vtarg
1 (t) = vmax

xd − xi(t)

|xd − xi(t)|
, (21)

i.e., the leader bee aims to cover the shortest possible path towards the
destination at the maximal speed. Further, we do not consider fluctuation
terms in the problem. The parameter values used in the simulations are
summarized in Table 1. Finally, we introduce the following classification of
the particle system evolution:
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Definition 3.1. The population of uninformed bees has a time asymptotic
collective swarming behavior (with respect to the informed individual) if the
following condition is satisfied:

lim
t→∞

Vswarm(t) = lim
t→∞

√√√√ N∑
i=2

|vi(t)− v1(t)|2 = 0. (22)

The swarm undergoes a collective productive motion if the following condition
is satisfied:

lim
t→∞

Xswarm(t) = lim
t→∞

∣∣∣∣∣
∑N

i=2 xi(t)

N − 1
− xd

∣∣∣∣∣ = 0, (23)

i.e., if the population of uninformed individuals (in terms of barycenter dis-
placement) approaches the target destination. Representative sketches of the
distinct behavior of the bee population are given in Figs. 5 - 6.

Among the possible combinations of the free model parameters Ralign, F rep,
and F attr, resulting both from experimental considerations and from the H-
stability criterium, we hereafter focus on six representative sets, which are
indicated in Fig. 3 by the points Mk (where k = 1, ..., 6): they are in fact
sufficiently distributed and allow the classification of swarm dynamics in large
enough parameter regimes.

We first observe that in all cases the swarm organizes in a crystalline-like
configuration: as shown in Fig. 7, dmin, i.e., the measure of the distance
between pairs of first closest bees, in fact quickly stabilizes to the asymptotic
threshold d∞ = 0.3 m, which results in a overall swarm diameter of about
D∞ = 3.75 m. Such values are consistent with Rrep, i.e., the approximate
extension of the comfort space that each insect desires to maintain during
its flight, as commented in the experimental literature [42]. In this respect,
we further observe that increments in F rep result in increments in the time
needed to the particle system to reach the stable configuration (see, for in-
stance, the casesM1 andM2 in Fig. 7). This behavior, which is independent
from the specific value of the other model parameters, is due to the enhanced
role of the repulsive force which, at the initial stages of the system evolu-
tion, i.e., when the bee cloud is more compact, overcomes the other velocity
contributions, pushing away the insects one from each other and therefore
delaying the achievement of a stable pattern. In this respect, we remark that
the obtained asymptotic crystalline configuration of the swarm is consistent
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with, and predicted by, the analytical results of Theorem 3.1, given that the
sets of parameter values employed in this series of simulations satisfy rela-
tion (17), which assures the H-stability of the pairwise interaction kernels
and therefore of the overall particle system.

We then turn to analyze the migratory determinants of the swarm. From
Fig. 8, it is possible to observe that, regardless of the values of F rep and
F attr, the bee cloud undergoes swarming with productive motion (i.e., to-
wards the target destination) only if the extension of the alignment region,
i.e., Ralign, is sufficiently large (see the parameter settings M1, M2, M5, and
M6). Otherwise, the insect cloud is characterized by uncorrelated individ-
ual movement (see the parameter settings M3 and M4). Entering in more
details, let us compare Figs. 7 and 8: it is straightforward to notice that the
flight synchronization process starts at t ≈ 0.01, i.e., just after the stabiliza-
tion of the bee configuration. In this perspective, our simulations point out
that a value of Ralign not smaller than the asymptotic diameter of the insect
cloud D∞ = 3.75 is needed to have swarming and productive motion, i.e.,
it is necessary that each bee has, at the same time, almost the rest of the
groupmates (included the leader) within its flight synchronization region.

We can indeed conclude that, under our first hypothesis on the alignment
process, the swarm is characterized by two-step dynamics: in the fist stages,
the bee cloud organizes in a crystalline configuration (regardless of the pa-
rameter values, provided the H-stability condition); in the later phases, if
Ralign is large enough (i.e., ≥ D∞), the component insects synchronize their
velocity and the overall population undergoes productive directional move-
ment.

3.2. Topological neighborhood metric-based alignment mechanism

In our second hypothesis, the alignment mechanism of bees involves a
topological neighborhood metric. In more details, the i-th insect tracks and
synchronizes its movement with the a-th seen closest individuals, regardless
of their position, and not with all (or only) the individuals placed within a
given alignment region. In this respect, we set

Ωalign
i (t) =

{
j : xj(t) ∈ Ωvis

i (t) and j is one of the a-th closest neighbors of i
}
,

(24)
where a can be interpreted as a sort of interindividual communication rate.

On the opposite, the repulsive/attractive velocity components still rely
on an Euclidean metric, i.e., they involve the couples of bees whose relative
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distance falls within a given range. In particular, the interaction regions
slightly differ from the previous case (see Fig. 9, left panel):

Ωrep
i (t) =

{
x ∈ Ωvis

i (t) : 0 < |x− xi(t)| ≤ Rrep
}
; (25)

Ωattr
i (t) =

{
x ∈ Ωvis

i (t) : Rrep < |x− xi(t)| ≤ Rattr
}
. (26)

The interaction kernels, in particular the adhesive part, have then to adapt
to the new hypothesis as well (see Fig. 9, right panel):

hrep(r) =

 F rep

(
1

Rrep
− 1

r

)
, if 0 < r ≤ Rrep;

0, otherwise;

(27)

hattr(r) =

 − 4F attr (r −Rattr) (r −Rrep)

(Rattr −Rrep)2
, if Rrep < r ≤ Rattr;

0, otherwise,

(28)

where again Rrep = 0.3 m and Rattr = Rvis = 10 m. In this respect, in this
case we have that Ωrep

i (t) ∪ Ωattr
i (t) = Ωvis

i (t) for each insect i and time t.

Remark We underline that, according to our second hypothesis, the social
behavior of a bee can simultaneously involve alignment and attractive (or
repulsive) stimuli due to the presence of the same groupmate. On the oppo-
site, in the case of our first hypothesis, the j-th animal was only permitted
to affect one of the social velocity contributions of the i-insect (i.e., j could
fall within only one of the interaction regions of i), compare Figs. 2 and 9
(left panels).

According to the second type of assumptions, the space of free parameters
regulating bee dynamics now reads as

(F rep, F attr, a),

where F rep ∈ R+, F attr ∈ [0, vmax], and a ∈ {1, ..., N − 1}, being N the
total number of insects. In this respect, the assumption of H-stability of the
system allows to have a functional relation between the coefficients F rep and
F attr, as stated by the following
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Theorem 3.2. If the following parametric relation

F rep

F attr
>

2(Rattr −Rrep)

5(Rrep)2

(
3(Rrep)2 + 4RattrRrep + 3(Rattr)2

)
(29)

holds, the potential related to the pairwise interaction kernel hint(r) = hrep(r)+
hattr(r), with r = |xi(t) − xj(t)|, defined in Eqs. (15)-(16) is H-stable. As
shown in [4], [9], [22], for a finite number of agents, as in the case of
our interest, this implies that, at each time t ∈ R+, there exist two finite
and positive quantities dmin(t) = min

(i,j)∈{1,...,N}
i ̸=j

|xi(t) − xj(t)| and Dmax(t) =

max
(i,j)∈{1,...,N}

i̸=j

|xi(t)− xj(t)| such that dmin(t) ≤ |xi(t)− xj(t)| ≤ Dmax(t) for all

pairs (i, j) of bees, i.e., at each time t ∈ R+ the swarm does not collapse nor
explode. In particular, for t → +∞, the minimal relative distance between
bees dmin(t) tends to the limit value d∞, whereas the maximal relative dis-
tance Dmax(t) (which also represents the diameter of the swarm) tends to the
value D∞: in other words, the particle population asymptotically organizes
in a stable crystalline-like pattern.

Proof. The proof closely resembles the one of Theorem 3.1 which, as already
explained, relies on the analytical study in [4] and on the calculations firstly
introduced in [6] to the case of cell aggregates. Entering in more details, the
potential uint : R 7−→ R associated to the pairwise interaction kernels defined
in (27)-(28) has the form

uint(r) =

∫
hint(r)dr =

∫
hrep(r)dr +

∫
hattr(r)dr =

=



F rep
( r

Rrep
− log r

)
+ A1,

if 0 < r ≤ Rrep;

− 2F attr (2 r3 − 3 (Rattr +Rrep) r2 + 6RattrRrep r)

3(Rattr −Rrep)2
+ A2,

if Rrep < r ≤ Rattr;

A3,
otherwise,
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where the constants A1, A2, A3 have to satisfy the following conditions

A1 = A2 −
2F attr (2(Rrep)3 − 3(Rattr +Rrep)(Rrep)2 + 6Rattr(Rrep)2)

3(Rattr −Rrep)2

− F rep(1− logRrep);

A2 = A3 +
2F attr (2(Rattr)3 − 3(Rattr +Rrep)(Rattr)2 + 6(Rattr)2Rrep)

3(Rattr −Rrep)2
,

to assure its continuity. As done for Theorem 3.1, let us now assume that
uint(r) → 0 when r → ∞ and set A3 = 0. We have indeed that

A2 = − 2F attr(Rattr)2 (Rattr − 3Rrep)

3(Rattr −Rrep)2
;

A1 = − 2

3
F attr(Rattr −Rrep)− F rep(1− logRrep).

The particle interaction potential is therefore given by

uint(r) =



F rep
( r

Rrep
− log

( r

Rrep

)
− 1
)
− 2

3
F attr (Rattr −Rrep),

if 0 < r ≤ Rrep;

− 2F attr (2r3 − 3(Rattr +Rrep)r2 + 6RattrRrepr + (Rattr)2 (Rattr − 3Rrep))

3(Rattr −Rrep)2
,

if Rrep < r ≤ Rattr;

0,
otherwise.

(30)
Recalling again the criterium given in [4], the potential uint defined in (30)
is H-stable if the already-introduced relation

∫ +∞
0

uint(r) r dr > 0 holds. In
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this respect, let us calculate∫ +∞

0

uint(r)r dr =

=

∫ Rrep

0

(
F rep

(
r2

Rrep
− r log

( r

Rrep

)
− r

)
− 2

3
F attr(Rattr −Rrep)r

)
dr+

−
∫ Rattr

Rrep

(
2F attr (2r4 − 3(Rattr +Rrep)r3 + 6RattrRrepr2 + (Rattr)2 (Rattr − 3Rrep) r)

3(Rattr −Rrep)2

)
dr

=
F rep(Rrep)2

12
− F attr

30
(Rattr −Rrep)

(
3(Rrep)2 + 4RattrRrep + 3(Rattr)2

)
,

which is non-negative (assuring indeed the H-stability of the system) if the
parametric relation defined in Eq. (29) is satisfied.

With respect to Theorem 3.1, the criterium given in (29) involves only F rep

and F attr and not the third free model coefficient a, which can instead in-
dependently vary without affecting the H-stability of the system (recalling
that Rrep = 0.3 m and Rattr = 10 m, the permitted region of the parameter
space is represented in Fig. 10). As in the previous section, we then focus
on the swarm behavior in selected parameter settings, labeled by Tk, where
k = 1, ..., 5, and chosen to span the entire region of interest of the coefficient
values. In particular, in the following numerical realizations, we maintain the
domain configuration, as well as the initial conditions and the differentiated
bee behavior (i.e., a leader insect which guides the rest of uninformed indi-
viduals), of the simulation proposed in the previous section (see Fig. 4). The
only modification is that the social velocity components are now determined
by the interaction sets introduced in Eqs. (24)-(25)-(26) while the repul-
sive/attractive dynamics are defined in Eqs. (27)-(28). Also in this case,
we neglect a random contribution in bee behavior, whereas the parameter
values used in the simulations can be found in Table 1. The resulting swarm
dynamics are classified according to Definition 3.1.

As shown in Fig. 11, we observe that the swarm constantly reaches a
stable crystalline configuration, regardless of the values given to the set of
free parameters (provided that F rep and F attr satisfy the condition given in
Eq. (29)). In particular, the characteristic stable dimensions of the particle
system are, in all cases d∞ = 0.3 m and D∞ = 3.75 m. These values, as
well as the range of time needed for the patterning, are the same obtained in
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the previous section, i.e., with the assumption of an Euclidean metric-based
alignment mechanism. In this respect, we can speculate that the asymptotic
spatial organization of the particle system is completely determined by the
repulsive part of the pairwise interaction kernel (and by the relative coeffi-
cient Rrep, see also comments in [4]). The hypothesis underlying the flight
synchronization process, as well as the resulting variation of the attractive
velocity component, does not instead have an effect on the patterns of the
large-time insect distribution. By comparing Figs. 7 and 11, it is also pos-
sible to notice that in the first case, as commented in the previous section,
the specific set of parameter values have an effect on the temporal dynamics
of stabilization, whereas in the second case, i.e., in the case of a topologi-
cal neighborhood metric-based alignment mechanism, the evolution of dmin

coincides for all the combination of coefficients taken into account.
Fig. 12 shows the system migratory determinants in the case of the

parameter setting T1: in particular, for representative purposes, we plot the
evolution of Xswarm and Vswarm resulting from a = 4 (i.e., no swarming nor
directional flight) and a = 5 (i.e., swarming and directional flight). We can
observe that, also in the case of this second assumption on bee alignment,
the productive motion (indicated by a drop of Xsmarm) substantially starts
after the stabilization of the bee configuration. Exactly the same dynamics
have been replicated in the cases of the other coefficient combinations Tk,
with k = 2, ..., 5.

In contrast to the assumption investigated in Section 3.1, we can however
observe that, a topological neighborhood metric-based synchronization hy-
pothesis results in the fact that the migratory behavior of the swarm depends
on the value of all the free model parameters (and not only to the one relative
to the alignment velocity itself). As shown in Fig. 13, the threshold value of
a, say ā, needed to have swarming and productive motion in fact depends on
the ratio F rep/F attr. In particular, increments in the ratio F rep/F attr result
in increments in ā.

Further, it is interesting to notice that, regardless of the value of F rep/F attr,
the phase transition (i.e., swarming vs. no swarming) of the insect collective
migratory behavior is obtained by substantially low values of the communi-
cation rate a (i.e., ā ≤ 13), i.e., significantly lower than the total amount of
component individuals, see again Fig. 13. In this respect, we are observing
a diffusion of information within the swarm: the knowledge of the direction
towards the target destination in fact first passes from the leader to its clos-
est a-th individuals and then gradually to the rest of the population. This is
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in contrast with respect to what happens in the previous set of simulations,
where a productive collective motion required that Ralign ≥ D∞, i.e., that all
bees simultaneously align to almost the rest of the groupmate (included the
leader).

The different swarm phenomenologies resulting from the two alignment
hypothesis reflect also on the characteristic time of the insect migratory dy-
namics. As shown in the representative plot in Fig. 14, the complete align-
ment of the bee population (i.e., Vswarm = 0) is significantly delayed in the
case of a topological neighbourhood metric-based synchronization hypothe-
sis. This observation is a further confirmation that, in the hypothesis investi-
gated in this section, the information of the direction of movement gradually
diffuses within the population, whereas in the other case, there is simultane-
ous flight synchronization, which involves almost all individuals at the same
time.

4. Inclusion of random contributions

The numerical results proposed so far have been obtained by neglecting
the random terms in Eq. (5): we have indeed constantly assumed that
all bees completely apply the given rules of motion. However, unconscious
fluctuations may characterize individual behavior.

In this respect, for each insect i we add a fluctuation velocity term, given
by a vector ξi, whose modulus and direction are, at any time t, random
variables which uniformly fall within the ranges of values [0, vrand] (with
vrand ≤ vmax) and [0, 360◦), respectively. As it is possible to see by compar-
ing the plots in Fig. 15, which describe the swarm patterning and migratory
determinants in the representative cases M6 (left panels) and T1 with a = 5
(right panels), the inclusion of random fluctuations in bee dynamics does
not have an effect on the swarm organization in a stable crystalline pattern.
However, when the maximal possible modulus of the random velocity com-
ponent is large enough, i.e., vrand = vmax, the insect cloud undergoes uncorre-
lated (and therefore not productive) movement. In contrast, if vrand ≪ vmax,
the collective dynamics of the swarm are still characterized by fluctuations,
which however do not have a dramatic effect on the asymptotic behavior of
the system, in term of collective synchronized flight.

The obvious rationale underlying such a phenomenology is that, when
vrand = vmax, the fluctuation term ξi overcomes the other velocity contri-
butions in Eq. (5), thereby preventing the normal behavior of the swarm.
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However, too large values of vrand are not reasonable, since they only have
to implement unconscious individual deviations from the exact application
of the set rules of flight.

5. Conclusion

The collective and coordinated motion of groups of animals has been re-
cently become of increasing interest for the modeling community. In the last
decades, this field has been treated with different approaches, that can be
classically classified in continuous, discrete, and kinetics models, as specified
in the Introduction. In this perspective, a microscopic-discrete mathematical
model has been here proposed to describe selected dynamics of a bee swarm.
Each insect has been assumed to behave according to the so-called first prin-
ciples of motion, which involve social interactions, such as the tendency to re-
main within the population while keeping a comfort distance from the other
individuals, and the ability to synchronize the flight with the surrounding
groupmates. These ideas have been translated in a first-order mathemati-
cal model based on a set of ODEs, each of them describing the evolution of
the position of a bee. In particular, long- and short-range particle pairwise
interactions introduce non-locality in the individual behavior.

The resulting model has been used to test some assumptions underlying
insect social behavior. In particular, we have focused either on an Euclidean
metric-based or on a topological neighborhood metric-based alignment mech-
anism, which impact also on the definition of the attraction/repulsion veloc-
ity components. In more details, we have analyzed, in each of the two cases,
the model behavior in different regions of the parameter space. In this re-
spect, given the intrinsic multiparametric nature of the model components,
we have taken advantage of some theoretical studies on the H-stability of
particle interaction kernels, discussed in [4], [22], and here extended to the
proposed velocity functions, following the calculations proposed in [6] in the
case of cell systems. The concept of H-stability was introduced in statisti-
cal mechanics [39] and it is closely related to the asymptotic configuration
of discrete systems. More specifically, from the above-cited works, we can
recall the following theoretical results: given a population of n agents, whose
dynamics are determined by a pairwise interaction potential, say u, we have
that: (i) if u is not H-stable (or catastrophic), then the minimal interparticle
distance at the equilibrium collapses to 0 when the total amount of individ-
uals n goes to infinity; (ii) if u is H-stable, then the minimal interparticle
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distance at the equilibrium is bounded by finite strictly positive values, re-
gardless the number of individuals n. In this last case, if n goes to infinity,
the system distribution explodes. Since the present article has been focused
on swarming phenomenology, which are characterized by a finite number of
agents with a well-defined spacing maintained within the bee cloud during
flight, it has been necessary to avoid catastrophic situations, i.e., to assure
the H-stability of the attractive/repulsive kernels employed to describe insect
behavior. As previously explained, such an analytical approach, in conjunc-
tion with empirical observations, has been able also to restrict the range of
value variations of the free model parameters, which have to assure a realistic
crystalline configuration of the swarm.

Given the definition of some migratory determinants to classify the re-
sulting collective phenomenology of the bee population, our results have first
shown that, in the case of the Euclidean metric-based alignment process, the
asymptotic distribution of bees within the cloud is independent from the spe-
cific set of parameter values (provided the condition for the H-stability of the
interaction kernels). On the opposite, the collective migratory determinants
dramatically and entirely rely on the extension of the synchronization region,
which has to be in the range of the asymptotic dimensions of the bee cloud
to have swarming and collective behavior.

We have then turn to analyze swarm phenomenology in the case of a topo-
logical neighborhood metric-based alignment mechanism, which impacts on
the definition of the adhesive velocity component. In this respect, we have
observed that the asymptotic configuration of the swarm remains unaltered
with respect to the previous modeling assumption. This is indicative of the
fact that the characteristic dimensions of the stable pattern are entirely deter-
mined by the repulsive part of the interaction kernel. The set of simulations
proposed in Section 3.2 have also shown that the migratory dynamics of the
bee population depend both on the ratio F rep/F attr and on the communica-
tion rate a, i.e., on the values of the three free model parameters. However,
in all the analyzed cases, the threshold number of individuals that each bee
has to consider to have a productive swarming is substantially small (i.e.,
ā ≤ 13), in contrast to the case of an Euclidean metric-based synchroniza-
tion mechanism, where the alignment region had to include almost the entire
cloud to observe an effective directional flight. A topological neighborhood
metric-based migratory assumption indeed results in a gradual diffusion of
information within the bee population: this has been also confirmed by the
greater time needed by the swarm to completely align with respect to the
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case of the Euclidean metric-based synchronization hypothesis. We have also
discussed the role of possible random fluctuations in bee velocity.

It is finally interesting to notice that in our study we have not observed
hybrid swarm phenomenologies (e.g., swarming without productive motion
or vice versa), which are in principle possible and have been captured by
other similar models [9].

We here remark that, in principle, the computational results presented in
the previous part of the paper depend on the initial condition of the particle
system. However, we have observed that the simulation outcomes obtained
by keeping the same initial density of bees (i.e., the initial diameter of the
swarm and number of insects), while randomly varying the initial individual
position, did not significantly differ. For instance, the values of the standard
deviations relative to swarm migratory determinants (e.g., asymptotic veloc-
ity and barycenter displacement) fell in the range [2 , 4] %, if evaluated over
at least 10 different and independent simulations. In this respect, each plot
in Section 3 has reproduced the results of a single representative numerical
realization. The absence of error bars in the figures, according to us, also
avoids unnecessary graphical overcomplications of the presented figures.

Comparison with pertinent literature. As explained in the Introduction, our
model belongs to the class of microscopic/discrete approaches dealing with
collective dynamics of animal populations. Of this group of methods, some
are devoted to reproduce selected features of bee swarming. It is indeed
important to discuss their differences and similarities with respect to our
approach.

We first remark that most of the discrete models presented in the liter-
ature are based on the already-introduced set of first principle of swarming
[9], i.e., attraction/cohesion, avoidance, and alignment.

Entering in more details, in [28], Fetecau and Guo implement a second-
order model, where attraction and repulsion stimuli are described by a Morse
potential, whereas the alignment process of a given bee involves its two-
fold faster neighbors (with an effect that decreases with the mutual distance
between the pair of interacting insects, according to a quite complex, tanh-
based, rule). Bee dynamics also account for a random component, which is
active only when the interaction of an individual with the rest of the swam
is low enough. The authors introduce a visual field for each bee, given by a
planar cone which is constantly aligned to the direction of motion and formed
by two regions: a central cone where the other individuals are set to be seen
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directly, and therefore assigned a unit weight, and a peripheral area where
the other individuals are set to be seen partially, and therefore assigned a
lower weight. In our model, a peripheral vision is not considered, since it
is known from biology that the compound eyes of bees cover most of the
front and of the sides of their head, assuring an almost homogeneous vision.
Fetecau and Guo finally differentiate a subpopulation of leader bees, that do
not interact with their groupmates and are assigned an oscillatory motion.
They in fact first fly towards the nest; then, once reached the leading edge of
the swarm, they turn back to the trailing part of the population (at a lower
velocity and visibility).

Attraction, repulsion, and alignment are also at the basis of the first
order model presented in [36]. Entering in more details, the cohesion velocity
contribution is modeled as a vector pointing from the position of each bee
to the center of mass of the set of neighboring insects which fall within its
visual distance. In this respect, we have here preferred to implement pairwise
interaction kernels, since it is difficult to establish whether a bee exactly
knows the position of the barycenter of the rest of groupmates. The alignment
rule instead relies on an Euclidean metric-based assumption, namely each bee
is set to synchronize its movement with all the seen groupmates (regardless
of their speed). This is quite similar to the assumption tested in Section 3.1,
even if in our case the region of attraction and alignment do not coincide.
As in the case of the work by Fetecau and Guo, also in [36], a set of leader
bees is defined and assigned a back-and-forward motion within the swarm,
in order to diffuse the information of the productive direction to the overall
population.

In [26], the authors describe both the decision-making process used by
the house-hunting honeybees to find a new nest site and their guidance role
within the rest of the swarm. Focusing on the latter, we can notice that Di-
wold and colleagues employ a cohesion term that makes each bee attracted
by the barycenter of a set of fast enough individuals, which are also involved
in a topological metric-based alignment mechanism. Such an assumption on
flight synchronization is similar to our second hypothesis (tested in Section
3.2) although we have here implemented different interaction velocity com-
ponents. The resulting model is then applied to compare the swarming of
two different species of honeybees, namely Apis Mellifera and Apis Florea.
In particular, while A. Mellifera is a cavity-nesting species, whereas A. Flo-
rea is an open-nesting species. This means that the Apis Mellifera has to
find a roomy and comfortable homesite, protected from cold winds and from
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predators. Conversely, A. Florea usually nests on a shaded branch, having
less constraints in finding a suitable location.

A more general (i.e., not strictly related to bee dynamics) model is pro-
posed in [17]. It focuses on two aspects: how information is transferred among
moving groups of animals and how they can find an agreement when informed
individuals suggest different moving directions to rest of the population. Such
an approach still relies on the classical social principle of attraction/repulsion
and alignment. In particular, the unexpected conclusion is that the larger
is the animal group the smaller is the necessary proportion of informed in-
dividuals required to have a productive collective movement. This is a very
interesting result, whose applicability to the case of bee swarms should be
investigated. The same research group proposes also a model that focuses
on the pattern characteristic of animal populations [18]. Their approach
includes a Morse potential that, in a given range of parameters, satisfies
the H-stability conditions (thereby assuring a crystalline configuration) and
two additional terms: they are relative to self-propulsion and friction and
their balance results in the capability of the system to reach an asymptotic
collective speed (as it happens also in our model in given regimes of free
parameters).

Finally, in [20], [21], Cucker and Smale present a well-known model able
to realistically capture flocking phenomenology: more specifically, their ap-
proach includes the emergence of temporary leader individuals and is based
on a term relative to movement synchronization mechanisms, which are af-
fected by a communication rate depending on the interindividual mutual
distances.

The dichotomy between topological metric- vs. Euclidean metric-based
interactions between animals belonging to the same population is the topic
of a very interesting article by Ballerini and coworkers, who deal with flock-
ing events of European Starling swarms under external perturbations (e.g.,
predator attacks) [1]. More specifically, these authors experimentally demon-
strate, by an analysis of a large amount of photographic data, that each in-
dividual interacts with a fixed number of groupmates (6-7) and not with all
neighbors falling within a given region. In other words, the collective and co-
ordinated migration of bird colonies is the result of topological interactions,
as also confirmed by the computational results proposed in the same work,
which are obtained with an agent-based model.

The observations by Ballerini and colleagues well fit with the focus of
our work. In particular, it would be interesting to perform their empirical
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study in the case of bee colonies, in order to point out if topological argu-
ments are involved in bee swarming as well. In this respect, it would be
relevant (but very difficult) to address two further points: (i) if topological-
based interactions underly only attractive/repulsive insect behavior or also
flight synchronization mechanisms and (ii) if external conditions and/or the
objective of migration affect the type of interindividual interactions (e.g., a
predator attack may stimulate topological metric-based interactions, whereas
exploring or feeding tasks may require Euclidean metric-based interactions).

We can therefore conclude that the main components of our model are
already presented in published similar approaches: however, with respect to
the literature, we have here tested and compared, in terms of simulation out-
comes, alternative assumptions underlying the flight alignment mechanism
(which impact also on the definition of the pairwise attractive/repulsive ve-
locity terms) and used analytical arguments to obtain plausible parameter
settings, i.e., resulting in realistic crystalline swarm configurations.

Future developments. The proposed model has investigated different social
mechanisms underlying the behavior of a bee swarm. However, our approach
can be further improved in several directions. We first recall that in our
model a given bee is set as a leader for the entire period of observation. This
assumption is consistently based on the fact that, as known from the experi-
mental literature, in a bee population there is an immutable hierarchy within
the component individuals, i.e., each of them has a specific role. For instance,
a small set of informed/streaker insects have already visited the target site
and therefore is able to guide the rest of the swarm to the destination. On
the opposite, in other animal groups, there is the continuous emergence of
temporary leaders, which change in few seconds. A more detailed description
of the movement of informed bees, as well as on the diffusion of information
to the rest of the swarm, is however needed. In this respect, various assump-
tions have been proposed to account for the flight guidance mechanism of
the leader-follower system. According to the chemical hypothesis, the lead-
ers can pilot the cloud of bees to the target destination by the production
of the Nasonov pheromone, which attracts the uninformed insects. Another
possible explanation is that the scout bees lead the follower individuals via
visual signals. Specifically, Lindauer in 1955 proposed that the leaders can
transmit the direction of movement by flying through the swarm [42]. In par-
ticular, such informed bees first fly at high speed from the back of the swarm
to its front (at an upper layer, where they are more visible in contrast with
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the light of the sky). Then, once they have reached the front of the cloud,
they slowly come back to the rear edge, along the bottom or the sides of the
population to be almost invisible to the groupmates. The entire dynamics
finally start again. The non-informed bees in turn align to the leader indi-
viduals: the information progressively diffuses in a ripple effect and therefore
the swarm heads towards the new location gradually increasing its overall
speed. Such a mechanisms has been confirmed by empirical experiments as
well [42]. The above-explained assumptions of leader behavior can be easily
tested with our approach, also in conjunction with the different hypothesis
underlying the alignment process. In this respect, it would also useful to
extend the model in three dimensions.

Another aspect that would require more detailed investigation is the pos-
sible modification of the social interaction rules due to external conditions
(e.g., presence of predators or weather changes). Also the presence of obsta-
cles, such as trees or building structures, may impact on bee behavior. It
should be also interesting to study if the phenomenology of the swarm differs
according to specific group tasks (e.g., feeding, exploring).

A further model improvement can be represented by the inclusion of bee
gazing direction as a further degree of freedom. In this respect, as done in
the case of pedestrians [15], for each insect i, it should be defined a unit
vector, say gi(t) = (cos γi(t), sin γi(t)) (being γi the angle between gi itself
and the x-axis of the domain), defining the direction of its gaze, cf. Fig. 16.
gi may have also its own evolution equation, accounting for instance head
rotation with respect to the direction of motion or towards environmental
stimuli (e.g., sounds or light signals) and/or due to unconscious fluctuations.
The inclusion of a gaze vector for each insect i would also allow to improve
the definition of the visual region Ωvis

i by introducing a proper half visual an-
gle, say θ, which would actually extend from gi (see again Fig. 16). In this
respect, each individual should be assumed to not consider and therefore in-
teract with the insects out of Ωvis

i . Anisotropy would be indeed introduced in
bee dynamics, which would destroy the symmetry of the repulsive/attractive
kernels introduced in Eqs. (7)-(8). This would impede the application of the
H-stability criterium introduced in [4] and here applied in Theorems 3.1 and
3.2, since it requires that the interaction potentials of interest are isotropic
(cf. Hypothesis 3 in [4]). The inclusion of bee gazing direction would there-
fore require a deeper analytical study. However, we here remark that the bee
visual angle is substantially large (i.e., ≈ 320◦, as reported in the experimen-
tal literature [43]). It indeed covers almost all directions and therefore each
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bee is aware of the presence of almost the entire set of groupmates. In this
respect, the hypothesis of a round visual area employed in this work is not
too restrictive.

Finally, our approach can be extended to a large swarm, formed by thou-
sands of individuals disposed in almost spheroidal patters. In this respect,
it would be interesting to test if the results obtained by varying the align-
ment mechanisms (and the relative parameters) would apply also in the case
of significantly increased numbers of bees. It is useful to remark, however,
that the proportion between informed/non-informed individuals set in this
model (i.e., 1/99) is in the range of values empirically measured for large
swarms (300 to 400 leaders in a swarm of 10000 insects [42]). Obviously, a
model extension involving a huge number of particles would cause compu-
tational issues, i.e., mainly related to the optimization of computing time.
In this respect, a possible solution is represented by the use of serial and
parallel computing. High performance serial computing can be achieved by
using the same programming techniques employed in particle fluid-dynamic
simulations. Otherwise, parallel computing is possible, for example, using
Message Passing paradigm (MPI) or shared memory parallelization. In the
first case, the computational domain would be divided in subdomains that
in turn would be assigned to a single processor. At each time step, each
processor should communicate the bees who leave its portion of domain and
enter the sub-domain of a neighboring node. In case of a shared memory par-
allelization (e.g., on GPU devices), the computational domain and the data
structure storing population data would be shared among different threads,
each of them updating the state of a sub-set of individuals.
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Figure 1: Left panel: The virtual population of bees is modeled in the two-dimensional
space R2, i.e., we are taking into account a planar section of a typical swarm. Right panel:
Each bee i is represented as a material point and characterized by its actual position xi(t)
and velocity vi(t). For each insect, we also define a visual region Ωvis

i (t), i.e., a round area
determined by the bee visual depth Rvis. The inclusion of a visual field implies that each
bee is not able to see and therefore to interact with the entire set of their groupmates (see
the individual indicated by the green arrow). For representative purposes, hereafter the
virtual bees will be indicated by rigid disks centered at their actual position.
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Figure 2: Euclidean metric-based alignment mechanism. Left panel: Representation of the
three interaction regions: the repulsive neighborhood Ωrep

i (t) (see Eq. (12)), the alignment

neighborhood Ωalign
i (t) (see Eq. (13)), and the attractive neighborhood Ωattr

i (t) (see Eq.
(14)). In particular, assuming Rattr = Rvis, we have that the three interaction regions

entirely cover the visual field of each animal, i.e., Ωrep
i (t) ∪ Ωalign

i (t) ∪ Ωattr
i (t) = Ωvis

i (t).
Right panel: Plot of the pairwise interaction kernel hint : R+ 7−→ R given by the sum of the
repulsive and attractive functions defined in Eqs. (15)-(16), i.e., hint(r) = hrep(r)+hattr(r).
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Figure 3: Euclidean metric-based alignment mechanism. Different views of the permitted
parameter region, i.e., where hint is H-stable. The space of free model coefficients is given
by (Ralign, F rep, F attr) ∈ R3

+. In particular, biological considerations allows the following
restrictions: Ralign ∈ [Rrep, Rattr] and F attr ∈ [0, vmax]. The H-stability criterium in Eq.
(17) further reduces the possible variations of parameter values to the region above the
grey surface. Of the remaining combination of coefficients, we focus on the six sets Mk,
where k = 1, ..., 6, since they are sufficiently distributed, thereby covering large enough
parameter regimes.
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Figure 4: Initial spatial configuration of the swarm. The red disk denotes the position
of the informed (leader) bee, while the other individuals are represented by yellow disks.
The target destination xd =(10 m, 2.5 m) is here represented by a triangle.
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Figure 5: Representative evolution of the bee population in the case of swarming and
productive movement. Left panels show the position of the insects at selected different
times, right panels show also their direction of motion (i.e., the unit vector of their velocity,
indicated by the orange arrow) at the same instants. It is possible to see that the bee
cloud first undergoes crystallization (i.e., t1 → t2) and then flight alignment and productive
movement, i.e., behind the leader individual towards the target destination (i.e., t3 → t4).
Such a representative system evolution is obtained with the parameter combination M6:
however, it is completely consistent for all the other analogous cases.
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Figure 6: Representative evolution of the bee population in the case of uncorrelated and
non productive behavior. Left panels show the position of the insects at selected different
times, right panels show also their direction of motion (i.e., the unit vector of their velocity,
indicated by the orange arrow) at the same instants. It is possible to see that the bee
cloud still organizes in a crystalline pattern (i.e., t1 → t2), however the insect velocities do
not align: therefore, the bee cloud almost fluctuates around the initial position (compare
the position of the insects at the final time t4 here and in the previous Fig. 5). Such a
representative system evolution is obtained with the parameter combination M4: however,
it is completely consistent for all the other analogous cases.
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Figure 7: Euclidean metric-based alignment mechanism. Time evolution of the minimal
distance between pairs of bees, i.e., dmin(t), observed in selected combinations of param-
eters. We can first notice that, in all cases, dmin converges to d∞ = 0.3 m, the swarm
constantly organizes in a crystalline-like configuration. This is consistent to the fact that
all sets of coefficients satisfy the criterium in Eq. (17) for the H-stability of the system.
The specific parameter values instead affect the convergence dynamics: for instance, com-
paring the cases M1 and M2, it emerges that higher values of F rep increase the time
needed by the swarm to stabilize in the crystalline pattern.
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Figure 8: Euclidean metric-based alignment mechanism. Time evolution of Vswarm (top
panel) and Xswarm (bottom panel), introduced in Eqs. (22-23), observed in selected combi-
nations of parameters. It is possible to notice that the bee population undergoes swarming
and productive motion only in the cases M1, M2, M5, and M6, which are characterized
by a sufficiently large Ralign, i.e., larger than D∞ = 3.75 m.
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Figure 9: Topological neighborhood metric-based alignment mechanism. Left panel: Rep-
resentation of the attractive and repulsive regions, defined in Eqs. (25)-(26), and of the
alignment set, introduced in Eq. (24). In particular, assuming Rattr = Rvis, we have that
Ωrep

i (t) ∪ Ωattr
i (t) = Ωvis

i (t) for all bees i = 1, ..., N and for any t. Right panel: Plot of
the pairwise interaction kernel hint : R+ 7−→ R given by the sum of the repulsive and
attractive functions defined in Eqs. (27)-(28), i.e., hint(r) = hrep(r) + hattr(r).
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Figure 10: Topological neighborhood metric-based alignment mechanism. The space of
free model coefficients is given by (F rep, F attr, a) ∈ R2

+ × {1, ..., N − 1}, being N the
total number of insects. In particular, biological considerations allows also the following
restriction: F attr ∈ [0, vmax]. The H-stability-related criterium in Eq. (29) further reduces
the possible variations of parameter vales to the white region of the plane (F rep, F attr).
a can instead vary without affecting the system stability. Of the remaining combination
of coefficients, we focus on the sets Tk, where k = 1, ..., 5, since they are sufficiently
distributed, thereby covering large enough parameter regimes.
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Figure 11: Topological neighborhood metric-based alignment mechanism. Time evolution
of the minimal distance between pairs of bees, i.e., dmin(t), observed in selected combina-
tions of parameters. We notice that, in all cases, dmin converges to d∞ = 0.3 m, i.e., the
swarm constantly organizes in a crystalline-like configuration. This is consistent to the
fact that all sets of coefficients satisfy the criterium in Eq. (17) for the H-stability of the
system. Interestingly the asymptotic spatial configuration of the insect is exactly the same
obtained in the case of an Euclidean metric-based alignment velocity. This is indicative of
the fact that the characteristic dimensions of the large-time pattern are solely determined
by the repulsive component of bee dynamics, which is not affected by the variation of the
hypothesis underlying the flight synchronization process.
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Figure 12: Topological neighborhood metric-based alignment mechanism. Characteristic
time evolution of Vswarm (top panel) and Xswarm (bottom panel) observed in the represen-
tative parameter setting T1 in the case of swarming and productive motion (i.e., obtained
with a = 4) or not (i.e., for a = 5). Exactly the same dynamics result in the other
parameter combinations Tk, with k = 2, ..., 5.
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Figure 13: Topological neighborhood metric-based alignment mechanism. For any repre-
sentative parameter setting Tk (with k = 1, ..., 5), the plot shows the threshold value of
the communication rate a, i.e., ā, leading to a transition between an uncorrelated individ-
ual movement to a swarming behavior with productive motion. It is straightforward to
observe that different ratios F rep/F attr result in different ā. In particular, increments in
the ratio F rep/F attr result in increments in ā.
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Figure 14: Comparison of the time evolution of Vswarm observed in a single representative
parameter setting deriving either from the Euclidean or from the topological neighborhood
metric-based alignment assumption. The former case is the coefficient combination M6,
the latter the parameter setting T1 with a = 5. By comparing the two curves, it is possible
to observe that the complete alignment of the bee population is significantly delayed in
the case of the topological neighbourhood metric-based synchronization hypothesis, which
involves a gradual diffusion of information within the insect cloud rather then a sudden
and simultaneous flight alignment.
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Figure 15: Comparison of the time evolution of dmin (top panels) and of Vswarm (bottom
panels), observed in representative parameter settings (i.e., M6 for the Euclidean metric-
based alignment assumption and T1 with a = 5 for the topological neighborhood metric-
based alignment assumption), in the case of addition of the random velocity term ξi in
Eq. (5), for each bee i = 1, ..., 100. As it possible to see, the inclusion of fluctuations does
not have an effect on the patterning of the bee swarm, but only on its flight dynamics.
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Figure 16: A possible model improvement involves the inclusion of a bee gazing direction,
which may be defined by a proper unit vector, say gi. The inclusion of the insect gaze
would also allow to improve the individual visual region, that may be identified by a round
sector determined by the visual depth Rvis and the half visual angle θ extending from gi

itself. The definition of such a type of visual field introduces anisotropy in individual
behavior.
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