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Abstract—The emergence of next generation wireless net-
working technologies has motivated a paradigm shift in devel-
opment of viable mobile-Health applications for ubiquitous
real-time healthcare monitoring. However, remote health-
care monitoring requires continuous sensing for different
biosignals and vital signs which results in generating large
volumes of data that requires to be processed, recorded, and
transmitted. In this paper, we propose our vision for the
benefits of leveraging edge computing for enabling automated
real-time epileptic seizure detection. In particular, we propose
an adaptive classification and data reduction technique that
reduces the amount of transmitted data, according to the
class of patients, while enabling fast emergency notification
for the patients with abnormality. Using such an approach,
the patient data aggregator can automatically reconfigures
its compression threshold based on the characteristics of the
gathered data, while maintaining the required application
distortion level. Our results show the excellent performance
of the proposed scheme in terms of classification accuracy
and data reduction gain, as well as the advantages that it
exhibits with respect to state-of-the-art techniques.

Index Terms—Seizure detection, Edge-based classification,
EEG signals, mobile-Health, feature extraction.

I. INTRODUCTION

The rapid advances in Wireless Body Area Network
(WBAN), edge computing, and wireless communica-
tion technologies facilitate implementing efficient-remote
healthcare services, or known as ubiquitous healthcare
[1]. Such emerging technologies has boosted the evolution
of traditional healthcare into Smart healthcare services.
This vision of enhancing traditional healthcare systems
can significantly help in a variety of pre-hospital emer-
gency care situations and for patients that are located in
geographically remote areas. Furthermore, the advances in
Internet of Things (IoT) and edge computing is expected
to inspire fundamental transformations for the healthcare
industry.

In this context, there is a prompt progress in the
field of mobile-health (m-health) systems [2] that lever-
age the wide range of mobile technologies (such as
smartphones, tablets, and portable health devices) to pro-
vide continuous-remote healthcare monitoring [3]. How-
ever, neurologically-oriented m-health applications are still
challenging, due to the need of recording, processing and
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wireless transmission of large volumes of data to ensure
the quality of healthcare services. For instance, in Intensive
Care Unit (ICU) EEG monitoring system, samples of EEG
along with video recording should be stored and accessed
remotely for correlating clinical activity with EEG pattern.
This can result in generating 8-10 GB per patient per day
[4], which obviously sets a significant load on the system
design in terms of processing capabilities, storage space,
and transmission power.

Thus, reducing the amount of transferred data origi-
nating from sensing nodes and selecting the most ap-
propriate network interface for transmission is essential
[5]. This is also important considering that m-health sys-
tems typically consist of several battery-operated devices
that should run for a long time without replacement.
A promising approach in this context is performing in-
network processing on the raw data before their transmis-
sion. Number of biosignal compression algorithms were
proposed in the literature [6], which vary in the lossiness,
computational complexity, and waveform transformation
(e.g., Discrete Wavelet Transform (DWT), Autoencoders,
vector quantization, discrete cosine transform, etc.). In [7],
the authors presented lossless/near-lossless compression
algorithms for multichannel biomedical signals using in-
formation theory and signal processing tools through lever-
aging the spatial and temporal redundancies in biomedical
signals. However, the intensive computational complexity
of such techniques might turn the in-network processing
on battery-operated devices impractical [8][9][10]. Fur-
thermore, non of the aforementioned work has considered
the characteristics of the gathered data, or the class of the
patient before compression, in order to adapt the proposed
compression techniques based on the class of the data and
application’s requirements.

In this paper, we argue that leveraging autonomy and
intelligence of the network edge can significantly enhance
energy consumption, latency, and emergency response time
for mobile-health applications through moving classifica-
tion and adaptive compression tasks to the edge node.
Thus, our main contributions can be highlighted as follows.

1) Propose a highly accurate classification scheme us-

ing low-complexity classifier at the network edge.

2) Develop an automated class-based compression



technique that maintains application Quality of Ser-
vice (QoS) requirements (i.e., signal distortion and
classification accuracy) taking into consideration the
characteristics of the data, while saving a significant
amount of energy at the edge. To the best of our
knowledge, performing class-based data reduction
at the network edge to minimize the transmission
energy, while maintaining applications’ QoS require-
ments has not been studied before.

3) The proposed schemes are evaluated through sim-
ulation discussing the tradeoff between transmitted
data length and signal distortion. Our results show
the gain provided by our solution, and its ability
to obtain high energy reduction and classification
accuracy for normal/abnormal EEG patterns.

The rest of the paper is organized as follows. Section II
describes the system model. Section III presents the pro-
posed edge-based classification and compression schemes.
Section IV provides our simulation results, while Section
VI concludes the paper.

II. SYSTEM MODEL

In this paper, the wireless EEG monitoring system
shown in Figure 1 is considered. We consider epileptic
seizure detection as an application of EEG-based diag-
nosis. EEG signal is the main source of information on
brain electrical activities [11]. Also, it is carrying valuable
information between discriminating healthy subjects and
patients diagnosed with epileptic disease. In our model, the
Patient Data Aggregator (PDA) gathers EEG data from the
patient using an EEG Headset [12]. The PDA continuously
collects, processes, and forwards physiological data to the
M-Health Cloud (MHC). The main modules considered at
the PDA are Feature Extraction (FE), Edge-based Classi-
fier (EC), and adaptive Class-based Compression (CbC) of
the EEG data.

For implementing an automated epileptic detection sys-
tem, we propose the following tasks at the PDA:

1) Transforming EEG data into frequency domain using
the Fast Fourier Transform (FFT). This step assist
in better analysis of EEG signal characteristics to
improve classification process and enables our CbC
scheme.

2) Extracting frequency-domain features, which are in-
formative, non-redundant, and pertinent epileptic to
seizure detection.

3) Performing a low-complexity classification tech-
nique using extracted feature in order to differentiate
between normal/abnormal EEG signals.

4) Compressing data before transmission leveraging
a reconfigurable or adaptive compression threshold
that is varying based on the identified class.

Accordingly, we can reduce transmitted data size by com-
pressing the data, while retrieving the original data at the
MHC without affecting application’s QoS requirements.
At the MHC, signal reconstruction, knowledge discovery,

storage, and further sophisticated analysis can be done to
evaluate the patient’s status.

PDA

Feature Swift

! Extraction I Classification
Class-based

Compression

Patient

Transmit |
Compressed
Data

~

M-Health Cloud

3

Fig. 1. System model under study.
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III. CLASSIFICATION AND COMPRESSION

In what follows, we propose an efficient, low-
complexity and automated epileptic seizure detection sys-
tem. The proposed system provides a class-based compres-
sion scheme taking into account the EEG characteristics
of the generated traffic, and patient’s status.

A. Feature Extraction

The first step in our procedure is generating the
Frequency Features (FF) through transforming the
gathered EEG data into the frequency domain using
FFT [13]. FFT is considered as a classic frequency
analysis method with complexity O(N log N). The main
advantage of leveraging FF is their immune to signal
variations resultant from electrode placement or physical
characteristics of patients [14]. As shown by the signal
behavior in Figure 2, the normal/abnormal EEG classes
under study demonstrate different mean, median, and
amplitude variations after FFT. Furthermore, it is crucial
to consider as relevant features the Root Mean Square
(RMS) to distinguish between seizures and non-seizure
events, and Signal Energy (SE). RMS and SE are good
signal strength estimators in different frequency bands.
We therefore select the following five frequency features:
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where |z 7| is the absolute value of input EEG signal x after
FFT, and N is the number of samples, namely N = 4096
samples.
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Fig. 2. Normal/Abnormal EEG signals after FFT.

B. Edge-based Classification

The second step in our procedure is proposing a reliable,
edge-based classification algorithm for epileptic seizure
detection. We leverage the extracted frequency features to
perform an initial classification on normal/abnormal EEG
patterns at the network edge (i.e., PDA). The advantages
of such classifier is two-fold. First, by knowing the data
class at the transmitter, we can enhance the performance of
our compression technique through increasing/decreasing
compression threshold without violating distortion thresh-
old imposed by the application. Second, in case of emer-
gency, a quick alert and notification can be initiated based
on this EC, which saves significant delays resulting from
transmitting then classifying the data at the MHC.

The fundamental question now is: How can we obtain a
simple yet accurate classification rule using generated FF
to differentiate between normal/abnormal EEG patterns?
First, we define a classification indicator A that combines
generated FF as follow

A=pu+M+P+R+E. ()

Second, we define a classification rule using the obtained
A to detect the abnormal pattern of the sensed EEG data,
where \ will represent the condition part of the rule, while
the status of the patient S will represent its consequent
part. Accordingly, we obtain through our experiments the
following classification rule

g Normal, if % <~
Abnormal, if % >y

O]

where « is a scaling factor, and + is the classification
threshold that is obtained during an offline training phase
based on classification indicator values for different signals
behavior, as will be shown in the simulation results. This
classification rule will be exploited to obtain the status
of the patient at the PDA to be used in our class-based
compression scheme.

C. Adaptive Class-based Compression

The third step in our procedure is developing an adaptive
class-based compression technique through controlling the
transmitted data size based on patient’s status (i.e., class
of the data). After transforming the collected EEG data
into the frequency domain, the FFT returns N com-
plex numbers (coefficients) corresponding to the N input
samples. However, the generated spectrum is conjugate
even (i.e., two-sided spectrum); the magnitude spectrum is
symmetrical (see Figure 3). Leveraging such EEG signal
characteristics in the frequency domain, we can transmit
one-sided spectrum, thus the output after the FFT will be
N/2 complex coefficients. Furthermore, the coefficients
that are below a predefined threshold 0 can be discarded
without much signal quality loss. Accordingly, by properly
adjusting such a threshold we can control the length of the
output data generated from CbC and, thus, the compression
ratio of the CbC.
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Fig. 3. An example of abnormal EEG signal coefficients after FFT.
At the receiver side, the reconstruction and data recovery
can be applied using IFFT to retrieve the original signal.
To quantify the difference between the original and the
reconstructed signal, the signal distortion is evaluated as

[z — |
[l]

where x is the original signal, and z, is the reconstructed
one.

The question now is: How can we obtain the threshold
0? It is well-known that, for lossy compression techniques,
there is always a tradeoff between increasing compression
ratio and decreasing distortion. Hence, it is crucial to
maximize compression ratio, for saving energy consump-
tion, without violating application QoS requirement (i.e.,
distortion). To consummate this, we propose an Automated

D= %100, ®)



Seizure Detection (ASD) algorithm. This algorithm en-
ables the PDA to automatically update its compression
threshold, hence the compression ratio, based on the class
and the characteristics of the gathered data such that it can
satisfies application distortion constraint. Leveraging the
extracted FF, ASD algorithm can detect normal/abnormal
EEG classes, hence updates threshold ¢ as follows:

)\ . .
p- 5 -G, if S is Normal
B ¢, if S is Abnormal

where ¢ is an optional tuning parameter for a user to
increase/decrease compression ratio, o and 3 are normal-
izing parameters for normal and abnormal EEG pattern,
respectively. The main steps of the proposed ASD algo-
rithm are summarized in Algorithm 1.

Algorithm 1 Automated Seizure Detection (ASD)
1: Input:
x: Collected EEG signal.
2: Compute zy.
From x ¢, generate frequency features using equations
(D-5).
Compute A, as in (6).
it 2 < then
Normal EEG pattern detected.
Update the value of ¢ as in (9).
else
Abnormal EEG pattern detected, generate emer-
gency notification signal.
10:  Update the value of § as in (9).
11: end if
12: Compress and transmit ¢ using obtained 4.

hed

R A AN

We remark here that leveraging the proposed edge-
based classifier with CbC enables the PDA to obtain the
best threshold that can be used at the CbC based on
the class of the data, while satisfying application QoS
requirements. Unlike the other threshold-based techniques
that neglect the class of the data and define a threshold
taking the conservative approach (i.e., fixing the value
of the threshold corresponding to the maximum-obtained
distortion for normal EEG pattern), which decreases the
obtained compression ratio for abnormal EEG pattern, or
using greedy approach (i.e., fixing the value of the thresh-
old corresponding to the maximum-obtained distortion for
abnormal EEG pattern), which results in high distortion
for normal EEG pattern, as will be shown in simulation
results. Thus, using the proposed ASD algorithm, the
PDA can automatically reconfigure its compression ratio
based on the characteristics of the gathered data through
adjusting its threshold, hence, saves a significant amount
of transmitted data while maintaining distortion constraint.

IV. SIMULATION RESULTS

In our simulation, the EEG dataset in [15] is used. We
considered three sets, denoted A,B, and E, each containing

100 EEG records of 23.6-sec duration and sampling rate
173.61 Hz. Sets A and B (i.e., normal class) represent
healthy subjects with eyes opened (A) and closed (B),
respectively, while set E (i.e., abnormal class) originated
from EEG archive of presurgical diagnosis and contained
seizure activity.

First, We assess the performance of the proposed edge-
based classifier, and illustrate the effect of v on the
obtained Classification Accuracy (CA). Figure 4 shows
the effectiveness of the proposed classification indicator
A to differentiate between normal/abnormal EEG classes.
Thus, by properly adjusting the value of the classification
threshold ~', the PDA can obtain very high CA. Figure 5

102
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Fig. 4.  Classification indicator behavior for normal/abnormal EEG

patterns.

depicts the obtained CA using our classifier with changing
~ while considering 300 EEG records (200 for normal
EEG signals, and 100 for abnormal EEG signals). At low
v, the classifier tends to consider most of the normal
EEG signals as an abnormal signals, which results in
maintaining low CA. However, by adjusting the value of
v, the classifier obtains high CA. The results show that,
the proposed classifier could achieve 98.3% CA with the
optimal-obtained 7y, which is around 0.65. Accordingly, we
could efficiently detect the emergency case (i.e., abnormal
EEG signals) with very high accuracy using the proposed
edge-based classifier.

Next, we assess the performance of the proposed CbC
technique compared to threshold-based Discrete wavelet
transform (DWT) technique [16]. In general, by increasing
the compression ratio 7, the distortion increases for both
CbC and DWT. However, in CbC, at the same compression
ratio, we could maintain less distortion than DWT (see
Figure 6). It is worth also mentioning here that through
varying the Daubechies families, or decomposition levels
of the DWT, it can maintain less distortion, however,
it comes at the expense of increasing the computational

!We remark here that v can be obtained during an offline training
phase leveraging the values of X for different EEG classes.
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Fig. 5. Effect of varying v on obtained classification accuracy.

complexity, which may not be acceptable for such battery-
operated devices. Furthermore, we remark here that for the
same compression ratio, the value of the distortion varies
based on the class of the data. Thus, by knowing the class
of the data at the PDA, it can increase its compression
ratio while maintaining the required distortion threshold.
It is clearly illustrated in Figure 7. As mentioned, in our
CbC technique we control the transmitted data length by
changing the threshold J: as d increases, ) increases, at the
expense of increasing the distortion. As shown in Figure 7,
at the same 9, the distortion D and 7 vary according to the
EEG class. Hence, to obtain the optimal 1 that maintains
application distortion threshold, the PDA should properly
adjust § based on the detected EEG class. Thus, it is
important to have an initial-swift classifier at the PDA to
obtain the proper compression threshold based on the class
of the data.
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Fig. 6. Distortion variation with compression ratio for proposed CbC
technique and DWT.

Finally, Figure 8 illustrates the main advantage of the
proposed ASD scheme compared to fixed threshold com-
pression scheme, and assesses the ability of our scheme to
adapt to varying EEG records. In this figure, we present
the average obtained distortion and compression ratio for
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Fig. 7. Effect of varying the threshold ¢ on ¢, and PDR for different

EEG classes.

each EEG set (i.e., set A, B, and E, respectively) over
the time. Also, it is assumed that there is a constraint
on the maximum obtained distortion, i.e., D < 7%. We
compare the ASD algorithm with two fixed threshold
schemes: Conservative and Greedy compression schemes.
In Conservative scheme, we consider that the threshold
0 is fixed and identified using normal EEG class, such
that the obtained distortion at normal EEG class is below
the predefined distortion constraint. In Greedy scheme,
0 is fixed such that the obtained distortion at abnormal
EEG class is below the predefined distortion constraint.
ASD algorithm obtains compression threshold ¢ taking
into consideration the class and characteristics of the
compressed data, unlike the other algorithms that consider
fixed § over the time. Thus, with changing collected EEG
classes, ASD algorithm can reduce transmitted data size
without violating distortion constraint. On the contrary,
fixing ¢ at low value (as in Conservative approach) main-
tains distortion constraint at the expense of obtaining very
low compression ratio for abnormal class. While fixing
0 at high value (as in Greedy approach) achieves high
compression ratio at the expense of violating distortion
constraint for normal class (see Figure 8).

V. CONCLUSION

In this paper, a remote monitoring EEG system is
considered. In particular, we proposed a class-based data
reduction technique that can be used for epileptic seizure
detection. The proposed technique is applied at the PDA
level in order to reduce the amount of transmitted data. In
this context, we proposed a highly accurate classification
scheme for epileptic seizure detection using edge-based
swift classifier. Using this classifier, we can obtain pa-
tient’s state before transmitting its medical data. We found
that, by obtaining the class of the data at the PDA, our
solution is very effective in reducing the amount of data
while maintaining the application distortion threshold. Our
results also show that the proposed swift classifier and data
reduction approach provides a high level of classification
accuracy and data reduction that outperform the state-of-
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the-art compression-based reduction, with the advantage of
reconstructing the signal at the receiver side with minimum

distortion.
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