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Abstract

Background and Objective: Standardized Uptake Value (SUV), in clinical re-
search and practice, is a marker of tumor avidity in Positron Emission Tomog-
raphy/Computed Tomography (PET/CT). Since many technical, physical and
physiological factors affect the SUV absolute measurement, the liver uptake is
often used as reference value both in quantitative and semi-quantitative evalu-
ation. The purpose of this investigation was to automatically detect the liver
position in whole-body PET/CT scans and extract its SUV value.
Methods: we developed an algorithm, called LIver DEtection Algorithm (LIDEA),
that analyze PET/CT scans, and under the assumption that the liver is a large
homogenous area near the centre of mass of the patient, find its position and
automatically places a region of interest (ROI) in the liver. This ROI is used
to calculates SUV. The algorithm was tested on a population of 630 PET/CT
scans coming from more than 60 different scanners. SUV was also manually cal-
culated manually placing a large ROI in the liver, far away form liver’s edges.
Results: LIDEA identified the liver with a 97.3 % sensitivity with PET/CT
images only and reached a 98.9 % correct detection rate when using the co-
registered CT scan to avoid liver misidentification in the right lung.
The average liver SUV obtained with LIDEA was successfully validated against
a manual assessment, with no systematic difference (0.11±0.36 SUV units) and
a R2 = 0.89 correlation coefficient.
Conclusions: LIDEA was a reliable tool to automatically identify the liver in
oncological whole-body PET/CT scans and extract its SUV.

Keywords: Positron Emission Tomography, SUV, Liver.

1. Introduction

Positron Emission Tomography/Computed Tomography (PET/CT) is a fun-
damental tool in oncology, widely used in the staging, re-staging and follow-up
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of several malignant pathologies [1, 2].
Several studies [3] prospect the evaluation of PET/CT scans beside the conven-
tional visual assessment, by using quantitative and semi-quantitative tools. A
standard visual assessment is based on the analysis of volumes of tracer hyper-
concentration with respect to the surrounding background of healthy tissue. Its
principal limitation is the requirement that the background to whom the tracer
uptake is compared be constant and independent of the patient physiological
state[4]. This often is not the case, both because the patient could lack physi-
ological condition and because several protocol-related factors affect the tracer
uptake. 18F-Fluorodeoxyglucose (18F-FDG) measured uptake, for example, de-
pends on a variety of factors related to the scanning procedure and the actual
scanner used for image acquisition[5].
The liver uptake in Standardised Uptake Value (SUV) units has been proposed
as a reference for PET/CT scan evaluation in different clinical settings [6], both
in a qualitative (e.g., uptake of the lesion higher than that of the liver) and
semi-quantitative way (e.g. lesion uptake higher than twice the liver uptake)[3].
Even though different independent factors such as Body Mass Index (BMI) and
Blood Glucose Level (BGL) [7] influence the liver 18F-FDG uptake, the average
liver SUV remains nearly constant (within 5% of the peak value) if the time
delay between the tracer injection and the PET/CT acquisition is in the 50-110
min range, with a peak at about 75-80 minutes [8].
In this work we describe and validate a fully automated approach for the liver
uptake measurement in whole-body FDG PET/CT scans, which could enable
the reproducible calculation of the liver tracer uptake, become a powerful tool
for the tumour-to-reference tissue ratio measurement in multi-center clinical
trials and be adopted for intra- and inter-patient comparison in clinical appli-
cations.
The method would be particularly useful in clinical research applications where
the physiological variability associated with direct SUV measurements is unac-
ceptably high and a reference value is necessary.

2. Materials and Methods

2.1. Algorithm Description

The LIver DEtection Algorithm (LIDEA), described in detail in the follow-
ing, was conceived and structured with the goal of identifying the liver position
and evaluating the average liver SUV in a PET/CT scan.
In order to find a large and homogeneous volume inside the 3D scan of the
patient, that is a liver candidate, the following steps are taken:

1. masking the voxels outside the patient body;

2. projecting the 3D image on a single 2D coronal image, plane (x, z), of the
patient;

3. downscaling the 2D coronal image to obtain average and standard devia-
tion values in volumes larger than the single voxel;
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4. finding the x, y, z position of the minimum of the ratio of the standard
deviation to average SUV, so as to select a homogeneous volume with
relatively high uptake (i.e., a liver candidate).

Initially, the 3DoriginalSUVijk matrix containing the voxel data from the PET/CT
slices is extracted from DICOM images. The SUV ina voxel is defined as:

SUV = [Atissue]wb
APET

where [Atissue] is the tracer activity concentration in the voxel, wb is the pa-
tient body weight and APET is the total activity injected into the patient
evaluated at the acquisition time. All the 3DoriginalSUVijk matrix are roto-
translated to have the patient in the Head First Supine position. The first step
of the algorithm is the removal of voxels outside the patient body from the
3DoriginalSUVijk matrix, that are identifiable as the exterior to the high gradi-
ent region between the patient and the surrounding air. The 3DoriginalSUVijk
Jacobian matrix (Jijk) is then computed and voxels with values below a thresh-
old (Th) are masked.
The threshold is defined as the average Jacobian plus 7 times its standard de-
viation (Th =< Jijk > +7σijk) over two cubic volumes of 5 cm side in two
different positions (anterior and posterior to the patient head). Starting from
the most superior axial plane and moving in the cranial-caudal direction, all
the Jijk voxels that fail to meet the Jijk < Th condition are set to 0 in the
3DoriginalSUVijk matrix.
The second step is the 3DoriginalSUVijk projection on the coronal plane in 2D
matrix, calculated as the standard deviation SUV σik = σ((3DoriginalSUVijk)j)
of the voxels along the projection direction (y-axis).
The obtained 2D matrix is then resampled with a pitch (S) so as to obtain
the 2D matrices in (x, z) plane of the average (Hµ

SUV ) and standard deviation
(Hσ

SUV ). The new matrices are composed of squared pixels of size S. From the

Rmatrix = Hσ
SUV /H

µ
SUV ratio, the i

′
k

′
minimum position and its Ri′k′ distance

from the Center of Mass (CoM) are determined.
If the Ri′k′ distance is higher than a reference value or if the i

′
k

′
minimum

position is located on the right of the CoM (body left), the i
′
k

′
point is re-

jected. The algorithm iterates the search for the minimum until the conditions
are satisfied. This step rejects points too far from the CoM (e.g., legs) and in
the left part of the body (e.g. heart).
Once the i, k position of the minimum in the coronal projection is obtained, the
j depth is recovered by analysing the 3Doriginal

SUV voxels in the i
′
k

′
position and

evaluating the minimum of the ratio of the standard deviation and the average
value of SUV in the anterior posterior direction, calculated from cubic volumes
with side equal to the downscaled pitch S.
The (ijk) position of the minimum is the Reference Liver Position (RLP) as
found by the algorithm. The original PET/CT images are tagged with a sphere
of 5 cm diameter centered in RLP and the corresponding SUV average and SUV
standard deviation are calculated.

3



Dicom Image

3DoriginalSUVijk

Th =< Jijk > +7σijk

Jijk < Th 3DoriginalSUVijk=0

SUV σik = σ((3DoriginalSUVijk)j)

HSUV µik
=<

∫
SUV σik ∗H(i− S, k − S) >

HSUV σik
= σ(

∫
SUV σik ∗H(i− S, k − S))

Rmatrix =
HσSUV
HµSUV

Extract the minimum
of Rmatrix and its Ri′k′

Ri′k′ < ref

body
left cut

HU cut

Extract the minimum of
σ
3DoriginalSUVijk

<3DoriginalSUVijk>

SUV of the liver

yes

no

no

yes

no

yes

no

yes

Figure 1: Flow diagram of the algorithm
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Figure 2: From left to right: coronal slice with the background, coronal slice without the
background, projection of 3DoriginalSUVijk matrix standard deviation, coronal slice with
the ROI into the liver

2.2. PET/CT scans Dataset

PET/CT scans of patients, enrolled in several multicentric clinical trials,
that allowed their use by signing an informed consent were collected in the
Cuneo Core Lab [9]. No clinical or personal information were stored in the
scan metadata. All the PET/CT scans were acquired according to local site
protocols. We considered a cohort with 49.5% of females and 50.5 % of males.
The following conditions were required for the inclusion of scans in the Dataset:

• use of a full-ring PET/CT scanner;

• iterative reconstruction applied to PET/CT images;

• availability of CT and attenuation-corrected PET;

• whole body PET/CT scans defined as scans including the region from the
base of the skull to the mid-thigh.

A total of 65 different scanners were introducted in this investigation from
different vendors and with different characteristic as shown in table 1
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Table 1: Characteristics of the different PET/CT scanners used in this investigation

Manufacturers

Siemens 10 %

Philips 23 %

GE 67 %

Pixel dimensions

less than 1 mm 22 %

range (1 - 1.5) mm 75 %

more than 1.5 mm 3 %

Slice thickness

less than 3 mm 2%

range (3-4)mm 10%

range (4-5)mm 54%

more than 5 mm 34 %

The DICOM headers of PET/CT scans were analysed to extract the follow-
ing information: body weight (wb) and height (hb), injection time and activity
(Ainjected), acquisition time. The uptake time (tuptake) was calculated as the
difference between the acquisition and tracer administration (injection) time.
Wrong parameters in the DICOM headers were not corrected (e.g. wrong in-
jected activity, wrong time, etc...). This was done to test the algorithm in the
worst condition, because it should be used in true clinical condition.
All the PET/CT scans were also independently analysed by an expert medical
physicist to retrieve the average liver SUV, manually measured in a large Region
Of Interest (ROI), with 5 cm diameter, placed in a central position of the liver
volume, far away (at least 3 cm) from the liver edge so as to avoid spilling from
adjacent structures (such as the gallbladder). The maximum SUV value was
the highest voxel value in the ROI, while the average value and the standard
deviation were evaluated on all the ROI voxels.
All the images generated by the LIDEA algorithm were checked to verify that
the tagged spheres around the RLP were fully positioned inside the liver, follow-
ing the same rule used to draw manual ROIs. The True Findings Rate (TFR)
was defined as the ratio of the spheres completely located in the liver to the
total number of analysed PET/CT scans. The False Findings Rate (FFR) was
then FFR = 1-TFR.

2.3. Statistical Analysis

In order to test its robustness and verify the possible dependence of its
performance on the parameters used within, LIDEA was initially applied to a
small cohort of patients (30). The downscaling pitch was set to 1.25 cm, 2.5
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cm, 5.0 cm and 7.5 cm, a compromise between constraints set by the algorithm
speed and the liver size.
Confidence levels of TFR using different sets of parameters were calculated with
a p=0.05 agreement level using a binomial distribution.
The best set of parameters was selected with the χ2 test and used for the analysis
of the whole dataset.
Univariate analysis was also carried out to exclude the probability that some
variable could influence the application method.
In the full dataset analysis, the correlation between the automated and manual
methods was estimated with a linear regression model:

SUVauto = p0 + p1SUVmanual

where p0 and p1 are the intercept and slope coefficient, respectively.
Bland-Altman statistics was used to estimate systematic differences between the
automated and manual measurements. All the statistical tests were carried out
with R [10]. Shapiro and Kolmogorov-Smirnov tests were used to analyse the
distribution of SUV values.

3. Results

3.1. Algorithm testing on small cohort

LIDEA was initially applied to a dataset of 30 randomly selected PET/CT
scans. T-Students demonstrated no difference in all the parameters between
this sample of scans and the whole population of scans. Table 2 shows the
liver TFR with different values of the downscaling pitch S. The S=2.5 cm pitch

Table 2: TFR for different values of the downscaling pitch.

S[cm] TFR confidence level

1.25 0.966 (0.901,1.031)

2.5 0.966 (0.901,1.031)

5.0 0.897 (0.878,1.096)

7.5 0.400 (0.225,0.575)

provided the best agreement with the manual method and was selected for
further analysis. With this value the RLP (table 3) was found inside the liver
in all but one cases.
When applying a cut of 32cm from the com, that is at 7 standard deviation
from average RLP poisition, the leg false findings were easily rejected (table 3)
and the second minimum found by the algorithm was correctly positioned in
the liver.
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Table 3: TFR for liver detection and for different anatomical regions on the small cohort.

TFR FFR

liver heart right lung left lung legs others

no cut 0.966 0.000 0.000 0.000 0.034 0.000

distance cut 1.000 0.000 0.000 0.000 0.000 0.000

Table 4: PET/CT scan parameters of the full dataset as extracted from DICOM header.

Average St.Dev. Median Min Max

Body weight[kg] 70 16 68 38 160

Patient height[m] 1.70 0.09 1.70 1.50 1.93

Body mass index[kg/m2] 23.8 4.0 23.1 15.2 41.5

Injected activity[MBq] 326 94 318 150 756

Uptake time[min] 81.18 39.13 75 30 422

Acquisition Duration (s) 185 55 180 40 300

3.2. Validation on a large cohort

LIDEA was then applied to a set of 630 PET/CT scans, whose summary
information is shown in table 4.
Univariate analysis demonstrated that no correlation existed among the char-
acteristics of the patient (weight, height, body mass index and liver SUV), the
injected activity and the uptake time, confirming that no population bias was
introduced.
The TFR on the large cohort were: 0.93 with no cuts, 0.95 with the distance
cut (which eliminates RLPs in the legs) and 0.97 when introducing the boby left
cut, as summarised in table 5. A total of 9 right lungs and 8 other structures
were still incorrectly detected by the algorithm. In these 9 cases the average
and standard deviation SUV values were: (0.63 ± 0.12) and the Hounsfield
Unit (HU) of the same cases were: (-692 ± 105). Hence, adding information
on the CT, cutting the HU lower than the HU of water, the TFR value raised
to 0.989. Seven cases, having an average and standard deviation SUV values of
(0.75 ± 0.19), were still misclassified and the RLP was found in the following
positio: axillary cavity (2 cases), muscles (4 cases), abdomen (1 case). The
corresponding HU were (52 ± 29), not allowing a clean CT-based rejection.
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Table 5: TFR for liver detection and for different anatomical regions on the whole population.

TFR FFR

liver heart right lung left lung legs others

original 0.932 0.000 0.000 0.000 0.068 0.000

distance cut 0.954 0.007 0.018 0.009 0.07 0.05

body left cut 0.973 0.000 0.017 0.000 0.000 0.010

HU cut 0.989 0.000 0.000 0.000 0.000 0.011

The liver average SUV for the dataset in the central 5 cm sphere (excluding
the 7 false findings) using the manual method was µManual = (1.90 ± 0.51),
while with the automated method it was µAuto = (2.01 ± 0.55). The average
value of standard deviation in the sphere was (0.32 ± 0.13) for the automated
method.

Figure 3: Box plot of SUV extracted automatically with LIDEA (right) and manually (left)
from 623 PET/CT scans. The line in the box represents the median, the borders of the box are
the first and third quartiles respectively, the horizontal bars are the minimum and maximum
values when excluding the outliers.
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The distributions of liver average SUV values found automatically by LIDEA
and manually by the operator are shown in fig.4.

Figure 4: Liver average SUV distribution extracted automatically with LIDEA (dashed line)
and manually (full line) from the large cohort of 623 PET/CT scans.

When analysed with the Shapiro-Wilk test, the distributions of the manual and
automated liver SUV values are not compatible with a normal distribution. The
shapes of the SUV distributions obtained with the two methods were compa-
rable, as shown by the Kolmogorov-Smirnov test (D=0.075, p-value=0.9999).
The correlation between the automated and the manual method (fig. 5), when
applying a linear regression model, provides the following fit parameter values:
p0 = 0.08 ± 0.03, p1 = 1.02 ± 0.01, with a correlation coefficient R2 = 0.89.
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Figure 5: Correlation between the manual and automated average SUV value in the liver.

In spite of a slight bias towards smaller SUV values with the manual method,
the correlation between the two methods is satisfactory. In the Bland-Altman
plot (fig. 6) the observed systematic difference between the methods ((−0.11 ±
0.36) SUV units) is compatible with zero and much smaller than the liver SUV
intrinsic variability, since the average of the standard deviation of the pixel value
in a 5 cm diameter ROI inside the liver was (0.32 ± 0.13).

Figure 6: Bland-Altman plot of the difference between automatic and manual average SUV
value in the liver, dotted lines are at 95% confidence level.
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4. Discussion

The automated segmentation and/or uptake measurement of structures and
organs in full-body FDG PET/CT is not extensively addressed in the literature.

Li et al.[11] presented a method to segment the liver in low-contrast CT,
based on a segmentation of the liver in PET/CT datasets. The liver segmenta-
tion was based on a fixed threshold of SUV > 1.5 to segment liver from other
abdomen structures but the algorithm was not applied to whole-body scan but
only to 35 normal liver studies coming from a single PET/CT scanner. More-
over no extraction of SUV was done within this investigation.
Bauer et al.[12] performed liver segmentation and an improved initial estimation
of the liver SUV on a set of 134 scan from a single PET/CT scanner. In their
work they demonstrated a correlation between manual and automatic measure-
ment. The approach used by the author was specifically tailored to the imaging
of patients with arms down, and the liver region was automatically identified in
subparts of the image relative to the brain, that was always present. In their
implementation the authors used a fixed SUV threshold for liver and suggest
that additional processing is required to handle major errors in SUV calculation
or in quality control applications, where PET image values can be off by a large
margin.
Wang et al. [13] developed an automatic anatomy recognition methodology al-
ready used in contrast-enhanced diagnostic CT and MR images to automatically
detect several organs in body torso (from lung apex to pelvis) PET/CT images.
The authors employed 16 whole-body PET/CT images obtained on the same
scanner for testing their methods. The average localization error for the liver
center was reported as 15 mm on PET/CT scans. No information was given
on SUV and intrascanner and interscanner variations was not addressed in this
paper.
Hirata et al. [14] proposed a semi-automated algorithm to objectively deter-
mine SUV. In this case the nuclear medicine physicians manually place a large
spherical volume of interest to roughly enclose the right lobe of the liver. Then
the algorithm automatically calculate the 30-mm spherical VOI that has the
lowest variability.
Hsu et. al. in their pioneer work proposed a new active contour model, called
Poisson Gradient Vector Flow, with genetic algorithm to constructs a scheme
to automatically find the contour of liver in the PET images. The contour were
found on the 3 image data sets with 16 abdomen PET slice images were used
for testing.
At our knowledge this work is the first that prove, that liver could be auto-
matically found and SUV evaluated in a large series of patients acquired in a
variety of scanners in many PET/CT site arround the word in normal clinical
condition.
In this work, the automated identification of the liver position and the measure-
ment of its average SUV were based on the assumptions that the liver:

1. be large, usually ing 1-1.5 kg;
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2. be homogeneous, without anatomical and physiological sub-structures within:
indeed, the liver parenchyma is constituted of hepatocytes that are gath-
ered in tubular units with arterial vessels that supply blood and a venous
system that eliminates the waste products;

3. be close to the CoM of the patient and mostly in the right part of the
body;

4. be more dense than water (i.e., its Hounsfield Units values in the co-
registered CT be larger than that of water);

Applying all these conditions, the liver was identified with a 98.9% sensitivity
in a large cohort of patients (630 PET/CT scans).
The automated algorithm also shows a remarkable agreement with the inde-
pendent measurement of average liver SUV obtained from the manual analysis,
with no significant systematic difference (0.11 ± 0.36 SUV units).

These results were obtained on a sample of PET/CT scans that did not
include strict quality requirements. This was explicitly done to analyze a real-life
clinical environment. Hence acquisition parameters, as registered in the DICOM
header, could be much smaller or larger than expected, typically because of
violations of the required harmonized common protocol [5] or because of wrong
insertion of the parameters in the PET/CT scanners done by the technicians.
LIDEA indeed proved to reliably find the liver and extract its SUV.

The automatic extraction of SUV from the liver is a useful tool in several
applications. It could be used as an image quality control, being SUV values
too low or too high representative of some problem in the acquisition. It could
be used as a starting point for segmentation algorithm that use liver threshold
for identifying lesions. It could be used to automatically calculate indexes such
as qPET [15] that is the ratio of lesion SUVMAX respect to liver SUV. LIDEA
permits to perform this action automatically and hence speed-up the referral by
imaging expert of oncology PET/CT scans.

5. Conclusion

LIDEA proved to be a reliable algorithm to identify the liver and extract
automatically its SUV on a large PET/CT dataset representative of real-life,
oncological, whole-body PET/CT scans. These features could be used to au-
tomatically assess image quality, as well as a basis for automated PET/CT
(semi-)quantitative evaluation.
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