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Abstract: This paper focuses on flexible friction dampers (or “strips”) mounted on the underside
of adjacent turbine blade platforms for sealing and damping purposes. A key parameter to ensure
a robust and trustworthy design is the correct prediction of the maximum frequency shift induced
by the strip damper coupling adjacent blades. While this topic has been extensively addressed on
rigid friction dampers, both experimentally and numerically, no such investigation is available as
far as flexible dampers are concerned. This paper builds on the authors’ prior experience with rigid
dampers to investigate the peculiarities and challenges of a robust dynamic model of blade-strips
systems. The starting point is a numerical tool implementing state-of-the-art techniques for the
efficient solution of the nonlinear equations, e.g., multi-harmonic balance method with coupled
static solution and state-of-the-art contact elements. The full step-by-step modelling process is here
retraced and upgraded to take into account the damper flexibility: for each step, key modelling
choices (e.g., mesh size, master nodes selection, contact parameters) which may affect the predicted
response are addressed. The outcome is a series of guidelines which will help the designer assign
numerical predictions the proper level of trust and outline a much-needed experimental campaign.

Keywords: flexible friction dampers; numerical modelling; turbine bladed disk; friction contact;
forced response; resonant frequency prediction

1. Introduction

Turbine blades do not benefit significantly from material hysteresis and aerodynamic
damping [1–3]. Therefore, in order to prevent high vibration amplitude, the best option is to add
external sources of damping, e.g., in the form of dry friction devices [1,4]. Dry friction can be
incorporated into the blade design, in the form of shrouds [5–8], interlocked contact surfaces [9], lacing
wires or zigzag pins. Alternatively, external devices such as solid dampers (available in several designs,
namely cylindrical, curved flat, wedge damper, etc. [10–16] or thin-strip dampers [17] can be added to
minimize the resonant blade response. These external dry friction dampers are extensively used in
turbine designs because they are easy to manufacture, install and substitute, relatively inexpensive
and can withstand high temperatures.

Among external dry friction dampers, the strip (or seal) dampers are thin flexible metallic strips
which are positioned under the blade platforms of turbine bladed disks and their primary function
is for cooling-air sealing purpose. They are pushed against the blade platforms by the centrifugal
force. When relative motion takes place between strip and blade platforms, the friction forces dissipate
vibrational energy and consequently the dynamic response of the system is damped. In this way
the strips act both as friction dampers and as an additional constraint affecting the blade natural
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frequencies. The design of the strips, not only for sealing, but also for damping purpose, represents
a topic of recent interest for the turbine designers, as very few studies can be found in literature [4,17].

In the past 15 years, the so-called solid underplatform dampers (UPDs) have been extensively
investigated [18–24]. Most of the proposed calculation methodologies for bulk UPDs use
simplifying assumptions, such as neglecting the damper inertia or flexibility [11,19,25]. However,
these assumptions, perfectly adequate for solid UPDs, cannot be applied to model strip dampers,
as they are highly flexible and consequently their flexible vibrational modes need to be taken into
account in the modelling process through FE modelling [17].

In the present work the strip damper is in fact modelled using Finite Elements. Furthermore,
the most advanced state-of-the-art calculation methods are here applied to predict the dynamic of
two blades and a strip damper between them. In detail, the nonlinear forced response is calculated
with high computational efficiency in the frequency domain using the multi-harmonic balance method
(MHBM) [26–28], a reduction method is adopted to decrease the size of the blades [29] and the
nonlinear equations are solved by an iterative solver using the analytical computation of the Jacobian
matrix [28,30,31]. Lastly a novel technique presented in [32] ensures that the MHBM (an approximate
method) offers results with an accuracy above a user-defined threshold. The key features of the
numerical tool used in this paper are summarized in Section 2.

Even if preliminary calculations of the blade forced responses show the expected trend with
excitation force and centrifugal force, it is shown that the natural frequency and vibration amplitude
strongly depend on the choice of some key parameters. Purpose of this paper is to address the choice
of these key parameters and explore the consequences of each choice on the predictions offered by the
numerical simulation tool. The following key topics are addressed.

1. The strip damper is modelled using finite elements given its high flexibility. Does the mesh
discretization, especially around the contact area, significantly affect results?

2. A subset of nodes is selected on the strip damper contact area and contact elements are applied to
take into account the presence of friction. A uniform distribution of contact elements seems to be
the most logical choice, but does the selected pattern (and number of contact elements) affect the
position of the resonant frequencies?

3. Each contact element requires calibration parameters (e.g., contact stiffness). Under which
conditions do these elements most significantly affect results?

It should be noted that point 3 has been thoroughly addressed in the case of rigid dampers [33,34],
however the different kinematics of the typical blade-strip system require an ad-hoc discussion. On the
other hand, points 1–2 may become especially relevant in case of flexible structures such as the strip
damper and no record of a thorough analysis on this subject could be found by the authors.

The main outcome of the paper is a set of guidelines and “warnings” intended for the designer of
flexible dampers, found in Section 4. Some of the challenges outlined above will be entirely solved
only with the help of dedicated experimental investigation. However this paper constitutes the first
necessary step: gain a complete awareness of the level of adequacy of the numerical tools at hand and
of the key parameters whose effect on the results is stronger.

2. Numerical Model

Blades and strip are separate structures that interact with each other only through the contact
friction forces. From a dynamic point of view, the blades with a strip damper can be considered as
a unique system [35,36] described by the following dynamic balance equations:

Mẍ(t) + Cẋ(t) + Kx(t) = Fe(t)− Fnl(t) (1)
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where:

• M, C, and K are the mass, damping stiffness matrices of the system respectively. They are obtained
by combining the mass, damping and stiffness matrices of both strip and blades. Usually these
matrices are extracted from the FE models of strip and blades after a Craig Bampton-Component
Mode Synthesis (CB-CMS) reduction;

• x is the vector of the DOFs of strip and blades. Due to the CB-CMS reduction, this vector includes
both modal DOFs and the physical DOFs which are the displacements of the master nodes
retained in the reduction.

• Fe is the vector of external forces acting on the system, i.e., the sum of the external excitation
vector Fex, acting on the blade airfoil, and the centrifugal force vector Fc, pushing the strip against
the blade platform as shown in Figure 1.

• Fnl is the vector of friction nonlinear forces generated between the blade-strip coupled nodes by
their relative displacements. Equation (1) is nonlinear due to the presence of Fnl that depends on
the relative displacement between strip and blades.

Figure 1. Finite Elements (FE) model of blades and strip damper, full disk obtained through cyclic
symmetry and relevant external forces applied on blades and strip dampers. The cyan symbols
represent the boundary conditions imposed to the disk sector: each sector is tangentially linked to the
neighbouring ones and is rigidly connected to the disk hub, not shown in the picture.

Equation (1) is written in the time domain and can be converted in frequency domain and solved
by the well-known multi-harmonic balance method (MHBM) [26–28].

In detail forces and displacements of Equation (1) are approximated by Fourier series as
expressed below.

Fe(t) = F(0)
e +<

(
Nh

∑
n=1

F(n)
e einωt

)
(2)

x(t) = x(0) +<
(

Nh

∑
n=1

x(n)einωt

)
(3)
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Fnl(t) = F(0)
nl +<

(
Nh

∑
n=1

F(n)
nl einωt

)
(4)

where:

• ω is the fundamental frequency of the excitation force.
• Nh is the number of harmonics that approximate the functions. More the harmonics, better the

approximation, but larger the computational time.
• The subscript n refers to the nth harmonic Fourier coefficient.
• < indicates the real part of forces and displacements.

Note the composition of the external forces Fe = Fc + Fex:

• The centrifugal forces Fc, acting on the strip nodes, are static forces and therefore they appear
only in the zero-order harmonic F(0)

e .

• The external excitations Fex are approximated from the first harmonic onwards as F(n)
e ,

for 1 ≤ n ≤ Nh.

By substituting Equations (2)–(4) into the set of balance Equation (1) a new set of algebraic complex
equations is deduced:

D(ω)(n)x(n) = F(n)
e − F(0)

nl with 0 ≤ n ≤ Nh (5)

where:

• D(n) = −(nω)2M + inωC + K is the nth dynamic stiffness matrix of the system, corresponding to
the nth harmonic. The 0th order represents the static balance equation, where only the centrifugal
forces are considered.

• The vectors x(n), F(n)
e and F(n)

nl represent the Fourier coefficients of the nth harmonic.

The solution of Equation (5) requires an iterative method since the contact forces Fnl depend on
the relative displacements between strip and blade platforms. The objective of the iterative method is
to minimize the value of the residual r, which is computed as the difference between the first and the
second member of the balance algebraic Equation (5) and it is expressed for each harmonic n as:

(r = −Dx + Fe − Fnl)
(n) (6)

The nonlinear forces Fnl depend on the relative displacements between strips and blade platforms
according to the relationships imposed by the contact model which is described in the next paragraph.
The iterative procedure starts with the assumption of an initial guess displacement x0. Then,
the corresponding force Fnl,0 is computed. Finally, the residual is evaluated and if its value is below the
chosen tolerance, then x0 is a solution, otherwise a new displacement xi has to be guessed, where the
subscript i refers to the ith iteration. The new guess displacement is obtained through the computation
of the Jacobian matrix [28,30,31], which is not described in the present work . The algorithm is
implemented through a Matlab code developed at Politecnico di Torino [32].

2.1. Contact Model

The contact model allows computing the nonlinear forces Fnl = [Tx, N, Ty] generated by the
relative displacements between strip and blade nodes. A 3D contact model [37] is generally adopted in
literature, in which the contact elasticity is approximated with three springs acting between each node
respectively of the strip and of the blade as shown in Figure 2a,b.

The contact stiffness values assigned to each contact node (i.e., “local” contact stiffness) kn, ktx

and kty depend on the global contact stiffnesses of the strip and on the number of contact nodes
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chosen to represent the contact. For instance, for kn: kn = kng/NC, where kn and kng are the local
and global contact normal stiffness respectively, and NC is the total number of the couples of nodes
which approximate the contact between strip and blade platforms. The same relationship holds for ktx

and kty. A uniform distribution of contact parameters among the different contact nodes is typically
adopted under the assumption of a uniform contact patch (different assumptions can be considered
if experimental evidence, i.e., wear trace, suggests a non-uniform contact [38]). The global contact
stiffness values used for this investigation have been taken from experimental results on a rigid damper
undergoing contact pressures in the range of those experienced by the strip damper [39], since no
direct experimental investigation is available on the blade-strip contact.

The relation between forces and displacements at the contact depends on the contact state: if the
contact is stuck this relation is linear and governed by the contact springs described above. If the
contact state is slip, normal and tangential forces are proportional (i.e., Coulomb’s law of friction).
If the contact state is lift-off contact forces are null as the contact nodes are separated.

ktx

Tx

kn

kty

Ty
N

Tx

N

Ty

Blade 

Platform

Strip

(a) (b)

Figure 2. (a) Contact model with three contact springs. (b) Contact patches on the blade platforms and
on the strip damper.

2.2. Numerical Calculation

The numerical calculation is performed through a state-of-the-art numerical code based on the
MHBM for an efficient solution of the equilibrium equations. A full description of this numerical tool
can be found in [32]. The code, developed for solid dampers considered as a rigid body, was here
adapted for strip dampers modelled using FE. A representative scheme of the code is shown in Figure 3.
A few notable features of the code are:

• implementation of the CB-CMS reduction technique to reduce the size of the model without loss
of accuracy or relevant information [29];

• implementation of a state-of-the-art contact model to take into account the presence of friction.
The contact parameters (contact stiffness values and friction coefficient) have to be given as input
to the code [38,40,41];

• presence of the analytical Jacobian computation in the iterative solver to ensure
efficiency [28,30,31];

• presence of the Jacobian Alert Algorithm to ensure an accurate solution obtained in a timely
manner [32].

The main output of the numerical tool is the forced response of the structure under different
excitation levels, a vital indication in the blade-strip design process.
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Figure 3. Scheme of the solving procedure and corresponding key engineering/modelling decisions.

3. Influence of Key Parameters on the Response

The ultimate goal and output of the numerical tool is the forced response prediction of the
blade-strip system. In detail, designers are particularly interested in the amplitude and frequency
position of the resonance point (maximum of the Frequency Response Function (FRF) curve). Out of
these two parameters, the frequency position is particularly relevant. In fact, the resonance frequency is
used by designers to determine how likely that resonance is to be excited by the engine order excitation
applied to the disk, and, for this reason, it is the main focus of this investigation.

An example of forced response curves is shown in Figure 4a. The blue dotted curve, here termed
“Free”, refers to the linear case of the blades without strip dampers to act as additional constraints and
is typically estimated faultlessly using commercial FE codes. The presence of the strip damper requires
instead an ad-hoc numerical tool, described in Section 2 and represented in Figure 3.

The red solid curve, here termed “Stick”, is another linear limit case where the strip damper is
stuck to the corresponding blade platforms and the relative motion is allowed only by the elastic
deformation at the contact through the contact stiffnesses (it is nevertheless a coupled mode). The full
stick condition is not only a “limit case” but is encountered for low excitation levels (high |Fc|/|Fex|
ratio). In the full stick condition, the presence of the strip dampers reduces (in this case in a negligible
manner) the amplitude of the response and shifts the peak to a higher frequency. Being able to predict
effectively the frequency shift is paramount to a safe and robust design.

As the level of excitation increases (and the |Fc|/|Fex| ratio decreases) the relative displacement at
the contact will exceed the friction limit and contacts will start to slip. As a result, part of the global
contact stiffness is lost and the resonant frequency shifts to lower values (i.e., it moves back towards the
“Free” condition). Furthermore, friction-induced dissipation limits the FRF amplitude (the peak will
appear as “less sharp”, as shown in the |Fc|/|Fex| = 15 case in Figure 4a). For extremely high excitation
levels (e.g., |Fc|/|Fex| = 4) the strip will lose contact with the blade platforms during vibration and the
resonance frequency and amplitude will draw even closer to the “Free” condition.

The resonance frequency is depicted in Figure 4b as a function of the excitation level. As observed
above, the frequency is maximum in “Stick condition” (|Fc|/|Fex| > 50) and gradually moves towards
the “Free frequency” for decreasing |Fc|/|Fex| ratios. It is here shown that the way the contact is
modelled has a large impact on the frequency shift prediction. Figure 4b shows how different contact
parameters used as input to the contact model will lead to different FRF peaks. The largest difference
can be found, unsurprisingly, in the linear/weakly nonlinear regime, where the complete contact
stiffness is at play. Conversely, in the nonlinear regime, the influence of different modelling choices
(i.e., in this case different contact parameter values) is less severe. The present investigation will
therefore focus on the linear/weakly nonlinear regime.
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Figure 4. (a) Example of Free, Full Stick and Nonlinear forced response of the blade-strip system.
(b) Resonance frequency values as a function of the excitation level |Fc|/|Fex|. For |Fc|/|Fex| = 15,
the peak is flat and multiple values are plotted in the figure to reflect this multiplicity.

It should be noted that the value of contact parameters is not the only modelling choice that
affects the resonance frequency prediction. As shown in Figure 3, the designer has to face a series
of modelling decisions when it comes to representing the strip damper and the blade-strip contact
interface. The full list of the key parameters to be chosen at the different design/modelling steps is
found below.

(1) The mesh size in the FE model of the contact areas.
(2) The number of master contact nodes retained in the CB-CMS reduction.
(3) The contact parameters values in the contact model (contact stiffness values as described above).

For each parameter (1 to 3), a set of different “engineering choices” will be explored (i.e., different
values of a given parameter): different choices can be equally “reasonable” and “defendable”.
Yet, it will be shown that in some cases different choices lead to markedly different forced response
predictions. Purpose of this section is to identify the parameters whose influence on the response
is stronger.

3.1. Definition of the Nominal Parameter Values and of the Benchmark Case

As stated above, the purpose of this section is to analyse the effect that variations of single
parameters have on the resulting frequency shift produced by the strip. This investigation starts from
a set of nominal values for each of the three parameter choices outlined above. The “nominal values”
and the correspondent explored variations are summarized in Table 1. It should be noted that the
nominal values related to mesh size and number of master contact points (points 1 and 2) were chosen
in order to ensure a high-fidelity representation of the contact patches. These values are the result
of a convergence study whose outcome is summarized in Figures 5 and 6 and which will be further
commented upon in the following sections. Deviations from the nominal values are investigated with
the intent of assessing whether designers can achieve an adequate representation even if requirements
on mesh size and number of retained contact nodes are relaxed.

On the other hand, the contact parameter values were chosen based on the authors’ previous
experience on rigid dampers subjected to contact pressures similar to the strip’s [39]. Since no
experimental data on strip dampers is available, the influence of contact parameter variations will be
explored both by increasing and decreasing the contact parameters’ nominal values.

The benchmark case is the bladed disk shown in Figure 1. The disk, whose diameter is
approximately 800 mm, belongs to a turbine for power generation and, as such, it is rotating at 3600 rpm.
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The disk is excited, unless stated otherwise, along the second bending mode (i.e., neck-bending mode
which sees the blade bending about its axis while remaining within the disk plane). In this condition,
the strip influence on the frequency shift is maximum. The frequency of this second bending mode,
obtained in stick condition and using the “Nominal values” from Table 1, fstick = 1320 Hz is here used
as a reference to normalize other frequency values.

Table 1. Definition of “nominal” key modelling choices and investigated variations.

Mesh Size Number of Master
Contact Nodes

Contact
Parameter Values

Nominal value Rectangular grid 1,
[2.5 × 1] mm elements

715 nodes per
contact patch

kng = 1000 N/µm
ktg = 233 N/µm

Explored variation
MMF 2 = 1, [2.5 × 1] mm elements
MMF = 0.5, [1.25 × 1] mm elements
MMF = 0.25, [0.63 × 1] mm elements

2 to 715 nodes per
contact patch

0.5 ≤ SMF 3 ≤ 100 for kng
0.5 ≤ SMF ≤ 100 for ktg

1 Size of contact patch: [100 × 10] mm; 2 Mesh Multiplying Factor (MMF); 3 Stiffness Multiplying
Factor (SMF ∗ kng).

3.2. FE Model: Influence of Mesh Size in the Contact Area

In this section the effects of the mesh size of the contact patch are assessed. Different FE
models have been created varying the mapped mesh at the blade-strip contact interfaces and keeping
unchanged the remaining model mesh discretization (see nominal values in Table 1). Three models
were created: as shown in Figure 5a, the contact patches are modeled with different levels of accuracy.
In the full stick linear analysis, the three contact springs (with stiffness kn, ktx and kty) are inserted
between each couple of blade-strip master contact nodes as shown in Figure 2. The results of the full
stick linear analysis are summarized in Figure 5b.

By increasing the mesh refinement, the system natural frequency decreases. This is to be expected
since the refined mesh takes into account local flexibility and, as a result, the model becomes less stiff
as the number of finite elements is increased.

The effect of the mesh refinement is minor (lower than a +0.6% increment with a MMF = 0.25)
because the compliance of the contact springs is definitely higher than that of the mesh.

MMF=0.25

MMF=0.5

MMF=1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1.005
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1.007
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1.01

F
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tio
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[%

]

(a) (b)

Figure 5. (a) Blade-strip contact interface with different mesh multiplying factors (MMF). (b) Frequency
increment produced by mesh size variations expressed through the MMF.
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Figure 6. (a) Blade-strip contact patch discretization. (b) Frequency variation produced by variable
number of master contact nodes.

3.3. Craig-Bampton Reduction: Influence of the Retained Contact Nodes

After meshing the FE model, a CB-CMS reduction is performed. This reduction technique requires
the selection of master (i.e., physical) and slave (i.e., modal) degrees of freedom. Most of the selected
physical DOFs are located on the blade-strip contact area: this selection is particularly relevant as only
the retained physical DOFs allow for the application of the contact model.

Ensuring an adequate representation of the contact of a flexible structure typically requires a high
number of contact nodes. If the selected contact nodes are too few the local contact stiffnesses kn,
ktx and kty will be unnaturally high (see Section 2.1) and the dynamic behavior of the strip will be
modified. Consider, as an example, a strip constrained at its four corners by very stiff contact springs:
the inner unconstrained portion of the blade-strip contact will be free to move and deform.

Conversely if a large number of uniformly distributed contact elements is applied, the additional
stiffness at each contact node will be smaller, and the strip/platform contact will be continuous.

For this reason, the present investigation takes as a benchmark choice a uniform fine discretization,
under the hypothesis of non-deformed conforming contact surfaces. In detail each blade-strip contact
patch (10 × 100 mm) is represented using a density of 11 contact nodes/cm along the short edge
dimension and 6.5 contact nodes/cm along the long-edge dimension (i.e., 11 rows and 65 columns of
contact nodes respectively, for a total of 715 contact nodes, as summarized in Table 1). The concept of
contact patch discretization into rows and columns of nodes is depicted in Figure 6a: rows refer to
contact nodes density along Y direction, while columns refer to nodes’ density along X direction. In all
cases, the distribution of contact nodes is uniform.

As discussed in Section 2.1 efforts were made to maintain the global contact stiffness equal in all
investigated cases even if the number of contact elements and the pattern varies. Although the global
stiffness is kept constant, the natural frequency of the predicted forced response varies considerably,
as shown in Figure 6b. As discussed above, this influence is investigated in the full stick regime as
contact springs are fully active during a complete period of vibration.

A careful observation of Figure 6b allows to draw the following caveats:

• If a sufficiently high contact nodes density is adopted (i.e., 4.5 node columns per cm and 7 node
rows per cm respectively) the predicted frequency reaches an asymptotic value.

• If the number of node rows decreases below its threshold value, the frequency starts increasing.
• If the number of node columns decreases below its threshold value, the frequency starts decreasing.

It can, therefore, be concluded that using a rough discretization of the contact patch may lead both
to an underestimation or an overestimation of the frequency shift. Furthermore, the trend may change
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depending on the specific mode under investigation. It is, therefore, worth investigating the reason
behind this trend in order to provide the designer with a general “rule of conduct”, independent of the
specific mode under investigation.

The strong influence of the pattern and number of retained contact nodes is due mainly to the
kinematics of the blade-strip interfaces. In detail, the numerical analysis performed in the “asymptotic
region” (sufficient number of node rows and columns) has shown that, for a given mode, there are
regions of the blade-strip contact patches where relative displacement is maximum. These regions
are here termed high mobility regions. An example of high mobility region is shown in Figure 7 for
the reference bending mode (i.e., neck-bending). The red areas are high mobility regions where the
blade-strip relative displacement is maximum.

The predicted forced response may vary depending on whether or not the retained nodes
(i.e., where the contact elements are applied) fall in such regions. In the next two subparagraphs,
the effects of the patterns of retained nodes will be analyzed in detail. It will be shown how the
density of retained nodes along the strip long-edge (X) direction and the short-edge (Y) one affects the
predicted forced response.

Minimum relative
displacement

Maximum relative
displacement

X

Y

Figure 7. Top blade-strip contact patch view: high mobility region (red) with the largest relative displacement.

3.3.1. Density of Nodes Incremented Along the Strip Long-Edge Direction X

This section aims at investigating the two questions outlined below:

1. Does the method (or pattern) the designer uses to refine its contact node selection affect results?
2. Why does the frequency decrease if the contact nodes density decreases?

To answer question (1), the density of the retained contact nodes along the strip long-edge direction
(i.e., node columns along the X axis in Figure 8a) is varied using different “patterns”. Figure 8a shows
patterns A and B. For a given pattern, nodes’ density along the X direction is progressively doubled (for
each increment the distance between neighboring nodes along the X direction is halved), while node
rows along Y direction are kept fixed (in the present case to 3). Five different patterns have been
investigated under low excitations (i.e., full stick case), and they are summarized in Table 2.

Figure 8b plots the frequency variation as a function of the number of node columns for the
patterns in Table 2. The results shown in Figure 8b confirm those in Figure 6b: by increasing the
number of node columns the natural frequency of the system increases with a decreasing growth
rate (i.e., moves closer to the asymptotic region). Conversely, for a low number of node columns the
frequency plunges to low values (down to 92% of the asymptotic value).

The position of the nodes in different patterns (A. . . E) has a negligible impact on the resulting
full-stick frequency, especially if compared to other sources of uncertainty (e.g., contact parameter
values, number of retained contact nodes etc.).
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To answer question (2), the constraint level of the high mobility region shown in Figure 7 is
considered. It is observed that only the “lower” node rows intercept the high mobility region which
propagates along the long-strip edge. If the number of constrained nodes belonging to the high mobility
region increases, the relative displacement of each node is reduced, as the mobility of each node is
progressively impaired by the neighboring (constrained) points. This overall mobility reduction leads
to a system stiffening. Such a concept is depicted in Figure 9.

Lastly, it should be noted that with increasing node density the local contact stiffness is reduced
(see Section 2.1), however the overall stiffness connected to the high mobility region (i.e., the sum of
the local stiffnesses along the lower node rows) is not modified.

Table 2. Pattern of nodes retained during the reduction procedure.

Patterns Number of Node Columns (Corresponding Node Density [nodes/cm])

A 3 (0.3) 5 (0.5) 9 (0.9) 17 (1.7) 33 (3.3) 65 (6.5)
B 4 (0.4) 7 (0.7) 13 (1.3) 25 (2.5) 49 (4.9) -
C 6 (0.6) 11 (1.1) 21 (2.1) 41 (4.1) - -
D 8 (0.8) 15 (1.5) 29 (2.9) 57 (5.7) - -
E 10 (1.0) 19 (1.9) 37 (3.7) 73 (7.3) - -
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Figure 8. (a) Blade-strip contact patch discretization. (b) Frequency variation produced by variable
number of master contact nodes.
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Figure 9. Effects of retained nodes on the model stiffness.
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3.3.2. Density of Nodes Incremented Along the Strip Short-Edge Direction Y

The purpose of this section is to show why a higher density of retained nodes not always results in
a stiffer system. In detail, by increasing the number of retained nodes along Y direction, i.e., increasing
node rows, (while keeping the same number of nodes along the X direction, i.e., unchanged node
columns), the system natural frequency decreases (see Figure 6b). This apparently strange phenomenon
can be easily explained by considering the following:

• as more rows of nodes are retained, the local contact stiffness values at each node are reduced
(see Section 2.1);

• as a result, the rows of springs connected to the high mobility region will progressively offer
a weaker constraint;

• conversely, the additional rows created far from the high mobility region do not significantly modify
the stiffness of the system as the nodes they are connected to are not very mobile.

This behavior is well represented in Figure 10 where the blade-strip contact patch, already shown
at “high resolution” in Figure 7, is discretized with 2 rows of elements (on the left) and with 6 rows
(on the right). As expected, most of the “additional” nodes introduced with the 6 rows are positioned in
low mobility regions (low relative displacement, represented in green), that means that their constraints
do not contribute significantly to the overall stiffness. At the same time the nodes in high mobility
region (represented in red) see a reduced stiffness (each one has a local stiffness 1/90 of the total
stiffness vs. 1/30 for the two-rows case represented on the left). The result is a global weaker constraint
and a decrease of the natural frequency.

Minimum relative
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Figure 10. Blade-strip contact patch top view: relative displacements along X direction for two different
combinations of condensation nodes: 15 node columns along X, and 2 or 6 rows along Y direction.

In conclusion, Figure 6b suggests that it is important to retain a sufficiently high number of
nodes to capture effectively the dynamic behavior of the system. This is due to the kinematic of the
strip/blade contact interfaces, as shown with the high mobility region. Therefore, despite the effort in
keeping the global contact stiffness to the same value, reducing below a given threshold the contact
nodes density (and thus introducing high “concentrated” constraints) is not a viable alternative.
The contact nodes density which guarantees a proper representation is fixed as the boundary of the
asymptotic region in Figure 6b (i.e., approximately 4.5 node columns per cm and 7 node rows per
cm respectively) and can be used as a starting point for cases addressing strip dampers of similar
thickness. This topic will be addressed further in Section 4.

3.3.3. On the Cross-Influence between Retained Nodes Number and FE Model Mesh Refinement

This subsection aims at finding out whether the number of retained nodes and the mesh refinement
have independent effects on the forced response prediction. To reach this goal different cases have been
investigated by varying the number of retained nodes along X direction (i.e., number of columns) and,
at the same time, the mesh size. It was decided to address the node density variation along X direction
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since, from the investigation in Sections 3.3.1 and 3.3.2, it was observed to be the most influential.
Pattern A (see Figure 8b) has been analyzed for different values of Mesh Multiplying Factor. The results
of this investigation are shown in Figure 11. It is observed that the two effects (mesh size and total
number of retained contact nodes) are independent and additive in nature. Also, the influence of the
MMF is much smaller than the influence of the number of retained contact nodes. In fact, if the blade
mesh is fine enough (MMF > 0.5), a further decrease of the mesh size does not induce a variation in
the natural frequency value (see overlapping red and blue curves in Figure 11).

Figure 11. Influence of mesh discretization and of contact node density along X direction.

3.4. On the Cross-Influence between Retained Nodes Number and Mode Shape under Investigation

It is also interesting to investigate whether the effect of retained contact nodes density changes,
depending on specific mode under investigation. In Figure 12 the variation of the natural frequency
versus the number of retained contact nodes along X direction, is shown for two different mode shapes.
It is observed that the natural frequency variation of the blade neck-bending mode is almost 10 times
larger than the one of pure-airfoil torsion.

(a) (b)

Figure 12. Variation of natural frequency versus the number of retained contact nodes. (a) Neck-bending
mode (reference frequency = 1320 Hz). (b) Airfoil torsional mode (reference frequency = 1372 Hz).

This is not surprising since, in the case of neck bending, the strip acts as a constraint under the
blade platform and consequently it affects significantly the motion of the neck. Therefore, the way
the damper is modelled has a large influence on the system stiffness. Instead, in case of pure airfoil
torsion, the strip is almost completely irrelevant to the dynamic of the structure (i.e., the platforms are
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“overall” in a low mobility state even without the damper). As a result, not only the strip will have
a lower influence over the system response (low frequency shift between “free curve without strip”
and “full stick curve with strip”), but also the effect of changing the number of retained contact nodes
will be limited.

3.5. Contact Model: Influence of Contact Parameters

Another important factor influencing the forced response prediction is the choice of contact model
parameters. As stated before, a contact model is adopted to approximate the contact between strip
and blade platforms. The contact model consists of springs (normal, kn, and tangential stiffnesses, ktx,
kty) acting between the contact nodes of the strip and the blade. The “nominal” values come from
an extensive experimental campaign performed on rigid dampers experiencing contact pressures in
the range of those experienced by the present strip damper [39] and are reported in Table 1. However,
the different contact conditions, kinematics and compliance of the strip damper may result in changes
of the contact model calibration parameters. An ad-hoc investigation has been performed to investigate
the influence of the contact parameters: resonance frequency predictions are plotted as function of
a stiffness multiplying factor (SMF).

As shown in Figure 13 different simulations were run considering the neck-bending mode shape
at two different (extreme) exciting Engine Order (EO) (The engine order (EO) is an integer indicating
the number of times each blade is excited during each complete rotation of the disk. A different EO
excites a different nodal diameter, inducing a different vibration phase among two consecutive blades).
In detail:

• EO = 0 means that the blades vibrate with the same phase, that is In-Phase (IP).
• EO = 22 (that is the number of the blades 44 divided by two) means that the blades vibrate with

opposite phase, that is Out-of-Phase (OOP).

Both Figures 13a and b show that, by increasing the contact stiffnesses values, the natural
frequency of the system increases. This is not surprising since, if the springs are stiffer, the nodes are
less able to vibrate.
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Figure 13. Neck-bending mode shape. (a) Influence of contact stiffnesses for In-Phase (IP) (1320 Hz)
motion. (b) Influence of contact stiffnesses for Out-of-Phase (OOP) (1366 Hz) motion.

Moreover, the effect of normal and tangential stiffnesses depends on the phase between the
consecutive blades connected by the strip. For the IP mode (EO = 0), the normal stiffness has
higher influence. This can be explained considering that, during the IP mode, the blade-strip relative
displacement is mainly along the vertical direction (i.e., kn normal stiffness direction), as sketched
in Figure 14. Conversely, for the OOP mode (EO = 22) kn has no influence and only the tangential
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stiffness kt affects the dynamic behavior. The reason is that, for the OOP mode, the strip slips mainly
along the tangential direction, as sketched in Figure 14.

The authors are aware that the determination of the true contact stiffness values to be used in
the numerical calculation is still an open question. A dedicated experimental campaign, similar to
the one performed for rigid dampers [42] is underway. Still gaining a full awareness of the influence
each parameter has on the numerical prediction is a necessary step in the creation of a meaningful
experimental campaign.

Undeformed
No relative displacement

In-Phase
Normal relative displacement

Out-of-Phase
Tangential relative displacement

Figure 14. In-phase and out-of-phase behaviors.

3.6. On the Cross-Influence between Retained Nodes Number and the Contact Stiffness Values

Section 3.3.3 proved that the effect of the mesh discretization is negligible with respect to the
effect of the number of retained contact nodes. In addition, this section aims at comparing the effect
of the retained contact nodes density with that of the global contact stiffness variation. To achieve
this goal a cross-comparison of different cases displaying an increasing number of retained nodes
along X direction (pattern A) and different values of contact stiffness was performed. In Figure 15, it is
shown that the change of the contact stiffness values leads to effects comparable to the ones obtained
by changing the number of contact nodes. For instance, as highlighted in Figure 15, the model with
a 3.3 node columns/cm and stiffness multiplied by 1 has almost the same frequency of the model with
a 6.5 node columns/cm density and stiffness multiplied by 0.5.

Figure 15. Natural frequency versus the number of retained nodes for different contact stiffness values.
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This observation should serve as a warning to the designer: the contact parameter problem is
under-determined as multiple contact parameter combinations can lead to the same result.

4. Engineering Choices: Guidelines for the Designer

The previous section showed all the modeling choices the designer of a blade array with strip
dampers has to face, and the effects these choices have on the numerical tool results/prediction. It was
shown that even if linear and nonlinear state-of-the-art codes are available, an accurate prediction of
the blade response with strips and friction is still not assured.

On the basis of the study of the influence of different modelling choices, spanning different
parameters and modeling steps, this paper aims at offering a set of guidelines in order to raise
awareness on the possible sources of errors.

Some main guidelines for the designer are summarized below and further condensed in Table 3.

• There are no particular requirements for the blade and strip FE models. “Standard” accuracy
levels (typical of industrial FE models, i.e., mesh grid size on contact patch ≈ 1 mm) are quite
sufficient. The mesh size does not have a significant influence on the results in terms of dynamic
response. This low sensitivity is easily explained, since the additional compliance offered by
a very fine mesh is still orders of magnitude higher than expected values of stiffness at the contact.
This is especially true in the case of flexible dampers, as the centrifugal force is limited and,
as a result, expected contact stiffness values are moderate [38]. The authors advise designers
to adopt, as a good practice, a regular mesh both on the blade and on the strip contact patches.
This choice will ensure an easy selection of the contact nodes to be retained in the CB-CMS
condensation procedure.

• If the mode of interest is a bending mode where the platform of the blade is moving during
vibration, the number and location of contact master nodes retained in the CB reduction has
critical effects on the numerical prediction. Ensuring a fine discretization of the contact patch is
paramount to mimicking the real contact conditions (conforming surfaces and uniform centrifugal
pressure application). The asymptotic behavior evidenced in Figure 6b suggests that a convergence
study in the linear regime can easily identify the number of contact nodes which will ensure
a trustworthy representation of the contact patch at the minimum computational cost. In the
present case, the application of 4.5 node columns per cm (in the X strip longest edge direction) and
7 node rows per cm (in the Y strip shortest edge direction) ensured predicted frequency values
which did not change even if the contact node density increased further.

• Assigning each contact node an equal fraction of the global contact stiffness is a standard practice,
typically adopted for rigid dampers. This investigation shows that this uniform division does not
ensure an equal equivalent stiffness (i.e., equal stick resonance frequency) if the number of contact
nodes varies. This is due to the fact that the contact patch is characterized by a nonuniform
kinematics (caused by the damper flexibility). As a result, a portion of the contact patch (in the
present case aligned along the strip longest edge), here termed high mobility region, will display
a higher relative blade-strip displacement. The “local” value of the contact springs of the nodes
belonging to the high mobility region will strongly influence the response prediction, while the
values assigned to nodes located elsewhere will have negligible effect. Locating the shape and
position of the high mobility region becomes relevant if the designer is forced to reduce the
number of contact nodes (e.g., in the nonlinear calculation) to limit the required computational
capabilities. Having knowledge of the shape and position of the high mobility region will enable
the designer to reduce the number of contact points in such a way as to provide a conservative
estimate of the frequency shift, rather than an overestimation.

• The contact stiffness values need to be determined through a direct experimental investigation.
They could be derived from an ad-hoc campaign on a tribology experimental test rig or by tuning
contact stiffness values to obtain experimental natural frequency in stick condition for different
EO excitations. If the second option was to be preferred, the low sensitivity of the response
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to variations of kt values during IP vibration and the low sensitivity to kn variations in case of
OOP vibration evidenced in Section 3.5 could be exploited. This set of observations, involving
experiments at different EO excitations, could help identify a unique set of contact parameters
and thus overcome the multiplicity of solutions identified in Section 3.6. This second option has
another important advantage: it automatically takes into account the flexibility of the mesh at the
contact (albeit in this paper negligible, with respect to other parameters). In this way, the contact
stiffness values kt and kn will be defined as the additional stiffness contribution (e.g., due to local
asperities) that the standard FE mesh is unable to model.

Table 3. Guidelines in a nutshell.

Key parameters Guidelines

Mesh size Regular mesh on the blade and strip contact surfaces, grid size approximately 1 mm.

Master contact
nodes density

4.5 nodes/cm along the contact long edge, 7 nodes/cm along the contact short edge.
A convergence study in linear regime (springs between contact nodes), see Figure 6b,
is suggested to ensure an accurate choice if different modes (e.g., torsional) are investigated.

Contact
stiffness values

To be determined experimentally. In the present case kng = 1000 N/µm and ktg = 233 N/µm
were assumed from experiments performed on rigid dampers having the same geometry,
material and contact pressure as the strip object of this investigation.

5. Conclusions

The aim of this paper is to highlight the challenges and peculiarities that modelling flexible friction
dampers entails. Flexible dampers, also known as “strips”, are a relatively new research topic in the
field and very limited literature on their influence on the dynamic behavior of turbines is available.

One key parameter needed for a robust blade/damper design is the maximum frequency
shift induced by the presence of the strip damper between adjacent blades. While extensive
experimental investigation and industrial practices are available for rigid dampers, flexible dampers
are still understudied.

This paper builds on the authors’ previous experience with rigid dampers: in detail,
a state-of-the-art validated numerical code for the prediction of the dynamic behavior of bladed
disks coupled by rigid dampers has been purposely modified to accommodate flexible dampers as
well. The upgrade included:

• introduction of the FE model of the strip damper (rigid/solid dampers are modeled using a rigid
body assumption);

• contact parameters determined for lower values of contact pressure are used (strip dampers,
given their limited mass generate a moderate centrifugal force).

The authors’ effort did not stop to the simple application of this new and upgraded numerical
tool. Rather, for each modeling step, several possible modeling choices were explored and a sensitivity
analysis for key parameters performed. The outcome of this analysis is a set of guidelines to help the
designer identify the most critical points when modelling flexible dampers. The main outcomes of this
analysis are outlined below.

1. Mesh size, provided it meets a minimum quality standard, does not critically influence
the response.

2. The flexibility of the strip generates complex kinematics at the contact. In detail, portions of
the contact patch display higher relative displacements. As a result, only a high density of
contact points will ensure an adequate representation of the contact conditions. The minimum
density which ensures an adequate representation of the contact patch can be found through
a convergence study in the low excitation (i.e., linear regime).
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3. Contact stiffness values can strongly influence the response, depending on the relative
displacement at the contact (i.e., produced by different EO excitation). In detail, the influence will
be at its maximum if the contact spring is parallel to the blade-strip relative displacement,
while contact springs whose direction is orthogonal to the relative blade-strip relative
displacement will have a negligible effect on the predicted response.

4. Multiple combinations of contact parameters can lead to the same predicted response
(i.e., multiple solutions to the contact parameter problem).

Some of the challenges outlined in the paper (e.g., point 4.) will be entirely solved only with the
help of dedicated experimental investigation. However, being aware of which parameters play a key
role under which conditions is paramount in designing and performing meaningful experimental
investigations. For instance, the under-determinacy of the contact parameter problem highlighted
in point 4. could be easily solved by performing standard FRF measurements under different EO
excitations. Then, using the observations summarized in point 3., it will be possible to determine
a unique and true set of contact parameters.

The authors are confident that the numerical evidence collected and analysed within this paper
will serve a double purpose. In the short term, it will serve as a reference to guide designers in the
modelling process and raise their awareness on the level of trust they can place on their predictions.
In the medium run, it will constitute a solid starting point to design and perform a dedicated
experimental campaign to collect missing relevant information and thus create and validate a robust
and predictive design tool.
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The following abbreviations are used in this manuscript:

CB-CMS Craig Bampton-Component Mode Synthesis
DOF(s) Degree(s) Of Freedom
EO Engine Order
FE Finite Elements
FRF Frequency Response Function
MHBM Multi-Harmonic Balance Method
MMF Mesh Multiplying Factor
SMF Stiffness Multiplying Factor
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