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Refined one-dimensional models for the
multi-field analysis of layered smart structures

Enrico Zappino and Erasmo Carrera

Abstract The analysis of layered structures requires the use of numerical tools that

able to describe the complex behavior that can appear at the interface between two

different materials. The use of the Finite Element Method can only lead to accu-

rate results if the kinematic assumptions of the structural models allow complex

deformation fields to be evaluated, and as a consequence classical models are often

ineffective in the analysis of such structures. The use of the Carrera Unified For-

mulation provides a general tool that can be used to derive refined one-dimensional

models in a compact form. The use of a refined kinematic description over the cross-

section of an element leads to accurate results even when multi-field problems are

considered, that is when complex stress fields appear. A comprehensive derivation

of a class of refined one-dimensional models, which are able to deal with multi-

layer structures and multi-field problems, is presented in this section. Thermal and

piezoelectric effects are considered, and a fully coupled thermo-piezo-elastic model

is presented. Finally, some benchmarks are shown in order to verify the accuracy of

the presented models

1 Introduction

The development of innovative structures requires the use of numerical tools that

are able to deal with the complexities introduced by innovative materials. Laminated

materials are used extensively in all engineering fields, and they can appear in many

different forms. The most common layered structures are made up of composite
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materials, see Fig. 1a, that exploit the orthotropic properties of the fiber reinforced

layers to increase the stiffness of the structural component in the desired direction.

When the weight of the structure is one of the design parameters, the use of sand-

wich materials, see Fig. 1b, may lead to an improvement in the bending resistance

without increasing the total weight of the structure. Sandwich materials exploit a

thick soft core and two external skins. The core, in addition to absorbing the shear

load, increases the distance of the skins from the neutral axis. Another example of

(a) Composite Material (b) Sandwich Material (c) Piezo-layered beam

Fig. 1 Examples of layered structures.

layered material is that used in smart structures, see Fig. 1c. In this case, a layer or a

patch of active material, e.g. piezoelectric material, is bonded onto a structure with

the purpose of exploiting the piezo-elastic effect as an actuator or a sensor. Piezo-

layered structures have become very important over the last few decades because

they are at the basis of the development of MEMS (Micro Electro-Mechanical Sys-

tems) devices. The present work has focused on piezo-layered structures, although

it is common to find piezoelectric patches on composite materials and sandwich

panels.

The analysis of layered beam structures involves evaluating complex stress fields.

When the Euler-Bernoulli [31] beam model is used, it is accepted that the solution

can only be considered accurate for slender bodies and isotropic materials, that is, it

cannot be applied to layered structures. If moderately stubby structures are consid-

ered the model proposed by Timoshenko [50] has to be used to include shear effects,

and in this case, the use of a shear correction factor, see [50, 25, 29], is required to

overcome the approximation of a constant shear distribution over the cross-section.

Even though the Timoshenko model is more accurate than the Euler-Bernoulli the-

ory, neither of these classical models is suitable for the stress analysis of layered

structures because they are not able to properly describe the layers interfaces. The

introduction of refined structural models allows the limitations introduced by the

fundamental assumptions of the classical models to be overcome and the stress sin-

gularities due to local effects to be dealt with. Carrera, see [7], pointed out that the

analysis of layered structures requires a numerical model that is able to fulfill the

C0
z requirement, that is, the continuity of the transversal stress component has to be

ensured to obtain reliable results.

Many refined one-dimensional models have been proposed over the last few

decades, e.g. the use of warping functions, as proposed by Vlasov [54], which al-

lows the cross-section deformation to be included in beam models. Cross-sectional
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warping plays an essential role in thin-walled structures, as shown in the work by

Friberg [32] and Ambrosini [2], where the warping function approach was used.

Schardt [47] proposed a one-dimensional model for the thin-walled structures anal-

ysis where the displacement field was considered as an expansion around the mid-

plane of the thin-walled cross-section. This approach, which is called the general-

ized beam theory (GBT), was also used by Davies and Leach [27] and Davies et

al.[28], and an extension to the analysis of composite material was proposed by Sil-

vestre and Camotim [48]. The Variation Asymptotic Method, VAM, proposed by

Berdichevsky [5], uses a characteristic cross-section parameter to build an asymp-

totic expansion of the solution. The application of this approach to one-dimensional

structures can be seen in the work by Giavotto et al. [33]. Volovoi [55], Yu et al.

[59] and Yu and Hodges [58] have extended this method to composite materials and

beams with arbitrary cross-sections.

All these methods allow the accuracy of one-dimensional models to be improved.

The development of these models has been crucial in the design of innovative struc-

tures that make use of innovative materials. One of these applications is the devel-

opment of piezoelectric devices. Fig 2 shows how the analysis of a piezo-layered

Anisotropic 

material

Interfaces

complex stress

distribution (zig-zag)

V

three-dimensional

displacements field

Fig. 2 Example of a piezo-layered structure.

structure requires many aspects to be take into account, such as the material in-

terfaces and the orthotropy of the material. The piezoelectric effect has been known

since the 19th century, when the Curie brothers first noticed it. This effect pertains to

the conversion of mechanical to electrical energy and vice-versa. The use of piezo-

electric materials in structural design is very interesting because of their properties,

and a great deal of effort has been made to include the piezoelectric contribution

in structural models. Crawley and Luis [26] and Bailey and Hubbard [3] consid-

ered the piezoelectric contribution as an additional strain which had to be added to

the inactive structure. Classical structural models were used extensively to analyze

piezoelectric materials; as shown by Sarvanos and Heyliger [46] in their review. In

the past, classical three-dimensional ([30, 57]), two-dimensional ([35, 42]) and one-

dimensional models were used to study structures with piezoelectric effects. The

use of refined structural models improves the accuracy of the stress and strain fields,

especially when complex structures, such as multi-layered structures, are consid-

ered. A great deal of effort has been focused on the extension of these models to the
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analysis of piezoelectric materials. One of the most critical points is the interface be-

tween the structure and piezoelectric patches, as shown by Zhou and Tiersten[64].

The introduction of shear effects, see [24, 37, 38, 39, 52], makes it possible to have

a more accurate description of the stress field of the problem. More refined ap-

proaches have been proposed in the last few years, see [63, 41, 53]; in these cases,

a first order theory has been considered. Carrera [8],Robaldo et al. [44] and Car-

rera et al. [12] proposed the use of refined two-dimensional models for the analysis

of multi-layered structures, including piezoelectric materials. The use of a refined

model over the whole structural domain requires more computational costs than

those necessary. The best solution would be to use refined models only in the region

in which they are required and classical models elsewhere. The problem of mixing

or joining different structural models is a well-known topic in literature as shown by

Kim et al. [34]. Biscani et al. [6] proposed an approach that is able to increase the

accuracy of the model, but only where the piezoelectric elements are located. The

coupling between of piezo-ceramic and metallic materials can be an problematic

when the device has to operate at high temperatures. The large difference between

the thermal expansion coefficients (CTE) could lead to large deformations, which

in turn could overcome the stroke of the actuator. Accurate numerical models may

be used to predict the behavior of these devices, and they can be used in the design

process. The use of classical beam models for the thermo-piezo-elastic analysis of

multilayer structures can be found in the work by Tzou and Ye [51] and Ahmad et

al. [1]. Carrera and Robaldo [22] presented a class of refined two-dimensional mod-

els for the accurate analysis of plates and shells including thermal and piezoelectric

effects.

A unified approach to the development of refined one-dimensional models, which

is suitable for multi-field analyses is presented in the following pages. The struc-

tural model is based on the Carrera Unified Formulation (CUF), a numerical tool

that can be used to derive any order of structural model in a compact and unified

form. CUF was firstly developed for two-dimensional models by Carrera [10] and

was extended to the thermal-elastic problem by Carrera [9] and Robaldo et al. [43].

The piezo-elastic formulation was introduced by Robaldo et al. [44]. The fully cou-

pled piezo-thermo-mechanical expansion of the CUF was presented by Carrera and

Boscolo [11]. This numerical approach was extended to the one-dimensional model

by Carrera et al. [18, 20, 21, 23],more details can be found in the books by Carrera

et al.[14, 17].

The displacement field above the cross-section was described in the work by Car-

rera and Petrolo [19] through the use of Lagrange-type polynomials. The extension

of this model to a multi-field analysis was presented by Miglioretti et al.[40] for the

piezo-mechanical problem, and was used by Zappino et al. [60].
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2 Thermo-piezo-elastic one-dimensional model

This section presents the refined one-dimensional model used in the following anal-

yses. The coordinate reference frame is shown in Fig. 3. The displacement three-

x

z

y

W

Fig. 3 Beam reference system.

dimensional field is described using the vector uuu:

uuuT =
{

ux, uy, uz

}
(1)

In the thermo-piezo-elastic formulation, in addition to the mechanical variables,

also the temperature variation,ϑ , and the electric potential, φ , must be considered.

The solution of the thermo-piezo-elastic problem requires to define five quantities

in each point:

uuuT =
{

ux, uy, uz, ϑ , φ
}

(2)

where vector uuu contains the unknown quantities.

2.1 Kinematic approximation

The one-dimensional approximation requires to assume a known displacement field,

a temperature variation and a electric potential over the cross-section. Different for-

mulation can be used, in the following pages a review of the classical models and the

details of the refined kinematic assumptions used in the present work are presented.

2.1.1 Classical beam models

Classical beam models are subject to a number of fundamental assumptions that

limit the use of these models to a small number of applications.

The Euler-Bernoulli beam theory, EBBT, does not consider shear effects and the

warping of the cross-section, which is considered rigid in- and out-of-plane. The

displacement field of the cross-section can be written as:
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ux = ux1

uy = uy1
+ x

∂uz1

∂y
+ z

∂ux1

∂y
(3)

uz = uz1

This model has only three degrees of freedom, DOF, over the cross-section because

the rotation of the cross-section is considered as the derivatives of the rigid transla-

tion.

The Timoshenko beam theory, TBT, includes the effects of the shear but it is

considered constant over the cross-section. In this case, the displacement field of

the cross-section can be written as:

ux = ux1

uy = uy1
+ x uy2

+ z uy3
(4)

uz = uz1

The TBT has five DOFs, because the cross-sectional rotation is a free parameter.

The use of these models is limited to slender (EBBT) and moderately slender (TBT)

bodies, because the fundamental assumptions are only verified for these geometries.

In the present form these models can be used to describe the bending of prismatic

beam. The torsional effects can be included considering the contributions introduced

by [45] or, in the case of thin-walled structures, by [54].

The use of refined one-dimensional models allows the range of applicability of

these models to be extended to a large number of applications. In this work the

refined one-dimensional models derived from using the CUF are used to build node-

dependent kinematic one-dimensional models. A brief review of these models is

presented in the following section.

2.1.2 Refined one-dimensional models

The one-dimensional approximation requires a known displacement field to be as-

sumed over the cross-section. A function expansion can be used to describe prop-

erly the behavior of the beam cross-section. This approach, suggest by [56], leads

to write the three-dimensional displacement field as:

uuu = uuuτ(y)Fτ(x,z), τ = 1 . . .M. (5)

where Fτ(x,z) is the function expansion over the cross-section, uuuτ(y) is the unknown

vector along the beam axis, and M is the number of terms in the functions expansion

Fτ(x,z). The choice of the functions expansion allows the kinematic of the model to

be modified. A number of possible choices were presented by [16]. In the present

work Taylor and Lagrange expansions are considered, more details are reported in

the next sections.
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The displacements approximation introduced in Eq.5 leads to a one-dimensional

problem. The solution of this problem can be obtained using the Finite Element

Method, FEM, which allows the system of partial derivative functions to be re-

duced to an algebraic system. FEM approximates the axial unknowns uuuτ(y) using

the one-dimensional shape functions Ni, that is, the displacement field assumes the

formulation:

uuu = uuuiτ Ni(y)Fτ(x,z), τ = 1 . . .M; i = 1 . . .Nn. (6)

where Ni are the shape functions introduced by the FE model, Nn is the num-

ber of nodes of the element and uuuiτ are the nodal unknowns. The variation of the

displacement can be written as:

δuuu = δuuu jsN j(y)Fs(x,z), s = 1 . . .M; j = 1 . . .Nn. (7)

2.1.3 Taylor expansion models (TE)

The one-dimensional TE model consists of an expansion that uses 2D polynomials

xm zn, as Fτ , where m and n are positive integers. For instance, the second-order

displacement field is:

ux = ux1
+ x ux2

+ z ux3
+ x2 ux4

+ xz ux5
+ z2 ux6

uy = uy1
+ x uy2

+ z uy3
+ x2 uy4

+ xz uy5
+ z2 uy6

uz = uz1
+ x uz2

+ z uz3
+ x2 uz4

+ xz uz5
+ z2 uz6

(8)

Figure 4 shows a representation of a two nodes element based on the TE expansion.

Fig. 4 A two-nodes beam based on the Taylor expansion.

In this case, the Fτ and Fs functions are used to expand the solution from the beam

node to the cross-section.

2.1.4 Lagrange expansion models (LE)

In the case of LE models, Lagrange polynomials are used to build refined one-

dimensional models. The iso-parametric formulation is exploited to deal with arbi-
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trary cross-section shaped geometries. For instance, the linear interpolation func-

tions are:
F1 =

1
4
(1− ξ)(1−η); F2 =

1
4
(1+ ξ)(1−η);

F3 =
1
4
(1+ ξ)(1+η); F4 =

1
4
(1− ξ)(1+η)

(9)

where ξ and η are the coordinates in the natural reference system. Equation 9

coincides with the linear Lagrange polynomial in two dimensions. In this paper a

quadratic element with nine nodes, LE9, is used. When LE is used the unknowns

are only the displacements of the cross-sectional nodes.

Fig. 5 A two-nodes beam based on the Lagrange expansion.

Figure 5 shows a representation of a two nodes element based on the LE. In this

case the Fτ and Fs functions are used to expand the solution from the cross-sectional

nodes to the cross-section area.

This approach is very effective when layered structure are considered. Fig. 6

shows a layered beam, the beam has two layer but there is a patch at one end, that is,

in that area three layer are present. Fig. 6 shows how each layer can be represented

Fig. 6 Example of the cross-sectional discretization of a layered structure.

with a different element over the cross section. This approach allow the accuracy of

the results to be increased because a zig-zag displacement field can be predicted.
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2.2 Geometrical relations

The geometrical relations in the case of the thermo-piezo-elastic model allow the

strain (εεε), the spatial thermal variations (θ ) and the electric field (EEE) to be evaluated.

The strain vector, εεε , can be written as:

εεε = {εxx εyy εzz εxz εyz εxy }
T = DDDuuuu (10)

where DDDu is:

DDDT
u =





∂x 0 0 ∂z 0 ∂y

0 ∂y 0 0 ∂z ∂x

0 0 ∂z ∂x ∂y 0



 (11)

The spatial temperature variation, θθθ , can be written as:

θθθ =

{
∂ϑ

∂x

∂ϑ

∂y

∂ϑ

∂ z

}T

= DDDϑ ϑ (12)

where DDDϑ is:

DDDϑ =
{

∂x ∂y ∂z

}T
(13)

The electric field, EEE , can be expressed as:

EEE =

{
∂φ

∂x

∂φ

∂y

∂φ

∂ z

}T

= DDDφ φ (14)

where DDDφ is equal to DDDϑ . The symbol ∂ stands for partial derivative, that is: ∂x =
∂
∂x

,

∂y =
∂
∂y

and ∂z =
∂
∂ z

2.3 Constitutive relations

The constitutive equation for the thermo-piezo-elastic model have been derived in

according with the work presented by Carrera et al.[13].

The stress, σσσ can be written in the following form:

σσσ =CCCεεε −λλλ ϑ − eeeEEE (15)

The first contribution comes from the Hook’s law and derives from the mechanical

problem. 





σxx

σyy

σzz

σxz

σyz

σxy







=











C11 C12 C13 0 0 C16

C21 C22 C23 0 0 C26

C31 C32 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C54 C55 0

C61 C62 C63 0 0 C66

















εxx

εyy

εzz

εxz

εyz

εxy







(16)
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The second therm, λλλ ϑ , comes from the thermo-mechanical coupling. The vector λλλ
can be written as:

λλλ =CCCα =CCC{α1 α2 α3 0 0 0 }T (17)

Where CCC is the matrix with the elastic coefficients of the material, and α is the vector

of the thermal expansion coefficients. The last term, eeeEEE , comes from the electro-

mechanical coupling. The matrix eee contains the piezoelectric stiffness coefficients

and can be written as:

eee =CCCd =CCC





0 0 0 0 d15 0

0 0 0 d24 0 0

d31 d32 d33 0 0 0





T

(18)

where d is the matrix of the piezoelectric coefficients.

The electric displacement, DDD, can be written in the following form:

DDD = eeeεεε + χχχEEE + pppϑ (19)

The first term, eeeεεε , comes from the electro-mechanical coupling. The second contri-

bution, χχχEEE , is due to the electric problem, χχχ is to the dielectric permittivity matrix

of the material:

χχχ =





χ11 χ12 0

χ21 χ22 0

0 0 χ33



 (20)

The last term, pppϑ , comes from the thermo-electric problem and ppp is the vector of

the pyro-electric coefficients.

The last constitutive equation describe the heat flux, hhh:

hhh = κκκθθθ (21)

where κκκ is the conductivity coefficients matrix:

κκκ =





κ11 κ12 0

κ21 κ22 0

0 0 κ33



 (22)

2.4 Governing equation

The governing equation can be written using the virtual displacements principle,

PVD:

δLint = δLext (23)

where δLint is the variation of the internal work while, δLext is the variation of the

external work.

In explicit form the PVD can be written as:
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δLint =

∫

V
(δεεεT σσσ − δθθθ T hhh− δEEET DDD)dV = δLext (24)

If geometrical and constitutive equation are substituted in Equation 24 the following

equation is obtained:

δLint =

∫

V
(δεεεTCCCεεε − δεεεT λλλ ϑ − δεεεT eeeEEE + δθθθT κκκθθθ+

−δEEET eeeεεε − δEEET χχχEEE − δEEET pppϑ)dV

(25)

If the kinematic approximation introduced before is used the terms that compose

the variation of the internal work can be written in matrix form.

The first term, δεεεTCCCεεε , represents the mechanical problem. The strain can be

expressed in therm of derivatives of the displacements, moreover the displacements

can be written using the shape functions Ni and Fτ .

∫

V
δεεεTCCCεεεdV =δqqqu

T
js

∫

V
N jFsIDDDT

u CCCDDDuIFτ NidVqqquiτ =

=δqqqu
T
jskkk

i jτs
uu qqquiτ

(26)

kkki jτs
uu is the fundamental nucleus of size 3× 3 of the stiffness matrix of the pure

mechanical problem. qqquiτ is the part of the unknown vector related to the mechanical

variables.

The term δεεεT λλλϑ can be written as:
∫

V
δεεεT λλλ ϑdV =δqqqu

T
js

∫

V
N jFsIDDDT

u λλλ IFτNidVqqqϑ iτ =

=δqqqu
T
jskkk

i jτs

uθ qqquiτ

(27)

kkk
i jτs

uθ is the fundamental nucleus of size 3× 1 of the stiffness matrix of the thermo-

elastic problem. qqqϑ iτ is the part of the unknown vector related to the thermal vari-

able.

The term δεεεT eeeEEE can be written as:
∫

V
δεεεT eeeEEEdV =δqqqu

T
js

∫

V
N jFsIDDDT

u eeeDDDφ IFτNidVqqqφ iτ
=

=δqqqu
T
jskkk

i jτs
uφ qqquiτ

(28)

kkk
i jτs
uφ is the fundamental nucleus of size 3× 1 of the stiffness matrix of the piezo-

elastic problem. qqqφ iτ
is the part of the unknown vector related to the electrical vari-

able.

The term δθθθ T κκκθθθ can be written as:
∫

V
δθθθT κκκθθθdV =δqqqϑ

T
js

∫

V
N jFsIDDDT

ϑ κκκDDDϑ IFτNidVqqqϑ iτ =

=δqqqu
T
jskkk

i jτs
θθ qqquiτ

(29)
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kkk
i jτs
θθ is the fundamental nucleus of size 1× 1 of the stiffness matrix of the pure

thermal problem.

The term δEEET eeeεεε can be written as:
∫

V
δEEET eeeεεεdV =δqqqφ

T

js

∫

V
N jFsIDDDT

φ eeeDDDuIFτ NidVqqquiτ =

=δqqqφ
T

js
kkk

i jτs
φu qqquiτ

(30)

kkk
i jτs
φu is the fundamental nucleus of size 1× 3 of the stiffness matrix of the piezo-

elastic problem.

The term δEEET χχχEEE can be written as:

∫

V
δEEET χχχEEEdV =δqqqφ

T

js

∫

V
N jFsIDDDT

φ χχχDDDφ IFτ NidVqqqφ iτ
=

=δqqqφ
T

js
kkk

i jτs
φφ φ iτ

(31)

kkk
i jτs
φφ is the fundamental nucleus of size 1× 1 of the stiffness matrix of the pure

electric problem.

The term δEEET pppϑ can be written as:

∫

V
δEEET pppϑdV =δqqqφ

T

js

∫

V
N jFsIDDDT

φ pppIFτNidVqqqθ iτ =

=δqqqφ
T

js
kkk

i jτs

φθ θ iτ

(32)

kkk
i jτs

φθ is the fundamental nucleus of size 1× 1 of the stiffness matrix of the pyro-

electric problem.

All the fundamental nucleus can be assembled together in fundamental nucleus

of the multi-field problem:

δLint = δuuuT
js

kkki jτs

︷ ︸︸ ︷




















. . .

kkkuu

. . .













...

kkkuθ
...













...

kkkuφ
...







[
· · · 0 · · ·

] [
kkkθθ

] [
0
]

[
· · · kkkφu · · ·

] [
kkkφθ

] [
kkkφφ

]















uuuiτ (33)

The contributions kkkθφ and kkkθu can be neglected when an external temperature is

imposed as boundary condition, as in the present paper. As can be seen in Eq. 33,

when the multi-field case is considered the nucleus is no more symmetric, as a con-

sequence the global stiffness matrix loses the properties that come from the sym-



Refined one-dimensional models for the multi-field analysis of layered smart structures 13

metry, this can reduce the efficiency of the numerical solution and an appropriate

solver must be used.

2.5 Loading Vector

The virtual work due to the load PPP = {Px,Py,Pz,Pθ ,Pφ} can be expressed as:

δLext =
∫

V
δuuuT PPPdV (34)

Considering the displacement function the external work can be written as:

δLext = δuuuT
s j

∫

V
F j

s N jPPPdV = δuuuT
s j · ppps j (35)

where ppps j is the expression of the fundamental nucleus of the load vector.

2.6 Rotation and assembly of the fundamental nucleus

The analysis of complex structures requires finite elements to be rotated in any di-

rection and the stiffness to be computed in a given reference system, that is, the

displacements have to be expressed in the same, global reference system. The ma-

trices can be written in the global reference system using a rotation matrix, with

respect to the local reference system. The rotation matrices are:

ΛΛΛ xxx =





1 0 0

0 cos(θ ) sin(θ )
0 −sin(θ ) cos(θ )




, (36)

ΛΛΛ yyy =





cos(φ) 0 sin(φ)
0 1 0

−sin(φ) 0 cos(φ)




, (37)

ΛΛΛ zzz =





cos(ξ ) −sin(ξ ) 0

sin(ξ ) cos(ξ ) 0

0 0 1



 (38)

where θ , φ and ξ are the rotation angles around the x,y,and z axis, as shown in

Fig. 7 The displacement vector in the global reference system, uuuglob, can be written

as:

uuuglob =ΛΛΛΛΛΛ xxxΛΛΛΛΛΛ yyyΛΛΛΛΛΛ zzzuuuloc = ΛΛΛuuuloc (39)

Therefore, the mechanical part of the fundamental nucleus in the global reference

system becomes:
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Fig. 7 Representation of the rotation angles.

kkki jτs
uuglob

= ΛΛΛ T kkki jτs
uuloc

ΛΛΛ (40)

The coupling terms can be rotated using the following equations:

kkk
i jτs
uΘglob

= ΛΛΛ T kkk
i jτs
uΘloc

(41)

kkk
i jτs
uφglob

= ΛΛΛ T kkk
i jτs
uφloc

(42)

kkk
i jτs
φuglob

= kkk
i jτsT

φuloc
ΛΛΛ (43)

The terms kkkφφ , kkkφθ and kkkθθ are related to scalar fields therefore do not need to be

rotated. Once all the elements have been expressed in the same reference system,

the global stiffness matrix can be assembled using the classical FEM approach.

2.7 The stiffness matrix assembly

The fundamental nuclei introduced in the previous section, that are discussed exten-

sively in [15], can be used as bricks to build the matrix of the complete structure.

Figure 8 shows the procedure used to build the stiffness matrix, starting from the

fundamental nucleus.

The loops on τ and s allow to build the stiffness matrix at the node level while the

loops on i and j make it possible to create the stiffness matrix at the element level.

The assembly on the global stiffness matrix can be done summing the stiffness of

the nodes shared by more then one element.
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Fundamental Nucleus

τ=1...M

s=1...M

j=1...Nn

i=1...Nn

Node Level Element Level
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kyx
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kxy
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kzy

kxz

kyz

kzz

K
ijτs =

kxϕ

kyϕ

kzϕ

kϕx kϕy kϕz kϕϕ

kθx kθy kθykθϕkθθ

kxθ

kyθ

kzθ

kϕθ

Fig. 8 Stiffness matrix assembly.

3 Numerical Results

The results obtained using the previously introduced structural model are reported

in this section. The structural model has been assessed, and the results have been

compared with those presented in literature using classical approaches. The Piezo-

elastic model has been assessed considering the benchmark proposed by Zhang and

Sun [62]. A second case, a beam with piezo-patches, has been considered and the

results have been compared with those by [36]. Finally, the results from the thermo-

piezo-elastic model have been compared with those by Tzou and Ye [51].

3.1 Piezo-elastic model assessment

A piezo-elastic model has been assessed in this section. The sandwich beam con-

sidered in the analysis is shown in Figure 9. The beam has a length, L, of 0.1 m, a

thickness of the metallic core, hc, of 16 mm and two external piezo-patches which

have a thickness, hp, equal to 1 mm. The width is considered equal to 1 m. A po-

tential of 10V is applied to the face of the interface between the piezoelectric patch

and the internal core, while, the external free faces have a potential set equal to 0V.

The piezoelectric patches are polarized in the z direction.

The properties of the piezoelectric material used in the patches are reported in

Table 1, while the properties of the aluminum alloy used in the core are reported in

Table 2.

Table 1 Material properties of PZT-5H

C11,C22,C33 C12 C13,C23 C44,C55,C66 e15,e24 e31,e32 e33 χ11,χ22 χ33

[GPa] [GPa] [GPa] [GPa] [C/m2] [C/m2] [C/m2] [F/m] [F/m]

126 79.5 84.1 23.0 17.0 -6.5 23.3 1.503×10−8 1.30×10−8
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10V

10V

x

y

z

Fig. 9 Geometry of the sandwich beam used in the piezo-elastic assessment

aluminum alloy 1

Mechanical properties

E 70.3 GPa

ν 0.345 -

Table 2 aluminum alloy 1 material properties

The displacements due to the applied voltage, have been evaluated. The results

have been compared with those of Zhang and Sun [62].
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Fig. 10 Vertical displacement of the beam along the y-axis.

Figure 10 shows the vertical displacement of the beam along the length of the

beam. The results are in agreement with those presented in literature. This assess-
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ment proves that the present beam formulation is able to provide an accurate de-

scription of piezo-elastic coupling.

3.2 Cantilever beams with piezo-patches

A cantilevered beam with two piezo-patches has been considered in this section.

Benchmark cases of this type have been studied by various researchers such as [49,

61] and [4], as well as [36]. The beam geometry is shown in Fig. 11.

100mm

20mm

Aluminum

PZT

16mm

10~90mm

10mm

1mm

Fig. 11 Geometrical feature of slender beams with piezo-patches

The piezoelectric components are poled in the thickness direction z. A voltage

equal to ∆φ = φbottom −φtop = 10V has been applied for the upper patch and ∆φ =
−10V for the lower one to actuate the beam. The piezoelectric components are made

of PZT-5H, whose material coefficients are listed in Table 1, The substrate structures

employ aluminum which has the Young modulus E = 70.3GPa and a Poisson ratio

ν = 0.345. Two cases are considered:

• Case A: the piezo-patches cover the whole length of the beam;

• Case B: the piezoelectric components have a length c = 0.01m and variable po-

sitions along the axial direction from d = 0.01m to d = 0.09m.

The numerical results for Case A were obtained with uniform LE nodal kinemat-

ics, denoted as “12LE9”, which discretizes the cross-section into 12 sub-domains.

It should be noted that when Lagrange expansions are adopted to describe the kine-

matics on a cross-section of a beam, each expansion term possesses specific phys-

ical coordinates. The structure is divided into 20 beam elements along the longi-

tudinal direction, and each element has 4 FEM nodes. The obtained results have

been compared with the solutions provided by [4] and [36] as well as with those

obtained from ABAQUS 3D modelling. The ABAQUS models employ eight lay-

ers of C3D20R mechanical brick elements and another eight layers of C3D20RE
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piezoelectric brick elements, uniformly distributed 8× 40 (x× y) along each layer.

The results given by [4] were obtained using a beam element model in which the

displacement assumptions were layer-wisely defined (in other words the Bernoulli-

Euler theory was used for the faces while the Timoshenko theory was adopted for

the cores), and displacement continuity was enforced at the layer interfaces. [36]

reached their solution through solid-shell piezoelectric elements, that is, SHB8PSE

and SHB20E.

0
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0 0.025 0.05 0.075 0.1

w
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0
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]
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Benjeddou
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ABAQUS(Line A)
12LE9(Line A)
12LE9(Line B)

A(0,y,0)

B(a/2,y,he/2)

x

z

(Cross-section)

Fig. 12 Vertical displacement along the beam beam, piezo-patches cover the entire length (Case

A).

The variation in deflection along the beam axis at the central cross-sectional point

(lines A) and at one of the upper corners (lines B) are shown in Figure 12 for Case

A. Table 3.2 compares the deflection on two sets of locations on the free-end cross-

sections.

w[10−7m]

(0,b,0) ( a
2
,b, he

2
)

ABAQUS 3.749 3.913

12LE9 3.748 3.897

Table 3 Tip deflection of the cantilevered beam in Case A

The current solution for the shear configuration in Case A shows good agreement

with those of [4] and [36].

The models with the same uniform 12LE9 sectional kinematics were also applied

to obtain the numerical solutions to Case B, and the results are shown in Figure 13.
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Fig. 13 Tip deflection of the cantilever beams with piezo-patches in Case B.

It can be observed that the results based on 12LE9 are in good agreement with the

reference solutions taken from literature [36].

A frequency response analysis, in which the patches were closer to the beam root,

has been performed using the present model. In this case, the two patches were used

as sensors and an external force was applied at the tip of the beam. Fig. 14 shows the

frequency response of the cantilevered beam. The dashed line shows the mechanical

response, and it can be seen that it identifies the natural frequencies of the structure

reported in Tab. 4. The solid line represents the electric response evaluated on the

Natural Frequency LE Model

1 1363.1

2 1637.2

3 7214.3

4 7460.0

5 8744.9

6 12941.5

Table 4 First six natural frequency of the cantilever beams with piezo-patches

outer surface of the piezo-patch. It can be seen that the resonances of the electric

response just appear when the mechanical modes stretch the piezo-patches during

the deformation. In the other cases the deformation does not produce an electric

response.
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Fig. 14 Frequency response of the cantilever beams with piezo-patches

3.3 Thermo-piezo-elastic model assessment

The fully coupled thermo-piezo-elastic model has been assessed in this section. The

structure reported in Figure 16 has been considered. This is once again a sandwich

beam but with the following dimensions: L equal to 1 m, b equal to 0.0508 m, the

core thickness, hc, equal to 3.36 mm and the thickness of two external piezo-patches,

hp, equal to 0.254 mm.

L

b

hc
hp

hp

Fig. 15 Geometry of the sandwich beam used in the thermo-piezo-elastic assessment
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The internal core has the properties that are reported in Table 5, while the external

piezoelectric patches have been built using the same material that was used in the

previous assessment, that is PZT-5H. The thermal properties of this material are

reported in Table 6.

aluminum alloy 1

Mechanical properties

E 68.95 GPa

ν 0.292 -

Thermal properties

α 11× 10−6 oC−1

Table 5 aluminum alloy 2 material properties

PZT-5H

Thermal properties

λ1 2× 105 Nm2 oC−1

λ2 2× 105 Nm2 oC−1

λ3 −2.7× 105 Nm2 oC−1

Pyro-electric properties

p3 25× 10−6 Cm2 oC−1

Table 6 PZT-5H material thermal properties

The structure is subject to a homogeneous thermal environment, that is, at each

point the same value of temperature has been imposed. An electric potential of 0V

as been considered at the interfaces between the core and the patches, as shown in

Figure 16. The voltage of the external layer faces, due to the deformation caused by

the thermal load, has been evaluated. The results have been compared with those of

Tzou and Ye [51].

Figure 16 shows the variation of the electric potential at different temperatures.

It is possible to see that there is a linear correlation between the temperature and the

potential. The small difference between the present results and the reference values

is due to the different kinematic model that has been adopted. While the reference

results were obtained using classical models, the present approach takes into account

a quasi three-dimensional deformation that produces a slightly higher potential.
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Fig. 16 Upper face potential at different temperature.

4 Conclusions

The multi-field analysis of layered structures requires the use of refined structural

models. Finite elements based on a layer-wise approach are able to describe the

complex displacement fields due to the variations in the material properties at each

layer. In these cases, it is important to have a zig-zag capability in the kinematic de-

scription, that is, the C0
z requirement can be fulfilled. The refined one-dimensional

models presented in the present work uses a Lagrange expansion over the cross-

section that allows each layer to be described with an independent expansion, or

Lagrange element. The computational model has been developed in the framework

of the Carrera Unified Formulation, which allows refined structural models to be

derived in compact form. The results shown in the present work highlight the fol-

lowing points:

• the present one-dimensional model can provide three-dimensional results in the

case of thermo-piezo-elastic analysis;

• the present model can deal with the analysis of layered structures with piezo-

patches;

• both sensor and actuator patches can be considered;

• the computational costs can be reduced whit respect to full three-dimensional

models.

In short the present formulation can be considered a valid option for the multi-

field analysis analysis of layered structures.

References

1. Ahmad, S.N., Upadhyay, C.S., Venkatesan, C.: Electro-thermo-elastic formulation for the

analysis of smart structures. Smart Materials and Structures 15(2), 401 (2006)



Refined one-dimensional models for the multi-field analysis of layered smart structures 23

2. Ambrosini, R.: A modified Vlasov theory for dynamic analysis of thin-walled and variable

open section beams. Engineering Structures 22(8), 890–900 (2000). DOI 10.1016/S0141-

0296(99)00043-7

3. Bailey, T., Hubbard, J.: Distributed piezoelectric polymer active vibration control of a can-

tilever beam. AIAA Journal 8, 605–611 (1985)

4. Benjeddou, A., Trindade, M., Ohayon, R.: A unified beam finite element model for extension

and shear piezoelectric actuation mechanisms. Journal of Intelligent Material Systems and

Structures 8(12), 1012–1025 (1997)

5. Berdichevsky, V.L.: Equations of the theory of anisotropic inhomogeneous rods. Dokl. Akad.

Nauk 228, 558–561 (1976)

6. Biscani, F., Nali, P., Belouettar, S., Carrera, E.: Coupling of hierarchical piezoelectric plate

finite elements via arlequin method. Journal of intelligent materials systems and structures 23,

749 (2012)

7. Carrera, E.: C0
z Requirements – Models for the two dimensional analysis of multilayered struc-

tures. Composite Structure 37, 373–384 (1997)

8. Carrera, E.: An improved reissner-mindlin-type model for the electromechanical analysis of

multilayered plates including piezo-layers. Journal of Intelligent Material Systems and Struc-

tures 8, 232–248 (1997)

9. Carrera, E.: An assessment of mixed and classical theories for thermal stress analysis of or-

thotropic multilayered plates. Journal of Thermal Stresses 23, 797–831 (2000)

10. Carrera, E.: Theories and finite elements for multilayered plates and shells: A unified com-

pact formulation with numerical assessment and benchmarking. Archives of Computational

Methods in Engineering 10, 215–297 (2003)

11. Carrera, E., Boscolo, M.: Hierarchic multilayered plate elements for coupled multifield prob-

lems of piezoelectric adaptive structures: Formulation and numerical assessment. Archives of

Computational Methods in Engineering 14(4), 383–430 (2007)

12. Carrera, E., Boscolo, M., Robaldo, A.: Hierarchic multilayered plate elements for coupled

multifield problems of piezoelectric adaptive structures: Formulation and numerical assess-

ment. Archives of Computational Methods in Engineering 14(4), 383–430 (2007)

13. Carrera, E., Brischetto, S., Nali, P.: Variational Statements and Computational Models for

MultiField Problems and Multilayered Structures. Mechanics of Advanced Materials and

Structures 15(3-4), 182–198 (2008). DOI 10.1080/15376490801907657

14. Carrera, E., Cinefra, M., Petrolo, M., Zappino, E.: Comparisons between 1d (beam) and 2d

(plate/shell) finite elements to analyze thin walled structures. Aerotecnica Misssili & Spazio.

The journal of Aerospace Science, Technology and Systems 93(1-2) (2014)

15. Carrera, E., Cinefra, M., Petrolo, M., Zappino, E.: Finite Element Analysis of Structures

Through Unified Formulation. John Wiley & Sons (2014)

16. Carrera, E., Filippi, M., Zappino, E., Carrera E., F.M., E.., Z., Carrera, E., Filippi, M., Zap-

pino, E.: Free vibration analysis of laminated beam by polynomial, trigonometric, exponen-

tial and zig-zag theories. Journal of Composite Materials 48(19), 2299–2316 (2014). DOI

10.1177/0021998313497775

17. Carrera, E., Gaetano, G., M., P.: Beam Structures, Classical and Advanced Theories. John

Wiley & Sons (2011)

18. Carrera, E., Giunta, G., Nali, P., Petrolo, M.: Refined beam elements with arbitrary crpss-

section geometries. Computers and Structures 88, 283–293 (2010)

19. Carrera, E., Petrolo, M.: Refined beam elements with only displacement variables and

plate/shell capabilities. Meccanica 47, 537–556 (2012)

20. Carrera, E., Petrolo, M., Nali, P.: Unified formulation applied to free vibrations finite element

analysis of beams with arbitrary section. Shock and vibrations 18(3), 485–502 (2011)

21. Carrera, E., Petrolo, M., Varello, A.: Advanced beam formulations for free vibrations analysis

of conventional and joined wings. Journal of aerospace engineering 25(2), 282–293 (2012)

22. Carrera, E., Robaldo, A.: Extension of reissner mixed variational principle to thermopiezelas-

ticity. Atti della Accademia delle Scienze di Torino. Classe di Scienze Fisiche Matematiche e

Naturali 31, 27–42 (2007)



24 Enrico Zappino and Erasmo Carrera

23. Carrera, E., Zappino, E., Petrolo, M.: Advanced elements for the static analysis of beams with

compact and bridge-like sections. Journal of structural engineering 56, 49–61 (2012)

24. Caruso, G., Galeani, S., Menini, L.: Active vibration control of an elastic plate using multiple

piezoelectric sensors and actuators. Simulation modelling prectice and theory 11, 403–419

(2003)

25. Cowper, G.R.: The Shear Coefficient in Timoshenko’s Beam Theory, volume = 33, year =

1966. Journal of Applied Mechanics (2), 335–340

26. Crawley, E., Luis, J.: Use of piezoelectric actuators as elements of intelligent structures. AIAA

Journal 25, 1373–1385 (1987)

27. Davies, J.M., Leach, P.: First-order generalised beam theory. Journal of Constructional Steel

Research 31(2-3), 187–220 (1994)

28. Davies, J.M., Leach, P., Heinz, D.: Second-order generalised beam theory. Journal of Con-

structional Steel Research 31(2-3), 221–241 (1994)

29. Dong, S.B., Alpdogan, C., Taciroglu, E.: Much ado about shear correction factors in Timo-

shenko beam theory. International Journal of Solids and Structures 47(13), 1651–1665 (2010).

DOI 10.1016/j.ijsolstr.2010.02.018

30. Dong, X.J., Meng, G., Peng, J.C.: Vibration control of piezoelectric actuators smart structures

based on system identification technique. Journal of sound and vibration 297, 680–693 (2006)

31. Euler, L.: De curvis elasticis. Methodus inveniendi lineas curvas maximi minimive proprietate

gaudentes, sive solutio problematis iso-perimetrici lattissimo sensu accepti. (1744)

32. Friberg, P.O.: Beam element matrices derived from Vlasov’s theory of open thin-walled elastic

beams. International Journal for Numerical Methods in Engineering 21, 1205–1228 (1985)

33. Giavotto, V., Borri, M., Mantegazza, P., Ghiringhelli, G., Carmaschi, V., Maffioli, G.C., Mussi,

F.: Anisotropic beam theory and applications. Computers & Structures 16(1), 403–413 (1983).

DOI http://dx.doi.org/10.1016/0045-7949(83)90179-7

34. Kim, J., Varadan, V.V., Varadan, V.K.: Finite element modelling of structures including piezo-

electric active devices. International journal for numerical methods in engineering 832, 817–

832 (1997)

35. Kim, T.W., Kim, J.H.: Optimal distribution of an active layer for transient vibration control of

an flexible plates. Smart Material and Structures 14, 904–916 (2005)

36. Kpeky, F., Abed-Meraim, F., Boudaoud, H., Daya, E.M.: Linear and quadratic solid–shell

finite elements shb8pse and shb20e for the modeling of piezoelectric sandwich structures.

Mechanics of Advanced Materials and Structures pp. 1–20 (2017)

37. Kumar, K., Narayanan, S.: The optimal location of piezolectric actuators and sensors for vi-

bration controls of plate. Smart Material and Structures 16, 2680–2691 (2007)

38. Kusculuoglu, Z.K., Royston, T.J.: Finite element formulation for composite plates with piezo-

ceramic layers for optimal vibration control applications. Smart Material and Structures 14,

1139–1153 (2005)

39. Liu, G., Dai, K., Lim, K.: Static and vibration control of composite laminates integrated with

piezoelectric sensors and actuators using radial point interpolation method. Smart Material

and Structures 14, 1438–1447 (2004)

40. Miglioretti, F., Carrera, E., Petrolo, M.: Variable kinematic beam elements for electro-

mechanical analysis. Smart Structures and Systems 13(4), 517–546 (2014)

41. Moita, J., Soares, C., Soares, C.: Active control of forced vibration in adaptive structures using

a higher order model. Composite Structures 71, 349–355 (2005)

42. Moitha, J., Correira, I., Soares, C., Soares, C.: Active control of adaptive laminated structures

with bonded piezoelectric sensors and actuators. Computer and Structures 82, 1349–1358

(2004)

43. Robaldo, A., Carrera, E., Benjeddou, A.: Unified formulation for finite element thermoleastic

analysis of multilayered anisotropic composite plates. Journal of Thermal Stresses 28, 1031–

1064 (2005)

44. Robaldo, A., Carrera, E., Benjeddou, A.: A unified formulation for finite element analysis of

piezoelectric plates. Computers & Structures 84, 1494–1505 (2006)



Refined one-dimensional models for the multi-field analysis of layered smart structures 25

45. de Saint-Venant, A.: Mémoire sur la Torsion des Prismes, avec des considérations sur leur

flexion, ainsi que sur l’équilibre interieur des solides élastiques en général, et des formules
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