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Abstract

A class of mixed interpolated beam elements is introduced in this paper under the framework

of the Carrera Unified Formulation (CUF) to eliminate the detrimental effects due to shear

locking. The Mixed Interpolation of Tensorial Components (MITC) method is adopted to

generate locking-free displacement-based beam models using general 1D finite elements. An

assumed distribution of the transverse shear strains is employed for the derivation of the

virtual work and the full Gauss-Legendre quadrature is used for the numerical computation

of all the components of the stiffness matrix. Linear, quadratic and cubic beam elements

are developed using the unified formulation and applied to linear static problems including

compact, laminated and thin-walled structures. A comprehensive study of how shear lock-

ing affects general beam elements when different classical integration schemes are employed

is presented, evidencing the outstanding capabilities of the MITC method to overcome this

numerical issue. Refined beam theories based on the expansion of pure and generalized dis-

placement variables are implemented making use of Lagrange and Legendre polynomials over

the cross-sectional domain, allowing one to capture complex states of stress with a 3D-like

accuracy. The numerical examples are compared to analytic, numerical solutions from the

literature, and commercial software solutions, whenever it is possible. The efficiency and ro-

bustness of the proposed method is demonstrated throughout all the assessments, illustrating

that MITC elements are the natural choice to avoid shear locking and showing an unprecedent

accuracy in the computation of transverse shear stresses for beam formulations.

Keywords: Finite element method, Shear locking, Refined beam theories, Mixed Inter-

polation of Tensorial Components, Carrera Unified Formulation.
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1 Introduction

During the last decades, the Finite Element Method (FEM) has acquired considerable impor-

tance in numerical simulations, specially in the domain of structural analysis and verification.

One of the major concerns of structural engineers is the elevated computational costs that

are required to study complex geometries and/or boundary conditions, which consumes an

important part of the designing process. Researches are working very actively on the develop-

ment of new formulations based on the use of less demanding 2D/1D finite elements to obtain

highly accurate results while minimizing the computational effort. In this context, there are

still some challenges to be met in order to obtain effective and reliable tools that can be useful

for the engineering analysis.

Since the introduction of FEM, different classes of displacement-based finite formulations

have been developed, assessed and extensively employed for engineering analysis. However,

it is of common knowledge that finite elements, eventually, undergo numerical problems that

make them excessively stiff in bending-dominant problems when thin structures are consid-

ered. This stiffening phenomenon is known to as shear locking and represents one of the

major numerical issues in FEM applications, leading to a sudden and uncontrollable increas-

ing of the shear stiffness. The shear locking problem has been addressed in many works

over the last decades and several methods have been presented focusing on alleviating this

behaviour (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]). Usually, researchers overcome this deficiency

by employing well-known numerical ’tricks’, such as the reduced integration scheme initially

described by Zienkiewicz et al. [11]. This method is based on decreasing the order of the

numerical integration in certain terms of the stiffness matrix in order to reduce the stiffness

of displacement-based elements and, since its introduction, it has been extensively studied

in many works [12, 13, 14, 15]. A commonly used variant of the later method is the se-

lective integration technique, which works as a reduced integration for the transverse shear

terms whereas a full quadrature is employed for the remaining terms of the stiffness matrix,

see [16, 17, 18]. The aforementioned integration schemes improve considerable the conver-

gence rates of the displacement solutions, however, its use leads in some cases to unexpected

behaviours due to the appearance of unwanted spurious modes [19].

One of the most successful approaches to tackle this issue is the mixed interpolation of

shear strains, introduced by Dvorkin and Bathe [20] and MacNeal [21]. This method, denoted

by the former authors to as MITC (Mixed Interpolation of Tensorial Components), is based

on the use of assumed strain distributions for the derivation of the transverse shear terms, and

eventually mebrane terms, of the stiffness matrix of the finite elements. A similar approach

was employed in 1956 by Turner et. al [22] for the analysis of complex shell-type aeronautic

structures. It should be pointed out that this method might be seen as a selective scheme

but, in fact, it works as a full integration of the mixed interpolated element, as stated by

Bathe [23] and Bucalem and Bathe [24]. Since its introduction, the MITC approach has been

extensively employed on plate and shell formulations in many works, such as Bucalem and

Bathe [25], Bathe and Dvorkin [26], Huang and Hinton [27], Park and Stanley [28] and Jang
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and Pinsky [29]. However, despite its many advantages, the application of MITC has not

received as much attention as far as beam formulations are considered. This paper serves to

this purpose and extends MITC methodology to higher-order and hierarchical beam theories.

For many years, classical beam theories, such as those by Euler-Bernoulli [30] and Timo-

shenko [31], have demonstrated to be an effective tool for many structural problems, although

their employability is limited to slender homogeneous beams subjected to bending. It is well

known, in fact, that those theories fail in foreseing higher-order phenomena such as out-of-

plane warping, torsion, in-plane shear deformations or local effects. In order to overcome the

limitations of the classical theories and to capture these effects, many enhanced 1D theories of

structures have been proposed. A comprehensive review of the most remarkable contributions

in the field can be found in Kapania and Raciti [32, 33] and in Carrera et al. [34]. Most of

these refined beam models are built based on some physical assumptions, which limit their

use to particular classes of problems. In this context, the Carrera Unified Formulation (CUF)

[35, 36] was presented as a general structural formulation in which the order and the mathe-

matical assumptions of the theory are introduced as input of the analysis. This methodology

allows one to reduce the 3D elasticity problem into 2D or 1D ones by describing the kinemat-

ics in a unified manner as an arbitrary expansion of the unknown variables. Its application

to the 1D analysis was introduced by Carrera and Giunta [37], who extended the CUF to

beam problems using Taylor-like polynomials for the description of the kinematic field, and

then enhanced by Carrera and Petrolo [38], who introduced a set of piece-wise expansions

based on Lagrange polynomials to capture 3D-like behaviours with an increased accuracy.

During the last years, more theories of structure have been developed under the framework of

the unified formulation and the capabilities of these models have been extensively assessed in

numerous works. However, in many cases, the shear locking phenomenon still have a negative

effect in the performance of beam formulations and its elimination is essential if one wants to

develop robust locking-free models. Indeed, this issue was addressed in Carrera and Pagani

[39], where a constant distribution of the shear strains was assumed to develop classical and

Taylor-like locking-free beam models.

The use of the MITC method to eliminate shear locking phenomena on beam elements

was initially discussed in the book of Bathe [23]. In this work, the focus is on a two-node Tim-

oshenko beam element and some insights of how general mixed interpolated beam elements

should be devised are also provided. More recently, Lee et al. [40] proposed a geometry-

dependent MITC method to avoid locking on 2-node beam elements dealing with varying

section beams. In both works, the shear components of the strain field are computed from

the displacements, but interpolated by means of lower-order shape functions. This method

leads to a class of locking-free beam elements that are computationally similar to the original

ones in that the unknowns of the problem remain only the displacements and the stiffness ma-

trix is formally the same. These characteristics make the MITC approach a suitable candidate

to enhance displacement-based beam formulations and a powerful method for the develop-

ment of highly reliable advanced beam models, extending the 1D structural analysis to a wide
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range of geometries and boundary conditions.

The present work presents a systematic generalization of the MITC approach to any-

order and class of theory of structure based on 2-node, 3-node and 4-node beam elements.

The convergence rates of the solutions are compared against other integration schemes usually

employed in commercial softwares, demonstrating the advantages of high-order mixed beam

elements to deal with shear locking phenomena. Moreover, MITC beam elements show a

remarkable performance in computing the distributions of strains and stresses within the body

with an outstanding accuracy for refined beam models. The features of the CUF are exploited

in the following to develop theories of structure based on Lagrange-type and Legendre-type

polynomials for compact, thin-walled and composite beam structures.

The paper is organized as follows: first, an overview of different variable kinematic CUF

models is provided in Section 2. The basis of the finite element method in the framework

of 1D CUF is provided in Section 3, with particular attention on the development of MITC

beam elements and the derivation of the fundamental nucleus of the stiffness matrix. Several

beam and shell-like structures are analyzed with the present 1D model in Section 4, showing

the advanced capabilities the higher-order mixed interpolated beam elements on dealing with

general problems. Finally, the main conclusions of the work are outlined in Section 5.

2 CUF beam models

z

x

y

Ω

l

Figure 1: Coordinate system and geometry of a reference beam structure.

Classical beam theories are based upon a number of hypotheses that limit in many cases

their accuracy and applicability. For instance, according to the Euler-Bernoulli theory, the

cross-section remains plane, rigid and normal to the deformed axis of the beam and the

shear deformations are neglected. The Timoshenko model, on the other hand, relaxes the

assumption of orthogonality of the cross-section to account for a constant distribution of shear

stresses. Consider a Cartesian coordinate system as in Fig. 1. The beam axis coincides with

the coordinate y and the cross-section, Ω, lays on the xz-plane. The resulting displacement

5



field of the Timoshenko theory reads

ux(x, y, z) =ux1(y)

uy(x, y, z) =uy1(y) + xφz(y)− zφx(y)

uz(x, y, z) =uz1(y)

(1)

where ux, uy and uz are the global displacements at any point of the structure, ux1 , uy1 and

uz1 are the displacements of the beam axis, and φz and φx represent the rotations around the

z and x axes. It is of common knowledge that when short, thin-walled or non-homogeneous

beam cases are considered, the assumptions adopted to generate these classical theories are

not valid anymore, and more refined theories should be employed. For example, the use of

high-order kinematic terms is required if stress-free boundary conditions are to be fulfilled,

as shown by Reddy [41].

Following these premises, in the framework of the unified formulation, classical theories

assumptions are systematically neglected by enriching the kinematic field with an arbitrary

number of terms that expand the mechanical variables over the cross-section domain, Ω, with

certain functions of the xz-plane. In its compact form it can be expressed as:

u(x, y, z) = Fτ (x, z)uτ (y) τ = 1, 2, ...,M (2)

where u(x, y, z) is the three-dimensional displacement field, uτ (y) is the vector of generalized

displacements, M is the number of terms of the kinematic field and Fτ (x, z) are the so-called

expansion functions. It should be noted that, according to the Einstein notation, τ denotes

summation. The choice of the theory of structure becomes in this way arbitrary and can be

introduced in the structural beam model as an input when defining Fτ . For more information

about the CUF methodologies, the reader is referred to the book of Carrera et al. [42]. For

the sake of completeness, a brief introduction of some of these beam theories is provided in

the following.

2.1 Taylor Expansions

Taylor Expansions (TE) are based on the use of 2D series of MacLaurin polynomials of the

type xizj to define the interpolating functions over the cross-section, Fτ . For these models,

the displacement field is enriched in a hierarchical manner by adding higher-order expansion

terms. For instance, the second order model includes 18 generalized displacement variables

(displacements and derivatives) as follows:

ux(x, y, z) = ux1(y) + x ux2(y) + z ux3(y) + x2 ux4(y) + xz ux5(y) + z2 ux6(y)

uy(x, y, z) = uy1(y) + x uy2(y) + z uy3(y) + x2 uy4(y) + xz uy5(y) + z2 uy6(y)

uz(x, y, z) = uz1(y) + x uz2(y) + z uz3(y) + x2 uz4(y) + xz uz5(y) + z2 uz6(y)

(3)
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where uxτ , uyτ and uzτ (τ = 1, ..., 6) are the generalised displacement unknowns and 1,

x, z, x2, xz and z2 are the expansion functions. TE models have been extensively used

to analyse a broad range of structural problems through the unified formulation, see for

instance [43, 44, 45, 39]. It is possible to observe that the classical theories, such as Euler and

Timoshenko models, can be considered as particular cases of the first-order TE. For example,

considering the constant and linear terms of (Eq. (3)) and imposing ux2 = ux3 = uz2 = uz2 =

0, one obtains the displacement field of the Timoshenko model (Eq. (1)), with φz = uy2 and

φx = −uy3 .

2.2 Lagrange Expansions

Lagrange Expansions (LE) make use of Lagrange-type polynomials to create sets of Fτ func-

tions that are defined in the natural plane and then mapped onto the cross-section surface.

In this manner, the section domain is represented by a number of non-local expansions that

allow to accurately capture more complex geometries and to enrich the kinematics of the

model in particular zones of interest. Different types of expansions can be devised depending

on the polynomial order, such as three-node L3, four-node L4, six-node L6 or nine-node L9.

A more detailed description can be found in Carrera and Petrolo [38]. As an example, the

displacement field of a quadratic L9 model corresponds to that of (Eq. (2)) with the following

generic functions:

Fτ = 1
4
(r2 + rrτ )(s

2 + ssτ ) τ = 1, 3, 5, 7

Fτ = 1
2
s2
τ (s

2 − ssτ )(1− r2) + 1
2
r2
τ (r

2 − rrτ )(1− s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1− s2) τ = 9

(4)

where r and s are the coordinates of the natural plane [-1,1]×[-1,1] and rτ and sτ are the

position of the nodes. This class of beam models have been successfully applied to many dif-

ferent fields, such as composite laminates [46], aerospace structures [47, 48], civil constructions

[49, 50], and marine ship hulls [51].

2.3 Hierarchical Legendre Expansions

In Hierarchical Legendre Expansions, also denoted to as HLE, the Fτ generic expansions are

defined from a set of hierarchical functions derived from Legendre polynomials. HLE models

were recently introduced in the work of Carrera et al. [52] and its main feature is that they

combine the hierarchy in the structure of the kinematic terms (as for TE) with a non-local

distribution of the mechanical unknowns over the cross-section domain (as for LE). More

specifically, this class of models makes use of three types of expansion polynomials: vertex,

side and internal.
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Vertex expansions

Fτ =
1

4
(1− rτr)(1− sτs) τ = 1, 2, 3, 4 (5)

where r and s vary over the natural frame between −1 and +1, and rτ and sτ represent the

vertex coordinates of the quadrilateral domain.

Side expansions

Fτ (r, s) =
1

2
(1− s)φp(r) τ = 5, 9, 13, 18, ... (6)

Fτ (r, s) =
1

2
(1 + r)φp(s) τ = 6, 10, 14, 19, ... (7)

Fτ (r, s) =
1

2
(1 + s)φp(r) τ = 7, 11, 15, 20, ... (8)

Fτ (r, s) =
1

2
(1− r)φp(s) τ = 8, 14, 16, 21, ... (9)

where φp corresponds to the one-dimensional internal Legendre-type modes, as presented in

the book of Szabó and Babuška [53]. They are defined for p ≥ 2, where p is the polynomial

order of the beam theory.

Internal expansions Introduced for p ≥ 4 , they vanish at all the edges of the quadrilateral

domain. They sum (p− 2)(p− 3)/2 internal polynomials in total. For the sake of clarity, the

sixth-order polynomial set is included here:

F28(r, s) = φ4(r)φ2(s) (10)

F29(r, s) = φ3(r)φ3(s) (11)

F30(r, s) = φ2(r)φ4(s) (12)

HLE theories have been employed for the analysis of laminated structures [54] and further ex-

tended to develop geometrically-exact beam models through the blending mapping technique

[55].

3 Finite element formulation

3.1 Preliminaries

The strain and stress second-order tensors can be expressed the form of six-term column vec-

tors. For the purposes of this work, these vectors are split in bending components (subscript
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B) and transverse shear components (subscript S), as:

εεεB = {εyy εxx εzz εxz}T εεεS = {εyz εxy}T

σσσB = {σyy σxx σzz σxz}T σσσS = {σyz σxy}T
(13)

In linear analyses, the geometrical relations between strains and displacements, following the

present nomenclature, read:

εεεB = DDDB uuu = (DDDBy +DDDBΩ
) uuu

εεεS = DDDS uuu = (DDDSy +DDDSΩ
) uuu

(14)

where the differential operators DDDB and DDDS can be conveniently defined as

DDDBy =


0 ∂(•)

∂y 0

0 0 0

0 0 0

0 0 0

 DDDBΩ
=


0 0 0
∂(•)
∂x

0 0

0 0 ∂(•)
∂z

∂(•)
∂z

0 ∂(•)
∂x


DDDSy =

[
0 0 ∂(•)

∂y
∂(•)
∂y

0 0

]
DDDSΩ

=

[
0 ∂(•)

∂z
0

0 ∂(•)
∂x

0

] (15)

On the other hand, the stress components are obtained making use of the the constitutive

laws as follows: {
σσσB

σσσS

}
=

[
C̃BB C̃BS

C̃SB C̃SS

]{
εεεB

εεεS

}
(16)

where the transformed material matrix, C̃, contains the material characteristics in the global

coordinate frame (see Fig. 1) and has been also regrouped in bending and transverse shear

terms. If fiber-reinforced laminas are considered, the material matrices are:

C̃BB =


C̃33 C̃23 C̃13 0

C̃23 C̃22 C̃12 0

C̃13 C̃12 C̃11 0

0 0 0 C̃44

 C̃BS = C̃
T

SB =


0 C̃36

0 C̃26

0 C̃16

C̃45 0

 C̃SS =

[
C̃55 0

0 C̃66

]

(17)

The material coefficients, C̃ij, depend on the Young’s modulus, the Poisson ratio and the

orientation of the fibers. Their explicit expressions are not incuded here for the sake of

brevity, but they can be found in many works in the literature, see for instance the book of

Reddy [56].
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3.2 MITC elements

As in classical finite element formulations, in the CUF framework the problem unknowns are

allocated at the structural nodes. The nodal displacement vector is expressed as:

uuuτi = {uxτi uyτi uzτi}T τ = 1, ..,M ; i = 1, ..., nnode (18)

where M is the number of terms of the expansion and nnode stands for the number of nodes

per element. Then, the displacement variables are interpolated along the beam axis by means

of conventional 1D shape functions, Ni:

uτ (y) = Ni(y)uτi i = 1, ..., nnode (19)

Standard Lagrangian beam elements including two, three and four nodes are considered for

the purposes of the present work. The expressions of the interpolating functions, Ni, of these

elements are, respectively:

N1 = 1
2
(1− ξ), N2 = 1

2
(1 + ξ),

{
ξ1 = −1

ξ2 = +1
(20)

N1 = 1
2
ξ(ξ − 1), N2 = 1

2
ξ(ξ + 1), N3 = −(1 + ξ)(1− ξ),


ξ1 = −1

ξ2 = +1

ξ3 = 0

(21)

N1 = − 9
16

(ξ + 1
3
)(ξ − 1

3
)(ξ − 1), N2 = 9

16
(ξ + 1

3
)(ξ − 1

3
)(ξ + 1),

N3 = +27
16

(ξ + 1)(ξ − 1
3
)(ξ − 1), N4 = −27

16
(ξ + 1)(r + 1

3
)(ξ − 1),


ξ1 = −1

ξ2 = +1

ξ3 = −1
3

ξ4 = +1
3

(22)

where the natural coordinate, ξ, goes from −1 to +1 and ξi denotes the position of the nodes

in the natural coordinate system of the element.

In displacement-based finite formulations, the strain components are obtained directly

from the displacement solutions through the geometrical relations (Eq. (14)). Making use

of the CUF kinematic approximation (Eq. (2)) and the FEM interpolation (Eq. (19)), the

bending and shear strain components can be computed:

εεεB = Fτ (DDDByNiI)uτi + (DDDBΩ
FτI)Niuτi

εεεS = Fτ (DDDSyNiI)uτi + (DDDSΩ
FτI)Niuτi

(23)

being I the 3× 3 identity matrix.

Conventional finite elements are often too stiff due to shear locking phenomena, and in

particular when low-order shape functions are used. The MITC method tackles this numerical

deficiency by interpolating separately the displacements and the transverse shear strains.

According to the MITC premises, the transverse shear strains along the beam element are
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Figure 2: MITC element interpolations of shear strains.

assumed as:

ε̄εεS = N̄m εεεSm m = 1, ..., nnode − 1 (24)

where m denotes summation over a set of points along the natural coordinate ξ, denoted to

as tying points. These points are used to tie the interpolations of the displacements with the

assumed strains. εεεSm is the transverse shear strains vector computed at the tying points m

by means of Eq. (23). Accordingly, the assumed shear strains vector, ε̄εεS, is calculated using

one tying point for 2-node elements, two for 3-node elements and three for 4-node elements,

as shown in Fig. 2. One can see that transverse shear strains are assumed to be constant,

linear or quadratically distributed, respectively. For the sake of completeness, the assumed

interpolating functions, N̄m, are given in the following for two-, three-, and four-noded finite

elements. Respectively,

N̄1 = 1, ξT = 0 (25)

N̄1 = −1
2

√
3(ξ − 1√

3
), N̄2 = 1

2

√
3(ξ + 1√

3
),

{
ξT1 = − 1√

3

ξT2 = 1√
3

(26)

N̄1 = 5
6
ξ(ξ −

√
3
5
), N̄2 = −5

3
(ξ −

√
3
5
)(ξ +

√
3
5
), N̄3 = 5

6
ξ(ξ +

√
3
5
),


ξT1 = −

√
3
5

ξT2 = 0

ξT3 =
√

3
5

(27)

where ξTm denotes the position of the tying points in the natural reference frame of the beam

element. In the present work, the lector can verify that their location coincide with the Gauss

points, although they are actually called Barlow points [57], which are known to provide the

best accuracy when computing the strain values for these elements.

Now, introducing the expression of the shear strains of Eq. (23) into Eq. (24), one obtains:

ε̄εεS = N̄mFτ (DDDSyNiI)muτi + N̄m(DDDSΩ
FτI)Nimuτi (28)

where Nim is the value that the shape function Ni takes at the tying point m in the natu-

ral coordinate system, and (DDDSyNiI)m refers to the value of the shape function derivatives

11



evaluated also at the tying points. The stress field is then computed from Eq. (16), obtaining:

σ̄σσB = C̃BB

[
Fτ (DDDByNiI)uτi + (DDDBΩ

FτI)Niuτi
]

+ C̃BS [N̄mFτ (DDDSyNiI)muτi + N̄m(DDDSΩ
FτI)Nimuτi]

σ̄σσS = C̃SB

[
Fτ (DDDByNiI)uτi + (DDDBΩ

FτI)Niuτi
]

+ C̃SS [N̄mFτ (DDDSyNiI)muτi + N̄m(DDDSΩ
FτI)Nimuτi]

(29)

3.3 Stiffness matrix

The arrays of the structural problem, i.e stiffness matrix and loading vector, are derived from

the principle of virtual displacements, which for static analyses can be written as:

δLint = δLext (30)

It states that the virtual variation of the internal work, Lint, must be equal to the virtual

variation of the external work, Lext. The former term is equivalent to the elastic strain energy,

which for the purposes of the MITC approach can be expressed as

δLint =

∫
l

∫
Ω

δεεεTσσσ dΩ dy =

∫
l

∫
Ω

(δεεεTB σ̄σσB + δε̄εεTS σ̄σσS) dΩ dy (31)

where Ω and l are the surface of the cross-section and the length of the beam, respectively

(see Fig. 1). Regarding the external work, Lext, it can be derived for the case of a generic

concentrated load P = (Px Py Pz), with no loss of generality, as follows:

δLext = PPP δuuuT (32)

Now introducing both bending and shear stresses of Eq. (29), the assumed transverse

shear strains, ε̄εεS, of Eq. (28) and the bending strains, εεεB, of Eq. (23) into Eq. (31), and the

CUF notation to Eq. (32), one obtains

δLint = δuTτiK
τsijusj

δLext = FτNiPPPδu
T
τi

(33)

where Kτsij is the 3 × 3 building block of the MITC stiffness matrix, denoted to as funda-

mental nucleus. Note that indexes i and τ of Eq. (29) have been substituted for s and j

to be formally coherent with Eq. (31). In the case of monoclinic materials materials (e.g.

fiber-reinforced laminae with arbitrary orientations in the xy-plane), the nine components of
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the fundamental nucleus are:

K τ sij
xx = C̃22

∫
l
NiNj dy Eτ,xs,x + C̃44

∫
l
NiNj dy Eτ,z s,z + C̃26

∫
l
Ni(NnN(j,y)n)dy Eτ,xs

+ C̃26

∫
l
(NmN(i,y)m)Nj dy Eτ s,x + C̃66

∫
l
(NmN(i,y)m)(NnN(j,y)n)dy Eτ s

K τ sij
xy = C̃23

∫
l
NiNj,y dy Eτ,xs + C̃45

∫
l
Ni(NnNjn)dy Eτ,z s,z + C̃26

∫
l
Ni(NnNjn)dy Eτ,xs,x

+ C̃36

∫
l
(NmN(i,y)m)Nj dy Eτ s + C̃66

∫
l
(NmN(i,y)m)(NnNjn)Eτ s,x

K τ sij
xz = C̃12

∫
l
NiNj dy Eτ,xs,z + C̃44

∫
l
NiNj dy Eτ,z s,x + C̃45

∫
l
Ni(NnN(j,y)n)Eτ,z s

+ C̃16

∫
l
(NmN(i,y)m)Nj Eτ s,z

K τ sij
yx = C̃23

∫
l
Ni,yNj dy Eτ s,x + C̃45

∫
l
(NmNim)Nj dy Eτ,z s,z + C̃26

∫
l
(NmNim)Nj dy Eτ,xs,x

+ C̃36

∫
l
Ni,y(NnN(j,y)n)dy Eτ s + C̃66

∫
l
(NmNim)(NnN(j,y)n)dy Eτ,xs

K τ sij
yy = C̃33

∫
l
Ni,yNj,y dy Eτ s + C̃36

∫
l
(NmNim)Nj,y dy Eτ,xs + C̃36

∫
l
Ni,y(NnNjn)Eτ s,x

+ C̃55

∫
l
(NmNim)(NnNjn)dy Eτ,z s,z + C̃66

∫
l
(NmNim)(NnNjn)dy Eτ,xs,x

K τ sij
yz = C̃13

∫
l
Ni,yNj dy Eτ s,z + C̃55

∫
l
(NmNim)(NnN(j,y)n)dy Eτ,z s

+ C̃45

∫
l
(NmNim)Nj dy Eτ,z s,x + C̃16

∫
l
(NmNim)Nj dy Eτ,xs,z

K τ sij
zx = C̃12

∫
l
NiNj dy Eτ,z s,x + C̃44

∫
l
NiNj dy Eτ,xs,z + C̃45

∫
l
(NmN(i,y)m)Nj dy Eτ s,z

+ C̃16

∫
l
Ni(NnN(j,y)n)dy Eτ,z s

K τ sij
zy = C̃13

∫
l
NiNj dy Eτ,z s + C̃55

∫
l
(NmN(i,y)m)(NnNjn)dy Eτ s,z

+ C̃45

∫
l
Ni(NnN(j,y)n)dy Eτ,xs,z + C̃16

∫
l
Ni(NnN(j,y)n)dy Eτ,z s,x

K τ sij
zz = C̃11

∫
l
NiNj dy Eτ,z s,z + C̃44

∫
l
NiNj dy Eτ,xs,x + C̃45

∫
l
Ni(NnN(j,y)n)dy Eτ,xs

+ C̃55

∫
l
(NmN(i,y)m)(NnN(j,y)n)dy Eτ s + C̃45

∫
l
(NmN(i,y)m)Nj dy Eτ s,x

(34)

where the (i, j) subscripts correspond to the element nodes and (τ, s) to the expansion terms

of the beam theory. The comma indicates partial derivative with respect to x, y and z. On

the other hand, the (m,n) subscripts refer to the tying points. Using this notation, Nm stands

for the m-th assumed interpolating function of the shear strains, whereas N(i,y)m refers to the

derivative with respect to y of the standard shape function Ni evaluated at the tying point

m, or, equivalenty, Ni,y(Tm). For the shake of simplicity, the integrals over the cross-section

domain, Ω, are represented by E terms, whose explicit expressions can be found in Appendix

A. For further information on the construction of the problem arrays for general cases, the

reader is refered to the book of Carrera et al. [42].
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For the obtention of locking-free MITC elements, the integrals of the shear terms in

Eq. (34) account for the assumed interpolating functions, Nm and Nn, which are one order

inferior to those of the bending components. In this manner, a reduced-order set of shape

functions is employed to approximate the transverse shear strains while a full integration

is performed for all the stiffness components, avoiding the numerical issues that may raise

when reduced integration schemes are employed. As a final remark, one can notice that in

the CUF framework, any beam model, classical to higher-order, can be straightforwardly

formulated by only expanding appropriately the fundamental nucleus on (i, j) = 1, ..., nnode

and (τ, s) = 1, ...,M to obtain the stiffness matrix. In fact, the formal expressions of the

fundamental nucleus are independent of the order and class of theory of structure, represented

by Fτ , which can be automatically introduced as an user input of the problem.

4 Numerical results

The capabilities of the present formulation are assessed through several numerical exam-

ples. First, a cantilever square beam, for which an analytical solution is available, is solved

using a single beam element of different configurations and the performance of the MITC

method is compared against classical integration schemes. Secondly, the proposed beam ele-

ments are tested under different loading cases, including bending, torsion and bending-torsion.

Then, the advantages of the MITC method for the accurate analysis of laminated components

through layer-wise models are presented. Finally, a thin-walled L-angle beam is considered

and the solutions are compared to 1D, 2D and 3D commercial models, showing the remark-

able performance of the present finite element when implemented with high-order theories of

structure.

4.1 Single beam element

A simple beam problem is considered first to test the bending and shear capabilities of

Lagrange-class 1D elements in a relatively short structure. The example consists in a can-

tilever beam loaded at the free edge with a vertical point load, see Fig. 3. The dimension of

the square cross-section, b, is equal to 0.1 m, whereas the length, L, is equal to 1 m, being the

slenderness ratio, L/h, as high as 10. A single beam element is used to solve the numerical

problem and to assess the capabilities of the MITC method. The vertical load has a magni-

tude of −100 N and it is applied at the center of the cross-section. The material properties

correspond to an Aluminum alloy, with the following characteristics: Young modulus, E, equal

to 75 GPa and the Poisson ratio, ν, equal to 0.33. Bilinear and quadratic beam theories are

considered by employing L4 and L9 Lagrange-based expansions as Fτ .

The analytical solution of this problem can be obtained from the classical beam theories.
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b

Figure 3: A single two-node beam element representing a cantilever beam.

Using the Timoshenko’s theory, the vertical displacementa at the tip results:

u = uzb + uzs =
FzL

3

3EI
+
FzL

AG
= −5.369× 10−5 m, (35)

On the other hand, the shear stress distribution along the z-axis is obtained from the following

formula:

σyz(z) = −FzSx(z)

Ib
, (36)

where Sx(z) =
∫
A
zdA correspond to the first momentum of area and I is the moment of

inertia of the section. Accordingly to Eq. (36), the maximum shear stress is located in z = 0

and it is given by:

σyz(z = 0) = −3Fz
2A

= −1.500× 104 Pa. (37)

The attention is focused here on how the shear locking affects beam elements derived

from different integration schemes. Four integration methods have been considered: full, re-

duced, selective reduced and mixed integration (MITC), which have already been introduced

in Section 1. The first three classes are well-known in the FEM field and they are extensively

employed in commercial softwares. Table 1 shows the results of vertical displacements and

transverse stresses case for linear, quadratic and cubic beam elements (B2, B3 and B4, re-

spectively). The displacements are evaluated at the center of the tip cross-section, whereas

the shear stresses, σyz, are measured also at the center of the section correspondent to each

one of the nodes of the elements. In addition, the distribution of shear stresses along the

beam axis for the linear L4 model is shown for all the models considered in Fig. 4.

Some remarks can be outlined from these results:

• Obviously, the higher is the number of beam nodes, i.e. the polynomial order of the

shape functions, the better is the approximation in terms of vertical displacements.

This applies also to the polynomial order of the expansion functions of the cross-section

domain. In fact, the L9 model (quadratic) computes higher displacements than the L4

model (bilinear).

• All beam elements show locking when full integration schemes are employed. This defi-

ciency is more clear for the linear 2-node element, in which the values of displacements

are close to zero at the tip. The use of reduced integration mitigates the issue, leading

to a less stiff behaviour in particular when three and four-node elements are chosen.
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L4 model L9 model
uz × 105 m σyz × 10−4 Pa uz × 105 m σyz × 10−4 Pa

y = L Node 1 Node 2 Node 3 Node 4 y = L Node 1 Node 2 Node 3 Node 4
B2 Full -0.138 -3.902 1.902 - - -0.139 -3.915 1.910 - -

Reduced -3.382 -95.367 93.367 - - -4.035 -113.770 111.684 - -
Selective -3.193 -90.037 88.037 - - -3.606 -101.664 99.605 - -
MITC -3.193 -1.000 -1.000 - - -3.606 -1.029 -1.029 - -

B3 Full -3.424 -4.935 0.967 -4.935 - -3.942 -4.667 0.810 -4.603 -
Reduced -4.492 -32.355 14.678 -32.355 - -5.363 -38.485 17.687 -38.056 -
Selective -4.175 -27.889 12.445 -27.889 - -4.663 -28.628 12.771 -28.431 -
MITC -4.175 -1.000 -1.000 -1.000 - -4.663 -1.094 -0.996 -0.898 -

B4 Full -4.311 -0.289 -1.290 -0.710 -1.711 -4.950 0.386 -1.582 -0.357 -2.581
Reduced -4.488 -0.841 -1.065 -0.935 -1.159 -5.359 -0.849 -1.135 -0.694 -2.005
Selective -4.319 1.497 -2.017 0.017 -3.497 -4.988 4.334 -3.248 1.327 6.659
MITC -4.319 -1.000 -1.000 -1.000 -1.000 -4.988 -1.228 -0.982 -0.939 -1.097

Table 1: Results of displacements and shear stresses, σyz, for various models and integration
schemes at the center point of the cross-section.
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Figure 4: Shear stresses, σyz, along the beam axis for a L4 model.
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Selective and MITC integration schemes provide the same solutions in terms of vertical

displacements.

• As it is commonly known, high-order finite elements are a good choice to reduce the

diffusion of numerical errors. In the present analysis, it has been demonstrated that its

use is indicated to overcome the shear locking.

• Regarding the stress solutions, Fig. 4 shows that MITC elements are the only ones

that compute constant values of σyz along the axis, which, according to the theory

of elasticity, is the expected behavior for pure-bending problems. On the other hand,

highly oscillating solutions are obtained when other integration methods are employed.

The error in the shear stress solutions for reduced integration methods can be of orders

of magnitude, which prevents its use if one wants to obtain reliable solutions of the

complete stress field.

Equation (36) suggests that the distribution of shear stresses along the z-direction should

be quadratic. Therefore, if one wants to approximate the stress field with enough accuracy it

is necessary to enrich the kinematic field with higher-order terms. This can be accomplished,

for instance, by employing refined HLE theories of structure. The higher-order polynomial

expansions employed by HLE models, together with the mixed interpolation of tensorial

components, allow us to represent any distribution of strains/stresses over the cross-section

of the structure. Figure 5 shows the distribution of shear stresses through the thickness (z-

axis) for a four-node MITC element at 33 % of the length, coinciding with the second beam

node, employing different HLE models of increasing order. As expected, linear (HL1) and

quadratic (HL2) expansions do not respect the stress-free conditions at the boundaries. On

the other hand, higher-order expansions are in good agreement the solutions calculated from

the analytical expression.

4.2 Square cross-section beam under bending, torsion and bending-

torsion loadings

A similar structure of the previous section is considered and meshed with an increasing number

of finite elements to study the convergence rates of the different integration methods. The

length, L, is equal to 2 m, and the section dimension, b, is 0.2 m. For the second analysis case, a

vertical point force is applied at the free end, being its magnitude Fz = 200 N. A quadratic L9

model is chosen for the cross-sectional expansions and linear B2 finite elements are employed

to mesh the beam axis. The results, shown in Fig. 6, assess the faster convergence in terms

of displacements of the reduced integration scheme. The full integration lead to very stiff

elements that show much slower rates of convergence. It is also remarkable how selective

integration solutions adopt exactly the same trend that MITC elements, although, as it has

been demonstrated before, they lack on representing the correct shear components of stresses.
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Figure 5: Shear stresses, σyz, along the z-axis for the MITC4 beam model and various hier-
archical expansions at y = L/3.

Based on this results, a conservative choice of 100 2-node MITC elements is used for the next

examples of this assessment.

The focus is now centered on the assessment of the accuracy of MITC high-order beam

elements for different load cases. First, a torsional load is applied at the tip section by means

of two opposite point loads of magnitude Fz = 50 N, as it is shown in Fig. 7 (a). The results

in terms of displacements and shear stresses are addressed in Table 2. The number of degrees

of freedom of each model is also included in the last column. Solutions from LE and HLE

models are presented and compared with other results from Carrera and Pagani [39]. The

analytical solutions for the displacement and maximum shear stress have been calculated from

the well-known formulas [58]:

θ = TL
GJt

; σyz ' T
0.208b3

(38)

where θ is the torsion angle, T the torque load, G the shear modulus and Jt the torsional

moment of inertia, approximated as Jt ' 0.1406b4. It is clear from Table 2 that at least a third

order expansion on the cross-section plane is required for CUF models to compute accurately

the correct displacement field due to the warping phenomena that occurs under torsional

loads. In fact, Lagrange-type models L4 and L9 do not provide good results. It should be

mentioned that this issue could be solved by using higher-order Lagrange polynomials or by

incrementing the number of Lagrange expansion domains over the cross-section, which would

lead to a piecewise interpolation of the mechanical variables on the xz-plane, enabling the

model to capture more complex deformations. The same can also apply to the HLE theories,

but, in these models, the hierarchical characteristics of the expansion terms allow one to easily
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Figure 6: Vertical displacement, uz, at the tip of the square beam for an increasing number
of 2-node elements and the different integration schemes considered.
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Figure 7: Tip cross-section for the different load cases.

enrich the kinematics by only increasing the polynomial order. Thanks to this capability, HLE

can provide very accurate solutions with no need of cross-section refinements.

Another load case is considered to study the behavior of the present model under bending-

torsion. To achieve this scope, a single point load with a magnitude of Fz = 50 N is applied

at the left top corner of the cross-section, see Fig. 7 (b). Table 3 shows the solutions for

the vertical displacements and maximum shear stresses at different evaluation points. Again,

the results obtained from LE and HLE models are compared against analytical, classical and

Taylor-based theories from [39]. The analytical formulas for pure-bending, shear and torsion

have been already included in the previous section (Eqs. (35), (36) and (38)). The results

show that the use of MITC beam elements, together with high-order expansions over the

xz-plane, leads to models that are able to capture the actual deformation of the structure and

the accurate state of stress under different load conditions.
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Model uz × 106 m σyz × 103 MPa DOFs
at y=L at y=L/2

Analytical 0.315 6.009 -
TE models [39]

6-DOF 0.266 3.750 126
N=1 0.271 3.750 189
N=2 0.274 3.750 1818
N=3 0.285 3.750 3030
N=4 0.332 6.168 4545
N=5 0.345 6.168 6363

LE models
L4 0.273 3.747 1212
L9 0.278 3.750 2727

HLE models
HL1 0.273 3.747 1212
HL2 0.278 3.748 2424
HL3 0.331 6.167 3636
HL4 0.335 6.164 5151
HL5 0.345 6.069 6969

Table 2: Results of vertical displacements, uz, and shear stresses, σyz, at Point A obtained
with MITC2 elements for various theories of structures. Square beam under torsional load.

4.3 Asymmetric laminated beam

The numerical error introduced by the shear locking can be of major importance when deal-

ing with laminated structures, in which an accurate description of the stress/strain state is of

fundamental importance for verification purposes. In this context, a cantilever beam consist-

ing in a two-layer asymmetric [0◦, 90◦] cross-ply is considered in this section. This structural

problem, represented in Fig. 8, was already studied by Pagani et al. [54]. The geometrical

dimensions are: b = 0.2 m, h = 0.1 m and L = 2 m. Both laminae have the same thickness,

equal to h/2, and the material properties, given in a dimensionless form, are: EL/ET = 25,

νLT = νTT = 0.25, GLT/GTT = 0.25, where the subscript L correspond to the fiber direction

and T refer to the normal direction. The beam is loaded at the free-tip with four point forces

of the same magnitude, Fz = 25 N, as shown in Fig. 8.

The present assessment is focused on the effects of the longitudinal mesh discretization and

the integration scheme on the goodness of the solutions, with a focus on the shear components

of the stress field. First, a distribution of 4 quadratic beam elements (B3) is employed along

the beam axis and the different integration schemes are accounted for. A layer-wise method

is employed to describe the cross-section, using one expansion domain of fifth-order (HL5)

per layer. The results of displacements and stresses at various points are shown in Table 4,

together with solid element solutions obtained with the commercial software MSC Nastran,

used here as a reference. The solid model is generated with a mesh of 8-node brick elements

(HEX8) with a distribution of 10 elements per layer through-the-thickness direction. Figure 9
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Model −uz × 105 m −uz × 105 m −σyz × 103 MPa
at Point C, y=L at Point D, y=L y=L/2

Analytical solutions
Pure bending 1.333 1.333 0
+ shear 1.342 1.342 1.875
+ torsion 1.358 1.326 4.879

Classical models [39]
EBBM 1.333 1.333 0
TBM 1.342 1.342 1.250

TE models [39]
6-DOF 1.355 1.329 3.125
N=1 1.382 1.355 3.125
N=2 1.344 1.314 3.358
N=3 1.350 1.316 4.008
N=4 1.358 1.315 5.217
N=5 1.363 1.315 5.271

LE models
L4 1.130 1.101 3.125
L9 1.349 1.316 3.461

HLE models
HL1 1.130 1.101 3.125
HL2 1.348 1.315 3.461
HL3 1.355 1.312 5.217
HL4 1.360 1.315 5.221
HL5 1.364 1.315 5.224

Table 3: Results of vertical displacements, uz, and shear stresses, σyz, obtained with MITC2
elements for various theories of structures. Square beam under bending-torsional load

b

h L

Figure 8: Structural problem of the asymmetric laminated beam.
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Element −uz × 103 m σyy × 10−3 [Pa] -σyz × 10−3 [Pa] -σyz × 10−3 [Pa] DOFs
[0, L, h/2] [0, L/2, h/2] [0 , L/2, h/2] [0 , L/2, -h/4]

MSC Nastran solid model
HEX8 3.483 93.306 0.225 11.376 132300

HL5 beam model
B3 Full 3.468 84.480 0.466 16.783 1080
B3 Reduced 3.483 117.492 25.082 16.713 1080
B3 Selective 3.477 96.553 14.033 16.916 1080
MITC3 3.477 96.553 0.074 11.523 1080

Table 4: Deflections and stresses of the asymmetric laminated beam.

shows the distribution of shear stresses along the z-axis of the midspan section for all models

considered. The following statements can be summarized from the results:

• The reduced integration provides optimum results in terms of displacements, minimizing

the stiffening effects caused by the shear locking even for the coarse mesh employed in

this case. On the other hand, it clearly overestimates both normal and shear stresses.

• Both the displacement solutions and the normal stresses show lower values when full

integration is utilized. Again, the shear stresses are overestimated over the entire thick-

ness of the lay-up, as shown in Fig. 9.

• Selective integration provides good results for displacements and normal stresses, al-

though it is clear that the convergence of the solutions is not assured by employing only

4 cubic beam elements. The drawback of these beam elements resides on the computa-

tion of the shear stresses, which show an erratic distribution due to the error introduced

in the numerical calculation of the integrals of the shear components of the stiffness

matrix.

• The MITC method solves this issue by interpolating the shear components indepen-

dently using lower-order shape functions. As a consequence, the structural model is

capable of representing the exact distribution of shear stresses and, at the same time,

the accuracy of the displacement solutions is preserved.

The use of reduced (and selective) integration methods to minimize shear locking phenom-

ena can lead to significant errors in the computation of the shear components of the strain and

stress tensors, even when the convergence of the primary solutions is satisfied. To address this

issue, a convergence analysis is carried out using cubic selective beam elements (see Fig. 10

(a)) and the transverse shear stresses are compared for the four most refined models. Figure

10 (b) shows the distribution of shear stresses, σyz, along the top surface of the beam for 7,

10, 14 and 21 beam elements. In order to respect the stress-free conditions, σyz should have

a constant value of zero over the top and bottom faces of the laminate. Instead, it is possible

to observe that these values highly oscillate at the edges of the beam and how the error is
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Figure 9: Shear stress, σyz, along the z-axis at midspan for four 3-node elements (HL5 model).

propagated towards the center. This erratic behavior is only mitigated when refining the

finite element mesh (21 B4 selective), therefore adding considerable computational costs to

the model. It should be also added that this numerical problem is even more noticeable when

low-order elements are employed. The MITC method solves this issue without unnecessarily

increasing the size of the mesh. Fig. 11 shows how MITC elements eliminate almost entirely

these unwanted oscillations of σyz already for 7 beam elements, assuring the best accuracy of

the stress solutions while keeping the computational efforts much reduced.

4.4 L-angle beam

CUF beam models are suited for the study of structural problems with 3D-like capabilities

regardless of the complexity of the geometry. In this context, a thin-walled L-angle cantilever

beam with a curved section is considered, with a focus of the enhanced capabilities of the

MITC beam element for the efficient computation of displacement and stress solutions. The

geometrical dimensions are shown in Fig. 12 (a), where h = 20 mm, h1 = 15 mm, t = 2 mm

and the outer radius r = 5 mm. The length of the beam, L, is 1 m, being the slenderness ratio

as high as L/h = 50. A typical Aluminum alloy is employed for the material characteristics:

Young modulus, E, equal to 75 GPa, and Poisson ratio, ν = 0.33. A vertical force of magnitude

F = −50 N is applied at point C of the tip section (see Fig. 12 (a)).

The beam axis has been discretized with 10 four-node beam elements and the cross-section

surface is modelled with three expansion domains, as shown in Fig. 12 (b). The use of a non-

isoparametrical mapping technique on the HLE high-order models, introduced by Pagani et
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Figure 12: L-angle beam model.

al. [55], allows one to capture the exact shape of curved sections with no geometrical error

induced. Table 5 addresses the results of displacements and stresses at various points of the

beam for all the integration methods considered in the present work. Third, fifth and seventh-

order expansions over the cross-section are considered. Solutions obtained from beam, plate

and solid models of MSC Nastran are also included as references. The 1D model in Nastran

makes use of 20 2-node line elements (CBEAM), the 2D model employs a discretization of

28000 4-node plate elements (QUAD4), whereas 32000 8-node brick elements (HEX8) are

used for the 3D model, including 4 elements in the through-the-thickness direction.

Similar conclusions to the previous examples can be extracted from this assessment. The

reduced integration provides accurate results in terms of displacements, but it lacks on rep-

resenting correctly the stress solutions. Full and selective integrations can be also used to

compute the normal components of the stress field within an acceptable margin of accuracy.

However, this study confirms that to obtain reliable solutions of the whole state of stress of

the structure, MITC elements shall be employed. This statement is further supported in Fig.

13, which shows the transverse shear stress distribution across the thickness at point B at

two sections of the beam, located at y = 0.1L and y = 0.5L. It is possible to see that, unlike

the conventional integration schemes, MITC element solutions are in good agreement with

the solid ones, while keeping the computational costs much lower.

5 Conclusions

This paper has introduced a class of locking-free unified beam elements that show an out-

standing performance in cases where common isoparametric finite elements fail. The Mixed

Interpolation of Tensorial Components (MITC) method has been employed to overcome the

shear locking problem and the Carrera Unified Formulation is exploited to generate various

refined beam models with 3D-like capabilities. Moreover, the mixed interpolation of trans-

verse shear strains, together with the use of higher-order approximations of the mechanical
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Model uz × 101 m σyy × 10−8 Pa σyz × 10−6 Pa DOFs
Point A, y = L Point B, y = 0.1 m Point B, y = 0.1 m

MSC Nastran models
CBEAM -1.388 0.680 - 120
QUAD4 -1.431 2.123 6.253 43750
HEX8 -1.419 2.108 5.562 128000

Full integration - HLE CUF models
HL3 -1.406 2.066 8.215 2604
HL5 -1.407 2.019 8.035 5301
HL7 -1.407 2.019 8.404 9114

Reduced integration - HLE CUF models
HL3 -1.416 1.115 24.393 2604
HL5 -1.417 1.021 30.287 5301
HL7 -1.417 1.010 30.823 9114

Selective integration - HLE CUF models
HL3 -1.407 2.072 12.643 2604
HL5 -1.408 2.031 13.844 5301
HL7 -1.408 2.029 14.088 9114

MITC integration - HLE CUF models
HL3 -1.407 2.072 6.286 2604
HL5 -1.408 2.031 5.282 5301
HL7 -1.408 2.029 5.766 9114

Table 5: Results of displacements and stresses of the L-angle beam with 10 4-node elements.
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Figure 13: Shear stress, σyz, distribution across the thickness at point B.
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variables, has demonstrated to be a powerful tool to obtain highly accurate strain and stress

solutions. The numerical examples carried out for this work suggest that the following com-

ments on the capabilities of MITC beam models can be stated:

• Although the introduction of mixed interpolated beam elements might not represent

a drastic improvement on the convergence rates of the displacement solutions in com-

parison with reduce/selective integration schemes, it has been proven that its use is

necessary when an accurate description of the complete state of stress is required.

• High-order MITC beam elements have been successfully tested and assessed on various

structural problems featuring different geometries and loading cases, proving to be a re-

liable tool to obtain 3D-like solutions with a considerable reduction of the computational

costs.

• The formulation of this class of finite elements does not require the addition of new

unknowns to the structural problem since the problem matrices remain formally the

same. Therefore it represents a natural solution to tackle the shear locking problem

from its source with no need of artificial numerical techniques, while also maintain-

ing the efficiency of the beam models. These characteristics make the MITC method

recommended for any isoparametric beam finite elements.
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A Stiffness matrix integrals

The integrals of the transverse expansions above the cross-section surface, E, are defined as:

Eτ,xs,x =

∫
Ω

Fτ,xFs,x dΩ, Eτ,zs,z =

∫
Ω

Fτ,zFs,z dΩ, Eτ
s =

∫
Ω

FτFs dΩ,

Eτ,xs,z =

∫
Ω

Fτ,xFs,z dΩ, Eτ,zs,x =

∫
Ω

Fτ,zFs,x dΩ, Eτ,xs =

∫
Ω

Fτ,xFs dΩ,

Eτs,x =

∫
Ω

FτFs,x dΩ, Eτ,zs =

∫
Ω

Fτ,zFs dΩ, Eτs,z =

∫
Ω

FτFs,z dΩ,

(39)
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