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ABSTRACT  8 

Among the concentrated solar power technologies, those based on Organic Rankine Cycles 

have a very low market presence. However they have favourable characteristics for applications 10 

with low temperature and small/medium size (<10MW), such as off-grid applications or 

distributed power generation. 12 

In this paper is analyzed a 5MW parabolic trough plant integrated with an Organic Rankine 

cycle power block and thermal storage. On this purpose, two different thermal storage 14 

integrations are analysed. They are based on two different heat storage layouts: direct system 

using Hitec XL both as Heat Transfer Fluid  and as storage medium; indirect system using 16 

Therminol VP-1 as Heat Transfer Fluid and Hitec XL as storage medium.  

Full system performance at rated and off-design conditions is presented operating with different 18 

organic working fluids. Its potential application and main challenges for its development are 

discussed in terms of performance and costs.  Among the analysed working fluids, the best 20 

results were obtained for the cycle working with Toluene with an efficiency at the power block 

of 31.5% and an estimated power block cost of 825 €/kW. The indirect storage layout was the 22 

most interesting from the point of view of Levelized Electricity Cost (16.3 c€/kW) and 

productivity (28.2 GWh/y for a 5 MWel plant) for 10 hours of storage However, it results in a 24 
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storage tanks volume 26% greater than the obtained for the equivalent direct storage layout. 

The results show the competitiveness and the potential of the proposed integrated small size 2 

parabolic trough designs for  isolated applications as mines or for some distributed generation 

uses where grid capacity is limited.  4 

KEYWORDS 

Solar energy, Energy Storage, Parabolic Trough Technology, Organic Rankine cycle, ORC, 6 

CSP. 

1. INTRODUCTION 8 

Concentrated Solar Power (CSP) technologies are among the renewable technologies with 

greater potential for mitigating climate change [1]. They combine flexibility for energy 10 

generation and capacity for thermal energy storage (TES) to enhance energy supply security 

[2]. CSP plants with thermal energy storage can support power generation and provide ancillary 12 

services including voltage support, frequency response, regulation and spinning reserves, and 

ramping serves [3] .In addition, to increase flexibility, CSP plants can also be equipped with 14 

backup power from combustible fuels to cover demand when solar resource is not available  

[4].  In 2012 the global power in CSP plants was 2.7 GW [5] whereas the projects in 16 

development or under construction will increase the installed CSP capacity in the world up to 

15 GW.  18 

Among CSP technologies, parabolic trough collector technology (PTC) has reached the highest 

level of commercial maturity and accounts for the largest share of the current CSP market, but 20 

other technologies at different stages of technology maturity will increase their presence in the 

future [6]. A parabolic solar collector consists of a parabolic trough concentrator reflecting 22 

direct radiation on the focal line of the parabola, where the absorber tube is located. Different 

commercial collectors are available e.g. LS-3, EuroTrough and Solar Genix Collector, SENER 24 
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[7]. It is the most mature CSP technology due to continuous advances improving the 

characteristics and performance of the parabolic trough solar collector and its parabolic-shaped 2 

reflectors [8]. Different models have been developed to evaluate the cost evolution of the PTC 

CSP- solar electricity as function of different parameters [9] and to analyse the effects of the 4 

economic strategies on CSP plants viability and sizing [10].  The main cost of CSP parabolic 

trough plants is solar field, with a contribution above 50% of the total investment cost [11].  6 

Current investment costs are estimated in the range between 6600-8688 $/kWe [11,12] but it is 

expected that in next decade they will go to values below 6000 $/kWe by 2020[11,13]. 8 

Levelized Cost of Electricity (LCE) of parabolic trough plants is in the range 0.20 -0.33 c$/kWh 

at present, depending on their location, whether they include energy storage and the particulars 10 

of the project [11, 12]. Perspectives are that PTC-CSP plants will evolve to LCE values below 

13 c$/kWh in future large scale plants [11-13]. Advances for reduction costs in PTC plants are 12 

associated to: technology scaling up; solar field massive production with associated cost 

reduction; high temperature heat transfer fluids; high efficiency power blocks; advances in 14 

energy storage [12,14].  

As CSP technology, parabolic trough technology allows the possibility to store thermal energy. 16 

It involves over-sizing the solar field and increasing the annual utilization factor of the plant. 

Different technologies [15] and materials [15] for energy storage can be used with different 18 

levels of maturity and costs. Most recent commercial CSP plants use molten salts as storage 

commercial technology [17].  20 

Current large-scale systems rely on traditional well-established steam-based Rankine cycles for 

power production. Organic Rankine Cycle  power plants are an interesting alternative for small-22 

medium plants and relative low temperature heat sources. Fluid characteristics make ORC 

favourable for applications with medium-low temperature heat recovery [18] (normally less 24 

than 400°C), as in the case of parabolic trough solar energy applications. In relative  small 
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power plant sizes (<5MW), adequate for modular solutions, the use of organic working fluids 

results in a more compact and less costly plant than traditional steam cycle power plants.  Steam 2 

Rankine cycle operating at moderate temperature and small power ranges would have to use a 

simple Rankine cycle layout because a regenerative steam turbine would not be not viable for 4 

this power size. The simple Rankine cycle would have a similar (or lower ) power block 

efficiency than the obtained with the equivalent ORC but without the advantages of ORC: 6 

modularity and high efficiency at partial load operation.  

The use of ORC in CSP plants have been studied in different applications as hybrid systems 8 

combined with biomass [19], integrated in CSP tower plants [20,21] or in demonstration pilot 

plants for analysing the integrated operation [22,23].  ORC plants have good performance at 10 

partial loads. Off–design and partial operation of ORC power block has been studied by 

different authors. In [24] is studied the effect of heat source temperature in cycle’s performance, 12 

meanwhile in [25] is analysed the off-design operation of a CSP-ORC with compound parabolic 

collector. In [26] off-design performance analysis of a geothermal ORC is presented based on 14 

the preliminary design of turbines and heat exchangers. 

Application to mid and small size CSP plants is found in [27] where partial load operation for 16 

5MWel indirect ORC cycle coupled to linear solar collectors with different technologies is 

assessed evaluating the effect of two control strategies on annual electricity output. In this 18 

analysis Levelized Electricity Cost value (LEC) was 180-175 €/MWh with sliding pressure off-

design control strategy. In [28] is presented a thermodynamic analysis of a micro ORC CSP 20 

plant working with different organic fluids. In [29] a dynamic simulation is given for the 

coupling of solar thermal collectors with a 6 kWel ORC, simultaneously producing electric 22 

energy and low temperature heat. Besides integration of both technologies is shared with 

applications for refrigeration as solar heat pumps [30] and combined cooling, heating and power 24 

systems (CCHP) [31,32],  combined with geothermal [33] or in high efficiency systems 
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integration for trigeneration [34].  Main challenges for this integration of technologies are the 

reduction of investment costs for the whole system and the main components: solar field, heat 2 

transfer fluid, heat storage system and power block [35]. 

The aim of this paper is the characterization of an ORC parabolic trough power plant of 5MWe 4 

with two different active storage systems: a) two tanks indirect storage system and b) two tanks 

direct storage system. For the analysis of the integration, three organic fluids have been selected 6 

by considering the temperature range, cycle efficiency, critical temperature and thermal 

stability: Toluene, Cyclohexane and siloxane D4.  Two Heat Transfer Fluids (HTF) have been 8 

used: Oil Therminol VP-1 and molten salt Hitec XL [36, 37].  Therminol VP1, used as HTF 

fluid in the indirect system, can work in a wider range of temperatures and with slightly higher 10 

maximum temperatures than other commercial heating oils. For the direct storage system 

layout, the use of a molten salt as HTF and storage media allows operating at higher 12 

temperatures (up to 500°C) and eliminates the need for the oil-to-salt heat exchanger. It allows 

a substantial reduction in the costs of TES system, improving the performance of the plant and 14 

reducing the levelized electrical cost [37]. Hitec XL has been selected because its relatively low 

freezing point (120°C). 16 

The structure of this paper is the following. First, the plant layouts and thermodynamic models 

of the components are described. Then, these models are used to analyse the effect of main 18 

design parameters in the two plant configurations and to set the rated operation parameter 

criteria. Once the design conditions are established and equipment sized, off-design operation 20 

is analyzed.  Finally, the economic models are described and, with the defined equipment and  

operation parameters, economic analyses are developed under the operation criteria. The results 22 

of the study show the interest of the two storage configurations for small and mid-size power 

plants (>5MW). 24 
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2. CSP system layouts and application framework 

Solar high temperature storage systems can be classified in active and passive systems. In active 2 

storage systems, heat is transferred into the storage material by forced convection. The storage 

medium itself circulates through a heat exchanger (it can also have other functions as solar 4 

receiver or a steam generator). This system uses one or two tanks as storage media. Active 

systems are subdivided into direct and indirect systems. In a direct system, the heat transfer 6 

fluid also serves as storage medium, while in an indirect system, a second medium is used for 

thermal energy storage. As opposite, the passive storage systems are generally dual medium 8 

storage systems: the HTF passes through the storage system only for charging and discharging 

the storage material. The HTF carries energy received from the energy source to the storage 10 

medium in the charging phase, and receives energy from the storage when discharging. The 

main disadvantage of passive systems is that the HTF temperature decreases during the 12 

discharging phase as the storage material cools down. In addition, and depending of the system, 

heat transfer coefficient is relatively low, and additional heat exchanger are required between 14 

the HTF and the storage material.  

This paper analyses the integration of an ORC power block with two different active storage 16 

systems in a parabolic trough CSP plant, figure 1. These layouts are: a) two tanks indirect 

storage system and b) two tanks direct storage system. In [27] an indirect TES system has been 18 

studied for a 5MWel CSP ORC plant obtaining LCOE values in the range 17.5-18.0 c€/kWh. 

This configuration was the selected in  [36] for studying the effect of different backup options 20 

(among them energy storage)  and cooling options and  LCOE values  in the same range. They 

can be used with synthetic oils, as in this study, although the use of alternative fluids as nitrogen 22 

have been proposed [37]. The two tanks direct storage system layout [39] has as main 

advantages [40] that cold and heat storage materials are stored separately; low-risk approach; 24 

possibility to raise the solar field output temperature to 450/500 °C. This technology has been 
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used in Solar 3 (Fuentes de Andalucia, Seville, Spain) [40]. For reducing storage volume and 

associated cost, direct thermocline single tank are proposed [39, 41].  2 

For this work these two storage layouts were selected as adequate candidates for the CSP/ORC 

plant characteristics (temperature range and size). Figure 1 shows the two configurations for 4 

the solar power plant under study.  

For this study the plant has been located in the province of Seville, at coordinates 37º14´12´´ 6 

North and 6º1´6´´ West, figure 2. Annual sunlight in this location is estimated in 2050 KWh/m2 

[42,43]. The maximum temperature conditioned by the heat transfer fluid properties was set to 8 

400 ºC (corresponds to T8 in the solar field, figure 1). The equations that describe the 

performance of the components of the cycle have been developed in EES [44] and Matlab [45] 10 

using a lumped volume method. The resulting coupled system of algebraic equations have been 

solved to provide a steady state solution for systems sizing at rated conditions. For the defined 12 

equipment, performance curves have been estimated in the off-design model and they have been 

used to simulate plant operation under different operation profiles. As input of the models, 14 

Direct Normal Irradiance (DNI) values were used at the reference location with daily data in an 

interval of 15 minutes [46]. The rated DNI for plant sizing was 700 W/m2 [43,47].   16 

       

Figure 1. PTC/ORC CSP power plants:  two tanks direct (a and c) and indirect (b and d) 18 

thermal energy storage (TES) system. Direct system: HTF Hitec XL, Storage Medium: 

Hitec XL. Indirect system HTF: Therminol VP-1, Storage Medium:  Hitec XL 20 

 

Figure 2. Direct normal irradiance monthly patterns used for the analyses (left) and CSP 22 

plant location (right) 

 24 

 

 26 

 



8 

ORC WORKING FLUIDS 

Organic fluids for power cycle 2 

In the ORC power block different design options were considered for the analyses: non-

recuperative cycle/recuperative cycle and saturated/superheated fluid. Detailed discussion 4 

about ORC working fluids selection an properties can be found in literature for different 

applications and temperatures: CSP plants [20,21], use of organic-fluid mixtures [48], use of 6 

siloxanes [21,49], waste heat recovery [50] , high temperature cycles [51]  or biomass plants 

[52].  8 

For this application, with maximum temperature constrained by the heating oil at 400°C, three 

organic fluids have been selected based on their critical temperatures and thermal stability: 10 

Toluene, Cyclohexane and siloxane D4. Toluene has the highest critical temperature among the 

three selected fluids. It does not present thermal stability problems in the range of the 12 

temperature used in this study [53]. Cyclohexane can also reach high efficiencies [54], but it 

features a lower critical temperature than Toluene and presents thermal instability over 288°C. 14 

Toluene and Cyclohexane, being hydrocarbons, are highly flammable. Finally, the third fluid 

used is the siloxane D4. Siloxane (polymethylsiloxanes), or silicon oils, are linear (MM, MDM, 16 

MD2M) or cyclic polymers (D4, D5, D6) composed of alternating silicone-oxygen atoms with 

methyl groups attached to the silicon atoms. In previous works of the authors [20,21, 54]are 18 

given details of fluids properties and fluid selection for those fluids included in this analysis. 

Table 1 shows the main characteristics of the selected organic fluids keeping constant the 20 

parameter fixed in the solar cycle and the inlet temperature of the heat transfer fluid in the 

intermediate heat exchanger constrained by the heating oil stability (400°C). The higher 22 

molecular weight of these organic fluids results in quite different densities at the inlet and outlet 

of the turbine. These fluids have a lower speed of sound than steam, it limits maximum stage 24 

velocity and expansion ratio and, thus, it can be expected that more turbine stages are needed 
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compared to a steam turbine. However, if density and specific enthalpy are considered, the 

estimated size of a vapour turbine with similar power capacity would be 20% smaller for 2 

toluene and 16% smaller for cyclohexane related to a reference steam turbine [55]. At turbine 

outlet Toluene, Cyclohexane and D4 densities after expanding are 0.43, 0.57 and 0.32 kg/m3 4 

respectively, while steam has a density of 0.05 kg/m3. For the selected power plant size, 5MW, 

no specific problems regarding machinery size are expected although equipment specific design 6 

for each working fluid is required. 

 8 

Table 1:  ORC Working fluids properties 

 10 

Heat transfer fluid and storage media 

The indirect storage system uses Therminol VP-1 as HTF and Hitec XL as storage media, while 12 

the direct storage system uses Hitec XL both as HTF and as storage media.  The properties of 

Therminol VP-1 and Hitec XL have been taken from Solutia data [56] and EES (Engineering 14 

Equation Solver) [44].Their main characteristics are shown in table 2.  

Although different oils can be used as HTF, such as Syltherm-800, Downtherm A, Downtherm 16 

Q, Caloria HT-43, Therminol VP1 has been selected because it can work at a wider range of 

temperatures and at slightly higher maximum temperatures than the others. Therminol VP-1, a 18 

eutectic mixture of 73.5% diphenyl oxide and 26.5% of diphenyl, has a low freezing point 

(12°C) and is stable up to 400°C. The vapour pressure of current synthetic or mineral oils 20 

exceeds atmospheric pressure at the temperatures required for use as thermal storage media. 

This would require impractically large pressure vessels, making this alternative unsuitable for 22 

direct storage systems [57, 58]. In the direct storage system, molten salts are used as HTF but 

also as storage media allowing a reduction in TES system cost [59]. On the other hand, molten 24 

salts freeze at relatively high temperatures (120–220°C) and special care must be taken to 



10 

ensure that the salt does not freeze in the solar field, piping during the night and heating it when 

necessary. Up to date, the molten salts most used are Hitec (7% NaNO3, 53% KNO3, 40% 2 

KNO3), Hitec XL (60% NaNO3, 40% KNO3) and the so-called Solar Salt (48% Ca(NO3)2, 7% 

NaNO3, 45% KNO3) [38,60]. Among the mentioned molten salts, Hitec XL features the lower 4 

freezing point 120°C and similar properties to the others, allowing operating in a wider 

temperature range, reducing technical problems and the required energy to keep the salt 6 

temperature above the freezing point.  

 8 

Table 2: HTF and storage media properties 

 10 

3 CSP PLANT MODEL 

Equations and main assumptions used for the steady state lumped model are described in this 12 

section. The layouts and points used for the model are presented in figure 1. 

Solar field. 14 

The overall efficiency of the collector can be represented as the optical efficiency,𝜂0 minus an 

efficiency penalty term, 𝜂′ representing thermal losses 16 

(1) 

𝜂′ =
𝑛 𝑞𝐿 

𝐼𝐷𝑁 𝐴𝑐𝑜𝑙𝑙
    (2) 18 

Eq. 3 describes the collector efficiency as function of temperatures and irradiance. The curve 

comes from National Renewable Energy Laboratory. They tested a SkyTrough collector [61], 20 

using a Schott PTR80 receiver. The parabolic trough collector efficiency curve has been 

generated from separate measurements of outdoor optical efficiency and indoor receiver heat 22 

loss. Parabolic trough collector efficiency is much more dependent on the operating temperature 

than the ambient temperature. In [61] is shown how increasing the ambient test temperature from 24 

25°C to 40°C decreases the heat loss by 1% and decreasing the ambient temperature to 0°C 

𝜂 = 𝜂0 − 𝜂′  
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increases the heat loss by 2%. For the temperature range on the selected location, and taking into 

account the coupled efficiency factor, associated heat loss with temperature will typically affects to 2 

the global efficiency by a variation lower than 0.2%. Thus, for simulations the ambient temperature 

has been set at 25°C, neglecting the influence of its variation. Departing from the data presented 4 

in [61] curves of different DNI can be collapsed into a single curve for representing the effect 

of losses with operating temperature. This curve is given in (3): 6 

𝜂𝑐𝑜𝑙𝑙 = 𝑎1 𝑥3 + 𝑎2 𝑥2 − 𝑎3 𝑥 + 𝑎4           (3) 

Where X is defined as: 8 

𝑥 =
𝑇𝐻𝑇𝐹−𝑇𝑎𝑚𝑏

𝐼𝐷𝑁
0.33          (4) 

THTF is the heat transfer fluid temperature, calculated as average between the inlet and the outlet 10 

temperature: 

    𝑇𝐻𝑇𝐹 =
𝑇7+𝑇8

2
         (5) 12 

The values of the parameters a1, a2, a3 and a4 are respectively: -1.26×10-6; 3.02×10-5; 6.24×10-

4; 0.773.  14 

The collector efficiency can be also expressed as: 

𝜂𝑐𝑜𝑙𝑙 =
�̇�𝑠𝑜𝑙𝑎𝑟_𝑓𝑖𝑒𝑙𝑑

𝐼𝐷𝑁 𝐴𝑐𝑜𝑙𝑙
        (6) 16 

In addition, the power collected by the HTF in the solar field can be calculated as 

�̇�𝑠𝑜𝑙𝑎𝑟_𝑓𝑖𝑒𝑙𝑑 = �̇�𝐻𝑇𝐹(ℎ8 − ℎ7)        (7) 18 

Solar multiple used in the economic analyses is defined as  

𝑆𝑀 =
�̇�𝑠𝑜𝑙𝑎𝑟_𝑓𝑖𝑒𝑙𝑑

�̇�𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒_ℎ𝑒
         (8) 20 

With Q̇solar_field being the rated thermal power collected in the solar field and Q̇intermediate_he the 

rated thermal input of the power block [62].  22 

Turbines and pumps 

The electric power absorbed by the pump is given by: 24 
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𝑃𝑒𝑙_𝑝𝑢𝑚𝑝 =
�̇�𝑂𝑅𝐶 (ℎ2−ℎ1)

𝜂𝑚𝑒𝑐𝑐
       (9) 

Electric power generated by the turbine is: 2 

𝑃𝑒𝑙_𝑡𝑢𝑟𝑏 = �̇�𝑂𝑅𝐶(ℎ3 − ℎ4) 𝜂𝑔𝑒𝑛         (10) 

The partial load performance of the turbine has been modelled by an equivalent nozzle 4 

approximation on the assumption that it works in choked conditions in the entire load range. 

The isentropic nominal turbine efficiency η
is_turb

 has been assumed equal to 0.85; the 6 

polytrophic nominal turbine efficiency  η
pol_turb_nom

 and the turbine efficiency at partial loads 

were calculated with equations (11) and (12).  8 

𝜂𝑝_𝑡𝑢𝑟𝑏 = 𝜂𝑝𝑜𝑙_𝑡𝑢𝑟𝑏_𝑛𝑜𝑚 (1 − 0.5 (√𝛥ℎ𝑖𝑠_𝑛𝑜𝑚 𝛥ℎ𝑖𝑠⁄ − 1))          (11) 

𝜂𝑖𝑠_𝑡𝑢𝑟𝑏 =
1−(

1

𝑟𝑡
)

𝛾−1
𝛾    𝜂𝑝𝑜𝑙_𝑡𝑢𝑟𝑏

1−(
1

𝑟𝑡
)

𝛾−1
𝛾  

              (12) 10 

Where Δhis_nom and Δhis are, respectively, the nominal isentropic enthalpy drop and the 

isentropic enthalpy drop in the turbine; 𝑟𝑡 is the turbine expansion ratio.  12 

Heat exchangers 

For modelling this plant, shell-and-tube heat exchangers were adopted. They are used widely 14 

in the chemical process industries and in power plants. Heat is transferred from one fluid to the 

other through the tube walls, either from the tube side to shell or vice versa.  The fluids can be 16 

either liquids or gases on either the shell or the tube side [63,64].  Heat exchangers have been 

sized by the log mean temperature difference method (LMTD). The equations that describe the 18 

heat released or absorbed by the fluids and the heat transferred across heat exchangers surfaces 

are given by: 20 

𝑄 = 𝐶ℎ𝑜𝑡 ∗ (𝑇ℎ𝑜𝑡,𝑖𝑛 − 𝑇ℎ𝑜𝑡,𝑜𝑢𝑡)       (13) 

  𝑄 =  𝐶𝑐𝑜𝑙𝑑  ∗ (𝑇𝑐𝑜𝑙𝑑,𝑜𝑢𝑡 − 𝑇𝑐𝑜𝑙𝑑,𝑖𝑛)        (14) 22 

𝑄 =  𝑈 ∙ 𝐴 ∙ ∆𝑇𝑙𝑚            (15) 

The log mean temperature difference  ∆Tlm for countercurrent flow is given by:  24 
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∆𝑇𝑙𝑚 =
∆𝑇2−∆𝑇1

ln(∆𝑇2 ∆𝑇1⁄ )    
        (16) 

Where: 2 

∆𝑇1 = 𝑇ℎ𝑜𝑡,𝑖𝑛 − 𝑇𝑐𝑜𝑙𝑑,𝑜𝑢𝑡        (17) 

∆𝑇2 = 𝑇ℎ𝑜𝑡,𝑜𝑢𝑡 − 𝑇𝑐𝑜𝑙𝑑,𝑖𝑛        (18) 4 

𝑈 =
1

(
1

ℎ𝑖𝑛
+

𝑠

𝑘
+

1

ℎ𝑜𝑢𝑡
)
         (19) 

 6 

To calculate the overall heat transfer coefficient U, correlations have been used for determining 

convective heat transfer coefficients and friction losses in the different components of the power 8 

block, as function of the characteristics of the streams. For the evaluation of the external fluxes 

in the economizer, in the super-heater, in the recuperator and in the oil-to-salt heat exchanger, 10 

the empirical correlation due to Hilpert has been used [65].  For internal flows, considering 

staying in the turbulent and fully developed region it is possible to use the correlation provided 12 

by Gnielinski, valid over a large Reynolds number range including the transition region. This 

correlation has been applied to the economizer, superheater, recuperator and oil-to-salt heat 14 

exchanger, while, for what concerns the condenser, the convective heat transfer coefficient has 

been calculated through the Chato correlation [66].  16 

Finally, the calculation of the mean convective coefficient along the tube of the evaporator has 

been done as average of calculated values of the convective coefficient at different quality in 18 

the tube according to equation (25) [67]. 

 20 

Table 3. Heat transfer correlations used for heat exchangers models 

 22 

Storage Capacity 
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The storage capacity is  expressed in terms of equivalent operating hours at rated operation with 

only the thermal energy stored. The volume of the tanks has been calculated through the 2 

following formula as function of the storage capacity.  

𝑉𝑡𝑎𝑛𝑘 =
�̇�𝐻𝑖𝑡𝑒𝑐_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔∗ 𝑛° 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠∗3600

𝜌9
  (26) 4 

Where ρ
9
  is the density in the hot tank. In the analyses, the storage capacity varies between no 

storage and 10 operating hours [68,69]. 6 

 

ANALYSIS OF THE DESIGN OPERATION OF THE CYCLE 8 

In this section analyses on cycle design and operation are shown to identify the effect of main 

design parameters on the plant performance for the different layouts. As a general rule of thumb, 10 

the maximum evaporation temperature for each fluid has been set to 10 °C lower than the 

critical temperature. Toluene and Cyclohexane have higher evaporation pressures than D4. 12 

Toluene’s condensation pressure is very similar to the equivalent steam cycle condensation 

pressure for the range of analysis, while Cyclohexane and D4 have higher pressures of 14 

condensation than Toluene and steam. Siloxane D4 presents the highest condensation 

temperature. Main data used for the analyses are shown in table 4.  16 

 

Table 4: Power plant main assumptions 18 

 

Power block analysis 20 

Rated conditions 

To set power block design conditions different analyses were performed to identify the effect 22 

of design parameters in the performance of the cycle with the different working fluids. For 

power block design evaporation and condensation temperatures are analysed as in [29] or [55]. 24 

Figure 3  shows the efficiency of the power block as function of evaporation temperature (left) 
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and condensation temperature (right)  for each organic fluid.  On the left side, for each fluid, 

condensation temperature has been fixed (60°C Toluene, 40°C Cyclohexane 87°C for D4). 2 

Results for both recuperative and non- recuperative layouts are shown in figure 3. Figure 3 

shows how Toluene has the highest efficiency, toluene’s non-recuperative layout efficiency is 4 

close to 22%. The recuperative layout has a different impact depending on the working fluid, it 

gives an average increase of 9%, 4.3% and 4% for  D4,  Cyclohexane and Toluene respectively. 6 

The greater increase with D4 is due to its positive saturation vapour curve with a very small 

slope that results in a greater capacity of heat recovery. Figure 3 (right) shows the influence of 8 

condensation pressure on the power block efficiency. These analyses have been done by setting 

the evaporation temperature at 302°C for Toluene, at 265°C for Cyclohexane and at 307°C for 10 

D4. Efficiency decreases with the increase of the condensation temperature. Condensation 

pressure is directly linked to condenser characteristics and its heat evacuation capacity. In PTC-12 

ORC CSP applications condenser temperature variations between 20-40ºC can be expected, 

what is reflected in a efficiency penalty associated to condenser temperature up to  3% 14 

depending on the operating conditions. This effect is bigger on the recuperative layout because 

of the double effect on reduction of turbine expansion and heat recovery capacity at the 16 

recuperator.  For the condensation temperature range (constrained by the minimum acceptable 

condenser pressure) the efficiency decreases 4.4% for Toluene, 5.3% for Cyclohexane and 3.4% 18 

for D4.  

  20 

Figure 3: Power block efficiency as function of the evaporation temperature for 

recuperative and non-recuperative cycles (left). Condensation pressure effect on 22 

recuperative cycle efficiency (right).  

The selection of condenser pressure affects to the sizing of equipment and associated costs. In 24 

table 5, is shown the effect of the variation of condenser pressure in toluene’s heat exchangers 
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design. The global heat transfer coefficient  in the recuperator (Urec) is very low due to the 

convective coefficient of the vapor side in the recuperator. Increasing (Urec) raises directly 2 

affects to the heat transfer area and  recuperator cost. The variation of the condensation pressure 

has a lower influence on the global heat transfer coefficient of the condenser. As in the 4 

condenser there is a two-phase flow,  liquid phase improves considerably the average 

convective coefficient of the organic fluids. 6 

 

Table 5. Influence of condensation pressure on Toluene’s  heat exchangers design 8 

 

At constant pressure, superheating penalizes the efficiency of the non-recuperative cycle due to 10 

the convergent evolution of isobars for increasing entropy in the gas region of T-s diagram 

[20,21]. However, the use of superheating can reduce the mass flows required in the solar and 12 

storage systems, reducing the equipment costs although with an efficiency decrease. This is 

specially relevant for D4 with a mass flow three times bigger than for Toluene and Cyclohexane. 14 

In table 6 are presented the selected design conditions for the ORC power block after the 

analyses. The temperature of condensation was selected in a compromise between cost (heat 16 

exchangers areas),  performance and pressure technical limit. The rated condensation 

temperatures are 55°C, 40ºC and 87ºC for toluene, Cyclohexane and D4. D4 has the lowest 18 

condensation pressure (0.049 bar), while toluene condenses at 0.151 bar and Cyclohexane at 

0.245 bar. The evaporation temperature has been chosen according to the analysis of the effect 20 

of superheating on the cycle efficiency and plant costs, given that, for Cyclohexane and D4, the 

temperature at the turbine inlet 𝑇3 is limited by the thermal stability of these fluids [53, 55]. 22 

These evaporation pressures are clearly lower than the water evaporation pressure in the same 

temperature range (80-100 bars). It benefits heat exchanger design and cost, reduced thickness 24 

pipes and cheaper materials can be used in the intermediate heat exchanger.  

 26 
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Table 6. ORC costs, efficiencies and mass flow (5 MWel plant) 

 2 

In table 7 the overall results for the 5MW power block with these parameters are shown. For 

what concern the efficiency and the power block cost, recuperative Toluene appears as the best 4 

solution. It has a good efficiency for this size of power plant, 31.5%, and the estimated power 

block cost is 825 €/kWel (next section explain the economic assumptions) Cyclohexane also 6 

presents a good  efficiency (28.7%) and a slightly higher cost (933 €/kWel). D4 is the worst 

solution for this kind of plant: its efficiency is 23.4% and the cost is clearly higher 1088 €/kWel. 8 

D4 has a high temperature of condensation, which negatively influences its performance. On 

the other hand, this characteristic could be suitable for other applications, as cooling using an 10 

absorption cycle. In fact, for condensation temperature in the range 90-130°C D4 features 

higher efficiencies than Toluene and Cyclohexane.   12 

Table 7 shows the design conditions for the solar cycle for the different organic fluid cases. 

These results do not include the thermal storage systems (SM=1). For what concerns the indirect 14 

system case, when the thermal storage system will be taken into account, temperatures T6 and 

T7 will change (figure 1), being T6 the result of a mix between the mass flow coming from the 16 

intermediate heat exchanger and the mass flow coming from the oil-to-salt heat exchanger.  In 

Table 7 are shown  the HTF mass flows in the intermediate heat exchanger. The Hitec XL mass 18 

flows (direct system) are higher than Therminol V-1 mass flows. This is due to the difference 

of specific heat of the two heat transfer fluids used. At 300°C The specific heat of Therminol 20 

VP-1 and Hitec XL are 2318 KJ/(kg K) and 1447 KJ/(kg K), respectively. The Cyclohexane 

cases present the lowest HTF fluid mass flow in both cases, since the temperature drop in the 22 

intermediate heat exchanger for Cyclohexane cases is higher.  

 24 

Table 7. PTC/ORC design conditions (5 MWel plant) 
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Plant efficiency is the combined effect of the ORC efficiency trends and heat exchange 

efficiency that is evaluated from heat exchanger T-Q diagrams. Considering a DNI of 700 2 

W/m2, the global plant efficiency with Toluene is 23.6%, with Cyclohexane 21.6% and with D4 

is 17.3%. With the storage system, and a solar multiple greater than 1, higher mass flows will 4 

be needed for the storage system and clear differences between direct and indirect systems will 

appear.   6 

Figure 4 shows the intermediate heat exchanger T-Q diagrams for the three organic fluids and 

both storage systems, while in table 6 the inlet and outlet temperatures in the discharging stage 8 

of Therminol VP-1 (indirect system) and Hitec XL (direct system) are reported. Heat transfer 

in the intermediate heat exchanger has been solved by the ΔTmin method. For toluene in both 10 

cases, for the organic fluid side, the pinch point is at the evaporator inlet. However, using D4 

as organic fluid the pinch point is at D4 economizer inlet both in direct and indirect systems. 12 

While for Toluene and D4 the pinch point position is the same in both storage system 

configurations, for Cyclohexane the situation is different: in the indirect system case 14 

(Therminol VP-1 as HTF) the pinch point is at the economizer inlet whereas in the direct system 

case (Hitec XL as HTF) temperature has been set to 200ºC in order to maintain the outlet 16 

temperature above the safety limit for avoiding Hitec XL freezing (Hitec XL freezing point is 

120°C). 18 

 

Figure 4: Intermediate HE T-Q diagrams for Toluene (top) Cyclohexane (middle) and 20 

D4 (bottom) 

Discharging phase – tanks volume 22 

During the discharging phase the power block works at nominal power. Thus, the organic fluid 

conditions in the intermediate heat exchanger are those under rated operation. Instead, for what 24 

concern the HTF side, there are two cases, depending on the TES configuration: in the direct 
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system case, the Hitec XL temperatures and mass flow are the same, while in the indirect system 

case the Therminol VP-1 temperatures and mass flow are different due to heat exchanging in 2 

the oil-to-salt heat exchanger.   

Temperatures in the storage tanks depend on the organic working fluid, Hitec XL freezing point 4 

and storage system layout. Table 8 shows temperatures in the storage tanks and mass flows 

during the discharging phase for direct and indirect layouts.  6 

 

Table 8: Direct system and Indirect System – Discharging phase 8 

 

For each layout, tank volumes have been calculated by evaluating the storage medium volumes 10 

needed for providing the thermal energy for the required numbers of hours (storage capacity), 

assuming that the power block works at rated conditions during the discharging phase. The 12 

maximum range of operation only with the storage system has been set to 10 hours.  

Figure 5 shows the estimated storage system costs for each case as function of the storage 14 

capacity. Direct storage system presents lower costs of the thermal energy storage system, for 

cyclohexane and toluene, since temperature differences between tanks are higher and the use 16 

of the oil-to-salt heat exchanger is avoided, reducing the cost and the complexity of the system. 

 18 

Figure 5. Thermal Energy Storage System Costs 

 20 

Off-design conditions. Power block partial load operation 

At off-design operation, sliding pressure regulation has been used for the ORC turbine [27]. 22 

The minimum partial load operation for the organic Rankine cycle has been assumed at 25% of 

the rated power, 1.25 MW.  Stable operation at this partial load can be reached by small ORC 24 

plants. At minimum load, mass flow is 30% of the rated operation value. 
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Figure 6. ORCs evaporation temperature and pressure as function of power plant load 2 

 

Figure 6 shows the variation of pressure and temperature of evaporation of the three fluids as 4 

function of power load. At rated conditions, Toluene evaporates at 33.5 bar and 302 °C, while 

at minimum load it evaporates at 233 °C and 12.9 bar. Cyclohexane in rated operation 6 

evaporates at 29,5 bar and 255 °C, while at minimum load it evaporates at 194 °C and 12.1 bar. 

Rated conditions for D4 are 11.3 bar and 302°C, whilst at the 25% nominal electric power it is 8 

regulated at 4.9 bar and 250°C.  

 10 

Figure 7. Power block efficiency (left) and efficiency/rated capacity efficiency (right) at 

partial load 12 

In figure 7 are given the ORC efficiencies (left) and the rate between the partial load efficiency 

and the rated capacity efficiency of the cycle (right). The ORC cycles with Toluene and 14 

Cyclohexane maintain 90% of rated cycle efficiency down to 50% load. At partial load, D4 

maintains efficiency values above 90% of rated efficiency down to 35% load. Under these 16 

values the cycle efficiencies is subjected to a relatively consistent drop. These high values at 

partial load are due to the effect of recuperator that at partial loads improves its efficiency 18 

compensating partially reducing the penalty on cycle efficiency due to the penalty in turbine 

expansion. 20 

ECONOMIC ANALYSIS  

Economic model 22 

The capital cost of each heat exchanger has been determined by means of the following 

correlations [70].  24 
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ln 𝐶𝑃 = 𝐾1 + 𝐾2 ln 𝐴 + 𝐾3(ln 𝐴)2            (27) 

ln 𝐹𝑃 = 𝐶1 + 𝐶2 ln 𝑃 + 𝐶3(ln 𝑃)2             (28) 2 

𝐶𝐵𝑀 = 𝐶𝑃𝐹𝐵𝑀 = 𝐶𝑝(𝐵1 + 𝐵2𝐹𝑀𝐹𝑃)           (29) 

𝐶𝐻𝐸 = 𝐶𝐵𝑀,𝑒  𝐶𝐸𝑃𝐶𝐼2014/𝐶𝐸𝑃𝐶𝐼1996        (30) 4 

 

𝐶𝑃 is the basic cost of equipment assuming ambient operating pressure and carbon steel 6 

construction in the year of 1996. Fixed head stainless steel shell and tube heat exchangers have 

been chosen and the operating pressure is higher than the ambient pressure in almost all of the 8 

heat exchangers. Therefore, the basic cost 𝐶𝑃 is corrected for the chosen material and for the 

working pressures by the equations (27,28). 𝐶𝐵𝑀 is the corrected cost. The cost of heat 10 

exchangers is actualized from 1996 to 2014 costs, using Chemical Engineering Plant Cost Index 

(CEPCI) values. So 𝐶𝐻𝐸 represents the capital cost for heat exchangers and it is expressed in 12 

US$. An exchange rate of 1.26 $/€ has been used for dollars to euros conversion. A is the heat 

transfer area of the heat exchanger and 𝑃 the operating pressure expressed in m2 and kPa. The 14 

𝐵𝑖  (i=1,2), 𝐾𝑖, 𝐶𝑖  (i=1,2,3), 𝐹𝑀, 𝐶𝐸𝑃𝐶𝐼1996 and 𝐶𝐸𝑃𝐶𝐼2014 are the coefficients required for cost 

evaluation of each equipment. Their values are listed in table 9.  16 

 

Table 9: Cost evaluation coefficients 18 

The cost of the turbine thermal machine has been assumed equal to 450 €/kW [71]. This value 

has been considered the same for the three working fluids. There will a variation in the designs 20 

and associated costs with the working fluid however as toluene and cyclohexane sizes are 

expected to be similar, similar costs are expected, whereas D4 turbine would have a different 22 

size and it is expected to have a higher cost. As a preliminary approach, costs difference has 

been associated to heat exchange area in the different components of the power block. It results 24 

in estimated power block cost of 825 €/kWel for toluene, 933 €/kWel for cyclohexane and 1088 
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€/kWel for D4.  In case of two tanks indirect system the cost of TES also includes the cost of 

the oil-to-salt heat exchanger. The solar field costs CSF that can be found in literature vary from 2 

190 and 220 €/m2. A conservative approach has been done and a value of 213 €/m2 has been 

adopted [62]. In table 10 the unit costs used in the economic model are reported. The thermal 4 

storage system cost has been calculated as sum of two components. One regards the cost of the 

storage medium, whilst the other one regards the equipment costs, expressed by unit of thermal 6 

energy stored. The cost of Hitec XL is 1.19 $/kg and the storage system cost using HITEC XL 

is 20.1 $/KWht, whereas the Therminol VP-1 cost is 2.2 $/kg and the storage system cost is 57.5 8 

$/kWht [38]. The cost expressed in terms of kWht includes costs of tanks, support and 

foundation, electrical and instrumentation, pipes, valves etc. [72]. The higher cost of Therminol 10 

VP-1 is due to the need for a pressurized N2 in the thermal storage tank in order to keep the 

HTF in liquid form. In case of two tanks indirect system configuration the oil-to-salt heat 12 

exchanger cost is included in the thermal storage system cost. The total cost of the plant is 

scaled up by 5% in order to take into account the balance-of-plant costs (auxiliary equipment, 14 

labours, etc.) [73]. 

 16 

Table 10:  Global costs of main  elements 

 18 

The total capital cost 𝐶𝑃𝐿 of the plant is: 

𝐶𝑃𝐿 = 𝐶𝑃𝐵 + 𝐶𝑇𝐸𝑆 + 𝐶𝑆𝐹 + 𝐶𝐼𝑁𝐷      (31) 20 

 

The Levelized Energy Cost (LEC), is the minimum price at which energy must be sold for an 22 

energy project to break even over the lifetime of the project. It is an economic assessment of 

the cost of the energy-generating system including all the costs over its lifetime: initial 24 

investment, operations and maintenance, cost of capital. 
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The annuity (investment expenditures in a year) has been calculated with an interest rate 𝑖 of 

10% and a number of years 𝑛 equal to 20 (life of the system), using the following formula: 2 

𝐼 = 𝐶𝑃𝐿
𝑖 (1+𝑖)𝑛

(1+𝑖)𝑛−1
         (32) 

With the initial capital cost, the annuity, the O&M cost and the electricity production over a 4 

year it is possible to calculate the Levelized Cost of Electricity (€/kWh). 

𝐿𝐸𝐶 =
∑

𝐼𝑡+𝑂&𝑀𝑡+𝐹𝑡
(1+𝑖)𝑡

𝑛
𝑡=1

∑
𝐸𝑡

(1+𝑖)𝑡
𝑛
𝑡=1

       (33) 6 

Where: 

𝐼𝑡: Investment expenditures in the year t 8 

𝑂&𝑀𝑡: O&M expenditures in the year t 

𝐸𝑡: Electricity generation in the year t 10 

𝑖: Discount rate 

𝑛: Life of the system 12 

 

The operating and maintenance costs of CSP plants are low compared to fossil fuel power 14 

plants, but are still significant. The replacement of receiver mirrors, due to glass breakage, are 

significant components of the O&M costs as well as cost of mirror washing, including water 16 

costs. Plant insurance is also an important expense and the annual cost for this can be between 

0.5%-1% of the initial capital cost. It is currently estimated that a parabolic trough system would 18 

have O&M costs including insurance between 0.020 and 0.040 $/kWh. In order to estimate the 

LEC an O&M and insurance cost equal to 0.035 $/kWh (0.027 €/kWh) have been chosen [12].  20 

 

Superheating effect on plant cost 22 

As aforementioned, superheating brings relevant benefits in terms of plant cost, reducing heat 

exchangers area,  although for a given pressure superheating penalizes efficiency in the non-24 
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recuperative cycle [55].  In table 11 the effect of superheating on the different item costs of the 

plant are shown. 2 

 

Table 11: Effect of Superheating in the costs of the plant 4 

 

Superheating allows to decrease the HTF mass flows required for a given heat exchange. It 6 

results in smaller solar field areas, heat exchangers area and thermal storage tanks. The 

percentage of the savings associated to the system and the CSP power plant are given in table 8 

10. Superheating brings a little improvement for what concern the cost of the power block, but 

an important reduction of the solar field cost, that roughly corresponds to the 50% of the plant 10 

cost.  

Storage effect 12 

Table 12 shows the effect of the storage capacity on the LEC and the directly associated SM 

[36,47]. For each storage capacity, the optimal solar multiple that minimizes the LEC over a 14 

year is reported. The maximum optimal solar multiple obtained from the analysis is 2.5, 

corresponding with a storage capacity of 10 hours. The levelized electricity cost for a plant with 16 

indirect storage system and Toluene is 16 c€/kWh; with Cyclohexane it is slightly higher, 16.7 

c€/kWh. In D4 cases the levelized cost of electricity energy is relatively higher, more than 20 18 

cents of €/kWh. The optimum values for the direct TES layouts show slightly higher LEC 

values than the indirect TES case varying the increase above the optimum result for indirect 20 

layout between 0.79 and 1.1 €/kWh. 

 22 

Table 12: Optimum LEC results as function of storage capacity 

 24 
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The use of Hitec XL as heat transfer fluid without using its good properties as storage medium 

brings only higher cost and technical problems (high freezing point). Therminol VP-1 is more 2 

suitable for a plant without thermal storage. 

 4 

Figure 8. Solar Multiple Effect on LEC for different storage capacities. TES indirect 

system (left). TES direct system (right). 6 

 

In  figure 8 is shown LCE’s dependency with SM and the storage capacity. The minimum of 8 

each curve individuates the optimal Solar Multiple for each storage capacity that minimizes the 

LEC and it is displaced for each storage capacity. A summary of main results for different 10 

storage capacities is given in Table 13. The use of a thermal storage system allows reaching 

high utilization factors; up to 64.4 % for plants with a 10 hours storage capacity. In addition, 12 

with higher storage capacities, the capability to generate electricity according to the demand 

drastically increases. The electricity production in the case of indirect storage system is slightly 14 

higher. The direct system annual electricity productions have been penalized in order to 

consider the consumed energy for keeping Hitec XL temperature above the safety limit (200°C).  16 

According to [74] a thermal storage capacity of 1h is enough for Hitec XL freeze protection 

operation during the night. Then, based on [74] and by adopting a conservative approach, the 18 

direct system annual electricity productions have been penalized by 2% associated to this non 

used capacity. 20 

 

 22 

Table 13. Summary of Indirect/Direct TES parabolic trough plant with Toluene as 

working fluid data 24 
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Figure 9 shows the electricity production, the plant cost and the levelized energy cost as 

function of the solar multiple for the 6 hours storage capacity. Production and cost curves are 2 

normalized on the values that they assume for a SM of 1.25. The production curve shows how 

production trend changes for solar multiples higher than 2.25. The minimum LEC point 4 

corresponds to the solar multiple with a greater difference between the cost curve and the 

production curve.  6 

 

Figure 9. Electricity production, plant cost and LEC as function of SM. TES indirect 8 

system (left). TES direct system (right). 

 10 

Figure 10 shows as function of the Solar Multiple the electricity generated and the relative 

investment costs of the different parts of the plant. The investment cost for these kind of 5 MW 12 

parabolic trough solar plants is between 3800 and 8200 €/kW, considering a storage capacity of 

6 hours. The investment cost for plants with direct storage system is slightly lower than the 14 

investment cost for plants with indirect storage system. These values are fully competitive 

compared with the current ones presented in references [11-14] although slightly  higher than 16 

those expected for next decade. The analysis of the integration taking into account solar field 

and heat exchangers costs is shown as an adequate strategy for the selection of the optimum 18 

energy storage capacity. The solar field is the most expensive part of plant, and its dimensions 

have a big influence on the resulting levelized cost of energy. The weight of the solar field on 20 

the total cost in these analyses varies between 43% and 63%.   

 22 

Figure 10. Annual electricity production as function of SM (above). Plant investment 

cost as function of SM (below). TES indirect system (left). TES direct system (right). 24 
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CONCLUSIONS 

The main conclusions obtained from the analysis are:  2 

 Toluene appears as the best organic fluid, presenting the best ORC performance (31.5%) 

and the lowest cost (825 €/kWel). Furthermore, it has not thermal stability limits in the 4 

considered temperature range.  

 Cyclohexane also presents a respectable efficiency (28.7%) and a slightly higher cost 6 

(933 €/kWel); it features thermal instability over 288°C. 

 The siloxane D4 shows the worst results: an efficiency of 23.4% and an ORC cost of 8 

1088 €/kWel. Its high condensation temperature (87°C) negatively affects its 

performance. On the other hand, this characteristic could be suitable for other 10 

applications, as cogeneration or trigeneration using an absorption cycle. In fact, for 

condensation temperature in the range 90-130°C D4 features higher efficiencies than 12 

Toluene and Cyclohexane. 

 The temperature of condensation strongly influences performances and costs, in 14 

particular the size of heat transfer areas and so the cost of one of the most expensive 

components of the power block, the recuperator. 16 

 Superheating is a good choice for organic Rankine cycles in solar plants. Actually, it 

shows benefits both in terms of performance and in terms of plant costs. Using 18 

superheating a reduction of the plant cost of about 5-10% is achieved, thanks mainly to 

a substantial solar field area reduction. 20 

 The plants with a direct storage system show a slightly lower investment cost than plants 

with an indirect storage system. The investment cost for these kinds ORC parabolic 22 

trough solar power plants with thermal energy storage is between 3500 €/kW (2 hours 

storage capacity) and 8500 €/kW (10 hours storage capacity). Approximatively the 50% 24 
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of the total cost is due to the solar field. These are competitive values compared with 

the existing in current commercial parabolic trough plants. 2 

 The investment cost for direct thermal energy storage systems is a 17% lower than the 

investment cost for indirect storage system. Direct TESS figures lower tanks volume 4 

and allows avoiding the use of a heat exchanger between the HTF and the storage media.  

 Although CSP plants with thermal energy storage have higher specific investment costs 6 

due to the storage system and the larger solar field, the greater electricity generation 

results in a lower electricity generation cost. With thermal energy storage systems high 8 

utilization factors (up to 60 % for plants with 10 hours storage capacity) are reached. 

 The resulting LEC for the analyzed ORC solar power plants is 16.36-17 c€/kWh with 10 

Toluene and Cyclohexane as ORC working fluid and approximatively 20 c€/kWh with 

siloxane D4 as working fluid. These values are in agreement with current LCE of 12 

commercial parabolic trough technology Given that parabolic trough technology utilizes 

standard industrial manufacturing processes, materials, and power cycle equipment, the 14 

technology is poised for rapid deployment should the need arise for a low-cost solar 

power option. ..  16 

 The analyzed 5MW power plant, with LCE 16.3 c€/kWh can be fully competitive with 

other generation technologies as in the cases of remote off-grid mines or in locations 18 

with limited grid capacity where other technologies have relevant fuel transport costs.  

NOMENCLATURE 20 

 

𝑇1:    Temperature of condensation 22 

𝑇𝑒𝑣𝑎𝑝:                 Temperature of evaporation 

𝛥𝑇𝑠ℎ:   𝛥𝑇 of superheating 24 

𝑇𝑤_𝑖𝑛:   Inlet cooling water temperature used in the condenser 
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𝑇8:   solar field HTF outlet temperature  

𝜂𝑖𝑠_𝑝𝑢𝑚𝑝:  Isentropic pump efficiency  2 

𝜂𝑖𝑠,_𝑡𝑢𝑟𝑏:  Isentropic turbine efficiency. 

𝜂𝑔𝑒𝑛:   Generator efficiency 4 

𝑃𝑒𝑙:   Net electric power 

𝜀𝑟𝑒𝑔:  Recuperator efficiency  6 

𝛥𝑇𝑚𝑖𝑛:  Minimum 𝛥𝑇 in the heat exchangers, pinch point 

Coll:                     Collector  8 

CSP:                    Concentrated solar power 

DNI:                     Direct normal irradiance 10 

HTF:                    Heat transfer fluid 

LEC/LCOE: Levelized Energy Cost 12 

LMTD:                 Log mean temperature difference method 

ORC:                   Organic Rankine Cycle 14 

PB:                       Power block 

PTC:   Parabolic Trough Collector 16 

REC:              Recuperative 

SH:                    Superheating 18 

SM:                      Solar multiple 

TES:                     Thermal energy storage 20 
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Figures captions 

Figure 1. PTC/ORC CSP power plants:  two tanks direct (a and c) and indirect (b and d) thermal 2 

energy storage (TES) system. Direct system: HTF Hitec XL, Storage Medium: Hitec XL. 

Indirect system HTF: Therminol VP-1, Storage Medium:  Hitec XL 4 

Figure 2. Direct normal irradiance monthly patterns used for the analyses (left) and CSP plant 

location (right) 6 

Figure 3: Power block efficiency as function of the evaporation temperature for recuperative 

and non-recuperative cycles (left). Condensation temperature effect on recuperative cycle 8 

efficiency (right). 

Figure 4: Intermediate HE T-Q diagrams for Toluene (top) Cyclohexane (middle) and D4 10 

(bottom) 

Figure 5. Thermal Energy Storage System Costs 12 

Figure 6. ORCs evaporation temperatures and pressures as function of power plant load 

Figure 7. Power block efficiency (left) and efficiency/rated capacity efficiency rate (right) at 14 

partial load 

Figure 8. Solar Multiple Effect on LEC for different storage capacities. TES indirect system 16 

(left). TES direct system (right). 

Figure 9. Electricity production, plant cost and LEC as function of SM. TES indirect system 18 

(left). TES direct system (right). 

Figure 10. Annual electricity production as function of SM (above). Plant investment cost as 20 

function of SM (below). TES indirect system (left). TES direct system (right). 

 22 

Tables 
 24 

Table 1:  Properties of ORC Working fluids analyzed 

 26 

 Fluid Tcrit (K) Pcrit (bar) Tmax (K) Pmax (bar) 
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d
rc

ar
b
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n
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Toluene 591.7 41.26 569 31.16 

Cyclohexane 553.6 40.75 536 32.67 

n-hexane 507.9 30.58 491 26.63 

Isopentane 460.4 33.70 448 27.87 

n-Butane 425.0 37.96 402 25.82 

Isobutane 407.8 36.40 380 22.50 

S
il

o
x

an
es

/A
b

re
v

 

Hexamethyldisiloxane 

(C6H18OSi2) 

MM 

518.0 19.3 513 17.65 

Octamethyltrisiloxane 

(C8H24Si3O2) 

MDM 

564.5 14.4 561 13.75 

Decamethyltetrasiloxane 

(C10H30Si4O3) 

MD2M 

599.5 12.3 597 11.88 

Dodecamethylpentasiloxane 

(C12H36Si5O4) 

MD3M 

629.0 9.5 627 9.28 

Tetradecamethylhexasiloxane 

(C14H42O5Si6) 

MD4M 

653.0 8.7 653 8.02 

Dodecamethylcyclohexasiloxane 

(C12H36Si6O6) 

D6 

645.0 9.6 645 9.51 

 D4 ((CH3)2SiO)4 313,4 13,32 340,0  

 
 2 

 
Table 2: HTF and storage media properties 4  

Therminol VP-1 Hitec XL 

Freezing point [°C] 13 120 

Max applicable T [°C] 400 >500 

Density (@ 300°C) [kg/m3] 815 1992 

Specific Thermal capacity Cp 
(@ 300°C) 

[J/kgK] 2319 1447 
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Table 3. Heat transfer correlations used for heat exchangers models 
Circular tube- 
internal flow 

                                      Gnielinski  (20) 

Economizer; 
Super-
heater; 
Regenerator
; Oil-to-salt 
heat 
exchanger 

                                              Petuckov (21) 

Cross flow – 
external flow                                                                        Hilpert (22) 

Economizer 

Correlation for 
stratified flow 

          Akers, Deans and Crosser (22) 

Organic fluid 
at the 
condenser 

                                  (23) 

                   (24) 

Saturated flow 
boiling region in 
smooth circular 
tubes 

(25) 

Evaporator 

 4 

 

 6 
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 2 

Table 4: Power plant main assumptions 

Hypothesis Value 

Tmax (T8-solar field outlet) 400ºC 

Minimum ΔT in heat exchangers 10ºC 

Net electric power Wel 1-10 MW 

ηis turbine 0.85 

ηis pump 0.80 

Condenser water Inlet temperature 10ºC 

Toluene Maximum Temperature 308.6 ºC 

Cyclohexane Maximum Temperature 270.3 ºC 

Siloxane D4 Maximum Temperature 303.4 ºC 

Therminol VP-1 Tsat, Cp, H Manufacturer Data sheet 

Collector Area Manufacturer Data sheet 

 4 

 
 6 

Table 5. Influence of condensation pressure on Toluene’s  heat exchangers design 

Toluene 
Tcond [°C] 35 40 45 50 55 60 65 70 

pcond [kPa] 6,20 7,84 9,82 12,21 15,06 18,43 22,40 27,04 

η [%] 30,5 29,9 29,2 28,6 28,0 27,3 26,8 26,1 

Ureg [W/m2 k] 21 25 30 35 42 50 59 69 

Ucond [W/m2 k] 1394 1366 1345 1330 1317 1307 1298 1290 

Mass flow [Kg/s] 26,1 27,0 28,1 29,1 30,2 31,4 32,7 34,0 

PB cost [€/kW] 1121 1076 1022 991 907 846 816 778 

 8 

 
Table 6. ORC costs, efficiencies and mass flow (5 MWel plant) 10  

Tcond 
[°C] 

Pcond 
[bar] 

Teva 
[°C] 

Peva 
[bar] 

T3 
[°C] 

Mass flow 
[kg/s] 

η PB  
[%] 

Cost PB  
[€/kW] 

Toluene 55 0.151 302 33.5 367 24.3 31.5 825 

Cyclohexane 40 0.245 255 29.5 285 29.1 28.7 933 

D4 87 0.049 302 11.2 337 74.8 23.4 1088 

 
  12 



43 

 
Table 7. PTC/ORC design conditions (5 MWel plant) 2   
T5 
[°C] 

T6 
[°C] 

T7 

[°C] 
T8 
[°C] 

T9 
[°C] 

 HTF 
mass  
flow 
[kg/s] 

ORC 
mass  
flow 
[kg/s] 

η 
plant 

In
d

ir
ec

t 
sy

st
em

 Toluene 217.7 217.7 218.1 400 400 34.8 24.3 23.3% 

Cyclohexane 141.7 141.7 141.9 400 400 27.03 29.1 21.6% 

D4 238.1 238.1 238.6 400 400 52.62 74.8 17.3%           

D
ir

ec
t 

sy
st

em
 Toluene 220.9 220.9 221.2 400 400 61.61 24.3 23.3% 

Cyclohexane 200 200 200.2 400 400 60.29 29.1 21.3% 

D4 238.1 238.1 238.5 400 400 91.85 74.8 17.3% 

 

 4 

 
Table 8: Direct system and Indirect System – Discharging phase 6 

 
Direct system – Discharging 

phase 
Indirect system – Discharging phase 

 
THOT TANK 

T9 
[°C] 

TCOLD 

TANK 

T5 [°C] 

HitecXL 
mass 
Flow 
[kg/s] 

 

T9 

[°C
] 

T5 

[°C] 
 

T11 

[°C] 
 

T10 

[°C
] 
 

THO

T 

TANK 
T12 
[°C] 

 

TCOL

D 

TANK 
T13 
[°C] 

 

Thermino
l 

VP-1 
mass 
flow 

[kg/s] 
 

Hitec 
XL 

mass 
flow 

[kg/s] 

Toluene 400 221 61.61 38
0 

239,
7 

239,
7 

38
0 

390 250 45.09 77.90 

Cyclohexan
e 

400 200 60.29 38
0 

141,
7 

141,
7 

38
0 

390 200 29.29 63.12 

D4 400 238 91.85 38
0 

238,
1 

238,
1 

38
0 

390 250 59.96 104.7
9  

 8 

 
Table 9: Cost evaluation coefficients 10 

𝑲𝟏 𝑲𝟐 𝑲𝟑 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑩𝟏 𝑩𝟐 𝑭𝑴 𝑪𝑬𝑷𝑪𝑰𝟏𝟗𝟗𝟔 𝑪𝑬𝑷𝑪𝑰𝟐𝟎𝟏𝟒 

3.2138 0.2688 0.07961 -
0.06499 

0.05025 0.01474 1.8 1.5 1.25 382 539.4/576.1 

 

 12 

  



44 

 
Table 10:  Global costs of main elements 2 

Cost of: Price Reference 

Turbine 450 €/kW [71] 

Solar field 213 €/m2 [62] 

Hitec XL 1.19 $/kg [38] 

Therminol VP-1 2.2 $/kg [38] 

Storage 20,1 $/kWht [38] 

Indirect 0.2*Plant cost [12] 

 

 4 

 
 6 

 
Table 11: Effect of Superheating in the costs of the plant 8 

Effects of superheating – Toluene –  Teva  302°C – 6h TES – SM=2 

∆𝐓𝐒𝐇 [°C] 0 65 

ORC Efficiency [%] 28,0% 31,5% 

𝐀𝐒𝐨𝐥𝐚𝐫 𝐅𝐢𝐞𝐥𝐝 [m2] 69053 61714 

Plant cost [€/kW] 5638 5044 

Plant cost [M€] 28.2 25.2 

Solar Field cost [M€] 14.7 13.1 

TES cost [M€] 4.3 3.7 

ORC cost [M€] 4.5 4.1 
Cost reduction System Global 

ORC 9% 1,4% 

Solar Field 11% 5,5% 

TES 12% 1,8% 

 
 10 
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 2 

Table 12: Optimum LEC results as function of storage capacity 
LEC 
[c€/kWh] 

Storage 
Hours 

No 
storage 

2 3 4 5 6 7 8 9 10 

SM 1.25  
- 1.5 

1.5  
± 0.1 

1.5 
 - 1.75 

1.75  
± 0.1 

1.75  
- 2 

2 
 ± 0.1 

2  
- 2.25 

2  
- 2.25 

2.25 
 ± 0.1 

2.25  
- 2.5 

In
d

ir
e

ct
  

TE
S 

Toluene 16.79 16.03 16.05 16.02 16.07 16.13 16.17 16.25 16.30 16.36 
Cyclohexane 17.13 17.03 16.96 16.87 16.87 16.91 16.91 16.96 17.00 17.04 

D4 21.83 20.94 21.01 20.99 21.05 21.10 21.14 21.27 21.33 21.42 

D
ir

e
ct

 

TE
S 

Toluene - 17.12 17.07 17.03 16.99 17.01 16.99 17.02 17.00 17.05 
Cyclohexane - 18.50 18.41 18.34 18.28 18.24 18.20 18.23 18.20 18.23 

D4 - 22.09 22.07 22.07 22.05 22.09 22.09 22.16 22.16 22.25 
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Table 13. Summary of Indirect/Direct TES parabolic trough plant with Toluene as working 
fluid data 4 

Toluene – Indirect/Direct TES 

Storage hours 0 2 4 6 8 10 

SM 1.25 1.5 1.75 2 2.25 2.5 

Tanks volume [m3] 0 331.5/263 663.0/526 994.5/789 1326.0/1052 1657.5/1315 

Solar field area [104m2] 3.84 4.62/4.6 5.39/5.37 6.17/6.13 6.95/6.9 7.72/7.67 

Investment Cost [M€] 15.10 18.55/18.17 22.00/21.42 25.54/24.65 29.09/27.90 32.64/31.14 

Investment cost [€/kW] 2956 3703/3634 4407/4282 5113/4931 5819/5580 6527/6229 

% solar field 55.0 53.6/54.4 52.6/53.8 51.9/53.5 51.4/53.2 50.9/52.9 

% TES 0 6.8/5.8 11.5/9.8 14.8/12.8 17.4/15.0 19.4/16.8 

% Power block 28.4 22.9/23.2 19.3/19.7 16.6/17.1 14.6/15.1 13.0/13.6 

Production [GWh/y] 12.59 16.46/14.93 19.62/17.7 22.56/20.41 25.41/23.07 28.20/25.69 

U.F.(%) 28.8 37.6/34.1 44.8/40.4 51.5/46.6 58.0/52.7 64.4/58.7 

Annuity [M€] 1.74 2.15/2.11 2.55/2.48 2.96/2.86 3.37/3.23 3.78/3.61 

O&M [M€] 0.35 0.457/0.42 0.545/49 0.627/0.57 0.706/0.64 0.783/0.71 

LEC [c€/kWh] 16.79 16.03/17.12 16.02/17.03 16.13/17.01 16.27/17.02 16.41/17.05 
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(a)        (c)           (d) 
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Figure 1. PTC/ORC CSP power plant:  two tanks direct (a and c) and indirect (b and d) thermal 
energy storage (TES) system. Direct system: HTF Hitec XL, Storage Medium: Hitec XL. Indirect 

system HTF: Therminol VP-1, Storage Medium:  Hitec XL  
 
 
   



 
 
 
 
 
 
 

 
 
 
 
 

Figure 2. Direct normal irradiance monthly patterns used for the analyses (left) and CSP plant 
location (right)  
 
   



 
 
 
 
 
 
 
 
 
 
 

    
 

Figure 3: Power block efficiency as function of the evaporation temperature for recuperative and non-
recuperative cycles (left). Condensation temperature effect on recuperative cycle efficiency (right). 

 
 
 
 
 
  



 
 
 
 

 

 

 
Figure 4: Intermediate HE T-Q diagrams for Toluene (top) Cyclohexane (middle) and D4 (bottom) 
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Figure 5. Thermal Energy Storage System Costs 
 
 
 
  



 
 
 
 
 

 
 

Figure 6. ORCs evaporation temperatures and pressures as function of power plant load 
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Figure 7. Power block efficiency and efficiency/rated capacity efficiency rate at partial load 

 
  



 
 
 
 
 
 

 
 
 

Figure 8. Solar Multiple Effect on LEC for different storage capacities. TES indirect system (left). TES direct system 
(right). 

 
 
  



 
 
 

 
 

Figure 9. Electricity production, plant cost and LEC as function of SM. TES indirect system (left). TES direct system 
(right). 
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Figure 10. Annual electricity production as function of SM (above). Plant investment cost as function of SM 
(below). TES indirect system (left). TES direct system (right). 

 


