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Abstract 

This work is focused on evaluating performance of a collaborative robot welding cell developed in our previous research. Such a cell is based 
on an interactive cooperation between a human supervisor and a welding robot. This approach to organizing a workstation allows to employ 
robots even in the case of prototypes or small productions. Research on collaborative robots usually focuses on safety issues and on the 
programming techniques. Present work deals with a complementary problem crucial to industrial applications: the qualification of the welding 
cell performance in terms of accuracy, repeatability and dependability. 
In this application, the human worker is responsible for handling of the parts to be assembled and for teaching the robot. The robot is in charge 
of actual welding. Teaching is executed by demonstration: the teacher shows the welding trajectories with a pointer observed by a motion 
capture system. The program is generated automatically and executed by the robot. Robots and humans share the same workspace in different 
times therefore human risk exposure is minimal. 
Industrial applications of this or similar technology require that the process reliability and capability be assessed. We describe and analyze error 
accumulation along the entire data flow from the measurement tool, through the reference system transformations, to the actual representation 
and execution of the robot program. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 
2015. 
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1. Introduction 

Interactions between human and robot is a well-established 
field in robotics since early 1990s. The research started mostly 
from the design of human-compatible robotic hardware [1] 
then expanding to human-friendly control modalities [2], 
social aspects of the interaction [3], natural user interfaces [4], 
and representation of the complex tasks [5,6]. The Goodrich’s 
survey on Human-Robot Interaction (HRI) [7] summarizes the 
progress made up to mid-2000s and presents a thorough 
description of different interaction modes, application 
domains, and the principal open problems in the field. The 
industrial robots were not considered the principal application 
field. 

In the 2000s the search for a better human-robot interface 
continued, tapping into direct brain-computer [8], augmented 

reality [9,10], and advanced verbal [11] interfaces. The 
progress in the field of human-compatible robotic hardware is 
also undeniable [12,13]. An effort to standardize the robotic 
devices designed for HRI was undertaken [14]. Machine 
learning methods remained the staples of robot knowledge 
representation [15]. Notwithstanding numerous applications to 
mobile, bio-inspired, medical and service robots, HRI research 
has seen only sporadic industrial applications [16,17]. 

Notably, different application fields tend to use different 
performance metrics [7]. Paying attention to industrial 
domain, [18] identify the main issues for HRI in safety and 
dependability. Dependability is an integrated concept, 
combining availability, reliability, safety, integrity and 
maintainability.  However, accuracy and precision (in 
ISO 5725 sense of terms) are mostly ignored in HRI 
research [19].  

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 2015
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In the framework of our previous projects [20,21] 
a collaborative robot welding cell was developed. Our 
experiment was focused on collaboration between a standard 
industrial robot arm and a human worker. 

This implies some degree of conservatism in our choice of 
technologies, and different metrics to assess the work done. 
We chose a motion capture system as a principal input device. 
This technology is safe, reliable and very mature. We see it as 
a good balance between precision and user friendliness. Being 
an industrial application, the proposed system is required to 
repeat the tasks reliably and accurately. Hence we focus on 
precision and accuracy of the system as the most important 
metrics.  

In this paper we have tried to qualify the performance of 
the collaborative robot cell and analyze the precision of the 
system throughout the entire data flow, from the measurement 
tool, through the reference system transformations, to the 
actual representation and execution of the robot program. 

2. Description of the collaborative cell 

2.1. Experiment design 

Our Programming by Demonstration (PbD) system allows 
for path execution on a standard industrial robot. We used a 
motion capture system and a custom pointer tool both to 
record precise spatial location, and to convey symbolic 
instructions through gestures. The programs are executed on a 
Comau Smart NS-16 robot arm, but can be easily ported to 
other robot controllers. A felt-pen holder is mounted on the 

robot arm. It allows to draw trajectories on paper that are used 
as a tangible trace of the program execution.  

In order to indicate tool paths to the robot, we produced a 
special pointer tool equipped with three spherical IR reflective 
markers and a spherical end-point. The markers are arranged 
in a scalene triangle, thus the three markers are sufficient to 
calculate tool's location and orientation. The spherical 
endpoint has two advantages: it does not stuck when sliding 
over the work surface in any direction, and it is easy to 
produce and measure precisely. The entire tool is measured on 
a coordinate measurement machine, so all dimensions are 
known. Three dimensional coordinates of the markers are 
measured and its end-point location is calculated. 

The experiment area (Fig. 1) is equipped with a motion 
capture system (NaturalPoint Optitrack V120:Trio). It is 
managed by its own software (NaturalPoint Motive) which 
can multicast point cloud data over network (or loopback 
interface) to other programs. Optitrack Streaming Engine uses 
a binary UDP-based protocol, NatNet. As a side effect of the 
project, we have developed a Python library to read NatNet 
binary packets, and the library was released as an open source 
Python package [22].  

2.2. System implementation 

Conceptually, the system transforms the raw motion 
capture data into a set of disjoint one-dimensional manifolds, 
by splitting it into distinct “paths” to execute. Missing 
program parameters (tool state and orientation) are calculated 
based on domain knowledge, path geometry, and the specifics 
of the robot motion planning implementation (Fig. 2). 

 

Fig. 1. Components of the programming by demonstration setup: a) a motion 
capture system Optitrack V120:Trio; b) a Comau Smart NS-16 industrial 
robot arm, equipped with a custom felt-pen holder as an end effector; 
c) a hand-held pointer tool equipped with IR reflective markers, d) benchmark 
trajectory template for reproducible test execution. 

 

Fig. 2. The system matches the calibrated model of the pointer to every data 
frame, and calculates the position of the end-point. Ad hoc rules allow for 
separating program paths from other pointer motions. 
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We underline, that though technically the orientation of the 
pointer tool is known to our system, the actual orientation of 
the robot tool does not necessarily coincide with the 
orientation of the pointer. This implies that the amount of 
information, that the operator is supposed to demonstrate, is 
reduced. The operator has to demonstrate the trajectory, but 
does not have to care about the welding tool's orientation. 
This feature may be particularly important when creating 
programs longer or more complex than a human can 
conveniently demonstrate in a single gesture, such as when 
working with very large work pieces.  

The PbD application is implemented in Python and is 
designed as three loosely coupled components (Fig. 3): 

 
 Receiver, which reads raw binary data from the motion 

capture system and transforms them to Python data 
structures; 

 Processor, which does the bulk of the work: estimates 
pointer's end point location and orientation, recognizes 
gestures, builds a valid program plan; its design will be 
explained in detail further in the paper. 

 User interface (GUI), which represents the state of the 
system to the user and receives out-of-band user 
commands. 

The components run in separate processes and 
communicate only via message queues.  The execution plan 
may be transferred to the robot either via File Transfer 
Protocol (FTP) or via the direct socket connection. 

The robot program is written in PDL2, the Comau 
programming language. It interprets the program plan and 
translates it into vendor-specific motion commands.  The 
program plan acts as a simple, vendor-agnostic format to 
specify robot motion and may be considered an ad hoc 
domain specific language, and like most such languages is 
concerned with coordinates’ presentation and motion control 
[23]. Proper design of the DSL is our future priority. 

3. Reference frame definition 

3.1. Common reference frame 

Robot programs often run in a Cartesian reference frame 
defined by the user. For the hardware we used in our 
experiments, this reference frame is defined by touching three 
reference points (Orig, Xpos, XYpos) with a tool of known 
dimensions mounted on the robot flange. The reference points 
are often chosen to be the vertices of a rectangular cuboid 
mounted in the work area.  The user reference frame is 
calculated with respect to a robot base reference frame (fixed 
unless the robot is misplaced). 

The reference frame of the motion capture system is linked 
to one of the cameras or a specially crafted calibration tool 
with three markers in the shape of an ‘L’ [24]. Either way, the 
rigid transformation between the reference frame of the robot, 
and the reference frame of the motion capture system remains 
unknown. Neither location of the robot base origin, nor the 
camera’s reference origin are accessible to be measured. 

We have developed a method to calculate a rigid 
transformation between these two reference frames (camera 
reference frame and user-defined robot reference frame). The 
method is supposed to be fast and easy to execute by the end-
user, and reasonably accurate in the same time. 

Fig. 3. UML Component diagram of the programming by demonstration 
system. The motion capture software and the PbD application may run on the 
same or different machines, and communicate via network protocol. PbD 
application and the robot controller communicate via an Ethernet connection. 

 

Fig. 4. A reference cuboid is used to calculate a rigid transform between the 
motion capture system reference frame and the robot reference frame. The 
robot reference frame is defined by the three vertices Orig, Xpos, XYpos. The 
user indicates two edges, X line and Y line, of the dihedral angles between the 
cuboid and the table using the usual pointer tool equipped with IR markers. 
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The idea is to make the reference rectangular cuboid of the 
robot somehow “visible” to the motion capture system. The 
motion capture system may observe only spherical IR 
markers. One solution would be to mount some markers on 
the reference cuboid and measure their precise locations. This 
solution is easy to implement, but it is not very practical 
because it would require to leave a fragile calibration object in 
the work area of the robot. An alternative is to use the same 
pointer tool with IR markers, which we use to indicate paths, 
and touch at least three reference points on the cuboid 
(Fig. 4).   

It’s not possible to uniquely position a spherical end point 
of the handheld tool on a vertex, but it’s easy to follow a 
straight line in the dihedral angle between the cuboid and the 
surface it is mounted on. Two such lines coincide with the 
directions of the robot’s X and Y axis, and the translation 
between their intersection and robot’s origin is known if the 
dimensions of the reference cuboid are known. 

The method is practical, because: 1) it doesn’t require to 
leave fragile calibration objects in the robot work area, 2) 
neither robot nor motion capture reference frame acquisition 
have to be modified, so the method is brand-agnostic 3) the 
same tool which is used to indicate program paths is used to 
calibrate the system, 4) acquisition of only two straight 
trajectories with motion capture software is fast and easy for 
the user. 

3.2. Fitting algorithm 

To calculate the reference frame based on points sampled 
along X line and Y line, we do the following: 
 
 Discard initial and final points which are too close to each 

other. The pointer tool is likely to be still at the beginning 
and the end of the line, while the motion capture system 
works at a fixed frame rate. As the still time can be 
arbitrary long, we may capture arbitrary many points at the 
extremities of the line. We use only the points when the 
pointer is in motion. 

 Optionally resample points along the curvilinear 
coordinate. This filter serves the same purpose to give less 
weight to the initial and the final parts of the trajectory 
when the pointer is moving slower than in the middle part. 

 Fit two lines to two edges independently; use their 
intersection (or the point of the closest approach) as a new 
origin  (Fig. 5, b) 

 Fit a plane to all points (Fig. 5, c) 
 Rotate the points of the second line around  and  for 

 (Fig. 5, d) 
 Fit a single line to all points simultaneously (Fig. 5, e) 
 Choose the positive direction of the X axis along the new 

line so that the X edge has positive coordinates; build an 
orthonormal basis (Fig. 5, f) 

 Take into account the radius of the pointer’s end-point and 
the height of the reference cuboid; adjust the origin to 
match the origin of the robot’s user frame. 

 
This method strives to fit an orthonormal basis to all points 

simultaneously. Just fitting two lines, like in Fig. 5 (b), and 
building an orthonormal basis upon them have demonstrated 
to introduce asymmetry in error distribution. This method 
does not address a situation when two reference edges are 
skewed or are not perpendicular. This method does not 
address a situation when the length of two edges is very 
different (the edge with more points will have more weight). 
Almost any arbitrary cuboid of suitable size can be used as a 
reference object. 

4. Qualification of the system 

4.1. Repeatability of the end-point calculation 

Repeatability of the end-point calculation for the pointer in 
the center of the frame was measured experimentally. The 
motion capture system was placed at ≈ 1400 mm away, 
inclined 36° with respect to the table surface. The pointer was 
repeatedly put on an isostatic support, and the end-point 
location was measured. Its standard deviation components are 

 mm, 0.015 mm,  mm (Fig. 6). 

 

Fig. 5. The method to calculate a reference frame: (a) acquire some points 
along two perpendicular edges; (b) fit two lines to each of the edges 
independently, use their intersection as a new origin ; (c) fit a plane to all 
points; (d) rotate points of the second line around the plane’s normal ; (e) 
fit a single line to all points simultaneously; (f) choose a positive direction  
of the X axis along the line, build an orthonormal basis. 

 

Fig. 6. Kernel density estimates of the calculated end-point location with 
respect to its average location around the center of the frame. The histogram 
and the dashed line KDE show the distribution of the depth variable 
measurements. 
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The result is fairly good and indicates, that there are no 
serious problems with the quality of the pointer nor with the 
repeatability of the motion capture system. In theory, this is 
the lower bound for the accuracy of the setup. The 
repeatability in the Z direction (depth variable) is an order of 
magnitude worse. This is to be expected in similar stereo 
vision setups and fortunately can be improved by using more 
cameras or increasing the stereo base. 

4.2. Stable fit of the reference frame 

To estimate stability of the reference frame fitting method 
with respect to measurement errors, we run synthetic tests. 
The testing assumption were: 

 
 i.i.d. measurement errors,  mm 
 non-uniform sampling along the line; points are sampled 

at  values of the points uniformly distributed along 
the curve  for , 100 points 
per each edge 

 equal reference edges, 400 mm long 
After 1000 computational experiments (generating new 

points and calculating new reference frame every time), we 
have seen that 
 the median displacement of the calculated origin is 0.1 mm 

(0.18 mm for 95.45% percentile) 
 the median angular error of the calculated X axis is 0.02° 

(0.034° for 95.45% percentile) 
 
Overall, there are no major fitting issues if the 

measurement errors are normally independently and 
identically distributed. 

4.3. Real-life repeatability 

Real-life repeatability of the reference frame acquisition 
was measured experimentally. The motion capture system 
was placed at 1370 mm away from the origin, inclined 36° 
with respect to the table surface, N = 50 measurements of the 

reference frame were executed with the same relative position 
of the reference cube and the motion capture system. 

The actual standard deviations of the origin location are 
 mm, 0.3 mm,  mm in the reference 

frame of the motion capture system, where z is the depth 
variable, y is the vertical axis.  

We may note that the repeatability of the x coordinate is 
much worse than that of the y coordinate, in spite of both 
being the image plane coordinates. We attribute it to the fact 
that the camera’s axis was only slightly inclined with respect 
to the table surface, thus y coordinates of points of both line 
segments vary much less than x and z coordinates. 

Angular repeatability of the acquired reference frame is a 
separate issue to consider. We calculated the average direction 
of the X axis, and calculated angular misalignment for every 
sample. It appears that on average the angle between the 
calculated and the average direction of the X axis is 0.13° with 
the standard deviation of 0.08°. The histogram and the kernel 
density estimation are displayed in Fig. 7. This order of 
magnitude of the angular repeatability implies that transverse 
errors at 1 m away from the origin may be as high as 2.3 mm. 

4.4. Error accumulation 

There are several steps in the process, and multiple factors 
influence the repeatability and the accuracy of the final 
program execution. If we refer to Fig. 2 and our 
measurements, we may identify and describe these 
factors (see Table 1). 

Overall, most system components have an acceptable 
repeatability level. The most likely reason for loss of accuracy 
are extrapolation of angular errors far away from the reference 
cube (origin). Depending on user requirements this issue may 
have to be addressed. 

4.5. Form error 

To estimate variability of the process with the same input 
trajectory, we built some benchmark trajectory guides. These 
items are thick aluminium plates in which we carved channels 
with a triangular cross-section (Fig. 8). The width and the 
depth of the channels was chosen to accommodate the end-
point sphere of the pointer tool. True dimensions of the 

Table 1. Repeatability at various stages of the method. 

Step Repeat-
ability, mm 

CMM measurement of the pointer tool 0.01 

Optitrack V120:Trio @ 1 m away unknown 

Pointer model fitting (measured) 0.2 

Line and reference frame fitting (simulated) 0.1 

Extrapolation of the angular error @ 1 m away 2.3 

Program path approximation arbitrary 

Robot user frame definition unknown 

Robot repeatability ISO 9283 (specification) 0.05 

 

Fig. 7. Histograms and kernel density estimations of the angular 
misalignment of the calculated reference frame with respect to average 

results. 
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channel were measured on a coordinate measuring machine. 
The channels served as guides to repeatedly indicate the same 
and known trajectories with the pointer tool.  

The same trajectory was acquired multiple times, a robot 
program was generated and executed with a felt-pen, and the 
trace of the pen was scanned and compared to the true channel 
geometry in several points along the curve. 

In the experiment with an S-curve presented in Fig. 8, the 
median displacement of the traces was found to be 0.4 mm, 
with the interquartile range of 0.6 mm, though occasionally 
we did see maximum errors as big as 2.6 mm. These results 
appear to be in line with our estimations in Sec. 4.3. 

5. Conclusions 

This work presented the further development of our 
programming by demonstration system for standard industrial 
robots. Industrial applications require to assess if human 
demonstrations are interpreted and executed by the robot 
reliably and precisely. These aspects are rarely addressed in 
general Human-Robot Interaction research. 

We qualified the entire system and its individual 
components, identified the weak spots, and benchmarked the 
generated robot programs against the known human intent. 
There is obvious room for improvement, but even in its 
current state the system is already compatible with a number 
of industrial usage scenarios. 

We believe that this kind of approach to HRI performance 
evaluation is crucial in the industrial domain. 
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Fig. 8. One of the benchmark trajectory guides. A channel with a V-shaped 
cross-section allows to repeatedly indicate the same and known path. 


