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Preface

This paper is the authors tribute to this Special Issue by Composite Structures to honor Professor Yoshi
Narita. It is about angle-ply laminated plates; it devotes part of the analyses to focus on the analysis
geometrical boundary conditions to be used to assess finite element solutions with corresponding ana-
lytical ones. The first author would like to mention Professor Naritas attitude to ’pretend’ a clear and
unique definition of a given problem. Professor Narita would appreciate the discussion on geometrical
boundary conditions given in the present paper.

Abstract

This paper presents some solutions for mechanical responses of angle-ply laminated plates under trans-
verse distributed loads, which are obtained by using refined finite element models adopting variable
kinematics based on Carrera’s Unified Formulation (CUF). Plates with several types of stacking se-
quence under different boundary conditions are considered. Layer-wise (LW) models based on Cheby-
shev polynomials (first kind) and Equivalent Single Layer (ESL) models based on Trigonometric series
are used in the analysis. To compare the performances of different displacement-based kinematic mod-
els, a set of simply supported boundary conditions and mixed clamped-free boundaries are adopted in
the numerical study. A nine-node MITC (Mixed Interpolated of Tensorial Components) plate element
is employed to contrast the shear locking phenomenon of thin plates. CUF-based variable kinematic
models are used in the numerical study, and the numbers of expansions in thickness functions are in-
creased until the requisite numerical accuracy are achieved, which can be conveniently implemented in
the framework of CUF. By comparing the numerical results obtained with CUF-based refined models
and ABAQUS 3D models as well as reference solutions from literature, the effectiveness of the adopted
models is verified. The newly studied numerical cases can be taken as benchmarks for future research.

1 Introduction

Plate models are used to capture the deformation behaviors of structures of which the dimension in the
thickness direction is comparatively much small than the other two in-plane dimensions. Traditional
plate models such as Kirchhoff plate model (CPT, Classical Plate Theory [1]) and ReissnerMindlin
theory (FSDT, First-order Shear Deformation Theory [2]) have been widely used in the analysis of
laminated structures. In the last three decades, a variety of 2D models based on higher-order theories
(HOT) have been proposed, as discussed by Reddy [3, 4], Palazotto and Dennis [5], et al.

Pagano [6, 7] and Srinivas [8] studied the deformation behaviors of cross-ply composite laminated
plates with 3D elasticity theory. Ren [9] obtained closed-form solutions for simply supported multi-
layered anisotropic plates imposed to particular types of simply-supported boundary conditions with
Navier approach by expanding the external load and unknown functions into double Fourier series.
This approach was also adopted by Noor [10] and Savoia [11] to obtain analytical solutions for similar
cases, and the displacement field was further decomposed into a symmetric part and an anti-symmetric
part in the form of double Fourier series, yet the boundary conditions they adopted seemed to be
different. Savoia [11] integrated Pagano’s method [6] for cross-ply laminates as a particular case. The
same method was later used by Carvelli [12] and Kulikov [13, 14]. A consequence of this approach is
that the transverse shear stresses σxy and σyz also consist a symmetric part and an antisymmetric part
[13, 14].

Chaudhuri [15] proposed analytical solutions for angle-ply cylindrical panels and shells subjected to
transverse load under SS2-type simple supports. He [16] studied the bending behaviors of rectangular
antisymmetric angle-ply laminated plates under sinusoidally distributed loads with a refined deforma-
tion theory [17], which introduced additional constraints on the boundaries. Piskunov [18] developed
a higher-order shear deformation theory for laminated anisotropic plates and shallow shells, in which
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the boundary conditions for cross-ply and angle-ply laminates are separately defined. Similarly, to
obtain Navier-type solutions, so-called SS1- and SS2-type simple supports were independently used for
cross-ply and angle-ply laminated plates in some literature. Ray [19] proposed a Zeroth-Order Shear
Deformation Theory and studied both symmetric and anti-symmetric laminated plates. Zuo [20] pre-
sented a wavelet finite element method adopting B-spline wavelet to investigate static and free vibration
behaviors of laminated composite plates. In Nik and Tahani’s work [21] that proposed analytical solu-
tions for laminated rectangular plates with arbitrary lamination and boundary conditions by employing
extended Kantorovich method, this kind of boundaries were also employed. Such definition of simple
supports can be traced back to [22, 23]. Notably, Loredo [24] suggested an innovative way to define
simple supports on the four edges of a plate, in which the displacements on each pair of parallel edges
were coupled, and both cross-ply and angle-ply cases were addressed.

In the work of Özakça [25] on displacement-based solid finite elements for analysis of plates, two
types of simple supports were adopted, namely “hard simple support” and “soft simple support” which
were defined only on displacements, yet only isotropic plates were studied. Bogdanovich [26] further
examined such simple supports in the investigation of laminated plates under uniformly distributed
load. Kumari and Kapuria studied boundary layer effects in laminated rectangular plates using a third
order zig-zag theory [27] and layer-wise theory [28], in which both “hard” and “soft” simply supported
boundaries were considered. Tornabene [29] also used so-called “soft” simple supports in the static
analysis of functionally graded laminated shells and panels of revolution.

Kant [30] proposed solutions on both cross-ply and angle-ply laminated plates obtained with an
isoparametric finite element, in which except for on the four edges, some primary variables on the sym-
metry lines were also constrained. Desai [31] suggested a 3D mixed finite element model for analysis
of angle-ply laminates, which treated transverse stresses (σxz, σyz, σzz) as primary nodal unknowns,
and the cases of cylindrical bending, simply supported as well as clamp-clamp boundaries were con-
sidered. Chinosi [32] developed a mixed 2D model using a MITC-like approach in the framework of
Reissner Mixed Variational Theorem (RMVT), with which simply supported plates with cross-ply, anti-
symmetric lamination as well as plates with general stacking sequence (0°/90°) subjected to mixed edge
supports (simply supported, free and clamped) were analyzed.

Carrera proposed Unified Formulation (CUF) [33, 34] as a new methodology to derive advanced plate
models, which introduces thickness functions Fτ to describe the through-the-thickness kinematics of
multi-layered structures. In [35] a collection of LW models and ESL models developed in the framework
of CUF are summarized. Compared with classical plate theories like CLT and FSDT, CUF-based
refined models have the advantage of capturing the through-the-thickness variation of transverse shear
and normal stress accurately. As for finite element (FE), CUF-based refined 2D models adopting Mixed
Interpolation of Tensorial Components (MITC) [36, 37] method have been successfully applied in the
analysis of laminated plates to contrast the shear locking phenomenon [38, 39, 40].

CUF makes it convenient to adopt a variety of series expansion theories and interpolation poly-
nomials to obtain FE models with variable kinematics in a compact way. Trigonometric, exponential,
hyperbolic series and hierarchical Chebyshev polynomials were used to construct so-called cross-section
functions for refined beam models [41, 42]. Similar applications of Legendre polynomials in the frame-
work of CUF can be found in [43] and [44]. Various and miscellaneous thickness functions have been
discussed in [39, 40].

Variable kinematics refer to the feature of CUF-based models in which the number of interpolation
polynomials used in LW models or the number of series expansions employed in ESL models can be
variable and determined by the particular situation to achieve requisite numerical accuracy. With a
sufficient number of expansion used in the formulation, the numerical convergence can be attained,
and such kinematics can be conveniently implemented in the framework of CUF without cumbersome
derivation of governing equation [35]. Application of variable kinematics has been reported in [39, 40].

The primary focus of this article is the application of displacement-based refined LW models and
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ESL models adopting non-Taylor series implemented in the framework of CUF in the analysis of
anisotropic laminated plates under different sets of clearly stated geometrical boundary conditions
(simply-supported and mixed clamped-free edges). Results obtained with ABAQUS 3D model, variable
kinematic LW models adopting Chebyshev polynomials (first kind) and ESL models with trigonometric
series expansion are reported and compared.

2 Geometrical and constitutive relations of multi-layered plates

In displacement-based plate theories for multi-layered structures, the in-plane strain vector εkp and εkn
in layer k can be described by the derivatives of displacement vector u as shown in Eq. (1):

εkp = [εkxx, ε
k
yy, ε

k
xy]

T = Dpu
k, εkn = [εkxz, ε

k
yz, ε

k
zz]

T = (Dnp +Dnp)u
k (1)

The differential operator matrices are defined as in Eq. (2):

Dp =

∂x 0 0
0 ∂y 0
∂y ∂x 0

 , Dnp =

0 0 ∂x
0 0 ∂y
0 0 0

 , Dnz =

∂z 0 0
0 ∂z 0
0 0 ∂z

 (2)

The stress-strain relations are as follows:

σkp = Ck
ppε

k
p +Ck

pnε
k
n, σkn = Ck

npε
k
p +Ck

nnε
k
n (3)

in which Ckpp, C
k
pn, Cknp and Cknn are matrices of material coefficients, to be more specific:

Ck
pp =

Ck11 Ck12 Ck16

Ck12 Ck22 Ck26

Ck16 Ck26 Ck66

 Ck
pn =

0 0 Ck13

0 0 Ck23

0 0 Ck36



Ck
np =

 0 0 0
0 0 0
Ck13 Ck23 Ck36

 Ck
nn =

Ck55 Ck45 0
Ck45 Ck44 0
0 0 Ck33


(4)

The material coefficients Cij that characterize the layer material depend on the Young’s moduli E1,
E2, E3, the shear moduli G12, G13,G23 and Poisson ratios ν12, ν13, ν23, ν21, ν31, ν32.

3 Variable kinematic models based on Carrera Unified Formulation

According to CUF, the displacement field u = {u, v, w}T can be expressed by means of approximation
functions Fτ (z) as follows in Eq. (5):

u(x, y, z) = F0(z)u0(x, y) +F1(z)u1(x, y) + · · ·+ FN (z)uN (x, y)

v(x, y, z) = F0(z)v0(x, y) +F1(z)v1(x, y) + · · ·+ FN (z)vN (x, y)

w(x, y, z) = F0(z)w0(x, y) +F1(z)w1(x, y) + · · ·+ FN (z)wN (x, y)

(5)

In a more compact form, CUF can be expressed as shown in Eq. (6) for ESL models and in Eq. (7)
for LW models respectively:

u(x, y, z) = Fτ (z)uτ (x, y); δu(x, y, z) = Fs(z)δus(x, y) τ, s = 0, 1, ..., N (6)

uk(x, y, ζk) = F kτ (ζk)uτ (x, y); δuk(x, y, ζk) = F ks (ζk)δus(x, y) τ, s = 0, 1, ..., N (7)
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δu indicates the virtual displacement associated with the virtual work when Principle of Virtual

Displacement (PVD) is applied and k is the layer index in laminated plates. F
(k)
τ and F

(k)
s are the

approximation functions, which are also named as thickness functions since they are defined in the
thickness domain z ∈ [−h

2 ,
h
2 ] for ESL models or ζk ∈ [−1, 1] for LW models. Note that Fτ and F kτ

are independently employed in annotation, which implies that differently from ESL models, in LW
models primary variables are allocated to each layer. N is the order of interpolation polynomials
(for LW) or number of series expansion (except the constant term, for ESL) adopted in the thickness

direction. u
(k)
τ (x, y) and u

(k)
s (x, y) represent the unknown primary variables which are the coefficients

corresponding to expansion terms F
(k)
τ and F

(k)
s , respectively. τ and s are Einstein’s summation

subscripts.
CUF can describe many existing deformation theories. When Fs(z) and Fτ (z) are defined in the

whole through-the-thickness domain using ESL model, by substituting Fτ = zτ (τ = 0, 1, · · · , N) as
shown in Eq. (8), one obtains Higher-Order Deformation Theory. FSDT [2] can be obtained with an
ESL approach with N = 1, by imposing a constant transverse displacement through the thickness
via penalty method. CPT [1] can be expressed by employing a penalty technique to the constitutive
equations to enforce that the transverse shear strains are null when written in CUF.

F0 = z0 = 1, F1 = z1 = z, . . . , FN = zN (8)

Alternatively, if F kτ represents Lagrange interpolation polynomials defined in each layer thickness
domain ζk ∈ [−1, 1], as shown in Eq. (9), CUF will lead to a LW model based on Lagrange polynomials.
ζkτ are located at the prescribed interpolation nodes. ζk0 = −1 and ζkN = 1 correspond to the bottom
and top surfaces of the kth layer, respectively.

F kτ (ζk) =

N∏
i=0,i 6=s

ζk − ζki
ζkτ − ζki

(9)

CUF provides a convenient approach in implementing different series expansion theories and inter-
polation approximation methods in a unified manner to obtain refined 2D kinematics for multi-layered
structures.

3.1 Refined ESL models based on Trigonometric series

In the framework of ESL models, if trigonometric sine series together with a constant term are adopted,
the displacement vector can be written as follows in Eq. (10):

u(x, y, z) = u0(x, y) + sin
(πz
h

)
u1(x, y) + ...+ sin

(nπz
h

)
uN (x, y) (10)

where h is the thickness of the laminated plate and n is the number of half-waves. Accordingly, a
similar description can be obtained using trigonometric cosine series:

u(x, y, z) = u0(x, y) + cos
(πz
h

)
u1(x, y) + ...+ cos

(nπz
h

)
uN (x, y) (11)

A model adopting full trigonometric series becomes Eq. (12) when N = 2n:

u(x, y, z) = u0(x, y) + sin
(πz
h

)
u1(x, y) + cos

(πz
h

)
u2(x, y) + ...+ sin

(nπz
h

)
uN−1(x, y)+

+ cos
(nπz
h

)
uN (x, y)

(12)
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or Eq. (13) when N = 2n+ 1:

u(x, y, z) = u0(x, y) + sin
(πz
h

)
u1(x, y) + cos

(πz
h

)
u2(x, y) + ...+ cos

(nπz
h

)
uN−1(x, y)+

+ sin

(
(n+ 1)πz

h

)
uN (x, y)

(13)

Since pure sine series apply to approximate odd functions, while cosine series suit even functions,
full trigonometric series expansions Eq. (12) and Eq. (13) are recommended for more general cases,
which are adopted in the following numerical study.

3.2 Refined ESL models with Murakami zig-zag function

Because of the intrinsic anisotropy of multi-layered structures, the first order derivative of the displace-
ment variables through the thickness is discontinuous. Fortunately, with ESL models, it is possible to
capture the zig-zag effects by employing the Murakami theory [45]. A zig-zag term can be introduced
into Equation (6), leading to so-called zig-zag models as shown in Eq. (14):

u = F0 u0 + . . . + FN uN + (−1)kζkuZ . (14)

In Eq. (14) subscript Z refers to the introduced zig-zag term. Refined theories can be obtained by
adding the zig-zag term to the Taylor polynomials expansion, trigonometric or other types of series
expansion.

3.3 Refined LW models based on Chebyshev polynomials

The continuity of transverse stresses at layer interfaces can be satisfied naturally when LW models
with a sufficient number of expansion terms are adopted, which has been demonstrated in the authors’
previous work [40]. According to LW models, the displacement defined in the domain of layer k can be
expressed as shown in Eq. (15):

uk = Fb u
k
b + Ft u

k
t + Fr u

k
r = Fτ u

k
τ τ = t, b, r; r = 2, ..., N. (15)

The expression of the expansions can be derived from Eq. (16):

Fb =
T0 − T1

2
, Ft =

T0 + T1

2
, Fr = Tr − Tr−2. (16)

in which Tj(ζk) employs Chebyshev polynomials (first kind) to the jth order defined in the isopara-
metric domain within layer k: −1 ≤ ζk ≤ 1. The displacements on bottom (b) and top (t) surface
of layer k are used as unknown variables and following compatibility conditions are imposed to the
formulations:

ukt = uk+1
b , k = 1, Nl − 1. (17)

where Nl represents the total number of layers in a laminated plate.

4 FE discretization and governing equations

This section presents the derivation of the governing equations for CUF-based refined finite element
models according to the PVD (Principle of Virtual Displacement) in the case of multi-layered plates.
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Figure 1: 3D field discretization with CUF-based advanced plate FE models.

Fig. 1 illustrates the 3D filed discretization with CUF-based refined plate models, which can approx-
imate 3D displacement field and capture spatial stress distribution. Ω represents the in-plane domain
of an element el, and Ak indicates the through-the-thickness domain corresponding to layer k.

For a nine-node plate element, the displacement vector interpolated on the element nodes using
Lagrangian shape functions Ni and Nj reads:

uτ (x, y) = Ni(x, y)Uiτ , δus(x, y) = Nj(x, y)δUjs i, j = 1, · · · , 9 (18)

where δUiτ and Usj are the vector of generalized nodal displacements (constant weighting coeffi-
cients) and its virtual variation, respectively.Utilizing CUF-based, the displacement field in the domain
defined by element le and layer k can be expressed as shown in Eq. (19) for ESL models, in which
z ∈ [zbottom, ztop]:

uk(x, y, z) = Ni(x, y)Fτ (z)Uiτ i = 1, · · · , 9; τ = 1, · · · , N
δuk(x, y, z) = Nj(x, y)Fs(z)Ujs j = 1, · · · , 9; s = 1, · · · , N

(19)

and in Eq. (20) for LW models, in which ζk ∈ [−1, 1]:

uk(x, y, ζk) = Ni(x, y)F kτ (ζk)U
k
iτ i = 1, · · · , 9; τ = 1, · · · , N

δuk(x, y, ζk) = Nj(x, y)F ks (ζk)U
k
js j = 1, · · · , 9; s = 1, · · · , N

(20)

The superscript k of Uk
iτ implies that in LW FE models each layer possesses independent degrees

of freedom. In a compact form, the strain expression Eq. (1) will become as shown in Eq. (21): ε
k
p = F (k)

τ Dp(NiI)U
(k)
iτ

εkn = F (k)
τ Dnp(NiI)U

(k)
iτ + F (k)

τ,z NiIU
(k)
iτ

(21)

in which I is a 3×3 identity matrix. A MITC9 plate element is formulated by using a specific
interpolation strategy to derive the strain components on a nine-node element, and the corresponding
interpolation points are known as tying points, which are as illustrated in Fig. 2. Note that the normal
strain component in the third direction εzz is derived directly from the displacement expression.

The Lagrangian interpolating functions are arranged as follows Eq. (22):
Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1],

Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2],

Nm3 = [NP , NQ, NR, NS ].

(22)
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Figure 2: Tying points on a MITC9 plate element.

where the subscripts m1, m2 and m3 indicate the point groups (A1,B1,C1,D1,E1,F1), (A2,B2,C2,D2,E2,F2)
and (P,Q,R,S), respectively. Accordingly, the strain components can be expressed as follows:

ε(k)
p =

ε
(k)
xx

ε
(k)
yy

ε
(k)
xy

 =

Nm1 0 0
0 Nm2 0
0 0 Nm3


ε

(k)
xxm1

ε
(k)
yym2

ε
(k)
xym3

 ,

ε(k)
n =

ε
(k)
xz

ε
(k)
yz

ε
(k)
zz

 =

Nm1 0 0
0 Nm2 0
0 0 1


ε

(k)
xzm1

ε
(k)
yzm2

ε
(k)
zzm3

 .
(23)

in which strains εxxm1 , εyym2 ,εxym3 , εxzm1 and εyzm2 are derived from Eq. (21) and the shape functions
Ni and corresponding derivatives are evaluated on the tying points.

Considering a basic spatial domain identified by element el and layer k, taking into account the
constitutive equations Eq. (3), the strain expression in the form of MITC method Eq. (23) as well as
CUF-type FE displacement expression Eq. (19) or Eq. (20) discussed above, by applying PVD, one can
obtain the expression of internal work as:

δLint =

∫
Ω

∫
Ak

(δεkn
T
σkn + δεkp

T
σkp)dAkdΩ = δU

(k)
js

T
Kk
jsτiU

(k)
iτ (24)

where Kk
jsτi is the stiffness matrix. A generic surface load acting on a horizontal surface of the plate

can be denoted as pα(x, y), where the subscript α indicates the direction of the load, which can equal
to x, y or z. The virtual variation of the external work caused by pα can be expressed as Eq. (25):

δLpαext =

∫
Ω
δu(k)

α pαdΩ =

∫
Ω
δu(k)

αsjNjF
(k)
s (zp)pαdΩ (25)

in which zp represents the coordinate of the loading surface. If the external surface load is written
into a vector as pα(x, y) ([px, 0, 0]T , [0, py, 0]T or [0, 0, pz]

T ), Eq. (25) can be further expressed in a
vector form as in Eq. (26), where P k

js is the FE load vector expression in which only the components
on α direction are non-zero.

δLpαext = δU
(k)
js

T
P

(k)
js (26)

Thus the governing equation can be expressed as Eq. (27):

δU
(k)
js

T
: K

(k)
jsτiU

(k)
iτ = P

(k)
js (27)

The 3×3 matrix Kk
jsτi is the so-called fundamental nucleus of stiffness in the context of CUF, which

is the core unit of the element stiffness matrix. By adopting the Einstein summation convention, the
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stiffness matrix of the spatial domain identified by Ω and k can be obtained. P
(k)
js is the fundamental

nucleus of external load. For more details about the derivation, one can refer to [35] and [38].
For multi-layered structures, in the case of LW models, by assembling the stiffness matrices corre-

sponding to each layer and overlapping the components at layer interfaces, the complete nodal stiffness
matrix of an element can be acquired, and for ESL models the stiffness matrices from different layers
will be lumped together.

5 Numerical study

5.1 Setting of boundary conditions

Generally speaking, the edge supports can be imposed on the displacements, stresses, boundary mo-
ments and forces, and the boundary condition setting is directly related to the formulations adopted.
Historically, the simple supports for plates and shells have been classified into two types, namely SS1
and SS2 [4, 22, 23]. Based on the Navier approach, SS2 have been successfully used in the analysis of
cross-ply laminated plates [6]. While for angle-ply laminates, there have been some arguments. Adop-
tion of SS1 for angle-ply laminates while SS2 for cross-ply problems are reported in [18, 19, 20, 21].
Whereas such definitions differentiate cross-ply laminates from angle-ply anisotropic laminates, which
are more mathematically meaningful to apply Navier’s approach rather than physically meaningful.
Also, such definitions are only applicable to a specific set of cases. Especially, Sovia’s [11] variational
approach used two sets of displacement variables, and boundary conditions of each set need to be
satisfied separately, however considering transverse shear stresses σxz or σyz at the center of edges,
only the results correspond to either the symmetric part or antisymmetric part was reported. As for
models based on Mixed Variational Theorem, not only boundary displacements need to be defined,
the additional primary variables (transverse shear stresses σxz and σyz, for example) should also be
addressed.

Apparently, all the above-described boundary conditions used in most published articles for simply
supported angle-ply laminates have met difficulties when applied to displacement-based finite element
models such as 3D brick elements, 2D LW models, and non-Taylor based ESL models. To take the
advantage of such models in obtaining numerical solutions for general angle-ply laminated plate, suitable
boundary conditions are necessary and should be explicitly specified by stating.

Jones described four kinds of simply-supported boundary conditions in [46], as shown in Fig. 3,
among which S4 refers to boundary conditions that permit translation in any direction in the x-y
plane. If S4 is taken as a reference, to avoid stress concentration, geometrical constraints can be set
on the edge surfaces rather than the edge of the middle surface, and the boundary value of bending
moments and forces of S4 can still be satisfied (such as Mx = Nx = Nxy on edge x = 0). Such simple
supports are easy to be applied on displacement-based 3D models, refined 2D LW models and non-
Taylor based ESL models. To be more specific, the simply supported and clamped boundary conditions
adopted in the following sections are as shown in Table 1, in which the subscript τ is the expansion
index, and superscript k is the layer index.

Table 1: Definition of displacement boundary conditions on geometrical edges

Boundary types 3D brick element
CUF-based plate models

ESL LW

Simply supported w = 0 wτ = 0 wkτ = 0

Clamped u = v = w = 0 uτ = vτ = wτ = 0 ukτ = vkτ = wkτ = 0
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Figure 3: Simply supported edge boundary conditions for a plate, Figure D-8 in Jones [46].

Note that when the simple supports in Table 1 are enforced to all the four edges of a plate, three
in-plane rigid body motion modes still exist: two translation mode and one rotation mode. To eliminate
rigid body motion modes, small penalty stiffness needs to be introduced to at least two nodes on both x
and y directions, and the penalty value should be small enough to avoid influencing the stress field but
large enough to constrain the unnecessary displacements. In ABAQUS, this can be easily implemented
with spring elements that connect the two nodes to “the ground”.

5.2 Acronyms

An acronym system is given here to denote the related kinematics. For LW models, LW-CBTn denotes
a model adopting Chebyshev polynomials of the first kind to the nth order, which includes n + 1
expansions in total. ESL models adopting full trigonometric series including both sine and cosine
terms are indicated by ESL-TRGn, in which the final number n represents the number of expansion
terms used in the thickness functions Fτ except the constant term. If a letter Z follows an ESL
acronym, a Murakami zig-zag term will be added to the displacement functions. Taking ESL-TRG3Z
as an example, it refers to the following kinematics:

u(x, y, z) = u0(x, y) + sin(
πz

h
)u1(x, y) + cos(

πz

h
)u2(x, y) + sin(

2πz

h
)u3(x, y) + (−1)kζku4Z (28)

5.3 Numerical cases

Numerical study of several cases is reported in this section. The attention is restricted to square
angle-ply plates subjected to distributed loads under simply supported boundary conditions and mixed
clamped-free boundary conditions as have been stated in Table 1. For all the cases studied, the
orthotropic layer material coefficients are listed as follows referring to Savoia and Reddy [11]:

EL = 25 psi (176 GPa), ET = 106 psi (7 GPa), GLT = 0.5106 psi (3.5 GPa),

GTT = 0.2 psi (1.4 GPa), νLT = νTT = 0.25.
(29)

where E, G and ν denotes the Young’s modulus, shear modulus, and Poisson’s ratio, respectively.
L indicates fiber longitudinal and T transverse direction. To compare the results, the following non-
dimensionalization parameters are used:

w̄ = 100w
ETh

3

p0a4
, {σ̄xx,σ̄yy, σ̄xy} = {σxy, σyy, σxy}

h2

p0a2
,

{τ̄xz, τ̄yz} = {τxz, τyz}
h

p0a
, σ̄zz = σzz/p0, z̄ = z/h.

(30)
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Only square plates are analyzed in the following numerical cases, and a = b = 1 is adopted. All the
plates analyzed have layers of equal thickness. An amplitude of the distributed load p0 = 1 is used.
The stacking sequence is described from bottom to top by default.

5.3.1 Simply-supported thick square plates with (−15°/15°) and (−30°/30°/− 30°/− 30°)

Simply supported antisymmetric angle-ply laminated plates subjected to bi-sinusoidally distributed
load on both top and bottom surfaces are studied. The analyzed plates are:

• (−15°/15°) plate with span-to-thickness ratio a/h = 4;

• (−30°/30°/− 30°/30°) plate with span-to-thickness ratio a/h = 10.

The subjected transverse loads as shown in Eq. (31) are imposed to the square plates:

pt(x, y) = −p0

2
sin

πx

a
sin

πy

b
, pb(x, y) = −p0

2
sin

πx

a
sin

πy

b
(31)

in which pt and pb refer to the load on the top and bottom surface, respectively, and their negative
sign implies the loading direction.

The results are compared with the reference solutions proposed by Savoia [11]. Note that Savoia
[11] used two set of coordinate functions and each set has its specific boundary conditions, which is
different from the simple supports used in this case as shown in Table 1.

For angle-ply laminated plates, symmetry on the center lines no longer exists, so the whole plate
should be modeled. ABAQUS 3D brick element C3D20R (20-node quadratic brick element with reduced
integration), plate models LW-CBTn and ESL-TRGnZ are adopted in the analysis. With the increase
of the number of expansion terms, numerically converged displacement and stresses can be acquired
with requisite accuracy. By using a relative error threshold of 2%, for the two-layered plate LW-CBT5
and ESL-TRG9Z can achieve the convergence, and for the four-layered plate with a/h = 10 LW-CBT4
and ESL-TRG11Z are sufficient to guarantee the numerical convergence. At the same time, to achieve
convergence related to element size, FE mesh grids of 10×10 and 16×16 are adopted for the two-layered
and four-layered plates, respectively. Meanwhile, ABAQUS models used eight brick elements through
the thickness of each layer, and the elements have an aspect ratio (in-plane dimension over thickness)
of 6.4 for two-layered and 20 for four-layered plates, respectively.

Fig. 4 and Fig. 5 summarize the stress variation through the thickness at (a2 ,
b
2) and (a2 , 0). The

results show that CUF-based refined models are capable of capturing the 3D stress distribution over
the laminated plates in detail. Solutions attained with variable kinematics including LW-CBTn and
ESL-TRGnZ show good agreement with ABAQUS 3D results for the two thick plates studied. Because
of the difference in boundary conditions, the FE models adopted provide different results from Savoia’s
analytical solutions [11], but with very similar through-the-thickness variation. It should be noted
that for the plate with four layers, comparatively speaking, LW-CBTn have better performance than
ESL-TRGnZ considering the through-the-thickness variation of transverse shear stress. By the way,
possibly the signs of σ̄xy and σ̄yz are inverted in [11].
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Figure 4: Stress variation through the thickness, simply supported square plate with (−15°/15°), sub-
jected to bi-sinusoidally distributed load on both top and bottom surfaces, a/h = 4.
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Figure 5: Stress variation through the thickness, simply supported square plate with (−30°/30°/ −
30°/30°), subjected to bi-sinusoidally distributed load on both top and bottom surfaces, a/h = 10.

5.3.2 Simply supported square thick and thin plates with (0°/30°)

This numerical case considers a two-layered square plate with a general lamination of (0°/30°) subjected
to bi-sinusoidally distributed pressure on its top and bottom surfaces, under simply supported boundary
conditions. The load adopted is as shown in Eq. (31).

Variable kinematic model LW-CBTn and ESL-TRGnZ are used in analysis, and results obtained by
above-mentioned ABAQUS 3D model are also listed for comparison. Both mesh grid convergence and
expansion convergence have been reported in Table 2. For the case of a/h = 4, the maximum relative
error is less than 1.5%; meanwhile for a/h = 50, this value is 3% except the case of σ̄zz. Note that the
ABAQUS 3D model used for the thin plate (a/h = 50) has an in-plane mesh of 80×80, which means
the brick elements have an aspect ratio of 10. It can be found that results obtained with CUF-based
refined models are in good agreement with ABAQUS 3D results.
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Fig. 6 shows the through-the-thickness variation of stresses on two in-plane points of the plate.
Fig. 7 and Fig. 8 illustrate the contour plots of σyz of two-layered plate with a/h = 4 and a/h = 50,
respectively, in which it can be found that when the plate becomes thin, the stress distribution becomes
very different from the case of thick plate and the maximum stress location moves to the edge corners.

Results in Table 2, Figs. 6 to 8 show that CUF-based refined models with variable kinematics LW-
CBTn and ESL-TRGnZ are less sensitive to the aspect ratio of laminated plates, which can obtain
solutions with comparable accuracy but less computational costs compared with 3D models, especially
for thin structures. Moreover, CUF-based plate models support any arbitrary number of output points
through the thickness in post-processing, while for a model with brick elements the number of output
nodes depends on the number of element used explicitly, and the stresses on these nodes are extrapolated
from the integration points.

Table 2: Displacement and stress evaluation of square plate with (0°/30°) subjected to simply-supported
boundary conditions.

a/h Kinematics Mesh
w̄ σ̄xx σ̄yy σ̄xy 10σ̄xz 10σ̄yz σ̄zz DOFs

(a2 ,
b
2 , 0) (a2 ,

b
2 ,
−h
2 ) (a2 ,

b
2 ,

h
2 ) (a2 ,

b
2 ,

h
2 ) (a2 , 0,

h
4 ) (a2 , 0,

h
4 ) (a2 ,

b
2 ,
−h
2 )

4

LW-CBT4 8×8 -1.956 0.8171 -0.2299 -0.2561 -1.543 -1.483 0.5036 6069
LW-CBT4 10×10 -1.957 0.8138 -0.2301 -0.2568 -1.534 -1.475 0.5032 9261
LW-CBT5 10×10 -1.957 0.8139 -0.2301 -0.2569 -1.487 -1.453 0.5012 11907
LW-CBT6 10×10 -1.957 0.8139 -0.2301 -0.2569 -1.487 -1.453 0.5004 14553

ESL-TRG7Z 10×10 -1.957 0.8131 -0.2299 -0.2566 -1.546 -1.486 0.5036 11907
ESL-TRG9Z 10×10 -1.958 0.8139 -0.2301 -0.2569 -1.498 -1.458 0.5052 14553
ESL-TRG11Z 10×10 -1.958 0.8138 -0.2300 -0.2569 -1.482 -1.450 0.4984 17199
ABAQUS-3D 10×10 -1.941 0.8067 -0.2298 -0.2571 -1.451 -1.449 0.5017 23199

50

LW-CBT3 18×18 -0.7833 0.6175 -0.1578 -0.1937 -8.897 -3.256 0.5410 20535
LW-CBT3 20×20 -0.7836 0.6174 -0.1579 -0.1939 -9.093 -3.287 0.5430 25215
LW-CBT4 20×20 -0.7836 0.6174 -0.1579 -0.1939 -9.091 -3.286 0.5010 35301

ESL-TRG11Z 20×20 -0.7836 0.6173 -0.1579 -0.1939 -9.026 -3.147 0.5635 65559
ESL-TRG13Z 20×20 -0.7836 0.6174 -0.1579 -0.1939 -9.000 -3.240 0.5070 75645
ABAQUS-3D 50×50 -0.7846 0.6170 -0.1581 -0.1944 -8.719 -2.981 0.5025 517599
ABAQUS-3D 80×80 -0.7848 0.6169 -0.1581 -0.1944 -9.154 -3.036 0.5025 1310499
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Figure 6: Through-the-thickness variation of stresses, simply supported square plate with(0°/30°),
subjected to bi-sinusoidally distributed load on both top and bottom surfaces.
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Figure 7: Contour plot of σyz, thick simply supported plate (a/h = 4) with (0°/30°), z × 1.
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Figure 8: Contour plot of σyz, thin simply supported plate (a/h = 50) with (0°/30°), z × 12.5.

5.3.3 Simply supported square thick and thin plates with (−45°/45°)

Based on the above two assessments, thick and thin simply supported square plates with lamination of
(−45°/45°) are analyzed with CUF-based refined models adopting variable kinematics LW-CBTn and
ESL-TRGnZ. Layers in each laminated plates have the same thickness h/2. The plates are imposed to
uniformly distributed load p0 on top surface, as shown in Eq. (32). Plates with various span-to-thickness
ratios (a/h = 4, 20, 100) are analyzed.

pt(x, y) = p0 (32)

Table 3 summarizes the results on the two-layered angle-ply thick, moderately thick and thin plates,
in which the maximum relative error is 3%. It can be concluded that thin laminated plates tend to use
more refined mesh to guarantee convergence. Since variable kinematics are adopted, the numbers of
expansions used in the thickness functions can be decided by the level of accuracy required in specific
situations. With a sufficient number of expansion, CUF-based refined models can provide converged
numerically approximated solutions with requisite accuracy.

Fig. 9 shows the through-the-thickness variation of stresses. Note that when such simple supports
are enforced on the four edges of a plate, σxz on point (a2 , 0) and σyz on point (0, b2) are different from
0, which has also been shown by the former two numerical cases as in Figs. 4 to 6.

16



-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

σ_

x
x

z
_

a/h=4-CBT6
a/h=20-CBT5
a/h=100-CBT4

(a) σ̄xx(a
2
, b
2
, z̄)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

σ_

x
y

z
_

a/h=4-CBT6
a/h=20-CBT5
a/h=100-CBT4

(b) σ̄xy(a
2
, b
2
, z̄)

-4

-3

-2

-1

0

1

2

3

4

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

1
0
σ_

x
z

z
_

a/h=4-CBT6
a/h=20-CBT5
a/h=100-CBT4

(c) σ̄xz(
a
2
, 0, z̄)

0

1

2

3

4

5

6

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

1
0
σ_

y
z

z
_

a/h=4-CBT6
a/h=20-CBT5
a/h=100-CBT4

(d) σ̄yz(
a
2
, 0, z̄)

Figure 9: Through-the-thickness variation of stresses, (−45°/45°) square plate imposed to uniformly
distributed load on the top surface under simply supported boundary conditions.
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Table 3: Displacement and stress evaluation of simply-supported square plates with (−45°/45°) sub-
jected to uniformly distributed load on top surface.

a/h Kinematics Mesh
w̄ σ̄xx σ̄yy σ̄xy 10σ̄xz 10σ̄yz σ̄zz DOFs

(a2 ,
b
2 ,

h
2 ) (a2 ,

b
2 ,

h
2 ) (a2 ,

b
2 ,

h
2 ) (a2 ,

b
2 ,
−h
2 ) (a2 , 0,

h
4 ) (a2 , 0,

h
4 ) (a2 ,

b
2 ,

h
2 )

4

LW-CBT4 8×8 3.227 0.5423 0.5423 0.4046 3.262 5.400 0.9976 6069
LW-CBT4 10×10 3.227 0.5453 0.5453 0.4073 3.269 5.431 1.000 9261
LW-CBT5 10×10 3.229 0.5454 0.5454 0.4074 3.167 5.316 1.001 11907
LW-CBT6 10×10 3.229 0.5454 0.5454 0.4073 3.169 5.319 0.9988 14553

ESL-TRG7Z 10×10 3.224 0.5443 0.5443 0.4066 3.333 5.472 0.9902 11907
ESL-TRG9Z 10×10 3.228 0.5453 0.5453 0.4073 3.187 5.353 1.005 14553
ESL-TRG11Z 10×10 3.228 0.5453 0.5453 0.4073 3.150 5.325 0.9951 17199

20

LW-CBT3 10×10 1.245 0.3727 0.3727 0.2907 3.723 5.531 1.057 6615
LW-CBT3 12×12 1.246 0.3737 0.3737 0.2916 3.789 5.620 1.059 9375
LW-CBT4 12×12 1.246 0.3737 0.3737 0.2916 3.788 5.619 0.9975 13125
LW-CBT5 12×12 1.246 0.3737 0.3737 0.2916 3.771 5.600 0.9973 16875

ESL-TRG7Z 12×12 1.245 0.3733 0.3733 0.2914 3.949 5.807 1.036 16875
ESL-TRG9Z 12×12 1.246 0.3737 0.3737 0.2916 3.776 5.610 1.013 20625
ESL-TRG11Z 12×12 1.246 0.3737 0.3737 0.2916 3.742 5.592 0.9947 24375

100

LW-CBT3 14×14 1.056 0.3493 0.3493 0.2751 3.213 4.823 1.003 12615
LW-CBT3 16×16 1.057 0.3496 0.3496 0.2754 3.225 4.883 1.031 16335
LW-CBT4 16×16 1.057 0.3496 0.3496 0.2754 3.221 4.880 1.000 22869

ESL-TRG9Z 16×16 1.057 0.3495 0.3495 0.2753 2.763 3.773 1.196 35937
ESL-TRG11Z 16×16 1.057 0.3496 0.3496 0.2754 3.195 4.982 1.034 42471

5.3.4 Simply supported square thick and thin plates with (−45°/0°/90°/45°)

In engineering application, thin-walled laminated structures usually have more general and complicated
stacking sequence. In this section, numerical solutions for a four layered square plate with lamination
(−45°/0°/90°/45°) are proposed. The plates are subjected to bi-sinusoidally distributed load on the
top surface (as described in Eq. (33)) under simply supported boundary conditions. Span-to-thickness
ratios a/h = 4, 50 are considered.

pt(x, y) = p0 sin
πx

a
sin

πy

b
(33)

The numerical results have been summarized in Table 4, and stress variation through thickness on
two in-plane points are illustrated as shown in Fig. 10. It can be found that even if with a significant
number of expansion ESL-TRGnZ have achieved the numerical convergence, the corresponding through-
the-thickness variation of transverse shear stresses are still not continuous at layer interfaces, while this
is not the case for the plate with two layers as shown in Fig. 4 and Fig. 6. This phenomenon can also
be found in Fig. 5 (c) and (d). Compared with ESL-TRGnZ, LW-CHTn models are more suitable for
laminates with more than two layers in capturing the zig-zag behaviors.

Fig. 11 presents the contour plots of σxz for both the thick and thin plates, which show that CUF-
based advanced kinematics can capture very detailed stress field on laminated structures. Similar with
Figs. 7 and 8, it can also be observed that the location of maximum stress moves from the edge center
to edge corner when the laminated plate becomes thinner.

18



Table 4: Displacement and stress evaluation of simply supported square plate with (−45°/0°/90°/45°),
subjected to bi-sinusoidally distributed load on the top surface.

a/h Kinematics Mesh
w̄ σ̄xx σ̄yy σ̄xy 10σ̄xz 10σ̄yz σ̄zz DOFs

(a2 ,
b
2 ,

h
2 ) (a2 ,

b
2 ,

h
2 ) (a2 ,

b
2 ,

h
2 ) (a2 ,

b
2 ,
−h
2 ) (a2 , 0,

3h
8 ) (a2 , 0,

h
8 ) (a2 ,

b
2 ,

h
2 )

4

LW-CBT3 6×6 2.517 0.3913 0.3834 0.2421 1.259 3.060 1.016 4563
LW-CBT3 8×8 2.518 0.3935 0.3856 0.2453 1.263 3.057 1.014 7803
LW-CBT4 8×8 2.518 0.3933 0.3854 0.2453 1.266 3.058 1.001 11271

ESL-TRG9Z 8×8 2.508 0.3925 0.3841 0.2445 1.154 3.010 1.004 9537
ESL-TRG11Z 8×8 2.510 0.3924 0.3842 0.2445 1.148 3.060 1.003 11271

50

LW-CBT3 14×14 0.6846 0.1791 0.1650 0.1159 0.4639 3.485 1.016 22707
LW-CBT3 16×16 0.6852 0.1793 0.1651 0.1161 0.4537 3.559 1.012 29403
LW-CBT4 16×16 0.6852 0.1792 0.1651 0.1161 0.4552 3.558 1.000 42471

ESL-TRG9Z 16×16 0.6847 0.1792 0.1650 0.1160 0.4426 3.721 0.6130 35937
ESL-TRG11Z 16×16 0.6847 0.1793 0.1651 0.1160 0.3534 3.572 1.651 42471
ESL-TRG13Z 16×16 0.6848 0.1792 0.1650 0.1160 0.4473 3.595 0.5273 49005
ESL-TRG15Z 16×16 0.6849 0.1792 0.1651 0.1160 0.5329 3.589 1.095 55539
ESL-TRG17Z 16×16 0.6849 0.1792 0.1651 0.1160 0.4852 3.590 1.065 62073
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Figure 10: Through-the-thickness variation of stresses, simply supported plate with (−45°/0°/90°/45°)
under bi-sinusoidally distributed load on the top surface.
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Figure 11: σxz contour plot of (−45°/0°/90°/45) plate loaded to bi-sinusoidally distributed load on the
top surface under simply-supported boundary conditions.

5.3.5 Square plate with (0°/60°) subjected to mixed clamped-free boundary conditions

Square plates with stacking sequence (0°/60°) under uniformly distributed load p0 on top surface ac-
cording to Eq. (32) are considered. The two layers have equal thickness h/2. Span-to-thickness ratios
considered are a/h = 10 and 50. The mixed clamped-free boundary conditions adopted are denoted as
CFCC, to be specific: clamped on edge x = 0, free on edge y = 0, clamped on edge x = a, clamped on
edge y = b.

Displacement and stresses results have been summarized in Table 5. Even if variable kinematics
ESL-TRGnZ achieved numerically converged results, they still consume more computation resources
than LW-CBTn models, given that only two layers exist in the laminated plate. Fig. 12 reports the
stress variation through the thickness of the plate, in which σ̄yz in Fig. 12 (d) is in good agreement
with the results proposed by Nik [21].

Table 5: Displacement and stress evaluation of square plate with (0°/60) subjected to uniformly dis-
tributed load on the top surface under mixed boundary conditions CFCC.

a/h Kinematics Mesh
w̄ σ̄xx σ̄yy σ̄xy σ̄xz σ̄yz σ̄zz DOFs

(a2 ,
b
2 ,

h
2 ) (a2 ,

b
2 ,
−h
2 ) (a2 ,

b
2 ,

h
2 ) (a4 ,

b
4 ,

h
2 ) (a4 ,

b
4 ,
−h
4 ) (a2 ,

b
4 ,

h
4 ) (a2 ,

b
2 ,

h
2 )

10

LW-CBT3 8×8 0.7987 -0.5601 0.2196 0.09479 0.5288 0.08173 0.5250 4335
LW-CBT3 12×12 0.7992 -0.5521 0.2156 0.08228 0.5204 0.08187 0.5311 9375
LW-CBT4 12×12 0.7994 -0.5518 0.2155 0.08424 0.5202 0.08219 0.5001 13125
LW-CBT5 12×12 0.7996 -0.5517 0.2157 0.08774 0.5194 0.08067 0.5007 16875

ESL-TRG9Z 12×12 0.7995 -0.5517 0.2156 0.08923 0.5239 0.08221 0.5066 20625
ESL-TRG11Z 12×12 0.7996 -0.5516 0.2157 0.09352 0.5185 0.08089 0.4975 24375
ESL-TRG13Z 12×12 0.7997 -0.5517 0.2154 0.09528 0.5156 0.07977 0.4934 28125

50

LW-CBT3 16×16 0.4982 -0.5333 0.2021 0.05675 0.5322 0.09120 0.5345 16335
LW-CBT3 20×20 0.4984 -0.5321 0.2017 0.05510 0.5292 0.09111 0.5285 25215
LW-CBT4 20×20 0.4984 -0.5320 0.2018 0.05589 0.5295 0.09101 0.5022 35301
LW-CBT5 20×20 0.4984 -0.5320 0.2018 0.05649 0.5290 0.09032 0.4970 45387

ESL-TRG9Z 20×20 0.4984 -0.5321 0.2017 0.05510 0.5292 0.09111 0.5285 55473
ESL-TRG11Z 20×20 0.4984 -0.5320 0.2015 0.05693 0.5297 0.08992 0.4978 65559

20



-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

σ_

x
x

z
_

a/h=10,LW-CBT5
a/h=10,ESL-TRG13Z
a/h=50,LW-CBT5
a/h=50,ESL-TRG11Z

(a) σ̄xx(a
2
, b
2
, z̄)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
σ_

x
y

z
_

a/h=10,LW-CBT5
a/h=10,ESL-TRG13Z
a/h=50,LW-CBT5
a/h=50,ESL-TRG11Z

(b) σ̄xy(a
4
, b
4
, z̄)

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

σ_

x
z

z
_

a/h=10,LW-CBT5
a/h=10,ESL-TRG13Z
a/h=50,LW-CBT5
a/h=50,ESL-TRG11Z

(c) σ̄xz(
a
4
, b
4
, z̄)

-0.02

0

0.02

0.04

0.06

0.08

0.1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

σ_

y
z

z
_

a/h=10,LW-CBT5
a/h=10,ESL-TRG13Z
a/h=50,LW-CBT5
a/h=50,ESL-TRG11Z

(d) σ̄yz(
a
4
, b
4
, z̄)

Figure 12: Through-the-thickness variation of stresses, (0°/60°) plate with a/h = 10 and 50, subjected
to uniformly distributed load on the top surface under mixed boundary conditions CFCC.

6 Conclusions

This work studied angle-ply laminated plates with CUF-based variable kinematic LW models adopting
Chebyshev polynomials of the first kind (LW-CBTn) and ESL models based on full trigonometric series
expansion (ESL-TRGnZ). Simply supported and mixed clamped-free boundaries that are suitable for
displacement-based 3D models, 2D LW models and ESL models with non-Taylor series are adopted for
analysis. Based on the numerical study, the following conclusions have been drawn:
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1. CUF provides a unified approach to integrate a variety of approximation theories (including both
interpolation polynomials and series expansion theories) to obtain refined FE model.

2. With CUF-based variable kinematics, it is convenient to increase the numbers of expansions
adopted in the thickness function to achieve numerical convergence with requisite accuracy.

3. In the cases with simply supported boundary conditions, by using clearly stated geometrical
edge supports as defined in Table 1, the results for angle-ply laminated plate obtained with
displacement-based refined plate models are verified by comparison with ABAQUS 3D solutions.

4. Both the two classes of variable kinematics adopted (LW-CBTn and ESL-TRGnZ) can achieve
numerical convergence, yet ESL-TRGnZ models tend to use more expansions in the thickness
functions in the whole through-the-thickness domain.

5. For angle-ply laminated plates with a large number of layers, compared with LW models (LW-
CBTn), ESL models with Murakami’s zig-zag function (ESL-TRGnZ) are less efficient in ob-
taining continuous transverse shear stresses through the thickness even if a significant number of
expansion terms are adopted in some cases.

6. CUF-based refined 2D FE models can capture 3D stress field in detail with much fewer compu-
tation costs compared with 3D FE models while guaranteeing accuracy.

7. Some numerical results on angle-ply laminated plates are reported, which can be used as the
reference for future study.

In the above discussed numerical cases, ESL models adopting full trigonometric series (ESL-TRGnZ)
have been proved to be less numerically efficient compared with LW models (LW-CTBn). Since Fourier
Transform have been successfully applied in signal processing, the application of trigonometric series
in the analysis of piezoelectric components might be worth of the efforts. The above work can also be
extended to the formulations of shells in the future.
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