
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Solution of Coupled Thermoelasticity Problem in Rotating Disks / Entezari, Ayoob. - (2017).
Original

Solution of Coupled Thermoelasticity Problem in Rotating Disks

Publisher:

Published
DOI:10.6092/polito/porto/2684953

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2684953 since: 2017-10-09T10:03:54Z

Politecnico di Torino



Doctoral Dissertation

Cotutelle Doctoral Program Between the Politecnico di Torino (Italy) and

Sharif University of Technology (Iran) in Mechanical Engineering

Solution of Coupled Thermoelasticity

Problem in Rotating Disks

By

Ayoob Entezari
******

Supervisors:

Prof. Erasmo Carrera

Prof. Mohammad Ali Kouchakzadeh

Advisor:

Dr. Matteo Filippi

Doctoral Examination Committee:

Prof. Maria Cinefra, Referee, Politecnico di Torino, Italy.

Prof. Elvio Bonisoli, Referee, Politecnico di Torino, Italy.

Prof. Hassan Haddadpour, Referee, Sharif University of Technology, Iran.

Prof. Ali Hosseini Kordkheili, Referee, Sharif Universityof Technology, Iran.

Politecnico di Torino

2017



Declaration

I hereby declare that, the contents and organization of thisdissertation constitute my

own original work and does not compromise in any way the rights of third parties,

including those relating to the security of personal data.

Ayoob Entezari

2017

* This dissertation is presented in partial fulfillment of the requirements forPh.D.

degreein the Graduate School of Politecnico di Torino (ScuDo).



I would like to dedicate this dissertation to my beloved wife, Elham, and my sweet

daughter, Helena.



Acknowledgements

I would like to express my special appreciation and thanks tomy supervisor Pro-

fessor Dr. Erasmo Carrera, you have been a tremendous mentorfor me. I would

like to thank you for encouraging my research and for allowing me to grow as a

visiting researcher. Your advice on both research as well ason my career have been

priceless. I would also like to thank Dr. Matteo Filippi for your brilliant advice and

comments. All of you have been there to support me for my Ph.D.dissertation.



Abstract

The main purpose of this dissertation is to study coupled thermoelastic behaviors in

disks subjected to thermal shock loads based on the generalized and classic theories

of coupled thermoelasticity. To this end, this research hasbeen carried out in two

stages.

In the first stage, thermoelasticity problems in an axisymmetric rotating disk with

constant thickness made of a homogeneous isotropic material are analytically solved

and closed-form formulations are presented for temperature and displacement fields.

Since, the analytical solution is not always feasible, the finite element (FE) method

can be employed for more sophisticated coupled thermoelasticity problems. Ac-

cordingly, in the second stage of the research, a novel refined 1D finite element

approach with 3D-like accuracies are developed for theories of coupled thermoelas-

ticity. Then, the developed FE models are applied for a 3D solution of the dynamic

generalized coupled thermoelasticity problem in disks. Use of the reduced models

with low computational costs may be of interest in a laborious time history analysis

of the dynamic problems.

The obtained analytical and numerical solutions are in goodagreement with the re-

sults available in the literature. It is further shown that the proposed analytical and

FE methods are quite efficient with very high rate of convergence.
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Chapter 1

Introduction

1.1 Rotating disk

Rotating disks subjected to thermal loads are widely used inmany engineering fields

such as aerospace, mechanical, naval, chemical plant, electronics, and biomaterials.

Normally, these components can be manufactured by using anymetal. However,

for some specific applications such as in aerospace where light-weight and stiffness

becomes necessary in high temperature environment, the components need to be

made using special material such as a functionally graded material (FGM). For an

example, in a turbine rotor, there is always a possibility that the heat from the exter-

nal surface transmits to the shaft and from it to the bearingscausing adverse effects

on its functioning and efficiency.

In practical problems such as a realistic turbine rotor, usually, the disk profile is

complex and designed as a combination of concave, convex andlinear sections. In

addition, there are other complex components such as shafts, air seals, spacers and

blades along with the disks that represent extra distributed and concentrated loads

on the disk surface. Moreover, in operation, when the rotating disk is exposed to

a hot gas flow, there is a 3D temperature field on the disk, whichcan significantly

affect the mechanical properties of the material.

Furthermore, in some of the applications, such as gas turbine engines, the disks may

be subjected to sudden temperature changes in short periodsof time as a result of

start-up and shut-down procedures of the engines. These sudden changes in tem-

perature can cause time dependent thermal stresses in the disks. Thermal stresses
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due to large temperature gradients are higher than the steady-state stresses. These

large stresses occur before reaching the steady-state condition. In such conditions,

the disk should be designed with consideration of transienteffects.

1.2 Theories of thermoelasticity

In the static uncoupled thermoelasticity, thermal effects on a body are restricted

to strains due to a steady-state temperature distribution.As a more general the-

ory of thermoelasticity, considering the transient heat conduction equation leads to

time-dependent temperature distributions which can be used to obtain the transient

thermal stresses. Such problems are calledquasi-static uncoupled thermoelasticity

problems. Alternatively, if external thermo-mechanical loads applied to the body

vary adequately rapidly with the time so that inertia effects are excited, the inertia

terms must be taken into account in the equations of motion. This theory is known

as thedynamic uncoupled thermoelasticity. It is obvious that in all these theories,

the temperature field is independently obtained from the heat conduction equation,

while the displacement and stress fields are assumed to be dependent of the temper-

ature.

When a structure is exposed to high-speed thermo-mechanical loads, the theories

of uncoupled thermoelasticity may not provide entirely true physical behaviors. To

avoid this drawback, interactions of the mechanical state of the elastic body on the

temperature filed may be also simulated using the theories ofcoupled thermoelas-

ticity. In these theories, the time derivatives of strain appear inthe heat conduction

equation so as to lead to the coupling between elasticity andenergy equations. Ac-

cordingly, to find the solution for temperature and displacement fields and finally

stresses, these coupled equations must be solved concurrently.

The thermoelasticity equations with the coupling effect was introduced by Duhamel

[27] in 1837, for the first time, and then 120 years later, Biot[10], in 1956, presented

the theory of classical thermoelasticity based on the principles of the irreversible

thermodynamics. A history of thermoelasticity can be further found in the text-

books [11, 41].

Thus, under thermo-mechanical shock loading, the inertia and coupling effects can

play important role in the thermoelastic behavior of a body.However, it has been

shown that the coupling term may be more effective on the temperature and stress
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distributions than the inertia term in such situations (see[11, 41]).

Applications of the coupled thermoelasticity in advanced structural design problems

have attracted the attention of many researchers during thesecond half of the last

century. These applications can range from aerospace structures to fast-burst reac-

tors, pulsed lasers, and particle accelerators which can supply sudden heat pulses in

extremely short periods of time [8]. For instance, in ultra-fast pulsed lasers which

is employed for nondestructive detection [12], measurement of material properties

[44] and micro-machining [66], the heat pulse may be imposedin an order of Pico-

second or less. The nature of the heat transfer mechanism instantaneously after the

imposition of the pulse and the resulting temperature distribution at the surface of

the body are some matters of interest in such applications.

Due to the parabolic nature of the heat conduction equation in the classical theory

of thermoelasticity, the thermal disturbances are predicted to propagate with infi-

nite speed through the elastic body. This prediction may be sufficiently accurate for

most engineering applications. However, it is not physically realistic and acceptable

in some practical problems involving high thermal loads at extremely short time in-

tervals or very low temperatures near the absolute zero. Indeed, in such cases, the

classical theory is not well able to detect thermal wave disturbances (see [22]).

To overcome this drawback, several non-classical models ofthe coupled thermoe-

lasticity with the finite speed of the thermal wave propagation were introduced.

Typically, these models are known as thegeneralized theories of thermoelasticity.

Among these theories, Lord-Shulman (LS), Green-Lindsay (GL) and Green-Naghdi

(GN) are the most well-known models. The detailed discussions of the generalized

thermoelasticity with finite wave speeds have been presented in [45].

1.3 Literature review

In general, analytical solutions of the coupled thermoelasticity problems are math-

ematically laborious, so that many simplifying assumptions may be required to

achieve a closed form solution for such problems. A survey ofthe literature in-

dicates that the number of articles using analytical methods to solve the problems is

limited. Most of the analytical studies are restricted to the basic problems such as

the infinite space, half-space and layer, where the boundaryconditions are simple
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(see [39, 58]). For some bounded problems with simple initial and boundary condi-

tions, analytical solutions of the coupled thermoelastic equations have been reported

by a few investigators. Among them it may be referred to the exact solutions for

beam [29], and rectangular plate [47] problems, as well as a one-dimensional (1D)

axisymmetric solution for spherical [57] and cylindrical [42] problems.

Indeed, the exact solution for more sophisticated geometries and boundary condi-

tions as well as for all theories of coupled thermoelasticity is not available in the lit-

erature. Accordingly, the development of alternative solution techniques including

semi-analytical and numerical methods has been essential.In order to obtain nu-

merical solution of the coupled thermoelastic problems, the finite difference (FD),

the finite element (FE) and the boundary element (BE) methodshave been used.

Among the procedures, however, the FE method is more widely employed for this

class of problems due to the adaptability of this method.

The finite element formulation of the thermoelasticity problems can be derived

from the variational approach and the weighted residual techniques. For elastic

continuum, the variational approach is based on the application of variational cal-

culus, which deals with the extremization of the total potential and kinetic energies,

while in the weighted residual methods; the governing equations are multiplied by

a weighting function and then averaged over the domain.

In the beginning, based on the variational principle, Wilson and Nickell [64] de-

veloped FE formulations for the heat conduction equation without the mechanical

coupling term, and Fujino and Ohsaka [37] presented a FE solution to static uncou-

pled thermoelasticity problems. Later, Nickell and Sackman [52] further presented

FE formulations through the variational approach to solve the coupled thermoelas-

tic equations in a half-space problem. A complete discussion of the variational

approach used to thermoelasticity has been presented in thebook by Hetnarski and

Ignaczak [40].

On the other hand, the weighted residual methods along with an unconditionally

stable implicit-explicit procedure were employed to the dynamic coupled thermoe-

lasticity problem by Liu and Chang [50]. Furthermore, Eslami and Salehzadeh [31]

applied the weighted residual method based on Galerkin technique to develop a fi-

nite element formulation for coupled thermoelasticity. Then, this formulation was

employed to solve a 1D rod problem by Eslami and Vahedi [34].

Due to the contentious definition of functional for the first law thermodynamics, in

deriving the coupled thermoelastic equations by the variational calculus approach,
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some drawbacks may be incurred. However, the weighted residual techniques such

as Galerkin method which convert directly the governing equations to a weak for-

mulation are quite efficient in the convergence rate compared to the conventional

method [41].

Although the present dissertation is not a review study, butin the following, it at-

tempts to survey a number of articles in which the FE method has been used to solve

the transient thermoelasticity problems. It should be alsonoted that the following

papers are listed in chronological order and essentially, more emphasis is on the

type of problem solved by researchers.

The coupled thermoelastic problem in a long cylinder exposed to a specified thermo-

mechanical boundary conditions was solved by Liet al. [48]. They used several dif-

ferent techniques for the spatial and time discretization in the FE method to demon-

strate the proper numerical techniques for this problem. Carter and Booker [19]

also solved the 1D classical coupled thermoelastic equations for an infinite cylinder.

However, all these studies had been done assuming that the thermal disturbances

propagate with infinite speed in the elastic medium.

A FE formulation of GL thermoelasticity model was presentedby Prevost and Tao

[54]. They applied an implicit-explicit scheme to solve theequations for a semi-

infinite slab problem subject to surface thermal load. Chen and Weng [23] pro-

posed a transfinite element method, in which the combinationof the FE method

and Laplace transform technique is employed, to analyze thegeneralized coupled

thermoelasticity problems based on LS, GL and GN models. That is, the problems

can be solved in the Laplace transform domain by the FE methodand then the trans-

formed solution are numerically inverted to find the physical time domain response.

Using this approach, Chen and Weng presented solutions for the cylinder with infi-

nite length and layer problems in [23].

Farhatet al. [35] obtained the FE equations for the classical coupled thermoelastic-

ity by Galerkin method and then proposed an implicit-implicit staggered technique

to solve the equations. In this paper, the accuracy of the proposed algorithm has

been demonstrated by solving half-space and infinitely longshaft problems. Like-

wise, the FE method along with an explicit time integration architecture were ap-

plied by Tamma and Namburu [59] to solve the GL thermoelasticity problem in an

1D half-space.

For a hollow sphere problem subjected to specified boundary conditions, Eslami

and Vahedi [32] presented the FE formulation of the classical coupled thermoelas-
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ticity under spherical symmetry condition by using Galerkin method. Eslamiet al.

[33] studied the coupled thermoelastic behavior of an axially symmetric cylindrical

shell, as well. In these studies, the FE equations were solved by a time marching

technique. In addition, using an axisymmetric FE formulation, the coupled ther-

moelastic response of a functionally graded cylinder subjected to specified bound-

ary conditions was investigated by Reddy and Chin [55].

Cannarozzi and Ubertini [13] derived a variational form of the coupled quasi-static

thermoelasticity, in which the elastic equation is stated as the hybrid stress formu-

lation while the mixed flux-temperature formulation is usedfor the heat equation.

In the FE implementation, they developed three quadrilateral elements and assessed

characteristics of the proposed approach through some numerical test cases. Based

on the first-order shear deformation theory, Chakrabortyet al. [21] presented a FE

formulation for dynamic uncoupled thermoelasticity in functionally graded beam

structures. In this paper, a beam element was developed to obtain a convergence

stiffness matrix and eliminate the shear locking effect of the element. In addi-

tion, Chakraborty and Gopalakrishnan [20] investigated generalized thermoelastic

responses in an anisotropic layered medium based on LS and GLtheories. They

used the spectral FE method to capture the propagation of thermoelastic waves in-

side the medium.

In a series of papers, using Galerkin FE method, Eslamiet al. rendered a 1D classi-

cal and generalized thermoelasticity solution for annularisotropic [4] and function-

ally graded [7] disk problems, functionally graded layer problems [5], functionally

graded sphere problems [6] and functionally graded beams [3]. These authors em-

ployed the same procedure as proposed by [23] to obtain the solutions.

In addition, the magneto-thermoelastic behavior of a semi-infinite plate subjected

to a magnetic and a thermal shock was investigated by Tian andShen [60]. They

considered the GL model as the generalized thermoelasticity theory and solved the

dynamic FE equations directly in time-domain. Abbaset al. presented generalized

thermoelastic solutions for axisymmetric cylinder [1] andhalf-space [2] problems

based on the LS and GL models. In these studies, the weak formulations were

obtained by Galerkin finite element method and then the Newmark time integra-

tion scheme was employed to solve the equations. The thermoelastic response of

a 1D layered region subjected to thermal shock load was analyzed by Hosseini

Zad [43] based on the different theories of coupled thermoelasticity. Darabsehet

al. [26] considered the coupled thermoelastic problem in a functionally graded
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thick hollow cylinder under thermal loading. These authorsused the GL theory of

thermoelasticity and solved the governing equations by using Galerkin FE method.

Galerkin FE method along with a traditional time domain integral method were em-

ployed by Guo [38] to solve the LS coupled thermoelastic problems in one- and

two-dimensional models. Based on the LS and GL generalized theories, Filopoulos

et al. [36] derived coupled thermoelastic models for nonlocal thermo-mechanical

problems in micro-structures. Moreover, they solved a 1D slender bar problem to

demonstrate how their models work.

The generalized coupled thermoelastic problem in an axisymmetric infinite cylin-

der subjected to specified boundary conditions was analyzedby Zenkour and Abbas

[65] based on LS theory. In this paper, the transient solution of the FE equations

was evaluated directly from the model at any time. The classical coupled thermoe-

lastic problem in a plate subjected to a hypersonic re-entryflow was analyzed by

Li et al. [49]. They employed the Newmark method and Crank-Nicolsonscheme

to discretize the equation of motion and heat conduction equation in the time do-

main, respectively. In this paper, the Rayleigh damping wastaken into account in

the equation of motion as well.

Furthermore, the effect of material microstructure on the classic coupled thermoe-

lastic behavior in a 1D half-space was studied by Papathanasiou et al. [53]. These

investigators used the gradient elasticity theory to modelthe microstructure influ-

ences and applied the FE and time integration methods to solve the governing equa-

tions. The classical coupled thermoelastic response in a functionally graded annular

plate imposed to lateral thermal shock load was investigated by Jafarinezhad and Es-

lami [46]. In this paper, the first order shear deformation plate theory was used to

obtain the equations of motion and the temperature distribution across the thickness

was be approximated by a second order polynomial. These authors utilized the same

procedure as used in [3–7, 23].

Analysis of the works reviewed above concerning solution ofthe coupled thermoe-

lasticity problems may lead to the following inferences

• Due to use of the coupled thermoelasticity theories in advanced structural

design, they are still topics of active research.

• The major presented studies deal with the coupled thermoelasticity response

in the basic problems including an infinite medium, a half-space and a layer as

well as in the axisymmetric problems. Moreover, two- or three-dimensional
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coupled thermoelastic solutions for some simple problems may be found in

just a few number of articles.

• analytical solution of the coupled thermoelasticity problem in the disks has

never before been presented.

• After over half a century of application of FE method in thermoelasticity, this

method is still applied as a powerful numerical tool in such problems.

• Most of the investigators applied Galerkin technique to the governing equa-

tions to obtain a weak formulation of the problem, especially for the theories

of generalized thermoelasticity.

1.4 Objectives and scope of research

The main objective of this dissertation is to study coupled thermoelastic behaviors

in disks subjected to thermal shock loads based on the generalized and classic the-

ories of coupled thermoelasticity. To this end, this research has been carried out in

two stages. In the first stage, thermoelasticity problems ina rotating disk are analyt-

ically solved. In the second stage of the research, a novel refined 1D finite element

approach with 3D capabilities are developed and employed for more sophisticated

problems in which the analytical solution is not always possible.

Thus, the dissertation has been organized as follows. In Chapter 2, thermoelasticity

problems in an axisymmetric rotating disk with constant thickness made of a ho-

mogeneous isotropic material are analytically solved. In this chapter, based on the

classical and generalized coupled theories, and dynamic and quasi-static uncoupled

theories, closed-form formulations are presented for temperature and displacement

fields. In Chapter 3, a 1D refined FE method in the Carrera Unified formulation

(CUF) framework is used for static structural analysis of rotors and rotating disks

with variable thickness. Chapter 4 presents 1D FE-CUF approach for the general-

ized coupled thermoelasticity problems. Chapter 5 provides some numerical evalua-

tions related to the proposed FE formulation for the coupledthermoelastic problems

and finally Chapter 6 gives a summary of conclusion.



Chapter 2

Analytical solution of coupled

thermoelasticity problems in disks

In this chapter, the coupled and uncoupled thermoelasticity problems for a rotating

disk subjected to thermal and mechanical shock loads are analytically solved. Ax-

isymmetric thermal and mechanical boundary conditions areconsidered in general

forms of arbitrary heat transfer and traction, respectively, at the inner and outer

radii of the disk. To solve the thermoelasticity problems based on the classical

and generalized coupled theories, and dynamic and quasi static uncoupled theories,

an analytical procedure based on the Fourier-Bessel transform is employed. Then,

closed-form formulations are presented for temperature and displacement fields.

2.1 Governing equations

Consider an annular rotating disk, made of isotropic material, under axisymmetric

thermal and mechanical shock loads applied to its inner or outer radii. The equation

of motion in radial direction for the rotating disk with constant thickness can be

written as [41]

∂σrr

∂ r
+

1
r
(σrr −σθθ )+ρrω2 = ρ

∂ 2u
∂ t2 (2.1)
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whereσrr andσθθ are radial and tangential stress components,r is radial coordinate,

ρ is density,ω is constant angular velocity of the rotating disk, andt is the time

variable. The relations between the radial displacementu and the strains are

εrr =
∂u
∂ r

, εθθ =
u
r

(2.2)

whereεrr andεθθ are the radial and tangential strain components, respectively. The

stress components for the plane stress state, according to Hooke’s law are

σrr =
(

2µ + λ̃
)

εrr + λ̃ εθθ − β̃ T

σθθ = λ̃ εrr +
(

2µ + λ̃
)

εθθ − β̃T
(2.3)

Here,T is the temperature change andλ̃ andβ̃ are obtained as

λ̃ =
2µ

λ +2µ
λ , β̃ =

2µ
λ +2µ

(3λ +2µ)α (2.4)

whereλ andµ are Lame constants, andα is the coefficient of linear thermal expan-

sion. Equations (2.1) to (2.3) may be combined to yield the equation of motion in

term of the displacement component as

{

(λ̃ +2µ)
[

∂ 2

∂ r2 +
1
r

∂
∂ r

−
1
r2

]

−ρ
∂ 2

∂ t2

}

u− β̃
∂T
∂ r

=−ρrω2 (2.5)

For the axisymmetric problem, the classical coupled heat conduction equation in

polar coordinates in the absence of heat source is obtained to be

{

κ
[

∂ 2

∂ r2 +
1
r

∂
∂ r

]

−ρc
∂
∂ t

}

T − β̃T0

{

∂ 2

∂ r∂ t
+

1
r

∂
∂ t

}

u= 0 (2.6)

whereκ , c andT0 are the thermal conductivity, specific heat and reference tempera-

ture, respectively.

Equations (2.5) and (2.6) constitute the governing coupledsystem of equations for

the classical theory of thermoelasticity in the problem of isotropic rotating disk with

constant thickness.

The classical coupled theory of thermoelasticity is based on the conventional en-

ergy equation (Eq. (2.6)). The parabolic nature of the energy equation in this

theory, leads to the prediction of infinite propagation speeds for the thermal distur-
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bances. This prediction is physically unrealistic and problems arise when we deal

with special applications involving very short transient durations and sudden me-

chanical and thermal shock loads. On this basis, some modified coupled thermoe-

lasticity models with the finite speed of wave propagation such as Lord-Shulman

(LS), Green-Lindsay (GL), and Green–Naghdi (GN) theories have been proposed.

The generalized coupled heat conduction equation based on the LS theory for the

axisymmetric problem in the absence of heat source is

{

κ
[

∂ 2

∂ r2 +
1
r

∂
∂ r

]

−ρc ∂
∂ t

(

1+ t0
∂
∂ t

)}

T

−β̃ T0

{

t0
[

∂ 3

∂ r∂ t2 +
1
r

∂ 2

∂ t2

]

+ ∂ 2

∂ r∂ t +
1
r

∂
∂ t

}

u= 0
(2.7)

wheret0 is relaxation time associated with LS model. The relaxationtime represents

the time-lag needed to establish steady state heat conduction in an element of vol-

ume when a temperature gradient is suddenly imposed on the element. Equations

(2.5) and (2.7) are the governing equations of the generalized coupled thermoelas-

ticity based on LS model in the problem of isotropic rotatingdisk with constant

thickness.

For the coupled equations (2.5) and (2.7), The general formsof thermal and me-

chanical boundary conditions can be considered as heat transfer and traction, re-

spectively, at the inner and outer radii of the disk as follows

k11
∂T
∂ r

∣

∣

∣

r=r i

+k12T(r i , t) = f1(t) , k21
∂T
∂ r

∣

∣

∣

r=ro

+k22T(ro, t) = f2(t)

k31
∂u
∂ r

∣

∣

∣

r=r i

+k32u(r i , t) = f3(t) , k41
∂u
∂ r

∣

∣

∣

r=ro
+k42u(ro, t) = f4(t)

(2.8)

wherer i andro are the inner and outer radii of the disk, respectively.f1(t) to f4(t)

are time dependent known functions applied to the inner and outer radii.ki j are con-

stant thermal and mechanical parameters related to the conduction and convection

coefficients, and mechanical properties. In general, following initial conditions may

be assumed for the coupled equations (2.5) and (2.7)

T(r,0) = g1(r), Ṫ(r,0) = g2(r)

u(r,0) = g3(r), u̇(r,0) = g4(r)
(2.9)

Hereg1(r) to g4(r) are known functions of the space coordinater. The superscript

dot (·) denotes the differentiation with respect to time.

The governing equations may be introduced in nondimensional form for simplicity.
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The nondimensional parameters are defined as

r̂ = r
l , t̂ = tVe

l , t̂0 =
t0Ve

l

σ̂rr =
σrr

β̃T0
, σ̂θθ = σθθ

β̃T0
, T̂ = T

T0

û= (λ̃+2µ)u
l β̃T0

, ω̂ =

√

ρ l2

β̃T0
ω

(2.10)

wherel = κ/ρcVe andVe =
√

(λ̃ +2µ)/ρ represent the unit length and the speed

of elastic wave propagation, respectively. The hat values indicate nondimensional

parameters. Using the nondimensional parameters, the governing coupled system

of Eqs. (2.5) and (2.7), and stress-displacement relationstake the form

{

∂ 2

∂ r̂2 +
1
r̂

∂
∂ r̂ −

∂
∂ t̂

(

1+ t̂0
∂
∂ t̂

)}

T̂

−C
{

t̂0
[

∂ 3

∂ r̂∂ t̂2 +
1
r̂

∂ 2

∂ t̂2

]

+ ∂ 2

∂ r̂∂ t̂ +
1
r̂

∂
∂ t̂

}

û= 0
(2.11)

{

∂ 2

∂ r̂2 +
1
r̂

∂
∂ r̂

−
1
r̂2 −

∂ 2

∂ t̂2

}

û−
∂ T̂
∂ r̂

=−r̂ω̂2 (2.12)

σ̂rr =
∂ û
∂ r̂ +

λ̃
(λ̃+2µ)

û
r̂ − T̂

σ̂θθ = λ̃
(λ̃+2µ)

∂ û
∂ r̂ + û

r̂ − T̂
(2.13)

whereC = T0β̃ 2/ρc(λ̃ +2µ) is called the thermoelastic coupling (or damping) pa-

rameter. For a certain isotropic material, the thermoelastic coupling parameter is a

function of the reference temperatureT0.

From nondimensional Eqs. (2.11) and (2.12), the thermal disturbances propagate

with the speed ofVt =
√

1/t̂0 and the speed of propagation of the elastic distur-

bances is unity. The value ofVt is finite for the Lord–Shulman theory. When the

relaxation time is zero, the system of Eqs. (2.11) and (2.12)reduces to that of the

classical coupled thermoelasticity which predicts an infinite speed of propagation

of thermal disturbances.

The boundary and initial conditions (2.8) and (2.9) in termsof the nondimensional
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parameters can be written in the form

k̂11
∂ T̂
∂ r̂

∣

∣

∣

r̂=a
+ k̂12T̂(a, t) = f̂1(t̂)

k̂21
∂ T̂
∂ r̂

∣

∣

∣

r̂=b
+ k̂22T̂(b, t) = f̂2(t̂)

k̂31
∂ û
∂ r̂

∣

∣

∣

r̂=a
+ k̂32û(a, t) = f̂3(t̂)

k̂41
∂ û
∂ r̂

∣

∣

∣

r̂=b
+ k̂42û(b, t) = f̂4(t̂)

T̂(r̂,0) = ĝ1(r̂), ˙̂T(r̂,0) = ĝ2(r̂)

û(r̂,0) = ĝ3(r̂), ˙̂u(r̂,0) = ĝ4(r̂)

(2.14)

Herea andb are the nondimensional inner and outer radii, respectively. The hat

values are nondimensional parameters that are defined as

k̂11 =
k11
κ , k̂12 =

k12l
κ , f̂1(t̂) =

l f1(t)
κT0

k̂21 =
k21
κ , k̂22 =

k22l
κ , f̂2(t̂) =

l f2(t)
κT0

k̂31 =
k31

(λ̃+2µ)
, k̂32 =

k32l
(λ̃+2µ)

, f̂3(t̂) =
f3(t)
β̃ T0

k̂41 =
k41

(λ̃+2µ)
, k̂42 =

k42l
(λ̃+2µ)

, f̂4(t̂) =
f4(t)
β̃ T0

ĝ1(r̂) =
g1(r)

T0
, ĝ2(r̂) =

lg2(r)
T0Ve

ĝ3(r̂) =
(λ̃+2µ)g3(r)

l β̃T0
, ĝ4(r̂) =

(λ̃+2µ)g4(r)
β̃T0Ve

(2.15)

As is evident from Eqs. (2.11) and (2.12), The theories of coupled thermoelastic-

ity take into account the time rate of change of the first invariant of strain tensor

in the first law of thermodynamics causing the coupling between elasticity and

energy equations. This situation occurs when the rate of application of a thermo-

mechanical load is rapid enough to produce thermal stress waves. To obtain the

solution for temperature and displacements and finally the stresses, these coupled

equations must be solved simultaneously.

If the time rate of change of imposed thermo-mechanical loads is not large enough

to excite the thermal stress wave propagation, the effect ofcoupling term in the

energy equation (2.11) can be negligible. In this case, the energy equation of the

classical coupled theory reduces to

{

∂ 2

∂ r̂2 +
1
r̂

∂
∂ r̂

−
∂
∂ t̂

}

T̂ = 0 (2.16)
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Equations (2.12) and (2.16) are the governing equations of the dynamic uncoupled

thermoelasticity for the rotating disk.

In most practical engineering problems the imposed thermo-mechanical load is vary

sufficiently slowly with the time so as not to excite inertia effects. Such problems

are called quasi-static. Neglecting the inertia term, the equation of motion (2.12)

reduces to
{

∂ 2

∂ r̂2 +
1
r̂

∂
∂ r̂

−
1
r̂2

}

û−
∂ T̂
∂ r̂

=−r̂ω̂2 (2.17)

Therefore, the quasi-static uncoupled thermoelasticity problem in the rotating disk

can be described by Eqs. (2.16) and (2.17). For a steady-state condition the heat

conduction Eq. (2.16) is further reduced to

{

∂ 2

∂ r̂2 +
1
r̂

∂
∂ r̂

}

T̂ = 0 (2.18)

This equation along with the imposed boundary conditions fully defines the field of

temperature distribution in the disk for the steady state.

2.2 Solution of coupled thermoelasticity

The governing Equations (2.11) and (2.12) are a system of second order linear par-

tial differential equations (PDE) with nonconstant (radius dependent) coefficients

subjected to the nonhomogeneous initial and boundary conditions. These equations

can be solved using the analytical method based on the finite Hankel transform,

which can change the partial differential equations into solvable ordinary differen-

tial equations. To this end, first, the principle of superposition can be used to sim-

plify the coupled initial-boundary value problem (IBVP) into simpler sub-IBVPs.

Therefore, using the principle of superposition, the heat conduction Equation (2.11)

along with the corresponding boundary and initial conditions (2.14) in terms of the

nondimensional parameters (without the hat sign for convenience), can be decom-

posed into two following sub-IBVPs

∂ 2T1
∂ r2 + 1

r
∂T1
∂ r − Ṫ1− t0T̈1 = 0

k11
∂T1
∂ r

∣

∣

∣

r=a
+k12T1(a, t) = f1(t) , k21

∂T1
∂ r

∣

∣

∣

r=b
+k22T1(b, t) = f2(t)

T1(r,0) = 0 , Ṫ1(r,0) = 0

(2.19)



2.2 Solution of coupled thermoelasticity 15

∂ 2T2
∂ r2 + 1

r
∂T2
∂ r − Ṫ2− t0T̈2 =C

{

t0
(

ü,r + ü
r

)

+ u̇,r + u̇
r

}

k11
∂T2
∂ r

∣

∣

∣

r=a
+k12T2(a, t) = 0 , k21

∂T2
∂ r

∣

∣

∣

r=b
+k22T2(b, t) = 0

T2(r,0) = g1(r) , Ṫ2(r,0) = g2(r)

(2.20)

Note that in the first sub problem, the PDE is homogeneous while the boundary

and initial conditions are nonhomogeneous and homogeneous, respectively. In the

second sub problem, the PDE is nonhomogeneous and may include the coupled

terms while the boundary and initial conditions are homogeneous and nonhomoge-

neous, respectively. Similarly, Eqs. (2.12) and (2.14) maybe decomposed into two

following sub-IBVPs

∂ 2u1
∂ r2 + 1

r
∂u1
∂ r − u1

r2 − ü1 = 0

k31
∂u1
∂ r

∣

∣

∣

r=a
+k32u1(a, t) = f3(t) , k41

∂u1
∂ r

∣

∣

∣

r=b
+k42u1(b, t) = f4(t)

u1(r,0) = 0 , u̇1(r,0) = 0

(2.21)

∂ 2u2
∂ r2 + 1

r
∂u2
∂ r − u2

r2 − ü2 = T,r − rω2

k31
∂u2
∂ r

∣

∣

∣

r=a
+k32u2(a, t) = 0 , k41

∂u2
∂ r̂

∣

∣

∣

r=b
+k42u2(b, t) = 0

u2(r,0) = g3(r) , u̇2(r,0) = g4(r)

(2.22)

The final solution for the temperature and displacement fields is obtained from total

of two solutions of these sub-IBVPs as follows

T(r, t) = T1(r, t)+T2(r, t) , u(r, t) = u1(r, t)+u2(r, t) (2.23)

where, The solutions of homogeneous equation corresponding to heat conduction

and motion equations are shown byT1(r, t) andu1(r, t), respectively.T2(r, t) and

u2(r, t) are solutions of nonhomogeneous form of heat conduction andmotion equa-

tions, respectively.

Equations (2.19) and (2.21) are called Bessel equations andcan be separately solved

using finite Hankel transform. Using the definition of the finite Hankel transform,

the transformed temperature and displacement can expressed as

H [T1(r, t)] = T̄1(t,ξm) =
∫ b

a rT1(r, t)K0(r,ξm)dr

H [u1(r, t)] = ū1(t,ηn) =
∫ b

a ru1(r, t)K1(r,ηn)dr
(2.24)
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Here K0(r,ξm) and K1(r,ηn) are the kernel functions related to Eqs. (2.19) and

(2.21), respectively, and result in the following relations [25]

K0(r,ξm) = J0(ξmr)
(

k21
∂Y0(ξmr)

∂ r

∣

∣

∣

r=b
+k22Y0(ξmb)

)

−Y0(ξmr)
(

k21
∂J0(ξmr)

∂ r

∣

∣

∣

r=b
+k22J0(ξmb)

) (2.25)

K1(r,ηn) = J1(ηnr)
(

k41
∂Y1(ηnr)

∂ r

∣

∣

∣

r=b
+k42Y1(ηnb)

)

−Y1(ηnr)
(

k41
∂J1(ηnr)

∂ r

∣

∣

∣

r=b
+k42J1(ηnb)

) (2.26)

whereJν(ξmr) andYν(ξmr) (or Jν(ηnr) andYν(ηnr) are the Bessel functions of the

first and second kind, and of orderν,(ν = 0 and 1).ξm andηn are positive roots of

the following equations, respectively [25]

(

k11
∂Y0(ξmr)

∂ r

∣

∣

∣

r=a
+k12Y0(ξma)

)(

k21
∂J0(ξmr)

∂ r

∣

∣

∣

r=b
+k22J0(ξmb)

)

−
(

k21
∂Y0(ξmr)

∂ r

∣

∣

∣

r=b
+k22Y0(ξmb)

)(

k11
∂J0(ξmr)

∂ r

∣

∣

∣

r=a
+k12J0(ξma)

)

= 0
(2.27)

(

k31
∂Y1(ηnr)

∂ r

∣

∣

∣

r=a
+k32Y1(ηna)

)(

k41
∂J1(ηnr)

∂ r

∣

∣

∣

r=b
+k42J1(ηnb)

)

−
(

k41
∂Y1(ηnr)

∂ r

∣

∣

∣

r=b
+k42Y1(ηnb)

)(

k31
∂J1(ηnr)

∂ r

∣

∣

∣

r=a
+k32J1(ηna)

)

= 0
(2.28)

Equations (2.27) and (2.28) have an infinite number of the roots, because the Bessel

functions are periodic. According to the properties of Sturm-Liouville problem, the

kernel functions are orthogonal with respect to the weight function r. Taking the

finite Hankel transform of Eqs. (2.19) and (2.21), and then using the operational

properties on the derivatives [25], leads to

t0 ¯̈T1+
¯̇T1+ξ 2

mT̄1 = A1(t) (2.29)

¯̈u1+η2
n ū1 = A2(t) (2.30)

where

A1(t) =
2
π

(

f2(t)−
d2

d1
f1(t)

)

(2.31)

A2(t) =
2
π

(

f4(t) −
d4

d3
f3(t)

)

(2.32)
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and

d1 = k11
∂J0(ξmr)

∂ r

∣

∣

∣

r=a
+k12J0(ξma) , d2 = k21

∂J0(ξmr)
∂ r

∣

∣

∣

r=b
+k22J0(ξmb)

d3 = k31
∂J1(ηnr)

∂ r

∣

∣

∣

r=a
+k32J1(ηna) , d4 = k41

∂J1(ηnr)
∂ r

∣

∣

∣

r=b
+k42J1(ηnb)

(2.33)

T̄1 and ū1 are obtained by solving the nonhomogeneous second order differential

equations (2.29) and (2.30), respectively, as follows

T̄1(t) =
1
∆

∫ t

0
A1(τ)

[

e
1

2t0
τ+ ∆

2t0
(2t−τ)

− e
1+∆
2t0

(τ−t)
]

dτ (2.34)

ū1(t,ηn) =
1

ηn

∫ t

0
A2(τ)sin(ηn(t− τ))dτ (2.35)

where∆ =
√

1−4t0ξ 2
m. The inverse finite Hankel transforms of Eqs. (2.24) can be

defined by the following series

H
−1[T̄1(t,ξm)] = T1(r, t) =

∞
∑

m=1
ãmT̄1(t,ξm)K0(r,ξm)

H −1[ū1(t,ηn)] = u1(r, t) =
∞
∑

n=1
b̃nū1(t,ηn)K1(r,ηn)

(2.36)

where the coefficients of the series can be computed as

ãm = 1
/

‖K0(r,ξm)‖
2 , b̃n = 1

/

‖K1(r,ηn)‖
2 (2.37)

‖K0(r,ξm)‖
2 and‖K1(r,ηn)‖

2 are the square of the norm ofK0(r,ξm) andK1(r,ηn),

respectively, on the interval[a,b] with weight functionr, and are defined as

‖K0(r,ξm)‖
2 =

∫ b

a
r[K0(r,ξm)]

2dr , ‖K1(r,ηn)‖
2 =

∫ b

a
r[K1(r,ηn)]

2dr (2.38)

Due to the orthogonality properties of the kernel functions, the solutions of Eqs.

(2.20) and (2.22),T2(r, t) andu2(r, t), can be expanded in terms of functionsK0(r,ξm)

andK1(r,ηn), respectively as follows

T2(r, t) =
∞

∑
m=1

∞

∑
n=1

Qmn(t)K0(r,ξm) , u2(r, t) =
∞

∑
m=1

∞

∑
n=1

Smn(t)K1(r,ηn) (2.39)
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whereQmn(t) andSmn(t) are unknown time dependent functions to be found. Sub-

stituting Eqs. (2.36) and (2.39) into Eqs. (2.20) and (2.22)and simplifying yields

(

t0Q̈mn+ Q̇mn+ξ 2
mQmn

)

K0(r,ξm)

=−C
{

t0S̈mn+ Ṡmn+ t0b̃n̈̄u1+ b̃ṅ̄u1
}

(

∂K1(r,ηn)
∂ r + K1(r,ηn)

r

) (2.40)

(

S̈mn+η2
nSmn

)

K1(r,ηn) = rω2−
∂K0(r,ξm)

∂ r
(Qmn+ ãmT̄1) (2.41)

Using the orthogonality conditions forK0(r,ξm) and K1(r,ηn), multiplying both

sides of Eqs. (2.40) and (2.41) byrK0(r,ξk) andrK1(r,η j), respectively, and inte-

grating froma to b, yields

t0Q̈mn+ Q̇mn+ξ 2
mQmn=CU1

{

t0S̈mn+ Ṡmn+ t0b̃n̈̄u1+ b̃ṅ̄u1
}

(2.42)

S̈mn+η2
nSmn=U2(Qmn+ ãmT̄1)+U3ω2 (2.43)

where

U1 =−

∫ b
a rK0(r,ξm)

{

∂K1(r,ηn)
∂ r +

K1(r,ηn)
r

}

dr

‖K0(r,ξm)‖
2

U2 =−
∫ b
a rK1(r,ηn)

∂K0(r,ξm)
∂ r dr

‖K1(r,ηn)‖
2 , U3 =

∫ b
a r2K1(r,ηn)dr

‖K1(r,ηn)‖
2

(2.44)

Also, according to the orthogonality conditions, by substituting Eqs. (2.39) into

(2.20) and (2.22), respectively, the initial conditions for Eqs. (2.42) and (2.43) can

be obtained. To solve the coupled Eqs. (2.42) and (2.43), they are decoupled by

eliminatingQmn from Eq. (2.42) using Eq. (2.43). Upon elimination, the decoupled

equation is written as

t0S(4)mn+S(3)mn+
(

ξ 2
m+ t0η2

n −Ct0U1U2
)

S̈mn+
(

η2
n −CU1U2

)

Ṡmn+ξ 2
mη2

nSmn

=CU1U2b̃n(t0̈̄u1+˙̄u1)+U2ãm
(

t0̈̄T1+˙̄T1+ξ 2
mT̄1

)

+ξ 2
mω2U3

(2.45)

Substituting Eqs. (2.29) into Eq. (2.45) yields

t0S(4)mn+S(3)mn+
(

ξ 2
m+ t0η2

n −Ct0U1U2
)

S̈mn+
(

η2
n −CU1U2

)

Ṡmn+ξ 2
mη2

nSmn

=CU1U2b̃n(t0̈̄u1+˙̄u1)+U2ãmA1(t)+ξ 2
mω2U3

(2.46)

Qmn(t) can be obtained by solving Eq. (2.46) forSmn(t) and substituting into Eq.

(2.43) as

Qmn(t) =
1

U2

(

S̈mn+η2
nSmn−ω2U3

)

− ãmT̄1 (2.47)
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Euation (2.46) is a nonhomogeneous ordinary differential equation with constant

coefficients and has general and particular solutions. The complete solution of this

equation may be represented as

Smn(t) = Sg
mn(t)+Sp

mn(t) (2.48)

whereSg
mn(t) is a general solution of Eq. (2.46), with the right-hand terms equal

zero. Sp
mn(t) is particular solutions which is related to boundary conditions of the

problem and angular velocity of the disk. The characteristic polynomial correspond-

ing to Eq. (2.46) is

t0s4+s3+
(

ξ 2
m+ t0η2

n −CU1U2t0
)

s2+
(

η2
n −CU1U2

)

s+ξ 2
mη2

n = 0 (2.49)

Solving Eq. (2.49) for every value of m and n gives four pairs of complex conjugate

rootss(mn,i)(i = 1, · · · ,4), with a negative real part and an imaginary part. These

roots cause four modes of mechanical oscillation related tothe functionSmn(t). The

period and frequency of the oscillation only depend on the imaginary part. The

damping of this oscillation is caused by the negative real part, which means the

thermomechanical oscillation is stable.

Thus, the general solution of Eq. (2.46) with the right-handterms equal zero is

obtained as

Sg
mn(t) =

4

∑
i=1

cie
smn,it (2.50)

where the constant coefficientsci are determined by substituting the complete solu-

tion of Eq. (2.46) into the initial conditions.

Finally, the closed form solutions for the nondimensional temperature and displace-

ment fields obtained from solving the governing coupled system of Eqs. (2.11) and

(2.12), can be stated as follows

T(r, t) =
∞
∑

m=1
ãmT̄1(t,ξm)K0(r,ξm)+

∞
∑

m=1

∞
∑

n=1
Qmn(t)K0(r,ξm)

u(r, t) =
∞
∑

n=1
b̃nū1(t,ηn)K1(r,ηn)+

∞
∑

m=1

∞
∑

n=1
Smn(t)K1(r,ηn)

(2.51)

The expressions for the stress components in the disk are determined by substitut-

ing Eqs. (2.51) into (2.13). When the relaxation time is zero(t̂0 = 0), the same

mathematical procedure may be used to solve the classical coupled thermoelastic

equations.



20 Analytical solution of coupled thermoelasticity problemsin disks

2.3 Solution of uncoupled thermoelasticity

In the case of dynamic uncoupled thermoelasticity problem in the rotating disk (C=

0 and the effect of inertia term is considered), the solutions to uncoupled equations

(2.12) and (2.16) can be separately obtained using the finiteHankel transform in a

similar manner to that of coupled problems.

For the case of the quasi-static thermoelasticity problem,the differential equation

of heat conduction (2.16) is a Bessel-type equation. This equation can be solved in

a similar way to the previous problems to yield the temperature field. The equation

of motion (2.17) can be written in the following form

∂
∂ r

[

1
r

∂
∂ r

(ru)

]

=
∂T
∂ r

− rω2 (2.52)

Integrating Eq. (2.52) twice and designating the two integration constants asc1(t)

andc2(t) gives the radial displacement as

u(r, t) =
1
r

∫ r

a
T(r, t)rdr −

1
8

r3ω2+ rc1(t)+
c2(t)

r
(2.53)

By substituting Eq. (2.53) into Eqs. (2.13), without the hatsign for convenience,

the stress components are obtained as

σrr =−
(

2µ
λ̃+2µ

)

1
r2

∫ r
a T(r, t)rdr − 1

8

(

4λ̃+6µ
λ̃+2µ

)

r2ω2

+
(

2µ+2λ̃
λ̃+2µ

)

c1−
(

2µ
λ̃+2µ

)

c2
r2

(2.54)

σθθ =
(

2µ
λ̃+2µ

){

1
r2

∫ r
a T(r, t)rdr −T

}

−
(

4λ̃+2µ
λ̃+2µ

)

1
8r2ω2+

(

2λ̃+2µ
λ̃+2µ

)

c1+
(

2µ
λ̃+2µ

)

c2
r2

(2.55)

The unknownsc1(t) and c2(t) may be determined by applying the mechanical

boundary conditions.

2.4 Results and discussions

To investigate the accuracy of the presented formulations,an example is chosen

from Ref. [4], where the coupled thermoelasticity of a disk is analyzed using the
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finite element method. In this example, a stationary disk made of aluminum, with

the Lamè constantsλ = 40.4 GPa,µ = 27 GPa andα = 23×10−6 K−1, ρ = 2707

kg/m3, κ = 204 W/m·K and c = 903 J/kg·K is considered. The nondimensional

inner and outer radii of the disk is given asa = 1 andb = 2, respectively. The

inside boundary of the disk is assumed to be radially fixed, but exposed to a step

function heat flux. The outside boundary is traction free with zero temperature

change. The initial conditions for the displacement, velocity, temperature, and the

rate of temperature are assumed to be zero.

In the case of zero angular velocity, assuming thatC= 0.02 andt̂0 = 0.64, the time

variation of the nondimensional temperature and radial displacement at mid-radius

of the disk are plotted in Figs. 2.1. Good agreements are observed between the

results of presented analytical method and those obtained using the Galerkin finite

element method in Ref. [4].
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Fig. 2.1 Time history of the nondimensional temperature anddisplacement at mid-radius of
the stationary disk.

Assuming that the disk is rotating with nondimensional angular velocity 0.01,

the time histories of temperature and radial displacement at mid-radius of the disk

for the different theories of thermoelasticity are shown inFig. 2.2. Moreover, for

these theories, the time histories of radial stress and tangential stress are plotted in

Figs. 2.3 and 2.4, respectively. In this case, the referencetemperature is considered

to be 293 K.

As shown in Figs. 2.2-2.4, when thermal shock load is applied, the generalized
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coupled theory based on LS model leads to larger maximum value of the curves for

temperature, displacement and stresses compared to other theories.

The classical coupled theory and uncoupled theories of thermoelasticity predict an

infinite propagation speed for the thermal disturbances. Inother words, when̂t0 = 0

the hyperbolic heat conduction equation (2.11) reduces to aparabolic equation with

infinite speed for thermal wave propagation. Moreover, thisFig. 2.2 shows that in

the case of dynamic uncoupled solution,C= 0, the influence of temperature field on

displacement filed is ignored and thus the radial displacement varies harmonically

along the time with constant amplitudes. For coupled thermoelastic solutions, the

displacement amplitudes are decreasing along the time axis. The reason is that for

C 6= 0, damping term appears in the heat conduction equation and,therefore, the

energy dissipation occurs in the system.
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Fig. 2.2 Time history of the nondimensional temperature anddisplacement at mid-radius of
the rotating disk for different theories of thermoelasticity.
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Fig. 2.3 Time history of the nondimensional radial stress atmid-radius of the rotating disk
for different theories of thermoelasticity.
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Fig. 2.4 Time history of the nondimensional tangential stress at mid-radius of the rotating
disk for different theories of thermoelasticity.

The radial distribution of nondimensional temperature change, radial stress and

circumferential stress for different theories of thermoelasticity at different values

of the time are shown in Figs. 2.5, 2.6 and 2.7, respectively.In these figures, the

temperature wave front is clearly observed from the figure related to generalized

coupled solution. In this figure, timest̂ = 0.25,0.5 and 0.75 show the temperature

wave propagation, while timest̂ =1,1.25 indicate the wave reflection from the outer

radius of the disk. However, the temperature gradient alongthe radius is smooth for

the classical coupled and uncoupled theories of thermoelasticity due to the infinite

speed of thermal wave disturbances in these theories. The elastic wave fronts are

clearly seen from the figures related to coupled and dynamic uncoupled solutions,

while the radial distribution of radial stress related to quasi static uncoupled solution

is smooth at different values of the time.
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Fig. 2.5 Radial distribution of nondimensional temperature change for different theories of
thermoelasticity.
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Fig. 2.6 Radial distribution of nondimensional radial stress for different theories of thermoe-
lasticity.
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Fig. 2.7 Radial distribution of nondimensional circumferential stress for different theories
of thermoelasticity.

The effects of coupling parameter (C) and relaxation time (t0) on time histories

of temperature and displacement at mid-radius of the rotating disk are illustrated in

Figs. 2.8 and 2.9 for̂ω = 0.01.

Figure 2.8 shows temperature and radial displacement changes versus nondimen-

sional time for values ofC = 0,0.05,0.1 and 0.15. The case ofC = 0 is related

to the uncoupled solution. As shown in Fig. 2.8, whenC takes a greater value,

the maximum value of temperature reduce, while the amplitudes of oscillations of

temperature increase. The reason is that with increasing damping parameter, the

conversion between the mechanical and thermal energies increases. Moreover, in

the case of uncoupled solution,C= 0, the influence of temperature field on displace-

ment filed is ignored and thus the radial displacement variesharmonically along the

time with constant amplitudes. ForC 6= 0, the amplitudes are decreasing along the
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time axis, and the damping is more noticeable for greater values ofC. The reason is

that forC 6= 0, damping term appears in the heat conduction equation and,therefore,

the energy dissipation occurs in the system.
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(b) radial displacement

Fig. 2.8 Effect of coupling parameter on time history of the solutions at mid-radius of the
rotating disk.

Figure 2.9 shows the time histories of temperature and radial displacement, for

different values of relaxation time when the reference temperature isT0 = 293 K.

The nondimensional values of relaxation time associated with Lord-Shulman model

are assumed to be 0.64 and 1.5625. The case oft̂0 = 0 is related to the classical the-

ory of thermoelasticity that predicts an infinite propagation speed for the thermal

disturbances. In other words, whent̂0 = 0 the hyperbolic heat conduction equation

(2.11) reduces to a parabolic equation with infinite speed for thermal wave propa-

gation. As shown in Fig. 2.9, with increasing relaxation time, the maximum value

of the curves for temperature and displacement increase. However, since with the

increase of relaxation time the propagation speed of thermal disturbances decreases,

these maximum values occur at the later times.
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Fig. 2.9 Effect of relaxation time on time history of the solutions at mid-radius of the rotating
disk.

2.5 Summary

In this chapter, thermoelasticity problems based on the classical and generalized

coupled theories, and dynamic and quasi static uncoupled theories for a rotating disk

are solved using a fully analytical procedure. Assuming that the disk is subjected to

an arbitrary heat transfer and traction at its inner and outer radii, closed form formu-

lations are presented for temperature and displacement fields. The procedure used

in this work, is based on the finite Hankel transform. To validate the formulations,

the results are compared with those obtained using the numerical method in the lit-

erature, which show good agreement. The radial distributions and time histories of

temperature, displacement and stresses for the different theories of thermoelasticity

in the disk are plotted and compared to each other.



Chapter 3

Stress analysis of disks using refined

1D FE models

Since providing an analytical solution for disk problems with more sophisticated

geometries and boundary conditions is mathematically complex and may be impos-

sible, the development of alternative numerical solution techniques seems essential.

In the present chapter, a refined finite element method is employed for stress analysis

of rotors and rotating disks with an arbitrary geometry.

3.1 FE methods refined through CUF

Despite significant advances in computing power, complex 3DFE models still im-

pose large computational costs, especially during the iterative design stage. For this

reason, reduced refined models may be used to obtain solutions with lower com-

putational efforts. A general approach which can be employed to develop refined

finite element models has been suggested in the book by Carrera et al. [15]. They

introduced the Carrera Unified Formulations (CUF) in which the FE methods are

formulated on the basis of a class of theories of structures.In fact, Carreraet al.

[14] first developed a unified formulation for the 2D FE method(2D FE-CUF) to

overcome the limitations of classical theories of plates and shells. A 1D FE method

in framework of the CUF (1D FE-CUF) was later extended by Carreraet al. [17]

based on the beam model to go beyond the classical beam theories. Indeed, the

CUF has been able to enhance the capabilities of the 1D and 2D conventional finite
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element methods, so that using these refined methods leads to3D-like solutions but

with lower computational costs. Furthermore, analysis of multi-field problems such

as mechanical, thermal, electric and magnetic fields, as well as of layered structures

is of other outstanding features of the CUF models.

3.2 Governing equations of rotating disks

Consider a variable thickness disk with an arbitrary profile, which is located in a

reference stationary coordinate system(xyz) and it is rotating at a constant angular

velocity ω about its axis. The disk is assumed to be at static equilibrium while

it is subjected to body forces (1), surface forces (2), concentrated loads (3) and

temperature gradients (4) as shown in Fig. 3.1.

(a) (b)

Fig. 3.1 A rotating disk with variable thickness subjected to mechanical and thermal loads
(a) Structural coordinate systems, (b) A meridional section of the disk and loads.

The total potential energy,Π, that is the sum of the internal strain energy and the

potential energy of the external forces, can be written as

Π =
1
2

∫

V
εeTσ dV−

∫

V
uTfB dV−

∫

S
uTfSdS−∑

k

uTfCk (3.1)

whereεe stands for the elastic strain vector,σ denotes the stress vector and u=

{ux uy uz}
T is the displacement vector. Furthermore,fB = { f B

x f B
y f B

z }
T is

the vector of body forces per unit volumeV, fS is the vector of surface forces per

unit surface areaSof the body, andfCk = { f Ck
x f Ck

y f Ck
z }T is the vector of con-
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centrated loads wherek denotes the load application point. It is noted that the

components offB and fS may be a function of the coordinatesx, y andz however

the specificx, y andz coordinates ofSare considered forfS [9].

The Hooke law for a linear thermoelastic material can be written as

σ = Cεe (3.2)

whereC is the forth order tensor of elastic moduli. In the linear thermoelasticity,

the elastic strain vectorεe is equal to

εe= ε − ε t (3.3)

whereε denotes the total strain vector andε t is the strain vector due to the tempera-

ture change∆T = T −T0, that is

ε t = α(∆T) (3.4)

whereT0 is the reference temperature. The steady-state temperature distribution

T may be, in general, a function of all three space coordinates. α stands for the

vector of linear thermal expansion coefficients. Moreover,the strain-displacement

relations can be written as

ε = Du (3.5)

whereD is the matrix of linear differential operators.

Neglecting the time rate of elastic deformation, the body force per unit volume due

to rotation can be obtained as

fB = ρΩTΩr (3.6)

wherer = {xP 0 zP}
T is the position vector of the material point with respect to

the rotational axis, andρ is the material density. The matrixΩ is

Ω = ω







0 0 1

0 0 0

−1 0 0






(3.7)
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Substituting Eqs. (3.2), (3.3) and (3.6) into Eq. (3.1), thetotal potential energy

becomes

Π =
1
2

∫

V
[(uTDT)C(Du)]dV−

∫

V
[(uTDT)Cα∆T)]dV

+
1
2

∫

V
(∆TαTCα∆T)dV−

∫

V
uT(ρΩ2r)dV

−
∫

S
uTfSdS−∑

k

uTfCk

(3.8)

whereΩ2 = ΩTΩ.

3.3 1D FE-CUF approach for variable thickness disks

A finite element formulation of Eq. (3.8) can be obtained using the 1D FE-CUF

approach. To this end, the structure of Fig. 3.1 is assumed asa beam along its axis

(y) so that each cross section of the beam(A) is defined in any orthogonalx− z

plane. The structure is discretized into a finite number of 1Dbeam elements in the

y-direction, while the Lagrange-type expansions are employed to assume the model

kinematics (see Fig. 3.2).

Fig. 3.2 A sample 1D FE model of a disk with arbitrary profile inthe CUF framework.

Thus, the displacement field is characterized as

u(x,y,z) = Ni(y)Fτ(x,z)Uiτ (3.9)

where Uiτ = {U iτ
x U iτ

y U iτ
z }T is the nodal displacement vector,Ni(y) are the

shape functions, andFτ are Lagrange polynomial expansions. In Eq. (3.9),τ (τ =
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1,2, . . . ,M) and i (i = 1,2, . . . ,Nnodes) indicate summation, according to the gen-

eralized Einstein’s notation. Here, M and Nnodesare the number of terms of the

expansion and the number of element nodes, respectively.

It is obvious that in the discretization process along the disk axis, the length of beam

elements can be unequal. In other words, the cross sections need not be equidistant;

in fact, it is advisable to select the sections closely together where there is sudden

change in geometry, in loadings or in mechanical properties.

In this approach, three types of beam elements, two nodes (B2), three nodes (B3)

and four nodes (B4), may be adopted to provide a linear, a quadratic and a cubic

interpolation of the displacement variable along the longitudinal direction, respec-

tively. For these elements, the distribution of the nodes inthe natural coordinate

system in which−1≤ γ ≤ 1 is shown in Fig. 3.3.

Fig. 3.3 Two-, three- and four- node beam elements in actual geometry.

Moreover, the shape functions of B2, B3 and B4 elements in thenatural system,

respectively, are express as follows

N1(γ) = 1
2(1− γ)

N2(γ) = 1
2(1+ γ)

(3.10)

N1(γ) = 1
2γ(1− γ)

N2(γ) = (1+ γ)(1− γ)
N3(γ) = 1

2γ(1+ γ)
(3.11)
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N1(γ) =− 9
16(γ +

1
3)(γ −

1
3)(γ −1)

N2(γ) = 27
16(γ +1)(γ − 1

3)(γ −1)

N3(γ) =−27
16(γ +1)(γ + 1

3)(γ −1)

N4(γ) = 9
16(γ +1)(γ + 1

3)(γ −
1
3)

(3.12)

On the other hand, the cross sections can be discretized by using different types of

Lagrange elements (LEs) such as linear three-point (denoted as L3), bilinear four-

point (L4), quadratic nine-point (L9) and cubic sixteen-point (L16) elements (see

Fig. 3.4).

Fig. 3.4 Three-, six-, nine- and sixteen- node Lagrange elements (L3, L6, L9 and L16) in
actual geometry.

Furthermore, a sample scheme of L9 element in the actual and the natural coordi-

nate systems is shown in Fig. 3.5. In general, the coordinatetransformation from

an arbitrary cross section referred to(x,z) coordinates to the natural square(ξ ,η)
is trivial and more details can be found in Ref. [9].

(a) (b)

Fig. 3.5 Sample scheme of L9 element in the actual (a) and the natural (b) coordinate sys-
tems.
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Thus, the Lagrange polynomial expansions for L4 and L9 elements in the natural

coordinate system(ξ ,η) are expressed by the following relations [18]

Fτ(ξ ,η) =
1
4
(1+ξ ξτ)(1+η ητ) τ = 1,2,3,4 (3.13)

Fτ(ξ ,η) = 1
4(ξ

2+ξ ξτ)(η2+η ητ) τ = 1,3,5,7

Fτ(ξ ,η) = 1
2η2

τ (η2−η ητ)(1−ξ 2)+ 1
2ξ 2

τ (ξ 2−ξ ξτ)(1−η2) τ = 2,4,6,8

Fτ(ξ ,η) = (1−ξ 2)(1−η2) τ = 9
(3.14)

here−1≤ ξ ≤ 1 and−1≤ η ≤ 1, whereasξτ andητ are the natural coordinates of

τ th Lagrange point of the element. In addition, the polynomialsrelated to L16 are

give by [18]

FτJK(ξ ,η) = LJ(ξ )LK(η) J,K = 1,2,3,4 (3.15)

where

L1(ξ ) = 1
16(ξ −1)(1−9ξ 2) L2(ξ ) = 9

16(1−ξ 2)(1−3ξ )

L3(ξ ) = 9
16(1−ξ 2)(1+3ξ ) L4(ξ ) = 1

16(1+ξ )(9ξ 2−1)

For instance, the displacement components for a basic beam element B2 (Nnodes=

2) and one L9 element (M= 9) over the cross-section is

ux = NiFτU iτ
x = N1(F1U11

x + · · ·+F9U19
x )+N2(F1U21

x + · · ·+F9U29
x )

uy = NiFτU iτ
y = N1(F1U11

y + · · ·+F9U19
y )+N2(F1U21

y + · · ·+F9U29
y )

uz= NiFτU iτ
z = N1(F1U11

z + · · ·+F9U19
z )+N2(F1U21

z + · · ·+F9U29
z )

(3.16)
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3.4 Finite element equations in CUF form

Substituting the unified displacement field (Eq. (3.9)) intoEq. (3.8), the total poten-

tial energy becomes

Π =
1
2

∫

V
U jsT

[(DTNjFs)C(DNiFτ)]Uiτ dV−

∫

V
[(DTNiFτ)Cα∆T]Uiτ dV

+
1
2

∫

V
(∆TαTCα∆T)dV−

∫

V
(NiFτρΩ2r)Uiτ dV

−
∫

S
(NiFτ fS)Uiτ dS−∑

k

(NiFτ fCk)Uiτ

(3.17)

The principle of minimum potential energy requires

∂Π
∂U

= 0 (3.18)

Thus, differentiation ofΠ with respect to the nodal displacements U yields the fol-

lowing equilibrium equations for a finite element

∫

V
[(DTNjFs)C(DNiFτ)]U jsdV−

∫

V
[(DTNiFτ)β∆T]dV

−

∫

V
(NiFτρΩ2r)dV−

∫

S
(NiFτ fS)dS−∑

k

(NiFτ fCk) = 0
(3.19)

in which β = Cα stands for the vector of stress-temperature moduli. The equation

(3.19) may be presented in matrix form as

K i j τsU js = Fiτ (3.20)

where

Fiτ = Fiτ
T +Fiτ

B +Fiτ
S +Fiτ

C (3.21)

The Ki j τs matrix is the structural stiffness matrix. The superscripts s and j are

similar toτ andi, respectively, and indicate summation based on Einstein’snotation.

Fiτ
T is the thermal load vector, which represents artificial forces for modeling thermal

expansion,Fiτ
B is the vector of the body force due to rotational speed,Fiτ

S is the force

vector due to tractions applied on the surface area, andFiτ
C is the force vector due to
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concentrated external loads. The matrix and vectors are defined as

K i j τs=
∫

V [(DTNjFs)C(DNiFτ)]dV

Fiτ
T =

∫

V [(DTNiFτ)β∆T]dV

Fiτ
B =

∫

V (NiFτρΩ2r)dV

Fiτ
S =

∫

S (NiFτ fS)dS

Fiτ
C = ∑k(NiFτ fCk)

(3.22)

Four superscriptsτ, s, i and j are exploited to assemble the stiffness matrix and

the load vectors. In fact, the CUF presents a condensed notation that leads to the

so-called fundamental nucleus (FN) of all the FE matrix and vectors involved. Equa-

tions (3.19) or (3.20) can be used for a disk made of a heterogeneous anisotropic

material that is subjected to arbitrary surface and concentrated forces, as well as an

arbitrary steady-state temperature field.

According to 1D CUF theory (see Fig. 3.2), the components of strain, ε, stress,σ
and thermal expansion coefficient,α, vectors may be grouped as it follows

ε p = {εzz εxx εxz}
T εn = {εyy εyz εxy}

T (3.23)

σ p = {σzz σxx σxz}
T σn = {σyy σyz σxy}

T (3.24)

α p = {αzz αxx αxz}
T αn = {αyy αyz αxy}

T (3.25)

where the subscriptp denotes the in-plane components over a cross section of the

disk, while n indicates the normal components to the cross section. Therefore,

strain-displacement relations (3.5) can be decomposed into the two following ex-

pressions
ε p = Dpu

εn = (Dny+Dnp)u
(3.26)
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where the matricesDp, Dnp andDny are the linear differential operators

Dp =







0 0 ∂/∂z

∂/∂x 0 0

∂/∂z 0 ∂/∂x






, Dnp =







0 0 0

0 ∂/∂z 0

0 ∂/∂x 0







Dny=







0 ∂/∂y 0

0 0 ∂/∂y

∂/∂y 0 0







(3.27)

In a similar manner, the grouped stresses and stress-temperature moduli are obtained

as
σ p = Cppε p+Cpnεn

σn = Cnpε p+Cnnεn
(3.28)

β p = Cppα p+Cpnαn

β n = Cnpα p+Cnnαn
(3.29)

whereCnp=CT
pn. In order to summarize, the expanded expressions for components

of the matrixC for anisotropic materials are not given here, but they can befound

in Refs. [61] and [56]. For isotropic materials,α p = α{1 1 0}T, αn = α{1 0 0}T

andCpp, Cpn andCnn result in the following matrices

Cpp =







λ +2µ λ 0

λ λ +2µ 0

0 0 0






, Cpn =







λ 0 0

λ 0 0

0 µ 0







C̃nn =







λ +2µ 0 0

0 0 0

0 0 µ







(3.30)

in whichλ andµ are Lame constants, andα is the thermal expansion coefficient of

the material.

λ =
νE

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

For a general anisotropic material but homogeneous along the thickness, which

means material properties may continuously vary along radius of the disk, the fun-
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damental nuclei (3.22) can be written as

K i j τs= I i j
l ⊳DT

np(Fτ I)
[

C̃npDp(FsI)+ C̃nnDnp(FsI)
]

+

+DT
p(Fτ I)

[

C̃ppDp(FsI)+ C̃pnDnp(FsI)
]

⊲+

+I i j ,y
l ⊳

[

DT
np(Fτ I)+DT

p(Fτ I)C̃pn
]

Fs⊲+

+I i,y j
l IT

Ay⊳Fτ
[

C̃npDp(FsI)+ C̃nnDnp(FsI)
]

⊲+

+I i,y j,y
l IT

AyIAy⊳FτC̃nnFs⊲

Fiτ
T = I i

l ⊳∆T
[

(DT
pFτ)β p+(DT

npFτ)βn

]

⊲

+I i,y
l ⊳∆TFτ

[

IAyβ n

]

⊲

Fiτ
B = I i

l ⊳Fτρr⊲Ω2

Fiτ
S =

∫

S (NiFτ fS)dS

Fiτ
C = ∑k(NiFτ fCk)

(3.31)

where

IAy =







0 0 1

1 0 0

0 1 0






I =







1 0 0

0 1 0

0 0 1






(3.32)

⊳ · · · ⊲ =
∫

A
· · · dA (3.33)

{ I i
l , I

i j

l , I
i j ,y
l , I

i,y j
l , I

i,y j ,y
l } =

∫

l
{Ni ,(Ni Nj), (Ni Nj ,y), (Ni,y Nj), (Ni,y Nj ,y)} dy

(3.34)

In order to obtain the governing equations of thermoelasticity problem in rotating

disks, Eq. (3.20) can be expanded with respect to the superscripts τ, s, i and j as

KU = F (3.35)

where K and F are the total stiffness matrix and the vector of equivalent nodal forces,

respectively. The nodal displacement vector U contains allthe nodal degrees of

freedom (DOFs) of the structural model, which can be calculated as

DOFs=
NBN

∑
i=1

(3×Ni
LN) (3.36)
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here NLN is the total number of Lagrange nodal points on each cross section and

NBN stands for the total number of beam nodes along the longitudinal axis. More

details about assembly technique of these matrix and vectors can be found in Ref.

[16].

The governing equations of the structure (Eq. (3.35)) can besolved for the nodal

displacement vector U in the Cartesian reference system by the standard numerical

solvers. Stress and displacement fields for axisymmetric structures are typically

presented in a cylindrical coordinate system. Hence, usingtransformation relations,

the fields in the rectangular Cartesian system(xyz) can be transformed into the

cylindrical coordinate system(rθz∗) as it follows

u = {ur uθ uz∗}
T

ε = {εrr εθθ εz∗z∗ εrθ εθz∗ εrz∗}
T

σ = {σrr σθθ σz∗z∗ σrθ σθz∗ σrz∗}
T

(3.37)

As shown in Fig. 3.1,r, θ andz∗ show the radial, circumferential and axial direc-

tions, respectively.

3.5 Numerical results

To investigate the validity of the formulations presented in the previous sections for

stress analysis of rotors, several illustrative examples including rotating disks with

constant and variable thickness; and a complex rotor are analyzed in this section.

3.5.1 Rotating disk with constant thickness

Consider a disk with constant thickness made of steel, with the Young’s modulus

E = 210 (GPa), Poisson’s ratioν = 0.3 and densityρ = 7800(kg/m3). The inner

and outer radii; and the thickness of the disk are assumed as 0.1016 (m), 0.2032 (m)

and 0.01 (m), respectively. The disk is rotating with angular velocity 2000 (rad/s).

The inside boundary of the disk (hub) is assumed to be fully fixed (mounted on a

rigid shaft), while the outside boundary is traction free.
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To solve this problem by the presented 1D CUF model, geometryof the disk can

be discretized into a number of B2 or B3 elements along its axis direction and

used a number of L4, L9 or L16 approximations over the relatedcross-sections. For

example, Fig. 3.6 shows discretization of the disk into a single 3-node beam element

(1B3) along the axis, while 100 elements of L9 (5×20 L9) have been employed for

approximation of deformations on its cross-section.

y

z

(a) 1B3

x

z

(b) 5×20 L9

Fig. 3.6 Discretizing a constant thickness disk into one B3 finite element along the axis with
a distribution of L9 elements over the cross-section.

In this example, the effect of the various discretizations associated with the CUF

approach on stress and displacement fields of the disk was investigated. Considering

1B3 along the axis, radial displacement (ur ), radial stress (σrr ) and circumferential

stress (σθθ ) for the point located at the mid-radius of the disk (r = 0.1524 (m)) for

different distributions of LEs on the cross-section are presented and compared with

analytical and converged 3D conventional finite element (FE) solutions in Table 3.1.

The closed form formulation of the analytical solutions, which are reported in the

second row of Tables 3.1 and 3.2, for annular disks with constant thickness can

be found in Ref. [62]. The 3D conventional FE solution, in thelast row of these

tables, was performed by the ANSYS FE package. Several solidmodels with finer

meshes especially at vicinity of the inner and outer radii ofthe disk were analyzed

in order to check convergence of the ANSYS model. In the converged ANSYS

model, the geometry of the disk has been meshed into 1920 SOLID185 (3D 8-node

structural solid) elements as 24×40 elements on the cross-section (24 elements in

radial direction and 40 element in circumferential direction) and 2 elements across

the thickness of the disk, and in this case, the total number of DOFs is equal to 9000.

In this dissertation, the computational costs of FE models are provided in terms of

DOFs.
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Table 3.1 Displacement and stresses at mid-radius of the rotating disk with constant thick-
ness for different LEs on the cross-section.

Model DOFs ur (µm) σrr (MPa) σθθ (MPa)

Analytical 1 85.93 276.70 201.42

4×32 L4 1440 81.56(5.07) 265.45(4.06) 186.07(7.62)

4×40 L4 1800 81.39(5.28) 270.27(2.32) 185.54(7.88)

4×48 L4 2160 81.50(5.15) 270.70(2.16) 185.73(7.79)

5×32 L4 1728 81.98(4.59) 272.08(1.66) 189.37(5.98)

1D CUF∗ 8×32 L4 2592 83.53(2.79) 273.72(1.07) 194.00(3.67)

4×20 L9 3240 84.91(1.18) 275.33(0.49) 195.93(2.72)

5×16 L9 3168 85.19(0.86) 276.45(0.08) 198.05(1.67)

5×20 L9 3960 85.19(0.86) 276.58(0.04) 197.88(1.75)

2×16 L16 3024 85.23(0.82) 275.88(0.29) 199.01(1.19)

3D FE (ANSYS) 9000 85.29(0.74) 275.55(0.41) 200.10(0.65)

∗= With a single B3 element along the axis of the disk.
()= Absolute percentage difference with respect to the analytical solution.

In Table 3.1, it is observed that if L4 elements are employed,the maximum error for

the solution of nodal displacement with respect to the analytical solution is about

5% that is related to models with 4 elements in the radial direction. An appropriate

distribution of L4 elements may improve the accuracy of the solution. A significant

improvement has been achieved by enriching the discretization along the radius. In-

deed, the maximum error decreases below 2.8% with the distribution of 8×32 L4.

Moreover, it can be found from the table that the effect of high-order elements, like

L9, is significant on the accuracy. Considering the mesh 4×20 of L9 elements on

the cross-section, for instance, the error is reduced to 1.18%. Refining the distri-

bution of L9 elements through the radius, the difference of the CUF solution can

be reduced to less than one percent. For example, using the mesh 5×16 L9, the

maximum relative error is decreased to 0.86%, however, its DOFs is less than the

distribution of 4×20. In addition, employing the 5×16 L9 model with almost on-

third DOFs of the 3D FE model can lead to the solid-like accuracy.
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As presented in Table 3.1, by using L16 elements, more accurate results are ob-

tained even with less DOFs compare to those of L9 elements. For instance, using

only 32 L16 elements with 3024 DOFs and distribution of 2×16, the solution of

nodal displacement is obtained somewhat more accurate than5×16 and 5×20 dis-

tributions of L9 with, respectively, 3160 and 3960 DOFs.

The comparisons in Table 3.1 reveal that by selecting properdistribution and type

of LE on cross-section of the disk, the results of 1D CUF models have close agree-

ment with the analytical reference solutions. Moreover, a local refinement of LE

over cross-section makes 1D CUF models able to reduce computational costs com-

pared to the 3D FE model. From Table 3.1, it is also found that the rate of con-

vergence of L9 element is higher than L4. The reason is that L9element uses

quadratic polynomials as interpolation functions to approximate the displacement

field, while polynomials related to L4 element are of a bilinear type, see Eqs (3.13)

and (3.14). Therefore, increasing numbers of L4 elements ona cross section can be

very effective. Furthermore, the results obtained for L4 and L9 elements show that

a refinement of LEs distribution in the radial direction is more effective than one

in the circumferential direction. In other words, increaseof number of elements

along the radial direction, compared to circumferential direction, is more effective

in improving the accuracy of the solution. Since distribution refinements of LEs

over a cross-section may cause computational costs to be increased, making use of

a higher-order LE (L16 cubic element for example) can reduceDOFs, while pre-

serving the accuracy.

Refinement of the discretization along the axis of the disk may also be investigated

to improve the solution accuracy and to optimize computational costs. The effect

of different beam elements along the axis on values of the displacement and the

stresses at the mid-radius of the disk is represented in Table 3.2, with the assumption

that the distribution of 5×20 L9 has been used on the cross-section. It is observed

that using only a single B2 element in the CUF model of the diskdetects the 3D-like

result with very low computational costs (almost 3.4 times less DOFs). Also, it may

be found from Table 3.2 that as the number of beam elements increases, the solution

accuracy may not arise. In addition, since the disk is thin, the use of quadratic beam

elements B3 across the thickness does not have significant effect on the accuracy of

the results and only increases the DOFs.
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Table 3.2 Displacement and stresses at mid-radius of the rotating disk with constant thick-
ness for different LEs on the cross-section.

Model DOFs ur (µm) σrr (MPa) σθθ (MPa)

Analytical 1 85.93 276.70 201.42

1B2 2640 85.26(0.77) 275.60(0.40) 197.62(1.88)

2B2 3960 85.23(0.81) 276.45(0.09) 197.89(1.75)

1D CUF∗ 3B2 5280 85.23(0.81) 276.45(0.09) 197.89(1.75)

1B3 3960 85.18(0.86) 276.58(0.04) 197.88(1.75)

2B3 6600 85.18(0.87) 276.63(0.02) 198.01(1.69)

3B3 9240 85.18(0.87) 276.64(0.02) 198.05(1.67)

3D FE (ANSYS) 9000 85.29(0.74) 275.55(0.41) 200.10(0.65)

∗= With a distribution of 5×20 L9 over the cross-section.
()= Absolute percentage difference with respect to the analytical solution.

3.5.2 Rotating disk with variable thickness

To demonstrate the ability of the method to analyze rotatingdisks with arbitrary

profile, an annular disk with hyperbolic profile may be considered. In this example,

the disk profile is assumed to be symmetric with respect to themiddle plane per-

pendicular to the axis. The inner and outer radii arer in = 0.05 (m), ro = 0.2 (m),

while thickness of the disk from the value ofhi = 0.06 (m) in inner radius varies

ash(r) =Cra to the value ofho = 0.03 (m) in outer radius, whereC = 0.0134 and

a = −0.5. The material of the disk is assumed to be steel withE = 207 (GPa),

ν = 0.28 andρ = 7860(kg/m3). Angular velocity and boundary conditions of the

disk are identical to those of the previous example.

According to the approach presented in this chapter, the variable thickness disk can

be considered as a beam with non-uniform cross-sections across its axis. A FE rep-

resentation of the geometry may significantly differ from that of the real 3D disk.

Hence, an appropriate FE modeling of the 3D structure is a critical and lengthy task

which can also affect accuracy of the results and computational costs.

To find an acceptable model of the disk in the CUF framework, eight 1D FE models

of the 3D geometry are considered, namely, models (1)-(8), as shown in Fig. 3.7.
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Moreover, a detailed description of these models is presented in Table 3.3. The mod-

els (1)-(8) are obtained by dividing the disk across its thickness at the inner radius

into 8, 10, 12, 14, 16, 18 or 22 discrete elements of type B2. The length and related

cross-section of the beam elements in each model may be different from each other.

Figure 3.7 clearly shows that due to symmetry of the disk profile with respect to the

middle plane perpendicular to the axis, 3 to 8 types of cross-section with different

radii are needed to generate the models (1) to (8). Furthermore, the models (2) and

(3) as well as the models (7) and (8) are, however, geometrically identical but the

number of beam elements used in the tow models is different each other, as shown

in Fig. 3.7.

To describe the deformations over each cross-section of themodels (1)-(8), a distri-

bution of L4 elements is employed, as presented in Table 3.3.The distributions of

L4 elements in the model (1) with three different cross-sections, for instance, may

be indicated as(2/6/8)× 32 which means the number of the elements in the cir-

cumferential direction of all cross-sections is 32, while the cross sections, from the

smaller to the larger, are divided into 2, 6 and 8 elements, respectively, along the

radial direction. In Fig. 3.8, the discretization and the 1DFE model (7) of the disk

using 18 B2 across it axis and the distributions of L4 elements over the 8 different

cross-sections are shown.
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(1) (2) (3) (4)

(5) (6) (7) (8)

Fig. 3.7 Different 1D FE models of the variable thickness disk based on the CUF approach,
discretizing along the disk axis into: (1) 8 B2 with 3 different cross-sections (Sec.), (2) 8
B2, 4 Sec., (3) 10 B2, 4 Sec., (4) 12 B2, 5 Sec., (5) 14 B2, 6 Sec.,(6) 16 B2, 7 Sec., (7) 18
B2, 8 Sec., (8) 22 B2, 8 Sec.

Table 3.3 1D CUF FE models of the variable thickness disk

Model
Discretizing

DOFs
along the axis over the cross-sections

(1) 8 B2, 3 Sec.∗ (2/6/8)×32 L4 6240

(2) 8 B2, 4 Sec. (2/4/6/8)×32 L4 5472

(3) 10 B2, 4 Sec. (2/4/6/8)×32 L4 7200

(4) 12 B2, 5 Sec. (1/2/4/6/8)×32 L4 7584

(5) 14 B2, 6 Sec. (1/2/3/4/6/8)×32 L4 8352

(6) 16 B2, 7 Sec. (1/2/3/4/5/6/8)×32 L4 9504

(7) 18 B2, 8 Sec. (1/2/3/4/5/6/7/8)×32 L4 11040

(8) 22 B2, 8 Sec. (1/2/3/4/5/6/7/8)×32 L4 14496

∗ = 3 types of cross-section with different radii
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(a) (b) (c)

Fig. 3.8 A FE model of the variable thickness disk based on the1D CUF approach, (a) 18
B2 elements along the axis, (b) distribution of L4 elements as 8×32 over cross-section with
the outer radius, (c) the FE model (7) of the disk with total DOFs=11040.

In Fig. 3.9, distributions of the radial displacement alongradius of the disk at the

middle plane perpendicular to the axis obtained from the eight 1D CUF FE models

are plotted and compared with analytical and converged 3D FEsolutions. Moreover,

values of the displacement at mid and outer radii of the disk (ur at r = 0.125,0.2 m)

for the different models are reported and compared with the reference solutions in

Table 3.4.

The analytical solution for this example may be obtained using relations presented

in Ref. [62] for annular disks of hyperbolic thickness. The 3D FE analysis was

also done by ANSYS using a converged model, as shown in Fig. 3.10, with 14400

total DOFs made of 3120 8-node solid elements with three DOFsper element node.

To check convergence of the ANSYS model in relation to the total number of the

elements in the solution domain, several models with finer meshes especially at

vicinity of the inner and outer radii were investigated.

From the comparisons presented in Fig. 3.9 and Table 3.4, it may be found that 1D

CUF FE models have an acceptable accuracy and very high rate of convergence in

predicting the displacement field. Good overall agreementsare observed between

the results obtained by these models and the reference analytical solution. The max-

imum difference between the results of the CUF models and thereference analytical

solution is less than 1.7 percent that is related to the models (7) and (8). Further-

more, the results given in Table 3.4 reveal that discretizing of the disk profile into

an appropriate number of beam elements and cross-sections may lead to solid-like

accuracy with much lower computational effort. For instance, the model (2) which

is created by 8 B2 elements with distributions of(2/4/6/8)×32 L4 over 4 different

cross-sections provides an excellent accuracy (below 0.6%difference with respect
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to the analytical solution for the nodal displacement) almost like the ANSYS result,

but with about 2.6 times less DOFs of the 3D ANSYS model. On theother hand, a

comparison between the results of the models (2) and (3) (or the models (7) and (8))

which are geometrically identical shows that the increasing beam elements may not

result in more accurate solution and only leads to a model with larger DOFs.
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Fig. 3.9 Radial distributions of the radial displacement atthe middle plane perpendicular to
the axis of the variable thickness disk for the different FE models.
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Table 3.4 Comparison of the radial displacements at mid and outer radii of the variable
thickness disk for the different FE models.

Model DOFs
radial displacmentur (µm)

at mid-radius at outer radius

Analytical 1 119.01 157.57

1D CUF FE

(1) 6240 120.32(1.10) 156.00(1.00)

(2) 5472 118.36(0.54) 157.00(0.36)

(3) 7200 118.36(0.54) 156.42(0.73)

(4) 7584 118.75(0.22) 157.15(0.27)

(5) 8352 119.50(0.41) 158.08(0.32)

(6) 9504 118.50(0.43) 157.93(0.23)

(7) 11040 117.26(1.47) 154.92(1.68)

(8) 14496 117.06(1.64) 155.00(1.63)

3D FE (ANSYS) 14400 119.00(0.01) 157.10(0.30)

() = absolute percentage difference

with respect to the analytical solution.

Fig. 3.10 ANSYS model with 3120 8-node elements (SOLID185),total DOFs 14400.

Figure 3.11 shows distributions of the averaged radial and circumferential stresses

along the radius of the disk for the different models. As may be seen from the figure,

the results of the presented models are in close agreement with the analytical and

3D FE solutions, especially, in zones far from the boundaries. There are, however,

some deviations between the FE and analytical results at theboundaries of the disk,



3.5 Numerical results 51

where higher-order elements or mesh refinement over the cross-sections may be typ-

ical remedies.
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Fig. 3.11 Radial distributions of the stresses at the middleplane perpendicular to the axis of
the variable thickness disk for the different FE models.

It should be noted that FE discretization along the axis of the disk is, by defini-

tion, a process that leads to a modified geometry of the structure. This means that

all 1D FE models shown in Fig. 3.7 are not geometrically identical, and can not be

compared with each other. On the other hand, the investigation of the models shows

that since the disk has been assumed as a thick beam, increasing beam elements

along its axis may not have significant effect on accuracy of the results and only

leads to more DOFs. In fact, the purpose of the different discretizations presented

in Fig. 3.7, as well as the investigations of the displacement and the stresses in Figs.

3.9 and 3.11 and Table 3.4, could be to find a proper 1D FE model of the disk for

stress analysis with an acceptable initial accuracy and a reasonable number of DOFs

compared to the 3D FEM.

Thus, in this numerical example, the model (2) may be adoptedas a 1D FE model

that satisfactorily balances accuracy and DOFs. Further improvement in the accu-

racy of the solution may be obtained by a discretization refinement over the cross-
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sections. A convergence study on the solution can be performed to find an appropri-

ate mesh of L4 elements over the cross-sections.

It has been already verified that in a disk problem, increasing number of discretized

elements through the radial direction, compared to circumferential direction, is

more effective in improving the accuracy of the solution. Inthis study, therefore,

five types of mesh refined in the radial direction as(1/2/3/4)×32,(2/4/6/8)×32,

(5/7/9/14)×32, (4/8/12/16)×32 and(10/12/14/20)×32 are considered over

the four cross-sections of the model (2). These five meshes are showed in Fig. 3.12.

The effect of the different discretizations on the displacement and the stresses of the

model (2) is shown in Tables 3.5 and 3.6, as well as Figs. 3.13 and 3.14.

(a) (b) (c) (d) (e)

Fig. 3.12 Different discretizations over the cross-sections of the 1D CUF FE model (2): (a)
(1/2/3/4)× 32, (b) (2/4/6/8)× 32, (c) (5/7/9/14)× 32, (d) (4/8/12/16)× 32 and (e)
(10/12/14/20)×32.

Table 3.5 presents the convergence of the radial displacement values at mid

and outer radii of the disk. Also, the distributions of the displacement are plotted

along the radial direction for the different meshes in Fig. 3.13. It is seen that the

results rapidly converge to the analytical solution by enriching the discretization

along the radius. Using the mesh(4/8/12/16)×32 over the cross-sections, instead

of (1/2/3/4)× 32 or (2/4/6/8)× 32, for instance, an excellent agreement and

solid-like accuracy is observed between result of the CUF model and the analytical

solution. It may be preferable to tune the refinement locallyin order to optimize

computational costs. For this purpose, the mesh(5/7/9/14)×32 which has finer

discretization at the vicinity of the inner and outer radii can be sufficient for reaching

the convergent solution with about 1.6 times less DOFs compared to the 3D FE

analysis.
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Table 3.5 Comparison of radial displacements at mid and outer radii of the variable thickness
disk for the different meshes over the cross-sections.

Model DOFs
radial displacmentur (µm)

at mid-radius at outer radius

Analytical 1 119.01 157.57

8 B2, (1/2/3/4)×32 3168 114.50(3.79) 154.00(2.27)

8 B2, (2/4/6/8)×32 5472 118.00(0.85) 157.00(0.36)

8 B2, (5/7/9/14)×32 8928 119.00(0.01) 157.00(0.36)

8 B2, (4/8/12/16)×32 10080 119.00(0.01) 158.00(0.27)

8 B2, (10/12/14/20)×32 13536 119.00(0.01) 157.00(0.36)

3D FE (ANSYS) 14400 119.00(0.01) 157.10(0.30)

() = absolute percentage difference

with respect to the analytical solution.
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Fig. 3.13 Radial distribution of radial displacement at themiddle plane perpendicular to the
axis of the variable thickness disk for the different meshesover the cross-sections.
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In Table 3.6, values of the stresses,σrr andσθθ , at mid-radius (r = 0.125 (m)) of

the model for the different meshes are given and compared with the reference solu-

tions. The table shows that with the increase of the number ofdiscretized elements

through the radius, the convergence of the stresses can be achieved. Furthermore,

the results presented in the table may emphasize that a proper mesh of the elements

over the cross-sections of the model can be effective in detecting the solid-like solu-

tion.

Table 3.6 Comparison of stresses at mid-radius of the variable thickness disk for the different
meshes over the cross-sections.

Model DOFs σrr (MPa) σθθ (MPa)

Analytical 1 313.19 284.78

8 B2,(1/2/3/4)×32 3168 303.37(3.14) 275.75(3.17)

8 B2,(2/4/6/8)×32 5472 311.25(0.62) 281.25(1.24)

8 B2,(5/7/9/14)×32 8928 308.37(1.54) 282.87(0.67)

8 B2,(4/8/12/16)×32 10080 311.00(0.7) 285.50(0.25)

8 B2,(10/12/14/20)×32 13536 307.50(1.82) 282.50(0.8)

3D FE (ANSYS) 14400 308.00(1.66) 285.00(0.08)

() = absolute percentage difference

with respect to the analytical solution.

Moreover, radial distributions of the stresses are plottedin Fig. 3.14 for the

different meshes over cross-sections of the model (2). Remarkable improvements

in the stress distributions, especially at vicinity of the boundaries, are observed by

refining the meshes.

It should be noted that the stresses are obtained from the computed nodal dis-

placements and, therefore, may be considered as derivativequantities in FEM. In

other words, once the FE matrix equations are solved for displacement field at the

nodes, in postprocessing these derivative quantities are calculated and graphically

displayed. The calculated stresses at the mutual nodal point between adjacent ele-

ments over the cross-section are not generally identical. This causes jumps in the

stresses at the boundary between any two adjacent elements.Many techniques have

been proposed in literatures to overcome these discontinuities and improve accu-
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racy of the stress distributions such as averaged simple nodal evaluation, averaged

extrapolation using a reduced polynomial, and continuous and discrete smoothing

methods on elements. Depending on numerical technique usedto calculate the

stresses, the accuracy of the derivative quantities is generally lower than that of the

displacements, especially, at boundaries of the disk. In the present study, the aver-

aged extrapolation technique using a reduced polynomial isemployed to recover the

stresses and to smooth out the jumps in curves of the stress distributions, as shown

in Figs. 3.11 and 3.14.
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Fig. 3.14 Radial distribution of radial stress at the middleplane perpendicular to the axis of
the variable thickness disk for the different L4 distributions.

It can also be observed from Figs. 3.11 and 3.14 that there aresome minor dif-

ferences between the analytical and the converged FE solutions for stresses at the

inner radius of the disk. The reason may be due to the different definitions of the

clamped boundary conditions in the analytical and the FE models. The closed form

solutions related to the analytical method for the stressesare obtained under ax-

isymmetric plane stress assumptions. It should be mentioned that in axisymmetric

problems all quantities are independent of the circumferential variableθ , as well as

the circumferential displacement,uθ , is assumed to be zero. Thus, the components
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of radial and circumferential stresses (σrr andσθθ ) are the only non-zero stresses.

In addition, in the analytical model the clamped conditionsat the inner radius of the

disk is defined asur = 0. In the FE models, however, all components of displace-

ment and stress fields in any direction are involved in the solution and the clamped

constraints are simulated by using zero displacement field (ur = uθ = uz∗ = 0) in all

nodes located on the inside surface of the disk.

3.5.3 Rotating disk with variable thickness subjected steady-State

temperature gradient

An annular disk with variable thickness subjected to centrifugal and thermal loads is

analyzed to validate the formulation presented in the previous section. The inner and

outer radii of the disk, whose thickness varies according tothe hyperbolic function

h(r) = 0.013r−0.5, are assumed to ber in = 0.05m androut= 0.2m. This disk, made

of a nickel based alloy (λ=100.38GPa,µ=66.92GPa,α = 16.3×10−61/◦C), is

rotating atω = 1497.5rad/s. The inner radius may be considered fully fixed (the

zero displacements) or deformable on thexzplane (uy = 0), while other boundaries

are free of surface tractions and concentrated loads. The temperature at the inner

and outer radii is supposed to beTin = 537 andTout = 614◦C, while the reference

temperature isT0 = 20◦C. The variation of temperature is assumed to occur in the

radial direction only, such that the radial steady-state temperature distribution in the

disk can be considered as uniform, linear, parabolic and exponential (Eq. 3.38)

T(r) = Tout

T(r) = Tin+(Tout−Tin)(r − r in)/(rout− r in)

T(r) = Tin+(Tout−Tin)(r − r in)
2/(rout− r in)

2

T(r) = Tin+(Tout−Tin) ln(r/r in)/ ln(rout/r in)

(3.38)

The different temperature distributions along the radial direction are plotted in Fig.

3.15.
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Fig. 3.15 Different distributions of temperature change along radius of the disk.

To solve this problem, the geometry of the disk is discretized into 10 B2 elements

along its axis. As shown in Fig. 3.16, the length of these elements are unequal,

and the cross sections are selected closely together where there is sudden change in

geometry of the disk.

(a)

111 2 3 4 5 6 7 8 9 10

10 B2 elements

(b)

Fig. 3.16 Discretization of variable thickness disk along the axis based on 1D CUF (a) disk
profile, (b) discretization into 10 B2 with four different cross sections.

A number of L4, L9 and L16 elements can be used to describe the deformations

over the cross sections. Figure 3.16 clearly shows that, dueto symmetry of the

disk profile with respect to the middle plane perpendicular to the axis, four different

types of cross section are needed to generate the FE model. Three types of meshes,

which are indicated as(1/2/3/4)×32,(2/4/6/8)×32 and(4/8/12/16)×32, are

considered over the four cross sections in this example. Forinstance, in the case of

(4/8/12/16)×32, the number of Lagrange elements in the circumferential direc-
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tion of the four cross sections is 32, while these cross sections, from the smaller to

the larger, are divided into 4, 8, 12 and 16 elements, respectively, along the radial

direction. Figure 3.17 shows the different types of meshes used for the Lagrange

elements over the four cross sections.

(a) (1/2/3/4)×32 (b) (2/4/6/8)×32 (c) (4/8/12/16)×32

Fig. 3.17 Three different types of meshes used for the Lagrange elements over the cross
sections.

Assuming that the disk is subjected to the parabolic distribution of temperature and

its inner radius is fully fixed, non-dimensional radial displacement ( ˆur ) for the point

located at the mid-radius of the disk (r = 0.125 (m)) in the cross section related

to the beam node 6 (see Fig. 3.16-(b)) for the three differentmeshes and types of

elements are presented and compared with an exact solution in Table 3.7. The non-

dimensional radial displacement is defined as ˆur = ur/u0 whereu0 = routα∆Tout+

(ρω2r3
out)/E. In this table, the computational costs of each model are provided

in terms of DOFs which is determined by Eq. (4.39). The exact solution can be

obtained using relations given in Ref. [63] for hyperbolic disks subjected thermal

loads.
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Table 3.7 Non-dimensional displacement at mid-radius of the disk for the different LEs and
meshes on the four cross section.

Mesh Element DOFs ˆur Diff. ∗ (%)

L4 4128 0.3497 2.91

L9 14400 0.3486 2.59(1/2/3/4)×32

L16 30816 0.3487 2.62

L4 7200 0.3487 2.62

L9 26688 0.3487 2.62(2/4/6/8)×32

L16 58464 0.3489 2.67

L4 13344 0.3486 2.59

L9 51264 0.3487 2.62(4/8/12/16)×32

L16 93760 0.3488 2.64
∗Absolute percentage difference with respect to the exact solution.

The comparisons show that the difference between the solutions obtained with the

different CUF models and the reference exact solution is less than 3 percent. The

maximum error for the nodal displacement is 2.91% that is related to the mesh

(1/2/3/4)×32 with L4 elements. Using the same discretization, if L9 elements

are used, the error is reduced to 2.59% while the number of DOFs increases from

4128 to 14400. It means that using(1/2/3/4)×32 L9 over the cross sections with

almost 3.5 times more DOFs, accuracy of the solution is increased about 11%. Fur-

thermore, the use of L16 elements, compared to L4, in the(1/2/3/4)× 32 mesh

leads to increase of about 10% in the accuracy and 7.5 times more DOFs.

For the L4 elements, it is observed that improvements in the solution accuracy

can be achieved by enriching the discretization along the radius. Indeed, for the

(2/4/6/8)×32 distribution, the error with respect to the exact solution becomes

2.62% that is about 10% lower than the difference obtained with the(1/2/3/4)×32

mesh. A further improvement has been achieved by using the(4/8/12/16)×32.

From the computational point of view, the numbers of DOFs with respect to the

coarsest L4 mesh are increased of 1.7 and 3.2 times, respectively.

In addition, it can be observed from Table 3.7 that the rate ofconvergence of L9

model is higher than L4. The reason is that L9 element uses quadratic polynomials

as interpolation functions to approximate the displacement field, while polynomials

related to L4 element are of a bilinear type, see Eqs. (3.13) and (3.14). Therefore,
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increasing numbers of L4 elements on a cross section in the radial direction can be

very effective. On the other hand, the use of higher-order LEs (for example the L16

cubic element) may lead to a negative effect on accuracy of the solution, although

the computational cost increases.

Consequently, the comparisons in Table 3.7 reveal that an appropriate distribution

of the Lagrange elements and type of element used over the cross sections can lead

to a reduction in computational costs and the convergence ofresults. Therefore, for

this example, the(2/4/6/8)×32 mesh with L4 elements over the cross sections

may be sufficient to obtain a converged result.

In Figs. 3.18 and 3.19, distributions of radial displacement (ur ), radial stress (σrr )

and circumferential stress (σθθ ) related to the sixth beam node, are plotted and com-

pared with the results obtained by analytical and FD methods(given in Refs. [63]

and [51], respectively). The constraint on the displacement field at the inner radius

is such that the displacements inx andz directions are allowed, while the displace-

ment iny direction is prevented. The disk is still subjected to the parabolic tempera-

ture gradient along its radius. Moreover, in Figs. 3.18 and 3.19, the CUF curves are

related to the model with(2/4/3/4)×32 L4 elements. Figure 3.18 shows distribu-

tion of the radial displacement along the radius of the disk.Excellent agreement is

observed between the results of the presented model and those obtained using the

analytical and FD solutions.
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Fig. 3.18 Distribution of radial displacement along the radius at the middle plane perpendic-
ular to the axis of the disk.
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The distributions of averaged radial and circumferential stresses along the radius of

the disk are plotted in Fig. 3.19. It is seen that the presented results are in close

agreement with the references solutions.

It should be mentioned that in a displacement-based FE model, stresses are consid-

ered as derivative quantities which are directly derived from the nodal displacements

through postprocessing methodologies. Depending on the numerical technique used

to calculate stresses, the accuracy of the derivative quantities is generally lower than

that of the displacements, especially, at the structure boundaries. Furthermore, the

calculated stresses at the mutual nodal point between adjacent elements over the

cross section are not generally identical. This nodal discrepancy determines jumps

in the stress distributions at the boundary between any two adjacent elements. There-

fore, techniques of stress averaging may be employed to improve the stress accuracy

and to smooth out these jumps in curves of stress distributions.
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Fig. 3.19 Distribution of radial and circumferential stresses along the radius at the middle
plane perpendicular to the axis of the disk.

Contour plots of the field variables can be preferred to show variations of a field

along the model or mesh. Recalling capability of the presented 1D CUF approach

to provide 3D-like solutions, the obtained results can be displayed as 2D or 3D con-

tour plots (see Fig. 3.20-(a) for instance) by a proper postprocessing.

In Figs. 3.20-3.22, the contour plots related to the radial displacement, radial stress,

and circumferential stress are shown on an axisymmetric plane, for two different

boundary conditions. In particular, Fig. 3.20 shows the radial thermoelastic dis-

placementsur for the fully fixed disk at inner radius as well as the axial constrained
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disk at inner radius. As expected, the maximum deformation of the fully fixed disk

is higher than that one of the axially constrained disk.

(a)

0.5 1 1.5 2

ur(mm)

Min=0

Max=1.74

(b)

0.5 1 1.5 2

ur(mm)

Max=1.94

Min=0.55

(c)

Fig. 3.20 Distribution of radial displacement on CUF model of the disk (a) fully fixed at
inner radius, (b) axial constrained at inner radius.

Figure 3.21 represents the contour plots for the radial stress in the disk under the two

different boundary conditions. As shown in this figure, the maximum value of radial

stress for the fixed condition occurs at inner surface of the disk and it is significantly

higher than the maximum value predicted for the disk with a radial deformable

inner surface. The maximum radial thermoelastic stress fora disk, which is only

constrained in the axial direction, occurs roughly at the mid-radius.

500 1000 1500

σrr(MPa)
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Max=1230

(a)

50 150 250

σrr(MPa)

Max=238

Min=0

(b)

Fig. 3.21 Distribution of radial stress on CUF model of the disk (a) fully fixed at inner
radius, (b) axial constrained at inner radius.

The contour plots related to circumferential stress in the disk are shown in Fig. 3.22.

If the inner surface of the disk is fully fixed, the values of circumferential stress is

very high compared to the axial constrained disk.
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Fig. 3.22 Distribution of circumferential stress on CUF model of the disk (a) fully fixed at
inner radius, (b) axial constrained at inner radius.

In the case of a non-rotating disk (zero angular velocity) that is fully fixed at its

inner radius, assuming thermal loading only, the non-dimensional thermal displace-

ment and stresses distributions are presented in Figs. 3.23and 3.24 for different

temperature profiles. These distributions are related to the cross section in the beam

node 6 which is shown in Fig. 3.16-(b). The non-dimensional thermal displacement

and stresses are defined as

ût
r =

ur

ut
0

, σ̂ t
rr =

σrr

σ t
0

, σ̂ t
θθ =

σθθ
σ t

0

whereσ t
0 = Eα∆Tout andut

0 = routα∆Tout. It can be seen from Fig. 3.23 that, when

the fixed disk is exposed to a uniform temperature, the radialdeformation due to the

thermal expansion is higher than that produced by a temperature gradient along the

radius. A similar description may be presented for the radial and circumferential

stresses in Fig. 3.24.
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Fig. 3.23 Non-dimensional thermal displacement distributions along the radius on node 6
for Fixed BC.
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3.5.4 Complex rotor

It should be recalled that rotors used in practical problemssuch as aircraft and in-

dustrial turbine engines have various configurations and are geometrically complex

where the loading and boundary conditions are complicated.Some of these config-

urations can include; a disk-type rotor in which several disks, spacers and air seals

with a shaft are clamped by tie bolts; a forged integrated drum-type rotor with rings

to carry the blades that is bolted to adjacent disks on the forward and aft flanges,
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a welded-type rotor in which a special welding method is usedto attach disks and

spacers to each other. Moreover, there are various disk models such as ring, web

and hyperbolic models which are used in the rotors.

In order to perform a detailed analysis, find a 3D state of stress and assess allowed

stresses in the parts of theses complex rotors with various materials and with vari-

ous loading conditions, and also to investigate interactions between adjacent parts

on each other, the FEM are often preferred. Due to the iterative nature of design of

such structures, the refined FEM in the 1D CUF framework can beeffectively used

to obtain the results that are only provided by 3D FE analysis, but with much lower

computational costs as verified in the previous illustrative examples.

As the final example of this chapter, to show the performance of the presented 1D

CUF approach for the analysis of complex rotors, consider a rotor that is composed

of one turbine disk and two compressor disks. These disks aremounted on an elas-

tic hollow shaft, as shown in Fig. 3.25. The profile of the turbine disk has been

assumed to be hyperbolic, however, two compressor disks have a web-type profile

and are smaller in radius compared to the turbine disk. In this example, the profile

of the turbine disk, the angular velocity of the rotor and themechanical properties

of the rotor material are identical to those of the previous example. Both ends of the

shaft of this rotor are assumed to be fully fixed.

Fig. 3.25 3D model of a complex rotor.

Using a similar procedure to the previous example, the finiteelement model of the

problem can be obtained by discretizing the rotor into some discrete beam elements

through its axis. In this example as illustrated in Fig. 3.26, the geometry of the

rotor is divided into 32 B2 elements along the axis, so that 8 B2 of these elements

are employed for discretizing the disks and the shaft through the axis in the hub
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zone. A distribution of the four-point Lagrange (L4) elements is considered over the

cross-sections of the 1D FE model. Proper meshes of L4 elements over the cross-

sections can be choose through a convergence analysis. Thus, the model with the

mesh 1×32 over the shaft cross-section, as well as the meshes(4/6/8/16)×32 and

(4/5/6/12)× 32, respectively, over the cross-sections of turbine and compressor

disks may be sufficient for reaching a convergent solution. In this case, the number

of total DOFs of the model is equal to 27072.
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Fig. 3.26 A 1D CUF FE model of the complex rotor, with DOFs= 27072 (a) The mesh of
L4 elements over the cross-section with the largest radius,(b) The mesh of B2 elements in
the axial direction.

Using the CUF approach, 3D distributions of all of the three components of dis-

placement and the six components of stress and strain can be obtained. Since radial

displacement (ur ), radial stress (σrr ) and circumferential stress (σθθ ) are often more

important in structural analysis and design of such structures, therefore, in this ex-

ample only distributions of these components are represented in Figs. 3.27-3.30.

In order to verify the accuracy of the 1D CUF model, the present solution is com-

pared with the result of a 3D stress analysis obtained by ANSYS in Figs. 3.27 and

3.28 as well. The converged solid model in the ANSYS solutionwith 44280 total

DOFs has been generated by 10160 8-node solid elements.

Figures 3.27 and 3.29 show the contour plots as two-dimensionally in an axisym-

metric plane for the displacement and the stresses on the CUFmodel of the rotor.

These contour plots may be preferred to display variations of the field variables

along the model or the mesh.

Furthermore, Fig. 3.28 shows the variation of radial displacement through the radial

direction at the middle plane perpendicular to the axis of the rotor disks which are

mounted on the elastic shaft. In this figure, as well as the converged displacement

distribution for the single disk presented in the previous example with rigid hub (Fig.

3.7) is plotted. It is seen from Fig. 3.28 that the solution ofthe present model for
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the turbine disk has excellent agreement with the solution of ANSYS. Also, Figs.

3.27 and 3.28 reveal that the proposed 1D model is able to detect the solid solution

perfectly, with a significant reduction in the computational costs.

Also, the distribution of the stresses for the turbine disk mounted on the elastic

shaft and the single disk with rigid hub are presented in Fig 3.30. The interactions

between the shaft and the disks and the effect of mechanical boundary conditions

in the hub on the deformation and stresses distributions in the turbine disk can be

clearly observed from Figs. 3.28 and 3.30. As expected, it may be seen in Fig. 3.28

that with the decrease of rigidity in the inner radius of a rotating disk, the radial

deformation of the disk is increased. For example in this figure, the total radial

deformation of the turbine disk mounted on the elastic shaftis about 20% larger

than that of the disk with rigid hub. On the other hand, as seenin Fig. 3.30, the

maximum radial stress for the rigid hub conditions occurs atthe inner surface and

it is greater than its corresponding value for the disk with elastic hub conditions.

Furthermore, if effect of the elastic shaft is taken into account, the maximum cir-

cumferential stress occurs at the inner surface of the disk,while for the disk with

rigid hub this value is close to mid-radius of the disk.

(a)

(b)

Fig. 3.27 Distribution of the radial displacement on the complex rotor (a) 1D CUF solution
with 27072 DOFs, (b) 3D ANSYS solution with 44280 DOFs .
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Fig. 3.28 Radial distribution of radial displacement.

(a) Radial stress

(b) Circumferential stress

Fig. 3.29 Distribution of the radial and circumferential stresses on the CUF model of the
complex rotor.
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Fig. 3.30 Radial distribution of the stresses in turbine disk.

3.6 Summary

In this chapter, the 1D refined FE method based on the CUF was extended for

steady-state thermoelastic analysis of rotating disks with an arbitrary geometry.

The governing FE formulation was developed for the disks made of heterogeneous

anisotropic materials that are subjected to arbitrary thermal, surface, and concen-

trated loads. To validate the proposed formulation, the results obtained for different

numerical examples were compared with those obtained usinganalytical, 1D finite

difference and 3D FE solutions, which showed good agreement.



Chapter 4

Development of 1D FE-CUF

approach for dynamic coupled

thermoelasticity

Since the time history analysis of the dynamic thermoelastic problems is very time

consuming, the reduced FE models have been recommended to obtain the solutions

with lower computational effort. Thus, in this chapter, a novel FE approach refined

through the CUF is developed for the dynamic generalized coupled thermoelastic

analysis of 3D beam-type structures.

4.1 Governing equations of coupled thermoelasticity

The equation of motion for a 3D elastic body in the physical coordinate system

(x,y,z) is stated as follows [41, 49]

σi j , j +Xi = ρüi +ζ u̇i (4.1)

whereσi j andui are stress and displacement components, respectively.Xi denotes

body forces per unit volume,ρ is mass density, andζ stands for the damping coef-

ficient of the material. Likewise, the superscript dot (·) and the subscript comma (,)

indicate the derivatives with respect to the time (t) and the space variables (x,y,z),

respectively.
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In addition, the strain-displacement relations within thelinear context of small de-

formation theory are expressed as [41]

εi j =
1
2
(ui, j +u j ,i) (4.2)

and according to GL generalized theory, Hooke’s law for a nonhomogeneous anisotropic

thermoelastic material can be written as [41]

σi j =Ci jpqεpq−βi j (T + t1Ṫ) (4.3)

whereCi jpq is a fourth-order tensor containing all the elastic coefficients of a general

nonhomogeneous anisotropic material.βi j =Ci jpqαpq is the second order tensor of

thermoelastic moduli where inαi j is the coefficient of thermal expansion tensor. In

Eq. (4.3),T denotes the temperature change relative to the reference temperature

T0, so that this temperature difference creates thermal strain. Also, t1 is one of the

two relaxation times defined by Green and Lindsay.

On the other hand, the energy balance equation can be expressed as [41]

qi,i = R−T0Ṡ (4.4)

whereqi is heat flux vector andR stands for internal heat source per unit volume

per unit time. S denotes entropy per unit volume and is given by the following rela-

tionship [41]

S=
ρc
T0

(T + t2Ṫ)+βi j εi j −
1
T0

c̃iT,i (4.5)

Here,c is specific heat, whilet2 andc̃i are another relaxation time and a vector

of material new constants, respectively, proposed by Greenand Lindsay. Moreover,

based on LS and GL theories of thermoelasticity the heat conduction equation for

an anisotropic material can be stated as [41]

qi + t0q̇ j =−κi j T, j − c̃i Ṫ (4.6)

whereκi j is the thermal conductivity tensor andt0 is relaxation time associated with

LS theory.

Equations (4.1) to (4.3) may be combined to give the equationof motion in term of
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the displacement components as

(Ci jkl uk,l ), j − (βi j T), j − (t1βi j Ṫ), j +Xi = ρüi +ζ u̇i (4.7)

Likewise, by using Eqs. (4.4)-(4.6) and Eq. (4.2), the energy equation can be

expressed in terms of the temperature and displacement fields as

ρc(t0+ t2)T̈ +ρcṪ −2c̃i Ṫ,i − (κi j T, j),i

+t0T0βi j üi, j +T0βi j u̇i, j = R+ t0Ṙ
(4.8)

Equations (4.7) and (4.8) constitute the governing system of equations for the gener-

alized coupled thermoelasticity problems based on the LS (for t1 = t2 = c̃i = 0) and

GL (for t0 = 0) theories in an anisotropic and nonhomogeneous medium. Inthese

equations, the derivatives of the relaxation times and ˜ci with respect to position

variables are ignored. Thus, the four coupled equations, including three equations

of motion and one heat conduction equation, under specified initial and boundary

conditions must be simultaneously solved for the three unknown displacement com-

ponents (ui) and the one unknown temperature change (T).

4.2 FE formulation through Galerkin technique

To obtain a FE formulation of the governing equations (4.7) and (4.8), Galerkin

technique may be utilized. In implementation of the conventional FE method, the

3D domain with the volumeV can be discretized into a finite number of regular 3D

solid elements. Thus, the components of displacement and temperature change in

each base element can be approximated by identical shape functions as follows

u(e)i (x,y,z, t) = φm(x,y,z)Um
i (t)

T(e)(x,y,z, t) = φm(x,y,z)Θm(t)
(4.9)

whereUm
i (t) and Θm(t) are the displacement vector and the temperature change

at each nodal point of the element.φm(x,y,z) denotes shape functions in the base

element. It is noted that in these approximations, time and space variables are sep-

arated into distinct functions. Furthermore, the repeatedsubscriptm(m= 1, · · · , r)

is a dummy index and indicates summation whiler stands for the number of nodal

points in the element [30, 41].
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According to Galerkin method, multiplying both sides of Eq.(4.1) by the shape

functionsφm and then integrating over volume of the element, yields

∫

V(e)

(

σi j , j +Xi −ρüi −ζ u̇i
)

φmdV = 0 (4.10)

On the first term of Eq. (4.10) the divergence theorem can be applied as

∫

V(e)

(

σi j , j
)

φmdV =

∫

S(e)

σi j n jφmdS−

∫

V(e)

φm, jσi j dV (4.11)

wheren j is the unit vector normal to the boundary surface of the element S(e). Sub-

stituting relation (4.11) into Eq. (4.10) gives

∫

S(e)

σi j n jφmdS−

∫

V(e)

φm, jσi j dV +

∫

V(e)

(Xiφm)dV

−
∫

V(e)

(ρüiφm)dV−
∫

V(e)

(ζ u̇iφm)dV = 0
(4.12)

Furthermore, by using the relationship between the traction vector (tni ) acting on

an arbitrary surface and the stress tensor, the first integral in Eq. (4.12) may be

expressed as
∫

S(e)

σi j n jφmdS=

∫

S(e)

tni φmdS (4.13)

Therefore, Eq. (4.12) can be rewritten as follows

∫

V(e)

(ρüiφm)dV+

∫

V(e)

(ζ u̇iφm)dV+

∫

V(e)

(

φm, jσi j
)

dV

=
∫

V(e)

XiφmdV +
∫

S(e)

tni φmdS
(4.14)

Similarly, applying Galerkin method to the energy equation(4.8) gives

∫

V(e)

(

ρc(t0+ t2)T̈ +ρcṪ −2c̃i Ṫ,i − (κi j T, j),i

+t0T0βi j üi, j +T0βi j u̇i, j −R− t0Ṙ
)

φmdV = 0

(4.15)
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where the weak form of the term(κi j T, j),i can be written according to the diver-

gence theorem as

∫

V(e)

(

κi j T, j
)

,iφmdV =

∫

S(e)

(

κi j T, jniφm
)

dS−
∫

V(e)

(

κi j T, jφm,i
)

dV (4.16)

and likewise substituting this form into Eq. (4.15) and rearranging the terms result

in the following

∫

V(e)

(t0T0βi j üi, jφm)dV+
∫

V(e)

(t0ρcT̈φm)dV+
∫

V(e)

(t2ρcT̈φm)dV

+

∫

V(e)

(T0βi j u̇i, jφm)dV+

∫

V(e)

(ρcṪφm)dV−

∫

V(e)

(2c̃iṪ,iφm)dV

+
∫

V(e)

(κi j T, jφm,i)dV =
∫

S(e)

(qiniφm)dS+
∫

V(e)

(Rφm)dV+
∫

V(e)

(t0Ṙφm)dV

(4.17)

The system of equations (4.17) and (4.14) as well as the stress-strain relations (4.3)

may be expressed in vector form as

∫

V(e)

(ρüφm)dV+

∫

V(e)

(ζ u̇φm)dV+

∫

V(e)

(DTφmσ)dV

=

∫

V(e)

(Xφm)dV +

∫

S(e)

(tφm)dS
(4.18)

∫

V(e)

(t0T0β TDüφm)dV+

∫

V(e)

(t0ρcT̈φm)dV+

∫

V(e)

(t2ρcT̈φm)dV

+
∫

V(e)

(T0β TDu̇φm)dV+
∫

V(e)

(ρcṪφm)dV−
∫

V(e)

(2c̃T∇Ṫφm)dV

+

∫

V(e)

(∇TTκ∇φm)dV =

∫

S(e)

(qTnφm)dS+
∫

V(e)

(Rφm)dV+

∫

V(e)

(t0Ṙφm)dV

(4.19)

σ = Cε −β (T + t1Ṫ) (4.20)

Equations (4.14) and (4.17), or (4.18) and (4.19), represent the general weak for-

mulation containing all possible boundary conditions for the generalized coupled

thermoelasticity problems.
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4.3 1D FE-CUF approach for dynamic coupled ther-

moelastic problems

The 3D FE model presented in the previous Section, however, leads to more accu-

rate results than the traditional 1D or 2D models, but the main drawback of this

method is the significant increase of degrees of freedom (DOF) and, consequently,

computational efforts. The computational competence is definitely reduced in a

3D model with enormous DOF especially in an iterative solution scheme of the dy-

namic coupled thermoelasticity problems. To lower the computational costs of such

problems without loss of accuracy, refined 1D FE models in theframework of the

CUF with 3D capabilities can be developed.

Consider an arbitrary structure subjected to thermo-mechanical shock loads which

is located in the rectangular Cartesian coordinate system(x,y,z). As shown in Fig.

4.1, if the structure can be assumed as a beam along they-direction, each cross sec-

tion, whose centroid G, of the beam is defined in thexz-plane and perpendicular to

they-axis.

Fig. 4.1 A beam structure with an arbitrary cross section

According to the traditional 1D FE procedure, the structurecan be discretized into

a finite number of 1D beam elements along they-axis. In this case, as illustrated

in Fig. 4.2-a, the approximate displacement and temperature fields in each element

can be obtained by the beam shape functionsNm(y) as

u = Nmum

T = NmTm (4.21)
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in which um andTm are the nodal displacement vector and temperature change, re-

spectively. In addition, the dummy indexm(m= 1, · · · ,M) denotes the summation

andM is the number of nodes in the beam element.

Fig. 4.2 A beam base element

On the other hand, based on the unified formulation for beams presented by Crarrea

[17], to overcome the limitations of the classical beam theories such as the Euler-

Bernoulli and the Timoshenko models, the distributions of displacements and the

temperature over the cross section related to each node of the beam element can be

described by an expansion of generic functionsFτ as

um = Fτ Umτ

Tm = FτΘmτ (4.22)

whereFτ are the functions of the cross section coordinatesx andz (see Fig 4.2-b),

Umτ(t) = {Umτ
x Umτ

y Umτ
z }T is the generalized displacement vector, andΘmτ(t)

denotes the generalized temperature change. Here,τ (τ = 1,2, · · · ,NCUF) indicates

summation, as well, whileNCUF is the number of terms of the expansion.

The hierarchical capabilities of the presented unified formulation (4.22) play a es-

sential role in dealing with variable kinematic models in a compact unified manner.

The order of the model is taken into account as a free parameter of the analysis

(i.e., as input) in this formulation. In other words, the refined models can be ob-

tained with no need for ad hoc formulations. In Fig. 4.3, a 3D 8-nodes element is

schematically compared with a 1D 2-nodes element refined by the CUF.
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(a) (b)

Fig. 4.3 A schematic comparison between a 3D element and a refined 1D element, (a) a 3D
8-nodes element, (b) a refined 1D 2-nodes element.

Thus, comparing the relations (4.21) and (4.22) with Eq. (4.9) results in the

following relationship

φm(x,y,z) = Nm(y)Fτ(x,z) (4.23)

In this approach, three types of the beam element, two-, three- and four-nodes, may

be used to give a linear, a quadratic and a cubic interpolation function of the dis-

placement and temperature fields along they-axis, respectively. Likewise, the se-

lection of Fτ(x,z) andNCUF is arbitrary. That is, various kinds of basic functions

including polynomials, harmonics and exponentials of any-order can be assumed

to predict the displacement components and temperature change on the beam cross

section. For instance, different classes of polynomials such as Taylor, Legendre and

Lagrange polynomials are extensively employed as approximation functions in the

numerical modeling of structures. More details about the variable kinematic models

and the interpolating functions can be found in [17].
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4.4 FE equations of coupled thermoelasticity in CUF

form

The relations (4.9) and (4.23) can be substituted into Eqs. (4.18) and (4.19) to give

∫

V(e)

(ρNlFsNmFτ)ÜlsdV+

∫

V(e)

(ζNlFsNmFτ) U̇lsdV

−
∫

V(e)

(t1DTNmFτβNl Fs)Θ̇lsdV+
∫

V(e)

(DTNmFτCDNlFs)UlsdV

−

∫

V(e)

(DTNmFτβNl Fs)ΘlsdV =

∫

V(e)

(XNmFτ)dV +

∫

S(e)

(tnNmFτ)dS

(4.24)

∫

V(e)

(t0T0β TDNl FsNmFτ)ÜlsdV

+
∫

V(e)

(t0ρcNl FsNmFτ + t2ρcNl FsNmFτ)Θ̈lsdV

+
∫

V(e)

(T0β TDNl FsNmFτ)U̇lsdV

+

∫

V(e)

(ρcNl FsNmFτ −2cT∇Nl FsNmFτ)Θ̇lsdV

+
∫

V(e)

(∇TNl Fsκ∇NmFτ)ΘlsdV

=

∫

S(e)

(qnNmFτ)dS+
∫

V(e)

(RNmFτ)dV+

∫

V(e)

(t0ṘNmFτ)dV

(4.25)

here, the indexess and l are similar toτ andm, respectively, and indicate summa-

tion based on Einstein’s notation. Equations (4.24) and (4.25) render the 1D unified

finite element formulation which can be employed to 3D analysis of the generalized

coupled thermoelastic problems.

The presented approach enables all the FE matrix and vectorsto derived as a con-

densed notation which is named the so-calledfundamental nucleus(FN). Indeed,

theses fundamental nuclei do not depend on either the order of the expansion or the

base functions used. Accordingly, the Eqs. (4.24) and (4.25) can be rewritten in
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matrix form as

M lmτsδ̈ mτ
+Glmτsδ̇ mτ

+K lmτsδ mτ = pls (4.26)

here,M lmτs, Glmτs andK lmτs which are 4×4 matrices, represent thefundamental

nucleus(FN) of the total mass, damping, and stiffness matrices, respectively. Like-

wise,δ mτ = {Uls Θls}T and pls= {Fls Q̂ls}T indicate the nuclei of the unknowns

and load vectors, respectively. Equation (4.26) may also beexpressed as

[

M lmτs
UU 0

M lmτs
ΘU M lmτs

ΘΘ

]{

Üls

Θ̈ls

}

+

[

Glmτs
UU Glmτs

UΘ
Glmτs

ΘU Glmτs
ΘΘ

]{

U̇ls

Θ̇ls

}

+

[

K lmτs
UU K lmτs

UΘ
0 K lmτs

ΘΘ

]{

Uls

Θls

}

=

{

Fls

Qls

} (4.27)

where

[M lmτs
UU ]3×3 =

∫

L(e)

∫

A(e)
(ρNmNl IFτFs)dAdL

[M lmτs
ΘU ]1×3 =

∫

L(e)

∫

A(e)
(t0T0NmNl [βT

p(DpFs)+βT
n(DnpFs)]Fτ)dAdL

+
∫

L(e)

∫

A(e)
(t0T0[β T

nNm(DnyNl )FsFτ ])dAdL

[M lmτs
ΘΘ ]1×1 =

∫

L(e)

∫

A(e)
(ρct0NmNlFτFs)dAdL

+
∫

L(e)

∫

A(e)
(ρct2NmNl FτFs)dAdL

(4.28)

[Glmτs
UU ]3×3 =

∫

L(e)

∫

A(e)
(ζNmNl IFτFs)dAdL

[Glmτs
UΘ ]3×3 =−

∫

L(e)

∫

A(e)
(t1NmNl [(D

T
pFτ I)β p+(DT

npFτ I)βn]Fs)dAdL

−
∫

L(e)

∫

A(e)
(t1(DT

nyNm)Nl [Fτβ nFs])dAdL

[Glmτs
ΘU ]1×3 =

∫

L(e)

∫

A(e)
(T0NmNl [β T

p(DpFs)+βT
n(DnpFs)]Fτ)dAdL

+
∫

L(e)

∫

A(e)
(T0[β T

nNm(DnyNl)FsFτ)dAdL

[Glmτs
ΘΘ ]1×1 =

∫

L(e)

∫

A(e)
(ρcNmNlFτFs)dAdL

−

∫

L(e)

∫

A(e)
(2c̃TNm[∇nNl ]FτFs)dAdL

−

∫

L(e)

∫

A(e)
(2c̃TNmNlFτ [∇pFs])dAdL

(4.29)
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[K lmτs
UU ]3×3 =

∫

L(e)

∫

A(e)

(

NmNl
[

(DT
npFτ I)[Cnn(DnpFsI)+Cnp(DpFsI)]

+ (DT
pFτ I)[Cpp(DpFsI)+Cpn(DnpFsI)]

])

dAdL

+
∫

L(e)

∫

A(e)

(

Nm(DnyNl )[(D
T
npFτ I)Cnn+(DT

pFτ I)Cpn]Fs
)

dAdL

+
∫

L(e)

∫

A(e)

(

(DT
nyNm)NlFτ [Cnp(DpFsI)+Cnn(DnpFsI)]

)

dAdL

+
∫

L(e)

∫

A(e)

(

(DT
nyNm)(DnyNl )FτCnnFs

)

dAdL

[K lmτs
UΘ ]3×1 =−

∫

L(e)

∫

A(e)

(

NmNl [(D
T
pFτ)β p+(DT

npFτ)β n]Fs

)

dAdL

−

∫

L(e)

∫

A(e)

(

(DT
nyNm)NlFτβ nFs

)

dAdL

[K lmτs
ΘΘ ]1×1 =

∫

L(e)

∫

A(e)

(

NmNl (∇T
pFs)κ(∇pFτ)

)

dAdL

+

∫

L(e)

∫

A(e)

(

(∇T
nNl )(Nm)κ(∇pFτ)Fs

)

dAdL

+

∫

L(e)

∫

A(e)

(

Nl(∇nNm)κ(∇T
pFs)Fτ

)

dAdL

+
∫

L(e)

∫

A(e)

(

(∇T
nNl )(∇nNm)FτκFs

)

dAdL

(4.30)

{Fmτ}3×1 =

∫

L(e)

∫

A(e)
(XNmFτ)dAdL+

∫

S(e)
(tNmFτ)dS

{Qmτ}1×1 =
∫

S(e)
(qTnNmFτ)dS+

∫

L(e)

∫

A(e)
(RNmFτ)dAdL

+
∫

L(e)

∫

A(e)
(t0ṘNmFτ)dAdL

(4.31)

In the expressions (4.28)-(4.31),I represents the identity matrix. The subscript

p denotes the in-plane components over a cross section of the structure, whilen

indicates the normal components to the cross section. Accordingly, the matrices

Dp, Dnp andDny and the vectors∇p and∇n can be defined as

Dp =

[

0 0 ∂z
∂x 0 0
∂z 0 ∂x

]

, Dnp=

[

0 0 0
0 ∂z 0
0 ∂x 0

]

, Dny =

[ 0 ∂y 0
0 0 ∂y

∂y 0 0

]

(4.32)

and

∇p = { ∂x 0 ∂z }T , ∇n = { 0 ∂y 0 }T (4.33)
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Similarly, the grouped elastic coefficients matrix and stress-temperature moduli vec-

tor are given as

Cpp =

[

C11 C12 C14
C21 C22 C24
C41 C42 C44

]

, Cnn =

[

C33 C35 C36
C53 C55 C56
C63 C65 C66

]

, Cpn =

[

C13 C15 C16
C23 C25 C26
C43 C45 C46

]

(4.34)

β p = {βzz βxx βxz}
T β n = {βyy βyz βxy}

T (4.35)

whereCnp=CT
pn. In order to summarize, the expanded expressions for components

of the matrixC for anisotropic materials are not given here, but they can befound

in Ref. [56].

Furthermore, in most practical engineering problems, the structural damping matrix

Glmτs
UU may be computed by the Rayleigh damping model as [24]

Glmτs
UU = ζ1M lmτs

UU +ζ2K lmτs
UU (4.36)

in whichζ1MUU andζ2KUU are the structural mass and stiffness proportional damp-

ing terms, respectively, and the parametersζ1 andζ2 are typically obtained by ex-

periments for materials.

Therefore the FNs (4.28)-(4.31) must be expanded with respect to the superscripts

m, l , τ ands in order to obtain the FE matrices and vectors of the whole structure.

In fact, indexesm andl are exploited to assemble the matrices in the FE procedure

while τ ands are used to provide the order of the model. The assembly procedure

of the FNs are concerned in the companion paper (Part 2). Thus, the matrix form of

the governing equation for the whole structure can be expressed as

M ∆̈+G∆̇+K∆ = P (4.37)

whereM , G andK are the global mass, damping and stiffness matrices. Likewise,

P is the global vector of the applied mechanical and thermal loads and∆ stands

for the global vector of unknowns. Equation (4.37) of the whole structure can be

solved for the nodal displacements and temperature change in the time domain by

the standard numerical techniques used to such problems in the literature.

It is noted that in the presented formulation, the thermal and mechanical boundary

conditions as well as the body forces and the heat sources areconsidered as the

most general forms. The mechanical boundary conditions maybe applied through

specified traction vectors or displacements on the boundaries. likewise, the differ-
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ent types of thermal boundary conditions including a known temperature change

on a part of the boundary surface, a known heat flux on the boundary and the con-

vection and radiation conditions may be assumed in problems. It is further obvious

that the concentrated thermal and mechanical loads can be taken into account as

the particular cases of the surface loads. Moreover, the initial thermal and mechani-

cal conditions may be assumed in general form as arbitrary known functions of the

space coordinates.

In the unified FE formulation (4.27), indeed, addition to taking into account the

mechanical damping effect by the matrixGlmτs
UU , six theories of GL, LS, classical,

dynamic uncoupled, quasi-static uncoupled and static uncoupled thermoelasticity

are included. Accordingly, the generalized theory of thermoelasticity based on the

Green-Lindsay and Lord-Shulman can be involved fort0 = 0 andt1 = t2 = c̃ = 0,

respectively. The four other theories can be provided as particular cases as repre-

sented in Table 4.1. Equation (4.27) can be simplified to the formulation of the

classical coupled thermoelasticity problems by takingt1 = t2 = c̃ = 0 andt0 = 0.

The classical coupled theory reduces to thedynamic uncoupled thermaoelasticity

by eliminating the coupling matrix (Glmτs
ΘU ) from the formulation. The dynamic un-

coupled formulation can be employed for the problems in which the rate of imposed

thermo-mechanical loads is not rapid enough to generate thermal stress waves. If

the inertia forces can be further neglected asM lmτs
UU = 0, the governing formulation

for the quasi-static uncoupled thermaoelasticityproblems is obtained. Moreover,

in a steady-state condition (Glmτs
ΘΘ = 0), the formulation can be more simplified to

static uncoupled thermoelasticitywhere thermal stresses are imposed by the defor-

mations due to the steady-state temperature field.
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Table 4.1 Different theories of thermoelasticity through the 1D FE-CUF

Conditions Theory

Dynamic

Coupled

t0 = 0 Generalized, GL

t1 = t2 = c̃= 0 Generalized, LS

t0 = 0

t1 = t2 = c̃= 0
Classical

Uncoupled
t0 = 0

t1 = t2 = c̃= 0

Glmτs
ΘU = 0 dynamic

M lmτs
UU = 0

Glmτs
ΘU = 0

quasi-static

M lmτs
UU = 0

Glmτs
ΘU = 0

Glmτs
ΘΘ = 0

static

4.5 Component-wise approach for the coupled ther-

moelastic problems

In this dissertation, the approximating expansions have been obtained using bi-

dimensional Lagrange functions. The Lagrange-based elements enable the physi-

cal surfaces to be modeled adopting arbitrary kinematics. This inherent capability

makes it possible to create component-wise (CW) mathematical models, which can

accurately describe the geometry of the real structure. Within the CW context, cross

sections can be discretized by using different types of Lagrange elements (LEs) such

as linear three-point (denoted as L3), bi-linear 4-point (L4), bi-quadratic 9-point

(L9), and bi-cubic 16-point (L16) elements (see Fig. 3.4).

As far as the longitudinal discretization is concerned, beam elements with 2, 3 or 4

nodes can be chosen (Fig. 3.3). Figure 4.4 shows a possible mathematical model

used to discretize a simple 3D geometry.
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Fig. 4.4 32 DOF total, 16 DOF per beam node, 4 DOF per Lagrange node.

The model shown in Fig. 4.4 consists of 8 Lagrange points (4 per each beam node),

and 32 degrees of freedom (DOF) (4 DOF per each Lagrangian point). Thus, the

corresponding displacement field and the temperature change are

ux = NmFτU
mτ
x = N1(F1U

11
x + · · ·+F4U

14
x )+N2(F1U

21
x + · · ·+F4U

24
x )

uy = NmFτU
mτ
y = N1(F1U

11
y + · · ·+F9U

14
y )+N2(F1U

21
y + · · ·+F4U

24
y )

uz= NmFτU
mτ
z = N1(F1U

11
z + · · ·+F9U

14
z )+N2(F1U

21
z + · · ·+F4U

24
z )

T = NmFτΘmτ = N1(F1Θ11+ · · ·+F9Θ14)+N2(F1Θ21+ · · ·+F4Θ24)

(4.38)

For the assembly procedure, Fig. 4.5 graphically shows the methodology followed

to build the CUF matrices. It should be observed that, in thisexample, the structure

has been modeled using two L4 elements above the cross-section, and three 4-node

beam elements along the longitudinal axis.

The total number of DOF of the computational model can be easily computed as

DOF=
NSN

∑
i=1

(4×Ni
LN) (4.39)

whereLNi andSNrepresent the number of Lagrangian points of the i-th beam node

and the total number of structural nodes, respectively. According to the example of

Fig. 4.5, Eq. 4.39 reduces to

DOF=
10

∑
i=1

(4×6) = 240 (4.40)
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Fig. 4.5 Graphical representation of the assembly procedure.

4.6 Time history analysis

The transfinite element technique through the Laplace transform can be effectively

used to find the time history responses of the dynamic coupledthermoelasticity

equations in very short time intervals. In this method, the problems are solved in

the Laplace transform domain by the FE method and then the transformed solutions

are numerically inverted to obtain the physical responses in the time domain. Thus,

taking Laplace transform of Eq. (4.26) results in

Keq
lmτs(s̃)δ mτ∗ = pls∗(s̃) (4.41)

where Klmτs
eq is the FN of the equivalent stiffness matrix that includes inertial, stiff-

ness and damping contributions and is obtained as

Keq
lmτs(s̃) = M lmτss̃2+Glmτss̃+K lmτs (4.42)

Here,s̃stands for the Laplace variable and the superscript asterisk denotes Laplace

transform of the terms.

The linear system of Eq. (4.41) is solved for different values of s̃, and then the
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solutions are obtained in the time domain using the numerical inversion of Laplace

transforms proposed by [28].

4.7 Non-dimensional FNs

It is expedient to express the governing equations in a nondimensional form. To this

end, the following parameters are introduced

x̂i = xi/l ; t̂ =Vet/l ;

T̂ = T/Td ; ûi = (λ +2µ)ui/(lβTd) ; t̂0 =Vet0/l

q̂i = qi/(cTdρVe) ; σ̂i j = σi j/(βTd) ;

X̂i = Xi/(Tdβ ) ; R̂= DR/(cTd(λ +2µ))

(4.43)

where the hat values indicate nondimensional parameters.Td is a characteristic

temperature. MoreoverVe=
√

(λ +2µ)/ρ , l = κ/Vecρ andD = κ/cρ are, respec-

tively, the velocity of elastic longitudinal wave propagation, the dimensionless unit

length and the thermal diffusivity of material.

Using the nondimensional parameters and considering the Lord-Shulman general-

ized theory of coupled thermoelasticity, the explicit nondimensional expressions of

the equivalent fundamental nucleus components (K̂
lmτs
eq ) in Eq. (4.41) for homoge-

neous isotropic materials are written as it follows

Kτslm
11 = s̃2⊳ Fτ Fs⊲ Iml

L +⊳Fτ,xFs,x ⊲ Iml
L +

+Ĉ66⊳ Fτ Fs ⊲ I
m,yl ,y
L +Ĉ44⊳ Fτ,zFs,z⊲ Iml

L

Kτslm
12 = Ĉ66⊳Fτ Fs,x ⊲ I

m,yl
L +⊳Fτ,xFs ⊲ I

ml,y
L

Kτslm
13 = Ĉ44⊳Fτ,zFs,x ⊲ Iml

L +Ĉ21⊳Fτ,xFs,z⊲ Iml
L

Kτslm
14 =−⊳Fτ,xFs⊲ Iml

L

(4.44)

Kτslm
21 = Ĉ66⊳Fτ,xFs ⊲ I

ml,y
L +Ĉ32⊳Fτ Fs,x ⊲ I

m,yl
L

Kτslm
22 = s̃2⊳Fτ Fs ⊲ Iml

L +Ĉ66⊳Fτ,xFs,x ⊲ Iml
L +

+⊳Fτ Fs⊲ I
m,yl ,y
L +Ĉ55⊳Fτ,zFs,z⊲ Iml

L

Kτslm
23 = Ĉ55⊳Fτ,zFs⊲ I

ml,y
L +Ĉ31⊳Fτ Fs,z⊲ I

m,yl
L

Kτslm
24 =−⊳Fτ Fs⊲ I

m,yl
L

(4.45)
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Kτslm
31 = Ĉ44⊳Fτ,xFs,z⊲ Iml

L +Ĉ12⊳Fτ,zFs,x ⊲ Iml
L

Kτslm
32 = Ĉ55⊳Fτ Fs,z⊲ I

m,yl
L +Ĉ13⊳Fτ,zFs ⊲ I

ml,y
L

Kτslm
33 = s̃2⊳Fτ Fs ⊲ Iml

L +Ĉ44⊳Fτ,xFs,x ⊲ Iml
L +

+Ĉ55⊳Fτ Fs⊲ I
m,yl ,y
L +⊳Fτ,zFs,z ⊲ Iml

L

Kτslm
34 =−⊳Fτ,zFs ⊲ Iml

L

(4.46)

Kτslm
41 =C(s̃2t̂0 + s̃)⊳Fτ Fs,x ⊲ Iml

L

Kτslm
42 =C(s̃2t̂0+ s̃)⊳Fτ Fs ⊲ I

ml,y
L

Kτslm
43 =C(s̃2t̂0+ s̃)⊳Fτ Fs,z⊲ Iml

L

Kτslm
44 = (s̃2t̂0+ s̃)⊳Fτ Fs⊲ Iml

L +

+⊳Fτ,xFs,x ⊲ Iml
L +⊳Fτ Fs ⊲ I

m,yl ,y
L +⊳Fτ,zFs,z⊲ Iml

L

(4.47)

where

Iml
L | I

m,yl
L | I

ml,y
L | I

m,yl ,y
L =

∫

L(e)

(

NmNl |Nm,yNl |NmNl,y |Nm,yNl,y

)

dy

⊳ · · · ⊲=
∫

A(e)
(· · ·)dA

Furthermore,C = T0β 2/[cρ(λ +2µ)] is the thermoelastic coupling (or damping)

parameter. The dimensionless elastic coefficientsĈi j are

Ĉ44 = Ĉ55 = Ĉ66 =
µ

(λ +2µ)

Ĉ12 = Ĉ13 = Ĉ23 =
λ

(λ +2µ)

Likewise, by considering surface and volume forces, the general nondimensional

expression of the loading vector in the Laplace domain becomes

pmτ∗
1 =

∫

S(e)
t̂n

∗

x FτNmdS+
∫

V(e)

X̂∗
x FτNmdV

pmτ∗
2 =

∫

S(e)
t̂n

∗

y FτNmdS+
∫

V(e)

X̂∗
y FτNmdV

pmτ∗
3 =

∫

S(e)
t̂n

∗

z FτNmdS+
∫

V(e)

X̂∗
z FτNmdV

pmτ∗
4 =

∫

V(e)

[(t̂0s̃+1)R̂∗]FτNmdV+
∫

S(e)
(q̂∗i ni)FτNmdS

(4.48)
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Here, the superscript asterisk denotes Laplace transform of the terms.̂tni andq̂i are

the dimensionless traction and heat flux vectors, respectively. ni is the unit vector

normal to the boundary surface of the elementS(e).

4.8 Summary

In the framework of the the Carrera unified formulation, the 1D FE procedure is

developed to the 3D solution of the static, transient, and dynamic problems in the

coupled and uncoupled thermoelasticity for the nonhomogeneous anisotropic mate-

rials. As particular cases, the generalized theories basedon the Lord-Shulman and

the Green-Lindsay models, as well as the classical coupled,dynamic uncoupled,

quasi-static uncoupled and steady-state uncoupled theories of thermoelasticity can

be extracted from the presented formulation. The mechanical damping effect can

be further taken into account in the problems. In addition, the thermal and mechan-

ical boundary conditions, the body force and the heat sourceare considered in the

most general forms where no limiting assumption is applied.This generality allows

to analyze varieties of more practical thermoelastic problems. Since this approach

reduces the 3D problems to the 1D models with 3D-like accuracies and very low

computational costs, it may seem to be a competent tool in an iterative solution

process of the dynamic coupled thermoelasticity problems.



Chapter 5

Coupled thermoelastic analysis:

Numerical evaluations and results

This chapter aims to evaluate the high-fidelity 1D FE-CUF approach proposed in

the chapter 4. To this end, first, the approach is evaluated for a simple metallic beam

problem and then is employed for the coupled thermoelastic analysis of disks. Static,

quasi-static, and dynamic analyses of the coupled and uncoupled thermoelasticity

have been performed in this chapter.

5.1 Thermoelastic analysis of a beam

Firstly, a static coupled thermoelastic analysis is performed on a simple metallic

cantilever beam. The related results, which have obtained with different mathe-

matical models, have been compared with a solution computedwith a simple one-

dimensional analytical formula. Secondly, the same configuration has been consid-

ered for a transient quasi-static analysis.

5.1.1 Static uncoupled thermoelastic analysis of a beam

The structure is a cantilever square beam, which has been subjected to a heat flux

(q=100 W) at the clamped edge. The free tip has been considered at ambient tem-

perature (T0=20o C). The cross-section area and the beam length wereA = 20 cm2,
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and L = 50 cm, respectively. The material is aluminum with the Young’s mod-

ulus E=73.1 GPa, the Poisson’s ratioν= 0.33, the thermal conductivityκ = 237

W·(m·K)−1 and the coefficient of thermal expansionα=23.1×10−6 K−1. The anal-

yses have been performed using several mathematical models. In particular, Table

5.1 lists the temperature changes and the longitudinal displacements along the beam

axis using the 2-node finite elements. Further mesh studies have been performed

considering the 4-node beam elements and different kinematic theories obtained

with the L4, L9 and L16 Lagrange elements. The results are reported in Tables. 5.2,

5.3 and 5.4, respectively.

Table 5.1 Displacement and temperature change vs. number ofB2 elements, 1L4.

Location along they-axis in mm (yi)

Nr. elements 0.0 0.1 0.2 0.3 0.4 0.5

5-B2
uy 0.0 0.319 0.473 0.597 0.670 0.696

T 105.5 84.38 63.28 42.19 21.09 0.0

10-B2
uy 0.0 0.263 0.435 0.556 0.629 0.654

T 105.5 84.38 63.28 42.19 21.09 0.0

20-B2
uy 0.0 0.245 0.416 0.537 0.611 0.635

T 105.5 84.38 63.28 42.19 21.09 0.0

30-B2
uy 0.0 0.240 0.410 0.532 0.605 0.630

T 105.5 84.38 63.28 42.19 21.09 0.0

50-B2
uy 0.0 0.236 0.407 0.529 0.602 0.626

T 105.5 84.38 63.28 42.19 21.09 0.0

100-B2
uy 0.0 0.235 0.406 0.527 0.601 0.625

T 105.5 84.38 63.28 42.19 21.09 0.0
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Table 5.2 Displacement and temperature change vs. number ofB4 elements, 1L4.

Location along they-axis in mm (yi)

Nr. elements 0.0 0.1 0.2 0.3 0.4 0.5

5-B4
uy 0.0 0.242 0.412 0.534 0.607 0.631

T 105.5 84.38 63.28 42.19 21.09 0.0

10-B4
uy 0.0 0.236 0.406 0.528 0.601 0.625

T 105.5 84.38 63.28 42.19 21.09 0.0

20-B4
uy 0.0 0.234 0.405 0.527 0.600 0.624

T 105.5 84.38 63.28 42.19 21.09 0.0

30-B4
uy 0.0 0.234 0.405 0.527 0.600 0.624

T 105.5 84.38 63.28 42.19 21.09 0.0

50-B4
uy 0.0 0.234 0.405 0.527 0.600 0.624

T 105.5 84.38 63.28 42.19 21.09 0.0

100-B4
uy 0.0 0.234 0.405 0.527 0.600 0.624

T 105.5 84.38 63.28 42.19 21.09 0.0
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Table 5.3 Displacement and temperature change vs. number ofB4 elements, 1L9.

Location along they-axis in mm (yi)

Nr. elements 0.0 0.1 0.2 0.3 0.4 0.5

5-B4
uy 0.0 0.242 0.409 0.531 0.604 0.629

T 105.5 84.38 63.28 42.19 21.09 0.0

10-B4
uy 0.0 0.233 0.404 0.526 0.601 0.623

T 105.5 84.38 63.28 42.19 21.09 0.0

20-B4
uy 0.0 0.232 0.403 0.525 0.599 0.622

T 105.5 84.38 63.28 42.19 21.09 0.0

30-B4
uy 0.0 0.232 0.403 0.525 0.598 0.622

T 105.5 84.38 63.28 42.19 21.09 0.0

50-B4
uy 0.0 0.232 0.403 0.525 0.598 0.622

T 105.5 84.38 63.28 42.19 21.09 0.0

100-B4
uy 0.0 0.232 0.403 0.525 0.598 0.622

T 105.5 84.38 63.28 42.19 21.09 0.0
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Table 5.4 Displacement and temperature change vs. number ofB4 elements, 1L16.

Location along they-axis in mm (yi)

Nr. elements 0.0 0.1 0.2 0.3 0.4 0.5

5-B4
uy 0.0 0.242 0.409 0.531 0.604 0.629

T 105.5 84.38 63.28 42.19 21.09 0.0

10-B4
uy 0.0 0.233 0.404 0.526 0.598 0.623

T 105.5 84.38 63.28 42.19 21.09 0.0

20-B4
uy 0.0 0.231 0.402 0.524 0.597 0.621

T 105.5 84.38 63.28 42.19 21.09 0.0

100-B4
uy 0.0 0.231 0.402 0.524 0.597 0.621

T 105.5 84.38 63.28 42.19 21.09 0.0

It is observed that the predicted temperature changes (T= 105.5oC ) satisfies

the conduction equation

q= κ A
T
L
= 100 W (5.1)

For the axial elongations, the CUF results can be compared with a simple one-

dimensional relation

uy(yi) = yi α
(Tyi +Tyi=0)

2
(5.2)

whereyi is the axial location. The results revealed that the proposed beam ele-

ments ensure a significant rate of convergence. In fact, only5 elements are enough

to predict the correct values of temperature changes, whilemodels with 10 ele-

ments provide converged solutions also for the displacements, regardless of which

Lagrange elements are used.
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5.1.2 Quasi-static uncoupled thermoelastic analysis

The quasi-static response of the previous structure has been analysed. The govern-

ing equations have been modified such that the inertial terms, as well as the time

variations of strains into the energy equation, are disregarded. The mathematical

model used to perform the transient analysis consisted of 10B4 finite elements

along the beam axis and 1 L4 element above the cross-section.The time history of

the temperature changes and the longitudinal displacements at different locations

along the beam axis are shown in Figs. 5.1.
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Fig. 5.1 Time histories of axial displacements and temperature changes as functions of the
location. 10B4/1L4 model.

The figures show that, as the time passes (time→ ∞), the steady state values

of the temperature changes and the axial displacements are reached (see Table 5.2).

In the case in point, the steady-state solutions are obtained after about 2000 sec-

onds. Figures 5.2 and 5.3 show the axial displacements and the temperature fields

at different times.
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Fig. 5.2 Axial displacements (in meters) at different times. 10B4/1L4 model.

Fig. 5.3 Temperature changes (oC) at different times. 10B4/1L4 model.
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5.2 Dynamic coupled thermoelastic analysis of a disk

Based on the LS theory of thermoelasticity, the non-dimensional finite element equa-

tions are solved and evaluated for an axisymmetric and asymmetric disk made of

homogeneous isotropic materials.

5.2.1 Axisymmetric disk

To evaluate and validate the present method, a numerical example is selected from

reference [4] in which a 1D FE method has been used to solve thecoupled ther-

moelasticity problem in a disk. Furthermore, this example has been analytically

solved in the chapter 2. It is noted that the solution in both references obtained un-

der axisymmetric and plane stress assumptions. Therefore,to unify the nondimen-

sional parameters and compare the obtained results with thereference solutions,λ
andβ in the relations (4.43) must be respectively replaced bykλ andkβ where

k= 2µ/(λ +2µ).
Thus, an annular disk with constant thickness made of aluminum withλ =40.4 GPa,

µ = 27 GPa,ρ=2707 kg/m3, α=23×10−6 K−1, κ=204 W/m·K, c=903 J/kg·K is

considered. The dimensionless inner and outer radii of the disk are equal toa= 1

andb = 2, respectively, while the the dimensionless value 0.1 is considered to be

the thickness of the disk. As the mechanical boundary conditions, the surface at

inner radius is rigidly fixed while the other surfaces are assumed to be stress free.

The temperature change on the outer surface is equal to zero,while the surface at

inner radius is suddenly exposed to a heat flux as the Heaviside unit step function.

Two side surfaces of the disk are assumed to be thermally insulated as well.

In the 1D FE-CUF approach, the disk can be assumed as a beam along its axis so

that each cross section of the beam is defined in any plane perpendicular to the axis.

Accordingly, to study the convergence of the results and theeffect of discretization

quality and type of the elements on the accuracy of the method, 6 models of 1D

FE-CUF are considered in accordance with Table 5.5. Also, Figs. 5.4 and 5.5 show

the types of discretizations considered along the axis and over the cross section of

the disk.
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Table 5.5 Different 1D FE-CUF models for the constant thickness disk

Model
Discretizing

DOF∗

along axis over cross section

(1) 1 B2

(6×30) L4

1680

(2) 1 B3 2520

(3) 1 B4 3360

(4)

1 B2

(3×15) L9
1680

(5) (2×10) L16

(6) (6×18) L9 3744
∗DOF: total degrees of freedom
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Fig. 5.4 Discretizing along the axis of the disk.
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Fig. 5.5 Discretizing and distribution of Lagrange elements over the cross section of the
disk.
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Based on the classical theory of thermoelasticity and assuming the numerical value

of the coupling parameter to be 0.02, the time history of the radial displacement and

the temperature change in the mid-radius of the disk are shown in Figs. 5.6-5.8 and

compared with the analytical solutions reported in the chapter 2.

Considering the distribution of(6×30) L4 on the cross-section of the disk, Fig. 5.6

shows these time history for the different types of beam elements along the axis.

It is observed that since the disk is thin, the use of higher order elements B3 and

B4 in comparison with the linear element B2 not only does not affect the accuracy

of the results, but also significantly increases the degreesof freedom (DOF) and

consequently the computational costs. Therefore, one B2 element along the axial

direction can be enough to obtain converge solution with this model. Further im-

provement in the accuracy of the solution may be achieved by arefinement of the

discretization over the cross sections.
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Fig. 5.6 Time histories of the nondimensional temperature change (a), and radial displace-
ment (b) at mid-radius of the disk.

Thus, considering 1 B2 element along the axis, the effects ofthe Lagrangian ele-

ment type on the accuracy of the time histories obtained at the mid-radius of the

models with same DOF are shown in Fig. 5.7. As observed, usingL9 and L16

elements, instead of L4, the accuracy of the solution arises. The reason is that the

L9 and L16 elements respectively use fourth- and ninth-order polynomials as inter-

polation functions, while L4 is a bilinear element with second-order polynomials.
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In this case, increasing the number of L4 elements over crosssections may increase

the accuracy. Also, it is seen from Fig. 5.7 that, for the models with the same DOF,

the use of L9 and L16 elements over cross sections of the modelgives approxi-

mately the same results. In addition, although there is still little difference between

the obtained solution and the reference result, the effect of the higher-order elements

on the accuracy of the displacement field is more obvious thanthe temperature field.
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Fig. 5.7 Time history of the nondimensional temperature change (a) and radial displacement
(b) at mid-radius of the disk.

Moreover, refining the distribution of L9 elements over the cross section of the disk

with 1 B2 along its axis, may improve the accuracy of the solution. In Fig. 5.8, the

results obtained by two different distributions of L9 elements are compared with

the reference solution. As seen from this figure, there are some minor differences,

at the peaks of oscillations, between the result obtained bythe distribution(3×15)

L9 and the analytical solution for the radial displacement.By utilizing an improved

distribution such as the(6×18) L9, the difference is largely eliminated, and an ex-

cellent match appears between the obtained result and the reference solution.
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Fig. 5.8 Time history of the nondimensional temperature change (a) and radial displacement
(b) at mid-radius of the disk.

Likewise, the accuracy of the model 1 B2/(6× 18) L9 of the disk can be evalu-

ated for solving the generalized coupled thermoelasticityproblem based on Lord-

Shulman (LS) theory. In this case, the values of the couplingparameter and the

relaxation time are assumed to be 0.02 and 0.64, respectively. In Fig. 5.9, the time

histories of temperature and radial displacement at mid-radius of the disk for this

model are shown and compared with the reference solutions. Moreover, the time

histories of radial stress and tangential stress are plotted in Fig. 5.10. These figures

reveal that the 1D FE-CUF model is able to provide the reference analytical solu-

tions. However, slight differences between the axisymmetric FE solution proposed

by [4] and the other results are observed in Fig. 5.9.
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Fig. 5.9 Time history of the nondimensional temperature change (a) and radial displacement
(b) at mid-radius of the disk.
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Fig. 5.10 Time history of the nondimensional radial change and circumferential stresses at
mid-radius of the disk.

It may be useful to visualize variations of field variables, like temperature and dis-

placement, over a computational model as contour plots. Thus, recalling capability

of the 1D FE-CUF models to provide 3D-like solutions, the obtained results can

be shown as 2D or 3D contour plots by an appropriate postprocessing. Based on
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the LS thermoelasticity theory, Figs 5.11-5.13 show the contour plots related to dis-

tribution of the temperature change and radial displacement on the computational

model of the disk at different times. The propagation of the thermal and elastic

waves along the time is clearly observed from these figures. Since the geometry

and the boundary conditions of the disk are axisymmetric, the temperature change

and radial displacement waves propagate in circular form along the radial direction.

The velocity of the thermal wave propagation can be evaluated using the contour

plots shown in Fig. 5.11. For instance, at the timet̂ = 0.4, the dimensionless value

of the temperature change at the inner radius is about 0.4, while this value becomes

zero from the radial position ˆr = 1.5 toward the outer surface. That is, the temper-

ature wave front at the dimensionless timet̂ = 0.4 is at the radial position ˆr = 1.5.

Accordingly, the velocity of temperature wave propagationis 1.25. This value can

also be computed expectedly from Eq. (??) through the square root of the inverse

of nondimensional relaxation time. It can be, therefore, said that the plots related to

timest̂ = 0.2,0.4,0.6 and 0.8, in Fig. 5.11, show the radial propagation of the ther-

mal wave, while those related to timest̂ = 1 and 1.2 represent the wave reflection

from the outer surface of the disk.

Fig. 5.11 Distribution of nondimensional temperature change for different values of the
time.
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Figures 5.12 and 5.13 show the distribution of nondimensional radial displacement

onyzplane of the deformed model at several different times. According to Eq. (??),

longitudinal elastic waves propagate at unit velocity. Hence, the nondimensional

time at which the elastic wave front reaches any nondimensional radial position (ˆr)

for the first time can be calculated using relationt̂ = r̂ −a. For instance, at the time

t̂ = 0.4, the elastic wave front is at the radial position ˆr = 1.4. This occurrence

can also be observed in Fig. 5.12, where the elastic wave reaches the outer sur-

face of the disk at the timêt = 1. Moreover, as illustrated in this figure, under the

propagating longitudinal elastic waves, in addition to changing the outer radius, the

thickness of the disk also expands and contracts, which is known as thePoisson ef-

fect. This effect can be only detected through the 3D solution of the problem which

is of capabilities of the 1D FE-CUF models. It may be further seen that during the

wave propagation and before the wave front reaches the outersurface of the disk,

although the thickness is changing, the disk does not expandin the radial direction.

(a) (b) (c) (d) (e) (f)

Fig. 5.12 Distribution of nondimensional radial displacement for different values of the
time.

Figure 5.13 shows distributions of the radial displacement, after the reflection of

the elastic wave from the outer boundary, at the timest̂ = 1.2,2.7,4.6,6.5,8.5 and

10.5. In addition, to clarify how the thickness of the disk changes along the time, the

percent change in the thickness at the mid-radius, named mid-thickness, is shown

in Fig. 5.14. It may be seen from Fig. 5.13 that due to destruction of the wave front

after the timet̂ = 1, the displacement gradient along the radius becomes smooth.

Moreover, after the incidence of the wave on the outer surface to the timêt = 2.7,

the disk begins to expand radially, and since the inner surface of the disc is assumed

to be completely constrained, the outer radius of the disk increases.
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As observed from Figs 5.13 and 5.14, after the wave reflectiontoward the inner

surface, although the disk is radially expanding, the thickness at the mid-radius in-

creases up to the timêt = 1.2. Then, with the increase of the outer radius, the

mid-thickness decreases so that at the timet̂ = 2.7, the disk reaches the maximum

expansion in the radial direction, while the mid-thicknessreduces to about the ini-

tial value. After the timêt = 2.7, while the disk contracts radially to the timet̂ = 4.6,

the mid-thickness increases. These deformations continuein a harmonic form along

the time, because the equations of motion (see Eq. (??)) represent harmonic solu-

tions for the displacements when the temperature is damped.

(a) (b) (c) (d) (e) (f)

Fig. 5.13 Distribution of nondimensional radial displacement for different values of the
time.
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5.2.2 Non-axisymmetric disk

To demonstrate the ability of the 1D FE-CUF models to provide3D solutions of

asymmetric problems, an annular disk with asymmetric boundary conditions can

be analyzed. The geometry and material properties of the disk are considered to

be the same as those of the previous example. The inner surface of the disk is as-

sumed to be partially fixed in accordance with Fig. 5.15, while the other surfaces

are stress free. As the thermal boundary conditions, the temperature change on the

inner surface is equal to zero and two side surfaces of the disk are thermally insu-

lated. Likewise, on the outer surface the temperature with respect to the reference

temperature is suddenly changed by the functionT(t) = Td(1−e−tVe/l ) which, us-

ing the nondimensional parameters (4.43), can be expressedasT̂ = 1−e−t̂ .

(a)

y

z

T =T(t)

T = Const.

Adiabatic

(b)

Fig. 5.15 Boundary conditions (BCs) in the asymmetric disk (a) Mechanical BCs; (b) Ther-
mal BCs.

Considering the model 1 B2/(6× 18) L9 of the disk and based on the LS gener-

alized theory of thermoelasticity, Figs. 5.16 and 5.17 showcontour plots of the

nondimensional temperature change and radial displacement distributions on the

deformed model at different values of the time. Moreover, for further clarification,

the time histories of the temperature change and radial displacement at the points

(x̂ = 1.06, ŷ = 0.05, ẑ= 1.06) and ( ˆx = −1.06, ŷ = 0.05, ẑ= 1.06) located on the

mid-radius of the model are plotted in Fig. 5.18.

It may be seen in Figs. 5.16 and 5.17 that the elastic wave reaches the inner surface

of the disk at the timêt = 1. After the incidence of the wave on the inner surface,
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due to asymmetry of the mechanical boundary conditions, thedisplacement waves

reflect asymmetrically from the boundary which causes the asymmetric deforma-

tions of the disk. Therefore, after the elastic wave reflection, the distribution of the

temperature change on the deformed model is not axisymmetric as well. It is further

observed from Fig. 5.18 that the amplitudes of oscillationsof the displacement in

the first quarter of the disk are smaller than those in the second quarter, however the

frequency of these oscillations in the first quarter is higher than that in the second

quarter. The reason is that the stiffness of the first quarterof the disk is larger due

to its constrained inner surface.

Fig. 5.16 Distribution of the nondimensional temperature change at different values of the
time.
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Fig. 5.17 Distribution of the nondimensional radial displacement at different values of the
time.
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Fig. 5.18 Time history of the nondimensional temperature change and radial displacement
at mid-radius of the disk in the first (a) and the second (b) quarters .
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5.3 Summary

The 1D FE-CUF approach developed in the chapter 4 has been validated through

comparisons with available reference solutions considering static, quasi-static, and

dynamic thermoelastic analyses. Simulations have been performed on isotropic and

homogeneous structures. Comparison of the obtained results with the results re-

ported in the literature verifies accuracy of the models for the disk problem. Indeed,

as expected, the accuracy given by the 1D CUF models is extremely subordinate to

the order of the Lagrange-type expansions. It was demonstrated that the FE-CUF

models are quite efficient and have a very high rate of convergence, so that making

use of an appropriate discretization, they are able to provide results with analyti-

cal accuracy. The propagation of thermoelastic waves and their reflection from the

boundaries in an axisymmetric and asymmetric disk problem were investigated and

it was shown that the Poisson effect can be detected in the 3D solution obtained by

the models. It is hence concluded that the 1D FE-CUF approachcan be effectively

used to obtain 3D solution of the coupled thermoelastic problems in disks subjected

to arbitrary boundary and loading conditions including thethe body force and the

heat source.



Chapter 6

Conclusion

The main subject of this dissertation has been to study of thecoupled thermoelastic

behaviors in rotating disks subjected to thermal loads. Forthis purpose, firstly, us-

ing an analytical procedure based on the Fourier-Bessel transform, the generalized

coupled thermoelasticity problems in an axisymmetric rotating disk with constant

thickness made of a homogeneous isotropic material are analytically solved. Then,

closed-form formulations are presented for temperature and displacement fields.

Secondly, a 1D FE methodology refined through the Carrera unified formulation

(1D FE-CUF) has been developed for the static uncoupled thermoelastic and the

dynamic coupled thermoelastic analyses of structures madeof nonhomogeneous

anisotropic materials. In the unified FE formulation, indeed, addition to taking into

account the mechanical damping effect, six theories of thermoelasticity, including

coupled generalized (Green-Lindsay and Lord-Shulman) andclassical theories as

well as uncoupled dynamic, quasi-static and static theories, can be involved. The

thermal and mechanical boundary conditions, the body forceand the heat source are

considered in the most general forms where no limiting assumption is applied. This

generality allows to analyze varieties of more practical thermoelastic problems. Fur-

thermore, The enhanced capabilities of 1D FE-CUF approach allowed to deal with

problems that usually require sophisticated solutions with a low number of degrees

of freedom. The validity and capabilities of the numerical procedure and conver-

gence of results have been investigated in a number of numerical examples.

The obtained analytical and numerical solutions are in goodagreement with the ref-

erence solutions. It is further shown that the proposed analytical and FE methods

are quite efficient with very high rate of convergence. Distributions and time his-
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tories of temperature, displacements and stresses, propagation of the thermoelastic

waves, the wave reflection from the boundaries are shown and discussed. In addi-

tion, effects of coupling parameter, relaxation time on temperature, displacement

and stress fields are investigated. Likewise, using the FE models, the solutions have

been represented as contour plots to highlight 3D capabilities of the models.

6.1 Outline and contribution to the literature

The results obtained from the solution of the coupled thermoelasticity problems in

disks can be outlined as:

• Before reaching the steady state condition, the transientdisplacement and

stresses may be higher than the steady state. Therefore, forspecialized ap-

plications involving sudden temperature changes in short periods of time, the

disk should be designed with consideration of transient effects.

• Due to the presence of the thermoelastic damping parameter(coupling pa-

rameter) in heat conduction equation, the time history of the temperature is

damped faster than the time history of the radial displacement.

• With increasing relaxation time, the maximum value of the curves of time

histories of temperature and displacement increases, but occur at later times

due to the decrease in the propagation speed of thermal waves.

• Comparison between different theories of thermoelasticity shows that under

thermal shock loading, generalized coupled theory based onLord–Shulman

model predicts larger temperature and stresses compared tothe other theories.

Therefore, for specialized applications involving suddentemperature changes

in short periods of time, the disk should be designed using some modified

coupled thermoelasticity models with the finite speed of wave propagation

such as Lord-Shulman (LS).

• When the coupling parameter takes a greater value, the amplitudes of oscil-

lations of temperature increase. The reason is that with increasing coupling

(or damping) parameter, the conversion between the mechanical and thermal

energies increases.



6.1 Outline and contribution to the literature 111

In addition, some general points on the 1D FE-CUF modeling ofdisks can be out-

lined as follows:

• The 1D FE method refined by the CUF can be effectively employed to analyze

rotating disks with variable thickness and reduce the computational cost of 3D

FE analysis without affecting the accuracy.

• Since the presented 1D CUF model is invariant with respect to the order of

the beam theory in the finite element axial discretization, the model provides

a unified formulation that can easily consider different higher-order theories

where large bending loads are involved in the problem.

• Increasing beam elements along the axis of disks may not have significant

effect on accuracy of results and only leads to more DOFs. Thus, an appro-

priate distribution and type of beam elements or discretizing of disk profile

into a proper number of cross-sections can significantly lead to a reduction in

computational costs. In fact, the 1D FE model of a rotor should be selected so

that it balance accuracy of results and DOFs reasonably compared to a similar

solid model.

• To increase accuracy of a 1D CUF FE model along with optimized computa-

tional costs in a rotating disk problem, it would be preferable to tune a mesh

refinement locally. Local refinements may be implemented straightforwardly

through a finer mesh of elements on a cross-section of the diskwhere needed,

for example, at vicinity of the problem boundaries.

• Since distribution refinements of LEs over a cross-sectionmay cause compu-

tational costs to be increased, making use of higher-order Lagrange elements

(like L9 and L16) can reduce DOFs, while preserving the accuracy.

• Due to quadratic interpolations in L9 element, the rate of convergence of L9

is higher than L4 element in which bilinear polynomials are used as inter-

polation functions of displacement field. Therefore, increasing numbers of

L4 elements on a cross section can be effective in improving accuracy of the

solution.

• A refinement of LEs along the radial direction is more effective than one in

the circumferential direction. In other words, increase ofnumber of elements
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along the radial direction, compared to circumferential direction, is more ef-

fective in improving the results.

• The innovative FE procedure presented in this dissertation can be used as an

accurate tool of structural-thermal analysis for complex rotors with arbitrary

configuration and loading conditions to reduce the computational costs in an

iterative design phase of rotors as well as an iterative solution process of the

dynamic coupled thermoelasticity problems.

6.2 Future works

Within this work, the FE-CUF approach has shown excellent performance in the

study of the coupled thermoelastic behavior in rotors, therefore, as future work, it

is of interests to extend the study to more complicated problems as follows

• Nonlinear thermoelasticity problems (geometrical as well as material nonlin-

earities).

• Dynamic analysis of rotors subjected to transient thermalprestresses.

• Study of thermoelastic damping effect on dynamic behaviors of rotors.
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