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Abstract: 

next generation aircraft, based on the More Electric design. Electromechanical act

increased acceptance as they are becoming more and more safety

health management purposes of EMA, reliable and representative simulation models are needed in order to 

identify failure

of the Permanent Magnet Synchronous Motor (PMSM), also kwon as Sinusoidal Brushless Motor. The choice 

of the multi domain simulation is necessary to improve the si

in numerical models and that are mostly used for prognostic analyses of electromechanical actuators.

 

 

Key

 

1
In the last few years, the interest in brushless motors 

has increased because of their advantages compared 

with traditional brushed motors. The need of 

improvement in the design of electric motors was 

first reported during

in World War II: in fact, at about 30000 ft, a rapid 

brush wear occurred [1

exploration, the brush problem became crucial due 

to the outgassing phenomena. Brushless motors 

have been designed to ov

disadvantages: the electronic commutation, which is 

made possible by using electronic switches, replaces 

the mechanical commutation based on carbon made 

brushes.

research activity focused on

modelling of the PMSM for electromagnetic 

aerospace actuator systems for future diagnostic and 

prognostic applications. For this purpose, short

circuit and static eccentricity failure conditions will 

be implemented in the developed PMSM mode

Furthermore, the developed model takes into 

account dry friction and it overcomes the typical 

limitations (e.g. simplifying assumptions such as the 

superposition of the effects) which are unable to 

assess nonlinear effects arising from failure 

condition

multi

development of simulation algorithms properly 

sensitive to faults.
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5 Conclusions 
The numerical modelling of the electromechanical 

actuator using permanent magnet synchronous 

motor has been developed. The model was created 

in Matlab/Simulink environment. The Park and the 

Clarke transformations were introduced to describe 

the three-phase reference currents. The sinusoidal 

waveform of the normalized back electromagnetic 

force was introduced in order to describe the correct 

motor behaviour and evaluate the total motor torque.  

The PMSM motor control was developed imposing 

the reference quadrature current �� and setting the 

direct current �� equal to zero, as it normally does 

not contribute to the motor torque generation.  

In order to improve the developed model, some 

suggestions are given: 

1. the Hysteresis Control should be replaced with 

the d-q axes direct control, in order to avoid the 

phase voltage and current distortions at high 

rotor speed; 

2. the failure conditions could be studied in details. 

Demagnetisation failure could be considered in 

order to improve the failure conditions; 

3. a simplified model of the actuator should be 

developed in order to monitor the motor actual 

behaviour. This solution would be interesting for 

future diagnostic and prognostic applications.  
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