
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Software-based methods for Operating system dependability / Velasco, ALEJANDRO DAVID. - (2017).
Original

Software-based methods for Operating system dependability

Publisher:

Published
DOI:10.6092/polito/porto/2678125

Terms of use:
Altro tipo di accesso

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2678125 since: 2017-08-08T12:24:58Z

Politecnico di Torino

Doctoral Dissertation

Doctoral Program in Ingegneria Informatica E Dei Sistemi (29thcycle)

Software-based methods for
Operating system dependability

By

Alejandro David Velasco Carreño

Supervisor(s):
Prof. Maurizio Rebaudengo

Doctoral Examination Committee:
Prof. Alberto Bosio, Laboratoire d’Informatique, de Robotique et de Microélectron-
ique de Montpellier, Montpellier
Prof. Michele Portolan, Laboratoire TIMA, Grenoble
Prof. Graziano Pravadelli, Università di Verona, Verona
Prof. Luca Sterpone, Politecnico di Torino, Torino
Prof. Massimo Violante, Politecnico di Torino, Torino

Politecnico di Torino

2017

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Alejandro David Velasco Carreño
2017

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

Acknowledgements

I would like to acknowledge supervisor Prof. Rebaudengo for the continuous support
of my Ph.D research activities. Additionally, I would like to acknowledge the
research group composed by R. Ferrero, F. Gandino and B. Montrucchio for their
work in our pubblications.

Abstract

Guaranteeing correct system behaviour in modern computer systems has become
essential, in particular for safety-critical computer-based systems. However all
modern systems are susceptible to transient faults that can disrupt the intended
operation and function of such systems. In order to evaluate the sensitivity of such
systems, different methods have been developed, and among them Fault Injection is
considered a valid approach widely adopted.

This document presents a fault injection tool, called Kernel-based Fault-Injection
Tool Open-source (KITO), to analyze the effects of faults in memory elements
containing kernel data structures belonging to a Unix-based Operating System
and, in particular, elements involved in resources synchronization. This tool was
evaluated in different stages of its development with different experimental analyses
by performing Faults Injections in the Operating System, while the system was
subject to stress from benchmark programs that use different elements of the Linux
kernel. The results showed that KITO was capable of generating faults in different
elements of the operating systems with limited intrusiveness, and that the data
structures belonging to synchronization aspects of the kernel are susceptible to an
appreciable set of possible errors ranging from performance degradation to complete
system failure, thus preventing benchmark applications to perform their task.

Finally, aiming at overcoming the vulnerabilities discovered with KITO, a couple
of solutions have been proposed consisting in the implementation of hardening tech-
niques in the source code of the Linux kernel, such as Triple Modular Redundancy
and Error Detection And Correction codes. An experimental fault injection analysis
has been conducted to evaluate the effectiveness of the proposed solutions. Results
have shown that it is possible to successfully detect and correct the noxious effects
generated by single faults in the system with a limited performance overhead in
kernel data structures of the Linux kernel.

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 The Man Who Saved the World . 1

1.2 Modern System Dependability . 2

1.3 Fault Injections Methods . 3

1.3.1 Hardware-Implemented Fault Injection 3

1.3.2 Simulation and Emulation Based Fault Injection 4

1.3.3 Software Implemented Fault Injection 6

1.4 Fault injection in Operating Systems 7

1.5 Redundancy Techniques . 9

1.5.1 Redundancy in Computer systems 9

1.5.2 Multi-Threaded/Process Techniques 11

1.6 Research Activity . 12

2 Synchronization in the Operating System 14

2.1 Synchronization in Linux Systems 14

2.2 Process Synchronization and the Process Control Block 15

2.3 Mutex Semaphores . 16

Contents vii

2.4 Atomic Operations . 17

2.5 Loadable Kernel Modules . 18

3 Fault Injection Method 19

3.1 Fault Injection Tool . 19

3.2 Module’s Internal Evolution . 20

3.2.1 KITO 0.a . 22

3.2.2 KITO 0.b . 23

3.2.3 KITO 1.0 . 24

3.2.4 KITO Insertion Examples 25

3.3 Address selection . 26

3.4 Timer Set-up . 29

3.5 Fault Injection . 30

4 Experimental Results 31

4.1 Tests Environments . 31

4.2 Experiments Overall Set-up . 32

4.3 Fault Effects Classification . 34

4.4 Implemented Benchmarks . 34

4.5 Tests I: First Mutex Semaphores Experiments 35

4.5.1 Results . 36

4.6 Test II: First Process Control Block Experiments 36

4.6.1 Results . 37

4.7 Test III: Extensive Experiments . 39

4.7.1 Mutual Exclusion Semaphores Experiments Subset 40

4.7.2 Process Control Block experiments Subset 40

4.7.3 Results Analysis . 43

viii Contents

4.7.4 Effects on Performance . 46

5 Redundant Techniques for Kernel Data Structures 51

5.1 The Mutex Mechanism . 51

5.1.1 Fastpath and Slowpath Mutex Operations 52

5.2 Hardening Implementation . 53

5.2.1 Voter Mechanism . 54

5.2.2 Mutex Update . 55

5.2.3 Implementation Examples 56

5.3 Experimental Results . 58

5.3.1 Experimental Set-up . 58

5.3.2 Performance Results Analysis 59

5.3.3 Fault Effect Results Analysis 60

5.4 Process Synchronisation . 62

5.4.1 Redundancy Method . 62

6 Conclusions 66

References 68

Appendix A The KITO Module 73

Appendix B Doctoral Period’s Publications 78

List of Figures

1.1 Images from a translation of "Flight Manual: Ilyushin 2 Sturmovik
with a AM-38 Engine". 10

3.1 Scheme of KITO operation. 20

3.2 General layout for the structure of the module versions 21

3.3 Scheme of the KITO 0.a Module structure 22

3.4 Scheme of the KITO 0.b Module structure 23

3.5 Scheme of the KITO 1.0 Module structure 25

4.1 General representation of each individual test carried out in the
virtual machine. 33

4.2 Representation of the two layers model. 37

4.3 Virtual Machine’s script flowchart 38

4.4 Performance of different experiments performed with IOzone3 Bench-
mark. The top graph corresponds to faults affecting bit 0 in the
flags field of task_truct. The bottom graph corresponds to faults
affecting bit 0 in the Mutex semaphores. 48

4.5 Performance of different tests performed with Netperf Benchmark.
The top graph corresponds to the writing tests on bit 0 in the state
element of task_truct. The bottom graph corresponds to the tests
on bit 0 in the Mutex semaphores. 49

x List of Figures

5.1 Simplified diagram of the subsystems of the mutex system and their
components. 52

5.2 Implementation of fastpath and slowpath scenarios. 54

5.3 Original definition of the state fields values. 63

5.4 a) Duplication of the state field values. b) Detection and correction
of a single fault in the new duplicated value. c) Problem with the
modification resulting in a TASK_RUNNING value. 64

5.5 Final values for each half of the variables for the proposed redefini-
tion of the state field. In darker gray the original values. 65

List of Tables

3.1 Scenarios parameters requirements 25

4.1 Tests Environments . 32

4.2 Distribution of the results . 38

4.3 Values of the state field of the task_struct. 41

4.4 Valid codes of the flags field of the task_struct. 42

4.5 Distribution of the results for the fault injections in the Mutex
semaphores. 43

4.6 Distribution of the results for the state field of the task_struct. . 44

4.7 Distribution of the results for the flags field of the task_struct. . 45

4.8 Connection issues in Netperf experiments 50

5.1 Scenarios for the experimental campaign 59

5.2 Performance overhead analysis . 60

5.3 Fault Injection Experimental Results. 61

Chapter 1

Introduction

1.1 The Man Who Saved the World

On the 1st of September of 1983 a civilian flight of Korean airlines (KAL007) was
shot down by a soviet Sukhoi 15 interceptor killing all 269 occupants. The flight
was en route to Seoul from Anchorage, it deviated from its planned course and
violated Soviet airspace twice, first at the Kamchatka Peninsula and then again
at Sakhalin Island. This led to arguably one of the most tense moments of the
cold war. Following the incident, the USA deployed nuclear capable Pershing II
missiles in West Germany generating an atmosphere similar to the 1962 missile
crisis, not even a month after this tragedy the situation would reach its apex. On
the 26th September 1983, Lieutenant Colonel (LtCol.) Stanislav Petrov, was the
duty officer overwatching the Oko early warning satellite system. Past midnight,
the system notified of an Inter-Continental Ballistic Missile (ICBM) launched from
the continental USA, heading towards the Soviet Union. LtCol. Petrov suspected
that the alarm was a system malfunction and dismissed the alert given that no other
system had detected the missile. In the following minutes four new ICBM launches
were detected by the Oko system, and those alarms were also dismissed by LtCol.
Petrov. The decision made by LtCol. Petrov was based on the assumption that a
nuclear attack from the USA would be a massive assault and not only with five
missiles. By dismissing these alarms and reporting the event as false alarm to higher
echelons LtCol. Petrov may have prevented a nuclear war.

2 Introduction

This event is the ultimate example of the importance of detecting and correcting
failures in safety-critical computer-based applications such as an early warning and
control system, in particular these system linked to the most powerful weapons ever
created by man.

1.2 Modern System Dependability

The necessity of dependable systems is not only limited to weapons of mass destruc-
tion, other sectors such as automotive, railway, aircraft flight control systems and
even space exploration rely in such systems. Unfortunately, these systems tend to
be very complex, thus it has become very difficult to certify their correct behaviour
under any conditions. There has been examples of such systems being affected by
such faults. On October of 2008 the autopilot of a plane from Qantas suffered a fault
that made the plane drop 1050 feet [1]: this malfunction resulted in severe injury for
11 passengers. Another example involved the Voyager 2 probe’s data system back in
2010 [2]: in this example a single memory bit flip in the system that packages the
data for transition to earth was responsible for the transmission of incompressible
data. This problem was solved by restarting the system on board. Even systems
related to the election of decision maker of entire countries have been affected by
these faults. In 2003, a single bit flip in an electronic voting machine in Belgium
granted 4,096 extra votes to a single electoral candidate before the error was detected
and corrected [3].

These soft errors in components occur due to factors that can usually be divided
between natural and man made causes. Those faults from natural causes are those
which occur because of environmental phenomena, such as electromagnetic noise,
high energy particles, temperature, component ageing, among others [4]. While
man made faults are those caused from human interaction with the component,
these interactions can be either intentional or accidental, either by human mistakes
while manipulating the components, or omission of procedures, such as lack of
maintenance. These soft errors can incur into different kinds of abnormal behaviours,
depending of how, when and where the faults occur in the system. These faults
can interfere or not, with the output of the system. For example a fault in the data
used as input by a system could modify the expected output result of the operations.
While, if the same fault occurs after the data was fetched, the result of the operation

1.3 Fault Injections Methods 3

is not affected. Additionally, apart from inferring with the normal operation of the
systems, these faults could also have a high probability of damage the system as the
magnitude of the electric charges used to store information continues to decrease [4].

Nowadays, availability is strictly required for all digital systems directly linked
to human safety or economic interests. Therefore, dependability of a system must be
evaluated, and in order to do so, fault occurrence has to be artificially accelerated
to better understand how the system reacts to faults. For this reason many methods
have been developed, and among those, the most common is Fault Injection [5, 6].
Many safety standards, e.g., IEC 61508 [7], require fault injection campaigns to be
performed as one of a number of software validation activities. Fault injection tools
tend to modify the user applications, introducing faults in the input and stored data
or the code segments of the running process as well as into the registers and memory
locations it uses.

1.3 Fault Injections Methods

In order to show the variety of possible fault injections, this section introduces the
different fault injection methods adopted in recent years and presents examples of
such implementations. Different fault injection techniques can be analyzed according
to the following characteristics [8]:

• Controllability: the ability to control the time and location of the fault injection

• Repeatability: the ability to repeat the experiments

• Reproducibility: the ability to recreate a result

• Intrusiveness: the undesired ability to impact the normal operation of the
system apart from the fault injection.

1.3.1 Hardware-Implemented Fault Injection

Hardware-implemented fault injection allows to inject faults by physical means
in the systems. Implementation on hardware can allow very high injection time
controllability, however, can be severely lacking in terms of spatial controllability,

4 Introduction

meaning that the location where to make the fault injection can be very limited and
inaccurate. The most common hardware-implemented fault injection techniques can
be summarized as follows.

In pin-level fault injection [9], by forcing pull ups or pull downs on pins of an IC
enable, it is possible to make injection of faults in the system. There are limitations
to controllability, given that not all the pins are reachable in modern ICs, however,
this approach presents very high reproducibility and temporal controllability.

A commonly used approach is heavy-ion fault injection [10], the IC under study
is bombarded with heavy electrically charged isotopes. Another similar technique
is electromagnetic interference fault injection [11], and in this method induction
generators are used as means of fault injector. Both of these approaches posses
negligible intrusiveness, but also negligible controllability of a particular location,
therefore, reproducibility is particularly difficult to achieve.

Background debug mode fault injection (BDM) [12] exploits built-in test and
debug capabilities of modern microprocessors. Given that these capabilities are
provided by the supplier, the reproducibility of this technique is high, but suffers of
a significant degree of intrusiveness.

The most common drawback of hardware fault injection techniques is the very
high implementation cost, particularly true for heavy-ion and electromagnetic in-
terference fault injection techniques. Furthermore, in some of these fault injection
methods the risk of damaging the system under test is sometimes unavoidable. Addi-
tionally, the elapsed time to complete a fault injection campaign suffers for the need
to restart the system after each experiment.

1.3.2 Simulation and Emulation Based Fault Injection

Simulation-based fault injection refers to techniques that implement computer system
models to simulate faults at electrical circuit level, gate level or higher levels in IC,
such as full components. Simulation provides a basic representation of the system (in
particular when concerning the input and output of the system), but doesn’t respect
completely with all rules of the system. While Emulation-based fault injection is
the technique that implements a computer whole system’s rules and environments to
allow the execution of the fault injection in the emulated models.

1.3 Fault Injections Methods 5

A typical approach is to generate tools to evaluate circuit models considering the
typical soft error characteristics. As an example, [13] presents a library developed
to predict single errors rates in combinational circuits, by taking into consideration
typical current responses of different soft error characteristics. While in [8], a tool
called MODIFI (MODel-Implemented Fault Injection) is capable to simulate faults
by means of a XML defined model for Simulink while the algorithm for the fault
injection uses minimal cut sets.

Other simulation-based tools, such as MEFISTO [14], implement faults by means
of saboteurs. These saboteurs are additional or modified (mutant) components that re-
place healthy (fault free) components in a system. In the particular case of MEFISTO
this evaluation is made in a VHDL environment. A similar technique is implemented
in [15], where saboteurs are implemented by using commercial debugging tools from
Altera. Evaluation of faults effects in state-of-the-art technologies such as quantum
circuits has also been done implementing simulation based fault injection, as can be
seen in [16]. This example used the implementation of saboteurs and mutants into
the VHDL models of quantum circuits.

These techniques tend to be intensive in computing time given the complexity
of such systems. An example of their level of complexity can be seen in DEPEND
[17]. This tool provides a fault injection environment for system level dependability
analysis, simulating an Unix-based Tandem Triple-Modular-Redundancy (TMR)
based fault-tolerant system.

In [18] fault emulation for VLSI circuits is discussed, and the proposed FPGA
emulation system allows to speed up the fault injection campaigns by taking the speed
characteristics of hardware faults implementation, and the versatility of simulation
based fault injection.

Finally, in [19] an emulation environment is proposed for testing of ICs in
prototypal phases by means of an optimized framework.

One drawback of these systems is the confidence in the outcome of the fault in
elements that are not considered in fault injection campaigns. In [20] a method to
quantify the confidence in both the reported results and the estimation of the effects
of unsurveyed faults in order to improve the margin of error such campaigns.

Both Simulation and emulation based fault injection techniques are remarkably
advantageous in their high controllability, repeatability and reproducibility and

6 Introduction

negligible intrusiveness. Additionally, in both fault injection campaigns can be made
before the prototypal stages of the system undergoing analysis. Notwithstanding,
these techniques require huge amounts of computing power and time, together with
the fact that these requirements increase rapidly as the complexity of the system
increases.

1.3.3 Software Implemented Fault Injection

Software implemented fault injection (SWIFI) is made by stimulating the conditions
that a physical fault would have in software and data, by means of faults in the CPU
registers and/or memory elements. SWIFI techniques commonly implement memory
bit flips, emulation of corrupt data segments or corrupt instructions in the software
under test. Among these techniques the difference is commonly the adopted injection
method.

FERRARI [21] implements a technique that injects faults into CPU registers,
memory and bus by means of software traps. After a program reaches a certain
point in its execution or by expiration of a timer, these traps are triggered; the fault
injection then is made by changing the contents of registers and memory via changes
in the system calls in order to emulate corrupt data.

EDFI [22] operates by defining several faults which are triggered during the
execution of the program. This is achieved by introducing a controller component
process that uses a combination of dynamic and static source codes to insert a
dynamic fault model.

Xception [23] presents a tool that exploits the debugging and performance moni-
toring features of modern COTS processors for injecting faults.

GOOFI [24] is a tool able to inject faults into the data area of programs before
their execution; this tool is capable to generate single or multiple transient faults.

G-SWFIT [25] is a technique for injecting faults in code, based in different types
of faults and their statistical frequency. This technique proposes a set of fault model
operators that enable the injections of faults even when the source code of the target
program is not available.

Commonly SWIFI techniques target applications with very high repeatability
and reproducibility. Depending on the methodology implemented, intrusiveness

1.4 Fault injection in Operating Systems 7

issues can be present. Additionally, controllability and time resolution on SWIFI can
be restricted to assembly level instructions with time limitations, therefore faults in
the pipeline of instructions are impossible. Commonly, faults are also restricted to
specific locations due to system architecture or privilege issues.

1.4 Fault injection in Operating Systems

Operating System reliability validation is quite difficult to achieve. Operating systems
reliability has been studied for decades [26, 27], nonetheless, it remains one of the
major areas of concern in many systems. The main reasons why operating system
dependability is an issue, has mainly to do with the fact that this systems are very
complex. Operating systems often have to be capable of handling many different kind
of systems and architectures. Furthermore, with each technological advancement in
hardware and software, constant changes need to be made on different elements of
operating systems to cope with the hardware and software evolution. And finally,
many operating system are commercial focused and often the companies are not
interested in applying the diverse methods that have been developed to automatically
test operating systems robustness in their development cycle.

One method was implemented in the Crashme program [28], where data com-
posed of randomized values in memory were executed as code segments by a large
numbers of spawned processes. Similarly, the Fuzz project [29] used random noise
to data for discovering robustness issues in the operating systems.

Other commonly used approaches modify the execution of the system calls of
an operating system: in FERRARI [21], the system calls made by the processes
are intercepted and then modified returning faulty values; BALLISTA [30] adopts a
similar approach that feeds random or erroneous inputs to the system call in order to
evaluate the behaviour of the functions belonging to the POSIX-API.

In [31], faults are injected into the driver programming interface so that the
effects of faults on the device drivers can be characterized. Similarly, other attempts
to characterize the ability to cope with faults into the operating system functions was
made in [32].

Software implemented fault injection is often focused in the application programs
running in the system rather than in the operating system itself. Elements of the

8 Introduction

operating system provide services to higher applications and often these have been
not considered in the main dependability studies. In recent years, techniques have
been developed to target the operating system. Some studies implemented simulation
tools for fault injection in operating systems [33, 34]; such studies used software
such as emulators or virtual machines. In these applications, functions are used to
inject faults into the virtual environment where the Operating System is running. In
[33] a Virtual Machine environment that operates in QEMU (an open source machine
emulator and virtualizer) is presented, injecting faults into the CPU registers, RAM
data, storage system and networking I/O. In order to provide a wide scope of fault
injection targets, [33] proposes to inject faults into the environment of a virtual
machine; moreover, this method has a high complexity. In [34], faults are emulated
by mounting a virtual machine in a custom engine capable of generating injections
into elements of the machine such as memory elements, CPU registers and other
hardware elements. This is achieved by using a complex compiler frame designed
to support analysis of programs and operating system code. This approach is very
complex and a good knowledge of the application running the virtual machine is
needed.

In [35], fault injection is made into different signals from the CPU, the system
calls and internal functions of the kernel. This is achieved by tracing the processes
and tracking kernel calls, then the fault injection method introduces bit flips into
the parameters provided to the kernel call or the underlying kernel functions. This
approach is highly intrusive and requires the execution of the process to be stopped
in order to trace it.

The option of making fault injections via loadable kernel modules [36] is simple
and is a possible solution to the problem. Kernel modules are objects that are
introduced into the kernel and are capable of exporting kernel symbols that can be
functions or data structures. An implementation of such modules can be seen in [37]:
this approach provides on-demand access to the application’s virtual address space,
as well as to the processor’s context, and it injects into the applications’ data segment
and code segment, omitting the elements of the kernel that provide services to the
applications.

1.5 Redundancy Techniques 9

1.5 Redundancy Techniques

After fault injections have determined which parts of a system are critical the fol-
lowing step typically is to add mechanisms to the system that enables the detection
and recovery from possible faults. In order to do so, different techniques have been
developed over the years, and most of these techniques can posses one or more of
the following characteristics:

• Modular redundancy: different elements of the systems are multiplied and they
may be used in parallel in order to determine if a fault has affected the output.

• Time redundancy: specific elements of the system are run multiple times in
sequence and the output are compared to check for faulty results.

• Information redundancy: The information used by the system is multiplied
and additional data (check-codes) can be added in order to detect any fault.

• Versions redundancy: Multiple versions of the system or its modules are
produced so that these systems are immune to particular faults affecting the
other versions.

Techniques using these principles have been implemented for a long time. For
example, during the second world war some planes (e.g. Ilyushin 2 Sturmovik) had
a dual landing gear system, the main system was an pneumatic system, but in the
case of failure or damage, this system could be disconnected, and then a hand crank
would allow the pilot to lower the landing gear using a mechanical system. This
example is the implementation of Dual Modular Redundancy (DMR), and in this
case, redundancy technique is using modular redundancy and version redundancy.
The modular part comes from the fact that the module is being duplicated, in the
sense that an additional module is installed that performs the same operation of
the original, but this module is a different version because it operates in a purely
mechanical and not pneumatic-mechanical principle.

1.5.1 Redundancy in Computer systems

These kind of modular redundancy techniques are still relevant, in computer systems
it is quite common to find Triple Modular Redundancy techniques in modern critical

10 Introduction

Fig. 1.1 Images from a translation of "Flight Manual: Ilyushin 2 Sturmovik with a AM-38
Engine".

mission computer systems. These techniques are similar to DMR, but implement
three modules instead of two, these modules are can identical and an additional
majority voting mechanism is introduced to detect faults in output of the modules.
For example, in [38] the netlist is triplicated and voters are implemented by automated
tool in the FPGA layout of the Leon3 processor for satellite payload electronics.

Computer systems based in FPGAs are becoming increasingly popular in specific
purpose machines, but as from the previous example we can see that these machines
are not immune to faults. In [39] another implementation of TMR can be seen, but
this time is in a FPGA system. This study focuses in the optimal design of TMR for
FPGA based digital filters, the results demonstrate that the number and design of the
voters can affect the fault tolerance of such filters.

The boundary between hardware and software redundancy mechanism mecha-
nisms is not always clear. Furthermore, many techniques can be implemented both
in hardware and in software, therefore we wont be focusing in that divide in this
subsection. An example of how blurry the line between hardware and software
redundancy is, can be seen in [40]. In this example, the fault detection in the memory
management unit of a HaL microprocessor system for is made in hardware, but the
correction of the faults is made in software by means of Error Correction codes

1.5 Redundancy Techniques 11

(ECC). Error Correction codes (ECC) are processes that add redundancy by encoding
the output of an operation with additional information. These techniques encompass
common techniques such as Cyclic Redundancy Check (CRC) and Hamming codes.
These kind of approaches are quite common and are currently being implemented
in the state of the art, as it can be seen in [41]. In this example hardening is intro-
duced to a selected set of memory elements belonging to the kernel of particular
application machines by using approaches such as Hamming and CRC codes. The
elements of the kernel to harden are selected by profiling the system of these particu-
lar application machines in order to determine which elements are critical as far as
dependability is considered.

Techniques such as CRC are known and well researched, but these techniques
are still evolving. In [42], 48 new polygons are proposed for CRC providing good
performance for CRC checks up to 2048 bits data segments.

Redundancy techniques have also been developed for technologies such as Dis-
tributed Computing Architectures. In [43] a dynamic voting approach is proposed,
this approach adapts to changes in the environments executing the vote, this approach
can be applied to distributed systems that posses multiple different resources pools.

1.5.2 Multi-Threaded/Process Techniques

If the redundancy technique is implemented in software, then there is another impor-
tant characteristic defining this implementation. This characteristic describes how
the technique is introduced to the system in terms of number of threads/processes.

Local-thread Multiplication is the implementation of a technique that execute
multiple executions of a critical segment of code in a single thread. The results of
each critical segment of code is stored and after all the executions are done, then
compared. The main drawback of this technique is that the overhead in processing
times is usually high, given that each segment of code is executed in sequence.
Nonetheless this technique is extremely efficient in the usage of CPU Cache, and
also this technique does not require any kind of synchronization mechanisms with
other threads.

Software Redundant Multi-Thread is the implementation of a technique that is
based in the implementation of the critical segments of code in identical threads,
each in an individual core. After each thread has been completed all the results

12 Introduction

are compared, if they differ, then that implies that a fault is detected, depending
in how many threads are used then it can be also corrected. In terms of time, this
technique is more efficient than local thread, but requires some sort of multi-thread
communications mechanism.

Process-level redundancy, this approach is based in the implementation of mul-
tiple instances of a program running and then comparing only the output. These
multiple instances are not multiple threads in a single application but the application
as a whole. This means the usage of multiple resources and processing time. Addi-
tionally, depending in the nature of the process being protected, this technique can
have limited overhead impact and large effect in the memory imprint of the process
being hardened.

1.6 Research Activity

Given the open source nature of Linux-based system, such systems have become
very attractive for dependability studies, this is accentuated by the ever increasing
number of systems that are supported, e.g. commercial embedded systems, Android
devices, etc. Considering the proposed approaches available in literature, it would
appear that there was no technique that considers analysis of the effects of faults in
kernel data structures in Linux based systems.

The main research activity was divided into two phases. The first phase was
focused in evaluating the effects of faults affecting specific kernel data structures,
in order to assess how critical these fields are for system dependability [44–46].
A fault injection method was investigated and refined and it was based in a novel
fault injection tool, called Kernel-based fault-Injection Tool Open source (KITO).
Considering that the kernel space stores many different types of elements, the tool
provides the possibility of an easy and rapid access to several different components
of the operating system, such as process control blocks and kernel symbols. Addi-
tionally, the tool provides a means of customizing the target of the fault injection
to any memory address containing an element belonging to the kernel space. Sets
of experimental tests were executed in different kernel data structures and environ-
ments, while running a set of benchmark programs in order to stress the operating
system. This document presents a detailed analysis of the effects of the faults in

1.6 Research Activity 13

the Linux Kernel, demonstrating that soft errors affecting the kernel may produce
critical effects and failures in user applications.

The second phase of the research was focused in adding redundancy mechanisms
to the Linux kernel, fixing some of the issues that arose from the experimental results.
These solutions were made considering Local-thread multiplication information
redundancy approaches. The proposed fault injection technique and the redundancy
method presented promising results, and the method was capable of injecting faults
into a variety of targets of the kernel space, and redundant techniques seem to be
able to detect and/or correct most of failures affecting these systems.

Additional studies could spawn from the approaches described in this thesis by
considering other elements of the operating system not considered in this document.

Chapter 2

Synchronization in the Operating
System

This research focuses in the implementation of fault injection methods in the data
structures used by the main services provided by the Linux kernel, in particular
focusing in those providing processes and resources synchronization. An introduction
of the basics of the different elements considered in this research is preliminarily
reported in this chapter.

2.1 Synchronization in Linux Systems

The main task of an Operating System is to manage the physical and virtual resources
of the machine it is operating on [47]. These resources are then provided to different
Processes, which are defined as instances of execution of a group of instructions
executed in sequence in order to achieve a goal. Typically, computers run a multitude
of processes; therefore, the need of different mechanisms allowing access to the
limited different resources of the computer at a given time. One of such resources is
CPU time, meaning that a CPU’s core is processing the instructions that compose a
process. In order to switch from one process to another one without interfering with
the others’ work, a synchronization mechanism needs to be implemented.

2.2 Process Synchronization and the Process Control Block 15

2.2 Process Synchronization and the Process Control
Block

The scheduler is the entity that is responsible for synchronizing and switching from
one process to the next one. In the case of Linux, since kernel version 2.6.23,
the implemented scheduler is the Completely Fair Scheduler (CFS). The CFS is a
scheduler based in a run queue that operates with a Red-Black Tree (a self-balancing
binary data-search tree) to obtain future tasks to be executed, guaranteeing a fair time
for insertion, search and deletion of a task in the tree. Additionally, the CFS operates
with nanosecond accounting to determine the virtual runtime of the a process instead
of working with counters. This means, that it bases its decision on the amount of time
that the process has been running in the system and not on the values of counters,
such as jiffies. This is done aiming to achieve precise multi-tasking. This is the idea
of implementing hardware to run multiple tasks in parallel at the same speed: in
order to follow this policy, the CFS also determines the order of the Red-Black Tree
run queue by the priority and/or the virtual runtime of each process indexed in the
Red-Black Tree. The schedulers often base their decision in the information present
about each process in the system, and this information is often stored in kernel data
structures such as the Process Control Block (PCB), a kernel data structure that
is created for each process present in the system. The name of the PCB used by
CFS is task_struct. The task_struct contains necessary information for the
scheduler and some additional information for debugging and other operations, and
this includes over a hundred fields of different variable types, pointers and others.
Among those fields, the ones that are relevant to the studies presented in this thesis
are the following:

• PID: each process present in the system has a unique identifier number, called
Process Identifier (PID);

• state: current state of the process; e.g, running or waiting for an interrupt, if
the task is being traced, etc;

• thread_info->flags: flags of the process; e.g., if the process is being
terminated, allocating memory or if it was killed by a signal;

• prio & static_prio: the priority of the task to be selected and if this would
preempt the current running task; for normal processes it ranges between 100

16 Synchronization in the Operating System

and 139. Only one of these fields is used, depending on the mode that the
scheduler is running;

• rt_priority: used for real-time applications with priority ranging between
0 and 99.

Among all the different fields in the process control block, the ones considered
for fault injection campaigns in this research activity were the state, the flags and
the prio fields.

2.3 Mutex Semaphores

So far we have taken into consideration process synchronization in order to manage
the amount of time that a process is being served by a CPU. Additional resources
are present in most computer systems, and one mechanism to manage the access of
different processes to these resources are the semaphores [47]. In this section we are
going to have a look to the mutex semaphores.

The mutex semaphores or mutual exclusion semaphores are used in the synchro-
nization of the different resources that a computer possesses. Semaphores are kernel
symbols that are defined as structures that contain a binary-like semaphore to solve
problems of mutual exclusion for shared resources, race conditions and/or critical
code sections. This data structure is defined as follows:

struct mutex {

atomic_t count;

spinlock_t wait_lock;

struct list_head wait_list;

...Debug options...

}

The variable count is the semaphore itself. The semaphore is unlocked when
the count variable is 1. A value of 0 for the count variable indicates that the mutex
semaphore is locked. Finally, when this variable is negative, the mutex semaphore
is locked and possesses a waiting list. When the semaphore is locked, the field
wait_lock indicates the current task controlling the mutex semaphore, whereas
wait_list corresponds to the list of processes waiting for the resource.

2.4 Atomic Operations 17

As mentioned before, the mutex semaphores are defined as kernel symbols. A
Kernel symbol is an easy way to share variables and functions among different
elements of the kernel. These symbols are shared by using the EXPORT_SYMBOL()
function. Exported symbols are then indexed in a list called kallsyms which is
located in the proc pseudo file-system. In addition, the kernel symbols system
provides functions that will allow import of data from the proc pseudo file-system
directly to modules. One of such functions is kallsyms_lookup_name(), which
returns the address of any symbol with the name provided to this function as input
parameter. These functions will be utilized for the localization of the target mutex
semaphores address during the implementation of the fault injection campaigns
described in this document.

2.4 Atomic Operations

An atomic operation is an uninterruptible operation short enough to be considered
instantaneous and indivisible. The Linux headers provide several atomic operations
in their libraries, mainly logic and arithmetic operations. Because of the nature of
the Linux headers libraries, these functions support different hardware architectures.
These functions are often written in GAS (GNU assembler macro), and are inde-
pendent of the computer’s processor architecture. These operations are particularly
effective in terms of process cycle execution.

Among these atomic operations, the work described in this thesis is based in the
implementation of the change_bit() function. This atomic operation allows a sin-
gle bit flip to be made on a particular address. This atomic operation is implemented
as follows:

int foo=42;

change_bit(0,&foo);

change_bit(1,&foo);

In the previous example, the value of the variable foo is set initially to 42
(101010 in binary). With the first execution, the bit 0 (least significant) is changed
so foo would become 43 (101011 in binary). Then, with the second execution the
bit 1 (second least significant bit) is changed, therefore the final value for foo is 41
(101001 in binary).

18 Synchronization in the Operating System

2.5 Loadable Kernel Modules

Loadable kernel modules are relocatable object code [36], that can be dynamically
loaded (inserted) and unloaded (removed) from the kernel. The drivers are the most
common type of loadable kernel modules, however not all modules are drivers nor
all drivers are modules, some drivers are loaded into the linux kernel files located in
/boot/. All modules operate by means of callback function that are triggered when
the modules is loaded into the kernel, via the insmod command, and when they are
unloaded from the kernel, via the rmmod. The most simple module is the following:

#include <linux/module.h>

#include <linux/kernel.h>// Needed for printing in dmesg

int init_module(void)

{

printk(KERN_INFO "Hello world.\n");

return 0;

}

void cleanup_module(void)

{

printk(KERN_INFO "Goodbye world.\n");

}

In the previous example, the Hello world version of the module can be seen. The
function that is called when the module is loaded is triggered by the init_module()
macro. While the function that is called when the module is unloaded is triggered by
the cleanup_module(). In the previous example the module would simply log into
the driver messages log systems the messages "Hello world" and " Goodbye world",
when the module is loaded and unloaded, respectively.

Chapter 3

Fault Injection Method

In this chapter the main mechanism utilized in the implementation of the fault
injections campaign is discussed.

3.1 Fault Injection Tool

The implemented approach consisted in performing a injection of transient faults in
a memory element by means of a loadable module inserted in the kernel [36]; the
fault injection is performed in an atomic bit-flip manner, in any predefined Kernel
space memory location at a defined time after the module’s insertion. The module
created for this approach has been called KITO (Kernel-based fault-Injection Tool
Open source) and was described in [46]. This module is fully customizable by
the parameters provided during the module insertion command (insmod). After
the insertion of the module in the kernel, a High Resolution timer (hrtimer) is
programmed by the KITO’s module. The created timer triggers an atomic operation
upon its expiration, and this atomic operation is responsible of making the fault
injection by means of an atomic binary flip in the target memory element. The
timer duration and the memory target address location of the fault can be fully
customizable, as explained in the following sections. KITO can’t inject a stuck-at
fault, only generates erroneous information in memory data structures, but the data
can be manipulated afterwards.

20 Fault Injection Method

Fig. 3.1 Scheme of KITO operation.

Figure 3.1 describes the operation of KITO: at the top a large black block
portraits the kernel, that contains the kernel processes, the data structures and the
KITO module. The user’s processes are outside the kernel block; these processes use
the services of the kernel in order to execute the applications. During the insertion of
the module into the kernel, it is configured in order to set up the internal variables
used to define the fault injection target address and the duration of the timer delay.
This set-up is represented by the KITO Initialization block. The timer delay is
the time that the module will wait for a software interrupt in order to inject the
fault. Finally, the fault injection block corresponds to the execution of the fault
injection function which possesses a single atomic bit flip operation in order to
introduce a fault in the memory elements of the kernel (kernel data structures or
kernel processes).

3.2 Module’s Internal Evolution

During the different stages of this research different versions of KITO were imple-
mented. There were three major versions that were implemented during experimental
campaigns, and are presented in this section.

3.2 Module’s Internal Evolution 21

Fig. 3.2 General layout for the structure of the module versions

In general, the internal structure of the module was composed of 3 major parts;
the input parameters, the main body of the module responsible for the interpretation
of the input, and the output (the fault injection).

The input parameters are one of the most important elements of the KITO module,
since they allow the customization of a particular fault injection. Depending in the
version, KITO is capable of targeting a subset of particular memory targets, and in
order to do so, the insertion of the module into the kernel has to be personalized.
These parameters correspond to the inputs provided to the module at the moment
of its insertion into the kernel. These input parameters determine the operational
aspects of the module, such as the timer delay after which the atomic operation is
called, the target of the bit flip operation and the debugging options for the module.
The parameters are loaded into the module during the insmod command, and their
dependency vary according to the adopted version. All the possible input parameters
in all versions and scenarios are in accordance with Table 3.1.

• test #n: test number corresponding to the pointer array’s index.

• scenario: scenarios will determine the targets location depending of which
kind of target is being injected upon, this is exclusively used in V1.0

• address: the target custom address

• sym: the name of the symbol where the fault injection will be carried out; it
must be an exported symbol present in \proc\kallsyms

• pid: the process identification number of a process; this will determine which
is the address of the task_struct that will be considered for the fault injection
target among all the different task_struct structures defined, one for each
process present in the system

22 Fault Injection Method

• testbit: it selects which bit will be modified in the target address

• timesecs: first component of the amount of timer delay for the fault injection
(in seconds)

• timensecs: second component of the amount of timer delay for the fault
injection (in nanoseconds)

• debug: enables the debugging messages in the dmesg system (display mes-
sages or driver messages). This is always optional, independent of the value
of scenario.

The main body is composed of three subcomponents; the selection of the target
address, the setting up of the timer and the bit flip atomic operation responsible
for the fault injection. In figure 3.2 it is possible to see the layout of the different
components of the KITO module, this layout is going to be used in the description
of the different implemented versions. Finally, The output corresponds to the atomic
operation performed by the module in a memory location.

The main difference in all versions can be found exclusively in two of the main
module’s components: the input parameters and the selection of the target address.
All other components were identical in all versions of the KITO module.

3.2.1 KITO 0.a

Fig. 3.3 Scheme of the KITO 0.a Module structure

In Figure 3.3 it is possible to observe the scheme of the version 0.a of the KITO
module [44], the only possible target for this version of the loadable kernel module

3.2 Module’s Internal Evolution 23

was the pre-existing mutex semaphores in the operating system. This was the first
module created specifically for evaluating if this kind of fault injection was feasible,
and if it was, then evaluate if the disruption of the availability of different resources
would affect running applications and the operating system itself.

In details, this was the most basic version and it only had the parameters needed
to set-up the timer delay after which the fault injection is made, the test of the
target address to be modified and a trial number. This last one was needed in
order to select the target for the fault injection from a configured array pointer
(Mutex_addresses[]). This method is very basic and is unreliable given that the
values of the pointers were preloaded at the moment of the compilation of the
module and would not be able to be updated during the implementation of the
module. Therefore, if an operation would have had changed the specific value of one
of the pre-set targets address in the kernel memory then this target would not be able
to be injected upon. Additionally each time a fault has to be made in a new target
that is not in the pointer array then the module needs to be modified and recompiled.

3.2.2 KITO 0.b

Fig. 3.4 Scheme of the KITO 0.b Module structure

In Figure 3.4 it is possible to observe the scheme of the version 0.b of the KITO
module [45].

This was the first version in which the target was selected automatically, but only
considering a particular type of data structure, the process control block. The main
interest for fault injection campaigns in the process control block was to determine
how faults would affect the operation of the Scheduler, and if there were disruptions,
how these would affect the operation of the different processes running in the system
providing services to the user applications.

24 Fault Injection Method

In this version the limitations of version 0.a were overcome, because that no
modification in the Linux kernel would prevent the operation of the module and no
recompilation is needed when targeting new addresses in memory. Nonetheless, this
is true only when considering a particular type of data structure, the Process Control
Block. As explained in section 2.2, this structure is unique for each process that
exists in the system, and contains large amounts of information of the operation of
the Scheduler. This automatic address selection process will be explained in detail
in the following version.

3.2.3 KITO 1.0

KITO version 1.0 is the most complete version of the fault injection module utilized
in this research activity [46]. KITO 1.0 included the automatic address selection
mechanism from version 0.b, and additional mechanisms were included. The most
novel aspect of this version is that in theory is not limited to a specific fault injection
target type unlike it’s predecessors, the main idea was to generate a fault injection
tool capable of generating faults in all memory elements of the kernel space. And in
order to do so, in this version some of the input module parameters are optional and
others are mandatory depending on the nature of the intended target in memory. So,
in order to organize the dependencies of all the parameters, different predetermined
scenarios were defined as follows:

• Custom address: A particular address can be targeted for fault injection

• Kernel symbol: The module will automatically obtain the base address of the
target symbol given its symbol name

• Process descriptor: Any element of the task_struct of any process presented
in the system, given the PID value, can be set as a target.

3.2 Module’s Internal Evolution 25

Fig. 3.5 Scheme of the KITO 1.0 Module structure

Table 3.1 Scenarios parameters requirements

Scenario
Target

Timer
Address bit offset

Custom Address testbit timesecs

address timensecs

Kernel Sym testbit timesecs

Symbol timensecs

Process PID testbit timesecs

descriptor timensecs

In Table 3.1, the first column corresponds to the fault injection scenario in which
the module is going to operate. The target is the necessary information for the
selection of the target address, this column is composed of two sub-columns: the first
(left) indicates which field needs to be provided to the insmod command in order
to automatically obtain the corresponding address location. Whereas, the second
sub-column (right) indicates which is the bit of the obtained address that is going
to be modified. In the right, the Timer column is shared among all the scenarios,
and corresponds to the amount of time that the timer is going to be waiting before
making the fault injection into the kernel.

3.2.4 KITO Insertion Examples

In order to clarify how the module is inserted into the kernel here are some examples.

insmod KITO.ko scenario=1 sym=swapon_mutex testbit=1 timesecs=5

26 Fault Injection Method

In this first example, the KITO module is inserted in the kernel using scenario
1 (Kernel symbol) and makes a fault injection in the second least significant bit
(testbit set to 1) from the base variable of the structure defining swapon_mutex.
The fault injection is made 5 seconds after the insertion of the module to the kernel.

sudo grep 'swapon_mutex' /proc/kallsyms

ffffffff96874540 d swapon_mutex

insmod KITO.ko scenario=0 address=18446744071940031808 testbit=1

timesecs=5

The second example is equivalent to the first one. In this case the address of the
swapon mutex is given directly as a pointer address (18446744071940031808 in
decimal).

insmod KITO.ko scenario=2 pid=1 testbit=5 timesecs=2

timensecs=500000000 debug=1

In this third example, the KITO module is inserted in the kernel using scenario
2 (Process descriptor) and makes a fault injection in the 6th least significant bit
(testbit set to 5) from a programmed field of the process descriptor of the process
with a PID value of 1, commonly init (depending in the initialization daemon). The
fault injection is made 2,5 seconds after the insertion of the module to the kernel (2
seconds plus 500000000 nanoseconds). Additionally this insertion of the module
will display debug messages in the dmesg system.

3.3 Address selection

In order to determine where the fault is going to be injected, a pointer needs to be
defined. This pointer was called FITaddress. The selection of the content of this
pointer is done differently for each of the scenarios.

In the Custom address scenario, the address variable loaded from the param-
eters is copied directly into the FITaddress pointer. It is important to take into
consideration that the custom address needs to be a logical variable. The module
cannot set the target address to have a base value for the bit flip operation in the

3.3 Address selection 27

internal of a logical element. If the user wants to inject faults in the middle bit of
a memory variable, then FITaddress must correspond to the base value for the
variable in question and testbit is the offset to select the particular bit.

In the kernel symbol scenario, the address will be obtained by the kallsyms_
lookup_name and the sym parameter function.

FITaddress = kallsyms_lookup_name(sym);

The symbol’s name is provided in a string format in sym. This is provided
during the insertion of the module as an input parameter. The lookup name function
will automatically obtain the address of sym from the kallsyms file in the /proc/
pseudo-file system. In order to modify a symbol of a structure nature or similar,
an offset can be made directly into FITaddress, but it is strongly recommended to
make structure pointer of the desired target and use the container_of() macro.

#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

#define container_of(ptr, type, member) ({ \

const typeof(((type *)0)->member) *__mptr = (ptr); \

(type *)((char *)__mptr - offsetof(type,member));})

struct some_list {

int var_3;

};

struct some_struct {

int var_1;

int var_2;

struct some_list list;

};

int main()

{

// Original structure

struct some_struct original_struct;

original_struct.var_1 = 33;

28 Fault Injection Method

original_struct.var_2 = 114;

original_struct.list.var_3 = 42;

// Pointer to an element of the original structure

struct some_list *element_pointer = &original_struct.list;

//Return of the pointer structure

struct some_struct *return_pointer_struct = container_of(\

element_pointer, struct some_struct, list);

printf("var_1 = %d\n", return_pointer_struct->var_1);

printf("var_2 = %d\n", return_pointer_struct->var_2);

printf("var_3 = %d\n", return_pointer_struct->list.var_3);

/* The values printed are 33, 114 adn 42, and are read from

a pointer structure. */

return 0;

}

In this example of the application of the container_of() macro, we provide a
pointer to one of the elements of an already defined structure (*element_pointer),
and then we can obtain a pointer structure (return_pointer_struct) to every
single element of the original structure. In order to apply this to KITO we just take
one of the elements of this pointer structure as FITaddress.

Finally, for the process descriptor scenario, it is necessary to provide the PID
number of the considered process. In this case, the value of the PID must be given to
two functions:

• find_vpid(): this function will search for the identifier by its ID

• pid_task(): this function will obtain the address of all the fields in the
task_struct and store it into a structure pointer; additionally, it is necessary
to specify which ID type is provided to this function. The possible types are
process ID, process group ID and Session ID. In the case of the KITO module,
PIDTYPE_PID indicates that pid_task() must search for a process ID.

3.4 Timer Set-up 29

The following lines of code correspond to the implementation of both functions
previously described in order to load the target of the pointers into the FITaddress
variable.

struct task_struct *t = pid_task(find_vpid(pid),PIDTYPE_PID);

FITaddress = &((*t).state);

In the previous example, the first line takes every single field of the target
task_struct and stores their address in a pointer structure called t. Then in the
second line, the address of the state field of the process control block is going
to be saved in the FITaddress. In order to select another target field from the
task_struct the state in this line needs to be replaced with the desired field, and
then the module recompiled. This is made in order to leave the module as clean as
possible regarding the elements that are not directly involved in the fault injection
process. The more logic introduced, the more complex the module becomes, and
particularly complex when considering data structures such as the task_struct.
Furthermore, the larger the logic sections are in the set-up phase, the more CPU time
this section will take to complete.

Finally, when using the optional debugging messages in the dmesg (display
message or driver message), the declaration of the format of &FITaddress in the
output strings needs to be modified according to the target’s data type. For example
if the desired target is an integer the format must be %d in the different printk lines,
but of the desired target is an float, then %f needs to be placed in these lines.

3.4 Timer Set-up

The delay after which the fault injection is made is done by means of a high resolution
timer (hrtimer). This timer is defined in the Linux libraries and operates using a
red/black tree self-balancing structure where the first timer to expire is at the head.
After the expiration of this timer a callback function is called. This function is
responsible of the fault injection. The full implementation of the hrtimer is as
follows:

delay_in_secs = timesecs;

30 Fault Injection Method

delay_in_ns = timensecs;

ktime = ktime_set(delay_in_secs, delay_in_ns);

hrtimer_init(&hr_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);

hr_timer.function = &fi_hrtimer_callback;

hrtimer_start(&hr_timer, ktime, HRTIMER_MODE_REL);

The first three lines set the variables for the duration of the timer. Then the fourth
line initializes the timer structure and the operation modes of this timer. This imple-
mentation, the clock tick is set to CLOCK_MONOTONIC which indicates that the start
value of the tick counter is going to be zero, and the mode is HRTIMER_MODE_REL in-
dicating that the time measurement is a relative time amount after the creation of the
timer, and not an absolute time value of the computer’s internal clock. The following
line sets the pointer to the function that is called after the expiration of the timer
(callback function), and in this case the function is called fi_hrtimer_callback.
Finally, the last lines starts the timer.

3.5 Fault Injection

The fault injection is made in the callback function of the timer. This function is
defined as follows:

enum hrtimer_restart fi_hrtimer_callback(struct hrtimer *timer)

{

change_bit(testbit,FITaddress);

return HRTIMER_NORESTART;

}

The function change_bit(testbit,FITaddress) is the fault injection itself.
This is an atomic operation from asm/bitops.h. This function performs a single bit-
flip in the (testbit+1)th least significant bit of the value stored in the FITaddress
address. The following line returns the function, and indicates that there is no need
to restart the timer.

Chapter 4

Experimental Results

In this chapter the implementation of the different experimental campaigns are going
to be discussed. These experimental campaigns had a similar set-up with different
variations in terms of contexts, target, and kernel versions. These differences are
going to be explained in detail in each individual case, and the overall approach is
presented.

4.1 Tests Environments

Different tests had different environments configurations. These configurations
depended in which version of the KITO module was implemented, which kind of
machine was hosting the experiments, which were the target among others. Even
when a quick overlook of these tests environments can be seen in Table 4.1, each
section of the individual experiments described in this chapter will introduce exten-
sive details of the environment in order to demonstrate why these experiments are
significant and novel, in particular, in the effects that faults can have in different
kinds of targets.

The fields of Table 4.1 have the following definitions:

• Tests: describe the name of the tests and each test will be referred in a section
in this chapter.

• KITO Ver.: KITO version implemented during the test.

32 Experimental Results

Table 4.1 Tests Environments

Tests KITO Ver. Test Machine Target #FI Kernel

Test I V0.a Live Mutex 450 3.3.7

Test II V0.b Virtual PCB (state) 703 3.11.0-15

Tests III V1.0 Virtual Mutex 9056 3.18.20

PCB (state)

PCB (flags)

PCB (prio)

• Test Machine: kind of machine that hosted the experiments. There were two
kind of machines: live machines, for tests made directly in hardware; Virtual
Machines, for tests running in a virtualized environment.

• Target: What kind of data structure was injected upon in each experimental
campaign. Mutex indicates fault injections made to the mutex semaphores,
while PCB indicates fault injections made into a Process Control Block.

• #FI: Number of Fault injections made in each experiment.

• Kernel: Kernel Version in which fault injections were made.

4.2 Experiments Overall Set-up

The general implementation of experiments using the loadable kernel module was
made automatically by a bash scripts loaded in the rc.local files. The RC.local
is the first script that the user of a Linux based machine’s boot can modify without
the need of recompiling the kernel. This script is executed directly by the kernel,
thus any script inside this file will have kernel-level privileges, and this is the feature
that is exploited by the KITO module. In addition to the fault injection module
insertion, a benchmark program is ran in parallel in order to stress the operating
system in an operational condition. After the completion of this benchmark program,
the computer will reboot and perform the following fault injection test. In order to
guarantee that the experiments are performed in identical conditions, all tests were
performed in machines with ram-disks. A ram-disk is a logical file-system unit that
is setup using the system’s RAM memory, therefore it is a volatile file-system that
guarantee identical conditions with each reboot. A representation of each individual

4.2 Experiments Overall Set-up 33

fault injection test is described in Figure 4.1, the time is represented in the horizontal
axis and it is not to scale, and each individual fault injection time in a campaign is
customizable down to nanoseconds by means of hr-timer.

Fig. 4.1 General representation of each individual test carried out in the virtual machine.

The different blocks in Figure 4.1 are the following:

• BIOS: the check of the devices in the machine.

• Master Boot Record (MBR) check: the check of the first record in the file
system that describes the distribution of different partitions and boot options
of the systems installed on them.

• GRUB/LILO: the element that manages the options given by the MBR and
takes a decision in the boot or presents the options to the user.

• Kernel: loads the kernel fetch code into the system memory and takes over the
management of the machine resources.

• init: the first process created in the system; all processes will be created by
the execution of system calls from init or its childrens.

• Kernel processes: all the processes initialized by the kernel that are responsible
for providing services to higher level applications.

• KITO: the insertion of the module that manages the fault injection. The
module is inserted into the system by the rc.local script, without making a
modification in the kernel, with a less intrusive approach.

34 Experimental Results

• Benchmark Programs: just after the KITO module insertion into the kernel, a
benchmark is executed by means of the rc.local script. After the conclusion
of the benchmark program a reboot is executed.

4.3 Fault Effects Classification

In all experimental campaigns there were observable noxious effects to the operating
system. These effects took place after the fault injection and modify the way that
the operating system behaved. In order to classify these fault effects we took the
characteristics of the abnormal behaviour presented by the operating system and
classified the effects accordingly. The full list of effects is the following:

• POF (Power Off Failure): After the benchmark program completed its op-
eration the operating system remained idle and did not begin the power-off
procedure (or reboot).

• SHPO (System Hanged in Power Off): The system stops while executing the
power off during system reboot. This means that the benchmark program was
executed and its operation completed.

• SDPO (System Delayed Power Off): The system took longer than usual to
power-off during the reboot, up to twelve minutes.

• BUI (Broken User Interface): The User Interface (UI) of the system broke
generating digital artifacts and bugged windows, but the operation of the
system carried on.

• BS (Black Screen): the system hanged during the execution of the benchmark
and the machine was unresponsive with a black-screen. Consequentially, the
benchmark program operation did not complete.

4.4 Implemented Benchmarks

During the different experimental campaigns a variety of benchmarks were imple-
mented to stress the machine in which the fault injection was performed. These
benchmarks were the following:

4.5 Tests I: First Mutex Semaphores Experiments 35

• IOzone3 [48]: a tool that generates and simulates Input-Output operations. Ad-
ditionally, IOzone3 provides metrics on the amounts of operations performed.
In particular, the operations are performed as writing and reading operations
in the File-system.

• Netperf [48]: a client-server tool to evaluate the network performance, par-
ticularly in TCP/IP. This tool provides metrics on the data transfer rate and
processing rate of the connection between the server and the client.

• Matrix product (MP): A 1500x1500 matrix multiplication program is used to
simulate CPU intensive operations.

• SCP: a client-server application used to evaluate the I/O operations in conjunc-
tion with network communications.

• GZIP: the compression of a file generates heavy load in the CPU and also
on I/O operations in the file system, thus combining CPU and I/O-bound
applications.

In all the applications of these benchmarks the output was taken into consider-
ation. When possible the tests output was compared to the output from a golden
experiment version of the test, meaning comparing the metrics and the binary differ-
ence of the output files.

4.5 Tests I: First Mutex Semaphores Experiments

The basic elements of the fault injection method were tested in this study. The
injection in memory implementing a fault with a timer and an atomic operation were
conducted with success up to a certain degree. In this early version of the KITO
module, all the parameters for the fault injection were in the code of the loadable
kernel module, giving no degree of customization of the target address. All addresses
were loaded into an array with the pointer address to the mutex semaphores extracted
from the proc pseudo file system manually. This experimental campaign based in
this method was presented in [44], and were made into a live machine using Linux
kernel version 3.3.7. Additionally the delays were programmed into two different
pre-set times. Two different benchmarks were implemented in the tests, Gzip and
SCP.

36 Experimental Results

4.5.1 Results

During this experimental campaign the classification system was not established yet,
but a total of 4.44% of the test presented some kind of abnormal behaviour. The
effects of faults in the mutex semaphores was revisited in the experiments of section
4.7.

4.6 Test II: First Process Control Block Experiments

The general set up of the experiments were following the guidelines described in
section 4.2. There were significant differences in this experimental campaign, the
main being the target of the fault injection campaign. In this campaign the faults
were injected into the state field of the process control block. This experimental
campaign was also the first time when the target was automatically selected using
the functions provided by the Linux headers libraries. Finally, this fault injection
campaign took place in virtual machines instead of live machines, probing that a
simulation based environment is viable with this method. Both the virtual machines
and the host machines were running with Linux kernel version 3.11.0-15, and the
virtual machines environment was made with Virtual Box 4.1.12.

Given that the test were performed in virtual machines, there was the need for
a mechanism to pass the experimental results from the virtual machine to the host
machine. For this, a shared folder file system was implemented between the host and
virtual machines. All of the files managing the different process descriptions for the
automated decision of the target were placed in this file system. In order to manage
these two layers (host machine and virtual machine) and the files in the shared file
system, an additional layer of scripts was introduced that would manage the creation
and destruction of virtual machines and would store the results in the output folder, a
graphic representation of this two layer model can be seen in figure 4.2.

The virtual machine layer has a script that follows the set-up described in Section
4.2. This script takes name of every single process in the system at the moment of the
test (anything before the RC.local execution), then picks the first process that has
not been selected before in a previous test, and then proceeds to insert the module
to make a fault injection to the state field of the task_struct of the selected

4.6 Test II: First Process Control Block Experiments 37

Fig. 4.2 Representation of the two layers model.

process (figure 4.3 show the schemes of the script described). Finally, the benchmark
program used in these experimental campaign was Gzip.

The target for the fault injection was the state field of the process control block,
and the main idea was to change the first bit in such way that a fault would change
the current state of the process to another, or even to an invalid state. The different
considered states where the following:

• TASK_RUNNING: Task is running, the value of the state field is 0.

• TASK_INTERRUPTIBLE: Task is waiting for some condition to exist, and it
could become runnable if a signal is received. The value of the state field is 1.

• TASK_UNINTERRUPTIBLE: Task is waiting for some condition to exist, but the
task will not become runnable if a signal is received. The value of the state
field is 2.

• TASK_ZOMBIE: Task is terminated but the descriptor is kept in the case that the
parent task needs to access the task descriptor information. The value of the
state field is 4.

• TASK_STOPPED: Task is stopped due to a signal or is being debugged. The
value of the state field is 8

4.6.1 Results

The different faults effects were distributed according to the following table:

38 Experimental Results

Fig. 4.3 Virtual Machine’s script flowchart

Table 4.2 Distribution of the results

Final State #FI POF SHPO SDPO BUI

TASK_RUNNING 166 2 16 22 2

TASK_INTERRUPTIBLE 10 0 0 0 0

TASK_UNINTERRUPTIBLE 165 2 4 8 0

TASK_ZOMBIE 165 0 0 0 0

TASK_STOPPED 167 2 8 0 2

In table 4.2, the column "Final State" indicates what was the final state achieved
after the injection of faults in each experimental run, in most of the cases the
preceding state was TASK_INTERRUPTIBLE. #FI corresponds to the number of fault
injections (one for each process in the system up to the point of insertion of the
module), and the following columns follow the classification described in section
4.3. Overall most of the experiments started from TASK_INTERRUPTIBLE, while
the rest started from TASK_RUNNING.

Over 25.3% of the experiments in TASK_RUNNING presented failures, becoming
the most detrimental state to change into. All the processes that presented failures
going into TASK_INTERRUPTIBLE and TASK_STOPPED also presented the same fail-

4.7 Test III: Extensive Experiments 39

ures going into TASK_RUNNING. But from all the considered processes only Init

and RC presented failures going into TASK_RUNNING, TASK_INTERRUPTIBLE and
TASK_STOPPED. Apart from these processes, not a single process that presented an ab-
normal behaviour was shared between TASK_INTERRUPTIBLE and TASK_STOPPED.

Additional experiments were made also to test an invalid state, i.e., putting the
state to a value not recognized as a valid one. A total of 166 experiments were carried
out for each bit and in all the cases no detrimental consequence on the system was
detected.

4.7 Test III: Extensive Experiments

In this subsection the experiments are made in the final version of the KITO fault
injection module. All the experiments carried out to determine the effectiveness of
KITO. These tests were made in elements belonging to the process synchronization
and resource locking aspects of the Kernel. The experimental set-up was made in
an identical Virtual machine environment to the one used in section 4.6, but this
time the virtual machines were running in Virtual-Box 4.1.12 and all Linux kernel
versions were 3.18.20. As like in section 4.6, all experiments were loaded into the
RC.local of the virtual machines scripts to run the benchmark program.

Experiments were performed to evaluate the capabilities of the KITO module.
These experiments consist of fault injections into different elements of the kernel’s
process synchronization while running a benchmark program. A greater number
of benchmarks have been adopted, and these benchmarks were selected due to the
different nature of the stress that they place on the operating system. The adopted
benchmark programs are IOzone3, Netperf, Matrix product, and Gzip.

The hard-disks of the virtual machines running these experiments were loaded
into a ram-disk in order to avoid fragmentation issues and to ensure that every test is
being run from the same starting point. Additionally, following the same guidelines
used in section 4.6, all the information about the results was stored in the file system
of the hosting machine via shared-folders.

The fault injection campaigns considered two main targets:

40 Experimental Results

• The semaphores: Faults are injected into count variable inside the mutex
semaphore data structure.

• The Process Control Block: Faults are injected into three different sample
fields of the task_struct (state, flags and prio).

The rc.local scripts will execute the tests using kernel level privileges. In each
test the bits considered are analyzed by 2 individual injections at random times.

4.7.1 Mutual Exclusion Semaphores Experiments Subset

Faults were injected into the mutex semaphore structure’s count variable. As
explained in chapter 2, the expected values of the count variable are 1 when the
semaphore is free, 0 when it is locked and a negative value when the semaphore is
locked with a waiting list, which is a FIFO queue. The bits targeted were the most
significant one (bit 31), the second least significant (bit 1) and the least significant
(bit 0). For this experiment, a list of all the existing mutex semaphores in the system
was extracted from the /proc/ pseudo-files, and a total of 161 mutexes listed in
/proc/kallsyms were covered. These mutexes were feed to the module via the
insert parameters (scenario, sym, pid and testbit).

4.7.2 Process Control Block experiments Subset

Since the main goal is to evaluate the reliability of the kernel elements providing
services to user applications, all the tasks that exist up to the point of execution of the
rc.local script were considered, given that most of these are processes belonging
to the kernel.

As explained in chapter 3, the KITO module receives a PID number and au-
tomatically obtains the address pointer to the task_struct associated with such
PID number. The first process loaded in the Linux kernel is always init (with the
assigned value 1); after init, several different tasks will be created with a specific
PID value. Up to a certain point in the boot, PIDs tend to be identical from reboot
to reboot, with low PID numbers, but afterwards, the PID values are differently
assigned to tasks almost in a random way.

Three fields of the task_struct have been considered:

4.7 Test III: Extensive Experiments 41

• state

• flags

• prio.

Table 4.3 Values of the state field of the task_struct.

Possible state Variable value
TASK_RUNNING 0
TASK_INTERRUPTIBLE 1
TASK_UNINTERRUPTIBLE 2
__TASK_STOPPED 4
__TASK_TRACED 8
EXIT_DEAD 16
EXIT_ZOMBIE 32
EXIT_TRACE 96
TASK_DEAD 64
TASK_WAKEKILL 128
TASK_WAKING 256
TASK_PARKED 512
TASK_STATE_MAX 1024

The defined state values present in the Linux version 3.18.20 are described in
table 4.3. Given the results of [45] the most common state is TASK_INTERRUPTIBLE.
Therefore, in accordance with table 4.3, the value 0 is the only possible value
achievable after a single fault injection for most states; this value corresponds to
the state TASK_RUNNING. All the other states would require to have as a starting
value TASK_RUNNING, or in the case of EXIT_TRACE, it is necessary to start from
EXIT_ZOMBIE and EXIT_DEAD, or vice versa. This last scenario is highly unlikely,
therefore it was not considered for tests. In most other cases the value would carry
to a value not valid and not defined in the table. Additionally from [45] a single
fault injection would most likely provide a faulty behaviour by changing the state
to a valid state, therefore in this case to TASK_RUNNING. As a result, the tests were
conducted with particular attention to bit 0. Additionally other bits were tested to
determine the effects of non valid states, these bits were bit 1 and bit 2.

The flags field is an integer containing the flags of the processes, and it is
defined in a bit map. The fault injection experiments focus on the effects of faults in

42 Experimental Results

the process flag PF_EXITING (0x00000004). With this value, the process would be
flagged for termination, and it will be held in a wait state before releasing the memory
and the resources assigned to it. Thus, by modifying this flag we are expecting to
stop a process that would affect others in a cascading effect. Additionally, both bit
1 and 0 (0x00000002 and 0x00000001) are taken as references to determine the
effects of non defined flags bits. The full list of flags is presented in Table 4.4.

Table 4.4 Valid codes of the flags field of the task_struct.

Flag Variable value Meaning
PF_EXITING 0x00000004 Getting shut down
PF_EXITPIDONE 0x00000008 PI exit done on shut down
PF_VCPU 0x00000010 A virtual CPU
PF_WQ_WORKER 0x00000020 A workqueue worker
PF_FORKNOEXEC 0x00000040 Forked but didn’t exec
PF_MCE_PROCESS 0x00000080 Process policy on mce errors
PF_SUPERPRIV 0x00000100 Used super-user privileges
PF_DUMPCORE 0x00000200 Dumped core
PF_SIGNALED 0x00000400 Killed by a signal
PF_MEMALLOC 0x00000800 Allocating memory
PF_NPROC_EXCEEDED 0x00001000 RLIMIT_NPROC was exceeded
PF_USED_MATH 0x00002000 FPU must be initialized before
PF_USED_ASYNC 0x00004000 Used async_schedule*()
PF_NOFREEZE 0x00008000 Should not be frozen
PF_FROZEN 0x00010000 Frozen for system suspend
PF_FSTRANS 0x00020000 In a filesystem transaction
PF_KSWAPD 0x00040000 A kswapd
PF_MEMALLOC_NOIO 0x00080000 Allocating memory without IO
PF_LESS_THROTTLE 0x00100000 Throttle less
PF_KTHREAD 0x00200000 A kernel thread
PF_RANDOMIZE 0x00400000 Randomize virtual address space
PF_SWAPWRITE 0x00800000 Allowed to write to swap
PF_SPREAD_PAGE 0x01000000 Spread page cache over cpuset
PF_SPREAD_SLAB 0x02000000 Spread some slab caches over cpuset
PF_NO_SETAFFINITY 0x04000000 Not allowed use with cpus_allowed
PF_MCE_EARLY 0x08000000 Early kill for mce process policy
PF_MEMPOLICY 0x10000000 Non-default NUMA mempolicy
PF_MUTEX_TESTER 0x20000000 Belongs to the rt mutex tester
PF_FREEZER_SKIP 0x40000000 Should not count it as freezable
PF_SUSPEND_TASK 0x80000000 Called freeze_processes

4.7 Test III: Extensive Experiments 43

Table 4.5 Distribution of the results for the fault injections in the Mutex semaphores.

IOZONE3

Bit # #FI POF SHPO SDPO BUI BS

Bit 0 322 4 40 0 2 2

Bit 1 322 0 0 0 0 0

Bit 31 322 2 37 0 0 0

NETPERF

Bit # #FI POF SHPO SDPO BUI BS

Bit 0 322 4 36 0 2 2

Bit 1 322 0 0 0 0 0

Bit 31 322 2 30 0 0 0

MP

Bit # #FI POF SHPO SDPO BUI BS

Bit 0 322 4 40 0 2 2

Bit 1 322 0 0 0 0 0

Bit 31 322 2 36 0 0 0

GZIP

Bit # #FI POF SHPO SDPO BUI BS

Bit 0 322 4 41 0 2 2

Bit 1 322 0 0 0 0 0

Bit 31 322 2 38 0 0 0

In the case of prio, the priority value may be changed. As explained in chapter
2, the priority range are split between 0 and 99 for real time processes and from
100 upwards is for normal processes. So, a bit flip in the 7th least significant bit
changes the priority mode from real time to normal (and vice versa). Moreover, other
experiments targeted the two least significant bits changing only the value of the
priority and not the priority type (dynamic priority and real time priority).

4.7.3 Results Analysis

The effects of the faults were classified in accordance to the definition of effects
described in section 4.3. Failures that have observable behaviour were distributed in
tables 4.5, 4.6 and 4.7.

44 Experimental Results

Table 4.6 Distribution of the results for the state field of the task_struct.

IOZONE3

Bit #FI POF SHPO SDPO BUI BS

Bit 0 166 2 23 18 2 0

Bit 1 166 0 0 0 0 0

Bit 2 167 0 0 0 0 0

NETPERF

Bit #FI POF SHPO SDPO BUI BS

Bit 0 168 2 24 19 2 0

Bit 1 167 0 0 0 0 0

Bit 2 169 0 0 0 0 0

MP

Bit #FI POF SHPO SDPO BUI BS

Bit 0 169 2 19 19 2 0

Bit 1 169 0 1 0 0 0

Bit 2 169 0 0 0 0 0

GZIP

Bit #FI POF SHPO SDPO BUI BS

Bit 0 169 2 21 18 2 0

Bit 1 168 0 0 0 0 0

Bit 2 168 0 0 0 0 0

4.7 Test III: Extensive Experiments 45

Table 4.7 Distribution of the results for the flags field of the task_struct.

IOZONE3

Bit #FI POF SHPO SDPO BUI BS

Bit 0 165 0 0 0 0 0

Bit 1 166 0 0 0 0 0

Bit 2 164 2 13 21 0 0

NETPERF

Bit #FI POF SHPO SDPO BUI BS

Bit 0 170 0 0 0 0 0

Bit 1 168 0 0 0 0 0

Bit 2 168 2 12 19 0 0

MP

Bit #FI POF SHPO SDPO BUI BS

Bit 0 167 0 0 0 0 0

Bit 1 168 0 0 0 0 0

Bit 2 167 2 12 20 0 0

GZIP

Bit #FI POF SHPO SDPO BUI BS

Bit 0 166 0 0 0 0 0

Bit 1 168 0 0 0 0 0

Bit 2 167 2 11 21 0 0

46 Experimental Results

In all the tables, the term #FI corresponds to the number of fault injections carried
out. Table 4.5 shows the experiments in the mutex semaphores. The noxious effects
are almost equally distributed independently of the kind of load given to the system;
11.56% of the injected faults in the mutex semaphores hanged the system during the
power off (considering only the most and least significant bits), the most common
error message for this failure on the power off screen was the time out of a process.
Additional analysis of the error messages suggests that these kinds of errors messages
are common when tasks are held in endless loop scenarios. These faults inhibit the
mutex function to allow programs to continue to a critical section of code, limiting
the ability of this process to complete its task and to exit, resulting in a deadlock
scenario. Additionally, the computer is hanged during the reboot by processes other
than the benchmark. In relation to faults injected into bit 1 no noxious effects were
observed. Whereas, the faults made into the most significant bit (bit 31) presented
effects comparable to the least significant bit.

Table 4.6 displays the results of the experiments that made faults into the state
field of the task_struct. Once again, changes to the least significant bit showed
to be the most critical. Given that the least significant bit changes into a valid state,
therefore, providing a valid option for the scheduler to process corrupt information
in the state field without triggering any kind of recovery mechanism. 26.34% of
faults in the bit 0 resulted in a failure. A single fault injected made into the bit 1,
while the state of this task was TASK_RUNNING, so the fault injection resulted in a
value signalling to the scheduler TASK_UNINTERRUPTIBLE state, also providing a
corrupted value.

Table 4.7 shows the distribution of the effects in the experiments involving fault
injections into the flags field. In this case, bit indicating the PF_EXITING flag was
the only critical one. This bit incurred in noxious effects in 20.57% of faults injected.
The other two bits corresponding to undefined values did not present any effects.

4.7.4 Effects on Performance

IOzone3 and Netperf benchmarks provide exact metrics in performance, and these
registered significant degradation.

4.7 Test III: Extensive Experiments 47

IOzone3

The IOzone3 benchmark was executed with options that would register performance
in writing, reading, rewriting, writing backwards and writing in random order op-
erations. Figure 4.4 shows two particular scenarios in which the performance was
affected because of the faults. In both graphs, the performance is measured in I/O
operations per second in the vertical axis. While the horizontal axis denotes each
individual test performed in order. In the case of the top graph, the lower the number
is, then the closer the process being injected upon is to the core of the kernel. Given
that init has the value 1, each following process goes to higher and higher layers of
the operating system. This graph shows the effects of the faults injected into the Bit 0
in the flags field of the task_struct. Finally, the red horizontal line corresponds
to the mean of 20 golden experiments (i.e., the execution without fault injection).
From this graph we can infer that a fault affecting a core process of the operating
system would have higher performance degradation than a fault affecting processes
closer to the user space. This was true to all the faults in the state and flag fields.

48 Experimental Results

Fig. 4.4 Performance of different experiments performed with IOzone3 Benchmark. The top
graph corresponds to faults affecting bit 0 in the flags field of task_truct. The bottom
graph corresponds to faults affecting bit 0 in the Mutex semaphores.

Considering the second graph in Figure 4.4, the horizontal axis represents each
individual mutex semaphore in order as extracted from the proc file system. In this
case almost all the fault injections in the mutex semaphores presented a performance
degradation. The average of the degradation was around 48.8% (about 88,000
operations per second compared to 173,000 for the golden experiment); only the
swapon_mutex (number 58 in the graph) presented no degradation in its performance,
but this is most likely because no swap operation was performed by the system during
the test. Note that for the bottom graph there is no correlation between the number
of the experiment and PID, since each experiment corresponds to a specific Mutex.
So, we can state that in relation to the I/O bounded processes, faults in the mutex
semaphores result in a significant performance degradation.

4.7 Test III: Extensive Experiments 49

Netperf

The Netperf benchmark needs to establish a TCP link between the server and client
machines and just like IOzone3 it provides the metrics of performance. Figure 4.5
describes the performance of the benchmark in its vertical axis, and this measurement
is made in TCP transactions per second. The horizontal axis is defined as in figure
4.4. During the Netperf experiments, some fault injections prevented the creation of
the client-server link, therefore, only the tests that managed to successfully establish
the connection and execute the benchmark are displayed in Figure 4.5.

Fig. 4.5 Performance of different tests performed with Netperf Benchmark. The top graph
corresponds to the writing tests on bit 0 in the state element of task_truct. The bottom
graph corresponds to the tests on bit 0 in the Mutex semaphores.

50 Experimental Results

Table 4.8 Connection issues in Netperf experiments

Test #FI Connection Failures Percentage

state 504 12 2.38%

flags 506 11 2.18%

prio 502 16 3.18%

Mutex 966 128 13.25%

Taking in consideration the overall performance, once again in the task_struct
experiments there is a significant performance loss in the lower PID numbers, and
then incrementing to normal performance levels in processes closer to the user-space
level. Again, the horizontal line (at value 21000) corresponds to the average value of
20 golden experiments. Finally, on the subject of faults in the mutex semaphores,
the overall performance loss was almost uniformly distributed with a degradation of
7.6%

The occurrences of faults that prevented the benchmark to establish the client-
server connection are described in Table 4.8. This failure was present with a higher
failure rate in experiments that made faults in the mutex semaphores, with a 13.25%
of the fault injection manifesting these failures.

Chapter 5

Redundant Techniques for Kernel
Data Structures

The concluding activity of the research was concentrated on adding redundancy
to the Linux kernel. These efforts were made into hardening the mutex system
and the scheduler. In both cases information-software redundancy techniques were
used. The first solution proposed was to introduce a TMR-like approach to the
mutex semaphore, this would involve the triplication of the semaphore information
and a voter mechanism to detect and correct all faults. The second was an Error
Detection And Correction (EDAC) method taking advantage of the state field
definition in the task_struct. Both proposed approaches have to be implemented
with local-thread duplication because we desire to provide a broad and general
solution, and not exclude the machines that are not capable of multi-threading, and
because the scheduler and the mutex are in constant use it is impossible to perform a
Process-level redundancy.

5.1 The Mutex Mechanism

The implementation of hardening techniques to the mutex semaphores system needed
the modifications of a handful of files, and among them mutex.h and mutex.c. In
mutex.h the mutex data structure is defined, alongside a couple of functions that man-
age some aspects of mutex, such as __MUTEX_INITIALIZER and mutex_is_locked.
In addition, all the functions implemented in the mutex system have their functions

52 Redundant Techniques for Kernel Data Structures

Fig. 5.1 Simplified diagram of the subsystems of the mutex system and their components.

prototypes defined in mutex.h. While in mutex.c, over 30 functions are defined
which interact with the mutex semaphores. These functions can be divided into dif-
ferent subsets depending on the kind of operations these functions perform. The first
set is the division between the lock and unlock functions: these functions can further
be sub-divided into fast-path and slow-path lock/unlock functions. Additionally,
there is a subset of functions intended to manage the waiting lists while performing
the mutex lock and unlock operations. The mutex.c file also includes functions that
are meant to update fields in the context of the process control block whenever a
process gains or relinquishes control of a resource in the machine. Other functions
evaluate the availability of these resources. Finally, there are functions used in the
Wait/Wound mutex system, designed to solve the situation in which more than one
mutex is called by a process in order to avoid deadlock scenarios. A simplified
graphical representation of the different elements involved in the mutex system is
shown in Fig. 5.1.

5.1.1 Fastpath and Slowpath Mutex Operations

The mutex semaphores have three possible distinct states; unlocked, locked and
with waiting list. The current state that the mutex holds will determine which kind

5.2 Hardening Implementation 53

of operation will be performed in order to lock or unlock the mutex. There are
two different approaches implemented for this. Fastpath mutex lock or unlock and
slowpath mutex lock or unlock. Mutex fastpath is executed when a transition from
(or to) an unlock mutex status is made. Fastpath is has a smaller footprint than
slowpath because it doesn’t have to manage waiting the waiting for a mutex nor
the managment of the waiting list. The fastpath functions are an assembly macro
to increase or decrease the count variable of the mutex. The fastpath function is
dependant on the machine’s architecture. An example of a fastpath operation is the
following one:

__mutex_fastpath_lock(count, fail_fn)

In this example, count is the semaphore variable of the mutex structure. When
the value of count is 1, then the function changes it to 0. In any other case (0 or
negative values) the function fail_fn is called. fail_fn is always the slowpath
version of the lock operation,. This occurs in any scenario when the transition is
into a "mutex with a waiting list". All the fastpath functions are defined in assembly
language and are architecture dependent. While the slowpath operations are primarily
defined in C language with calls to the operating system’s generic atomic operations.
A process performing a lock/unlock operation will always try to perform a fastpath
operation and if the operation fails (meaning that the mutex is not free) then it will
perform a slowpath operation, the main difference of both operations is that slowpath
operation takes into consideration many more variables into consideration and posses
many more states when considering it as a state machine cycle. For instance only in
a slowpath operation there is any interaction with the waiting list for the mutex in a
lock operation.

5.2 Hardening Implementation

In order to improve the dependability of the mutex data structures, a Triple-Modular-
Redundancy (TMR) technique has been adopted and introduced into the source files
of the Linux kernel [49]. This approach modifies the definition of the mutex structure
in mutex.h by adding two new count variables (named count1 and count2). The
role of these variables is to triplicate the information describing the current state
of the mutex semaphore. Every time that the mutex is acted upon, e.g., for lock,

54 Redundant Techniques for Kernel Data Structures

Fig. 5.2 Implementation of fastpath and slowpath scenarios.

unlock, trying the lock, debugging, etc., a bitwise voting function is made to check
the majority of the values and then update the results of these operations in all three
count variables belonging to the mutex data structure. Additionally, each time that
the mutex is about to be used, meaning right before any read or write operation, a
majority vote operation is also made in order to detect and correct any fault that
have occurred in the count variables since the last operation executed with the mutex.
In like manner, after any write operation every single variable have to be updated
to its new values. This ensures that at every point (before and after an operation
involving a mutex semaphore) all the values of the different count variables are
identical. These mechanisms are presented in details in the following subsection
followed by an example of their implementation.

5.2.1 Voter Mechanism

The voting mechanism is made by introducing a function to the system that has
been called vote_mutex(). This functions receives a pointer structure to the mutex
which has to be voted upon, and then performs a bitwise voting operation.

5.2 Hardening Implementation 55

int vote_mutex(struct mutex *lock){

votetrv=((c&c1)|(c&c2))|(c1&c2);

atomic_set(&lock->count, votetrv);

atomic_set(&lock->count1, votetrv);

atomic_set(&lock->count2, votetrv);

return votetrv;

}

Where:

• atomic_set(L,V) is a function that saves the value V at location L

• votetrv is the vote result

• c is an atomic_read(&lock->count)

• c1 is an atomic_read(&lock->count1)

• c2 is an atomic_read(&lock->count2)

• atomic_read(L) is a function that returns the value stored at location L.

Following the bitwise voting operation, every single counter variable is updated.
Then the function returns the value of the vote (votetrv). In this way, the value can
be used as an input argument in functions that require information about the current
status of the semaphore.

It is important to note that because the voter function, vote_mutex(), is imple-
mented before all operations made into the count variable, then any modification
exclusively in count would be the equivalent of performing an operation in the voter
result.

5.2.2 Mutex Update

The counter variables update mechanism are made in two different ways. The first
way is by implementing a function named mutex_update_value(). This function
is called right after a modification of count variable is made, provided that the
functions modifying the value of count did not allow the usage of count1 and

56 Redundant Techniques for Kernel Data Structures

count2 directly: this is common for architecture dependant functions. This function
is defined as follows.

void mutex_update_value(struct mutex *lock){

atomic_set(&lock->count1,

atomic_read(&lock->count));

atomic_set(&lock->count2,

atomic_read(&lock->count));

}

This function was implemented immediately after every function that does not
support operations over count1 and count2. mutex_update_value() reads the
value of count and updates it directly into count1 and count2.

The second way is by means of additional identical functions that operate with
the count variable using the other two newly introduced variables. This kind of
update mechanism is implemented when there are no limitations to the operation
over count1 and count2: this is particularly true when performing logic operations.

5.2.3 Implementation Examples

An example of the application of the voter and the first update mechanism can be
seen in the following example.

void __sched mutex_lock(struct mutex *lock)

{

might_sleep();

vote_mutex(lock);

/*

* The locking fastpath is the

* 1->0 transition from

* 'unlocked' into 'locked' state.

*/

__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);

mutex_update_value(lock);

mutex_set_owner(lock);

5.2 Hardening Implementation 57

}

In the presented example, it is possible to observe the mutex_lock function.
The voter is used right before __mutex_fastpath_lock because this function will
read the value of the mutex lock and then decide whether to execute a fastpath or
a slowpath lock. During __mutex_fastpath_lock a decision is made to decrease
the value of count from 1 to 0 or to call the function __mutex_lock_slowpath de-
pending on the value of count. Following the decision, it is necessary to implement
mutex_update_value(), independent of the decision made by __mutex_fastpa

th_lock to run slowpath or not, the value of count has changed, and given that
__mutex_lock_slowpath is a long process, it is not efficient to triplicate its execu-
tion due to the excessive overhead it would produce.

An example of the second update mechanism can be seen in the following line
extracted from the function __mutex_lock_common:

static __always_inline int __sched

__mutex_lock_common(struct mutex *lock, long state, unsigned int

subclass, struct lockdep_map *nest_lock, unsigned long ip,

struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)

{

...

for (;;) {

...

votetrv = vote_mutex(lock);

if ((votetrv >= 0) &&

(atomic_xchg(&lock->count, -1) == 1)

&&

(atomic_xchg(&lock->count1, -1) == 1)

&&

(atomic_xchg(&lock->count2, -1) == 1))

{

break;

}

...

58 Redundant Techniques for Kernel Data Structures

In this example atomic_xchg saves the value -1 into count variables and then
returns the previous values of the count variables in order to make a decision.
Because atomic logic operation are being used, it is more efficient to implement this
atomic operation in every single one of our custom count variables.

5.3 Experimental Results

In order to evaluate the effectiveness of the proposed solution, a series of experiments
were conducted.

5.3.1 Experimental Set-up

Four distinctive scenarios were considered for this experimental campaign: all
experiments consisted in evaluating the performance of different benchmarks running
in the Linux kernel. Two different operating systems were used in the tests: the
first was a stable version of the Linux kernel running version 4.2 and the second
was a custom robust version of kernel 4.2 which used the modifications previously
discussed in this chapter. Additionally, some versions of the experiments had a single
bit flip fault injected in memory using the fault injector described in chapter 3. The
scenarios considered are the following:

• Golden Experiment (a): The stable version of the Linux kernel running the
benchmarks and providing a reference performance value.

• Robust system (b): Evaluation of the impact caused by the robustness mod-
ifications made to the kernel in terms of performance of the benchmarks
programs.

• Control FI (c): Equivalent to (a) with the difference that a single bit flip
operation is performed at a random time during the operation of the benchmark
program.

• Robust Evaluation (d): Equivalent to (b) with the difference that a single
bit flip operation is performed at a random time during the operation of the
benchmark program.

5.3 Experimental Results 59

Table 5.1 reports a classification of the different experimental scenarios.

Table 5.1 Scenarios for the experimental campaign

OS Version Without FI With FI
Stable OS Control Experiment(a) Control FI(c)
Robust OS Robust Operations(b) Robust Evaluation(d)

The considered benchmarks were the same considered in section 4.4. These
benchmarks are the following:

• IOzone3 [48]

• Netperf [48]

• Matrix product (MP)

• GZIP.

All benchmarks were individually tested. All experiments were executed in
virtual machines using VirtualBox version 5.0.14. The host machine ran a Linux
Kernel version 4.2 stable. While the virtual machines were running a Linux kernel
version 4.2 stable on scenarios (a,b) and a custom robust version 4.2 for (c,d).
Experiments (a,b) were made 20 times, providing an average of the performance
for each one of the benchmarks. Tests (a) and (b) were repeated in virtual machines
provided with 3 cores; while in (c,d) the experiments were made by injecting in the
most and least significant bits of each one of the count variables of every mutex in
the system.

5.3.2 Performance Results Analysis

The performance of scenarios (a) and (b) showed an overall loss of performance in
accordance with table 5.2. The performance measurement of IOzone is expressed
in I/O operations per second, while the performance measurement of Netperf is
expressed TCP transactions per second. In the other hand, the performance mea-
surement both of the Matrix Product and GZIP benchmarks are taken from the real
elapsed time for completion in seconds using the time command.

60 Redundant Techniques for Kernel Data Structures

Table 5.2 Performance overhead analysis

Benchmark Standard OS Patched OS % Loss

IOzone3 433017.65 427882.05 1.19%

Netperf 21944.01 21626.52 1.44%

MP 38.93 38.97 0.10%

Gzip 46.02 46.20 0.39%

Average 0.78%

Given the distribution of the results from the experiments we can infer that CPU
bound applications could have a smaller overhead than I/O bound applications.

5.3.3 Fault Effect Results Analysis

As described in section 4.7, faults into the mutex semaphores present observable
effects.

Table 5.3 presents the distribution of the results obtained from the experimental
tests considering scenarios (c) and (d). Change in the most and least significant bits
present the most critical results as in accordance with the results presented in section
4.7. The novelty is that the operating system with the robust source files is able to
detect and correct the faults, thus proving that a TMR-like approach on the count
variable of the mutex data structure could add robustness to the operating system.

In section 4.7 it was reported that some faults injected into the mutex propagated
from operating system to the Netperf benchmark program. These faults prevented the
generation of Netperf’s server-client connection, but the operating system continued
to operate normally. In the current experimental tests running in the standard kernel
such faults were present in 4.8% of the faults. While in the robust kernel version
this fault propagation did not take place, meaning that 100% of the experiments that
would have presented such failure were corrected by the the robust OS.

5.3 Experimental Results 61

Table 5.3 Fault Injection Experimental Results.

IOZONE

Scenario #FI POF SHPO SDPO BUI BS

Standard(c) 372 6 21 14 1 4

Patched(d) 372 0 0 0 0 0

NETPERF

Scenario #FI POF SHPO SDPO BUI BS

Standard(c) 372 7 14 13 1 5

Patched(d) 372 0 0 0 0 0

MP

Scenario #FI POF SHPO SDPO BUI BS

Standard(c) 372 5 17 16 1 4

Patched(d) 372 0 0 0 0 0

GZIP

Scenario #FI POF SHPO SDPO BUI BS

Standard(c) 372 3 18 15 1 4

Patched(d) 372 0 0 0 0 0

62 Redundant Techniques for Kernel Data Structures

5.4 Process Synchronisation

As described in chapter 2, the scheduler is the entity that is responsible for synchro-
nising and switching from one process to the next. Additionally, in sections 4.6 and
4.7 the susceptibility to faults in the following fields of this data structure has been
demonstrated:

• state

• thread_info->flags

• prio

All these fields contained bits that proved to be critical as far as dependability is
considered, therefore a redundant mechanism is needed in order to detect and correct
faults affecting these mechanisms.

5.4.1 Redundancy Method

This section focused in the possible implementation of an hardening approach based
in encoding of the information storage. This redundancy would be made to solve
the issues generated by faults in the state field of the task_struct [50]. This
approach is based in the duplication of information and the modification of the
encoding mechanism of this variable so that it becomes possible to detect and correct
the faults.

As described in chapter 2, the state is the field that informs the scheduler which
is the current status of the process. This state is defined in a bitmap like manner,
meaning that a value of one in each bit corresponds to a particular state. From the
results reported in section 4.6 and 4.7 most of the faults occurred when the fault
managed to make the switch from one state to another valid state, rather than to
an invalid state (a state not defined in the bit map). The possible states are defined
as described in Figure 5.3. There are also other states that are defined as an or

operation between two or more single bit states. In Figure 5.3, we can observe the
example of EXIT_TRACE, being a state defined by 1 in two different columns. All
the other multiple bit states are defined with the prefix TASK_ and then the following
names: killable, stopped, traced, idle, normal, all and report.

5.4 Process Synchronisation 63

Fig. 5.3 Original definition of the state fields values.

In order to achieve redundancy, two steps are needed. The first is the duplication
of the elements of the state field with an offset of 32 bits in the following way:

State = 2n → 232+n +2n

In this way we can obtain a variable that is divided in two with each part indicating
the current state of the process. This would allow to recognize when there is a faulty
state in any of the parts given that both parts should have the same values with at most
one corrupted bit value. This is generally true to every case except for any fault that
makes a change from or to a multi bit state, such as a fault affecting the EXIT_TRACE
state. In this case we are able to detect all faults and correct most of the faults. The
duplication step allows the detection of faults, provided that only one of the sides
presents a valid state. Additionally, it is possible to correct the fault by updating the
value of the state with the valid state. The only case in which this is not possible is
when the bit indicating the state is affected with a single fault resulting in a value of
zero in one half and another state field in the other half, and this would cause to have
two valid states with the state value of 0 corresponding to TASK_RUNNING. These
examples can be seen in Figure 5.4, a) shows what the implementation of simple

64 Redundant Techniques for Kernel Data Structures

Fig. 5.4 a) Duplication of the state field values. b) Detection and correction of a single fault
in the new duplicated value. c) Problem with the modification resulting in a TASK_RUNNING
value.

5.4 Process Synchronisation 65

Fig. 5.5 Final values for each half of the variables for the proposed redefinition of the state
field. In darker gray the original values.

duplication would look like, while in b) shows how an error in one of the halves of
the new state field would be detected, while c) demonstrate the issue when one of
the halves is or becomes TASK_RUNNING.

The second step necessary to ensure a robust state field is a shift left operation
in every state, thus assuring that state 0 corresponds to an invalid state. By doing
this, each state cannot be modified to another valid state with a single fault, except
for EXIT_TRACE. The new definition for the state field should then be as follows:

State = 2n → 232+n+1 +2n+1

The final definition of the state fields variable would be as presented in Figure
5.5. Given the implementation of these two steps it is possible to detect and correct
most faults affecting the state field. For fault generating changes to state from and
to multiple bit states we can only detect faults. Additionally, extensive modification
to the scheduler have to be made in order to read and update the correct values of the
new state fields.

Chapter 6

Conclusions

This research project had two main objectives, the first is to evaluate the effects
of faults in the different kernel data structures, and the second objective is to add
redundancy techniques to these structures.

The first objective was achieved, and the proposed fault injection module proved
to be capable of generating faults in a diverse number of elements in the kernel,
demonstrating that faults affecting these data structures are critical as far as depend-
ability is considered. In theory KITO should be able to inject transient faults in any
memory element of the kernel space of the operating system.

During the experimental campaigns, it was proven that faults in some elements
of the operating system can alter the operation of the operating system and in some
cases also the operation of the applications that depend in the support of the different
services provided by the operating system.

In relation to the second objective, it was demonstrated that a TMR-like approach
in the mutex data structure is capable of providing sufficient protection to detect
and correct faults affecting the count variable of this structure. The experimental
evaluation of the proposed method for the hardening of the state field of the process
control block is still pending.

Overall the main objective of generating a fault injection method in order to
evaluate the criticality of the kernel data structures was achieved. Meanwhile the
protection of the elements of the kernel that have been proven critical has been
partially achieved.

67

From the implementation of this method in different versions of the Linux kernel
it is clear that this method has a high degree of portability. It remains to be seen
if this is true in the case of different operating systems based in the Linux kernel
or micro kernel such as OSX, Solaris, QNX or Yocto project applications. OSX is
the operating system implemented in all Apple devices. While Solaris is a Linux
distribution developed by Sun Microsystems which is commonly implemented in
network servers. QNX is an Real Time Operating System (RTOS) for embedded
application, commonly found in automotive applications. Yocto Project is an open
source micro kernel developed from OpenEmbedded. Future activities could apply
the proposed hardening techniques for these real-time and embedded systems, along
side exploring different data structures or memory elements of mechanisms that
were not included in this research activity. Such elements include such as the
thread_struct, RCU mechanisms, shared memory, call systems messages, etc.

References

[1] David Kaminski-Morrow. Qantas a330 upset inquiry considers cosmic particle
strike, 2009.

[2] NASA/JPL. Engineers diagnosing voyager 2 data system – update, 2010.

[3] Katholieke Universiteit Leuven, Universiteit Antwerpen, Universiteit Gent, Uni-
versité Catholique de Louvain, Université de Liège, Université Libre de Brux-
elles, and Vrije Universiteit Brussel. Bevoting study of electronic voting
systems, part i, 2007.

[4] M. Nicolaidis. Time redundancy based soft-error tolerance to rescue nanometer
technologies. In VLSI Test Symposium, 1999. Proceedings. 17th IEEE, pages
86–94, 1999.

[5] Ravishankar K Iyer and Dong Tang. Experimental analysis of computer system
dependability. Prentice-Hall, Inc., 1996.

[6] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G.H. Leber.
Comparison of physical and software-implemented fault injection techniques.
Computers, IEEE Transactions on, 52(9):1115–1133, Sept 2003.

[7] IEC61508:1-7. Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems. Technical report, International Electrotechnical
Commission•, 1998,2000.

[8] R. Svenningsson, J. Vinter, H. Eriksson, and M. Torngren. MODIFI: A MODel-
Implemented Fault Injection Tool. In 29th International Conference, SAFE-
COMP, pages 210–222, 2010.

[9] Henrique Madeira, Mário Rela, Francisco Moreira, and João Gabriel Silva.
Rifle: A general purpose pin-level fault injector. In Dependable Computing
EDCC-1, pages 197–216. Springer, 1994.

[10] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo. Using heavy-
ion radiation to validate fault-handling mechanisms. Micro, IEEE, 14(1):8–23,
Feb 1994.

References 69

[11] Johan Karlsson, Peter Folkesson, Jean Arlat, Yves Crouzet, Günther Leber, and
Johannes Reisinger. Application of three physical fault injection techniques
to the experimental assessment of the mars architecture. In Dependable Com-
puting for Critical Applications (Proc. Fifth IFIP Working Conf. Dependable
Computing for Critical Applications: DCCA-5), pages 267–287, 1998.

[12] M. Rebaudengo and M.S. Reorda. Evaluating the fault tolerance capabilities of
embedded systems via bdm. In VLSI Test Symposium, 1999. Proceedings. 17th
IEEE, pages 452–457, 1999.

[13] R. Ramanarayanan, V. Degalahal, R. Krishnan, Jungsub Kim, V. Narayanan,
Yuan Xie, M.J. Irwin, and K. Unlu. Modeling soft errors at the device and logic
levels for combinational circuits. Dependable and Secure Computing, IEEE
Transactions on, 6(3):202–216, July 2009.

[14] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. Fault injection into
vhdl models: the mefisto tool. In Fault-Tolerant Computing, 1994. FTCS-24.
Digest of Papers, Twenty-Fourth International Symposium on, pages 66–75,
June 1994.

[15] Mojtaba Ebrahimi, Abbas Mohammadi, Alireza Ejlali, and Seyed Ghassem
Miremadi. A fast, flexible, and easy-to-develop fpga-based fault injection
technique. Microelectronics Reliability, 54(5):1000 – 1008, 2014.

[16] Oana Boncalo, Alexandru Amăricăi, Mihai Udrescu, and Mircea Vlăduţiu.
Quantum circuit’s reliability assessment with vhdl-based simulated fault injec-
tion. Microelectronics Reliability, 50(2):304 – 311, 2010.

[17] K.K. Goswami. Depend: a simulation-based environment for system level
dependability analysis. Computers, IEEE Transactions on, 46(1):60–74, Jan
1997.

[18] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, and M. Violante.
Exploiting fpga-based techniques for fault injection campaigns on vlsi circuits.
In Proceedings 2001 IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, pages 250–258, 2001.

[19] P. Vanhauwaert, R. Leveugle, and P. Roche. A flexible sopc-based fault injection
environment. In 2006 IEEE Design and Diagnostics of Electronic Circuits and
systems, pages 190–195, April 2006.

[20] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. Statistical fault
injection: Quantified error and confidence. In 2009 Design, Automation Test in
Europe Conference Exhibition, pages 502–506, April 2009.

[21] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham. Ferrari: a flexible software-
based fault and error injection system. Computers, IEEE Transactions on,
44(2):248–260, Feb 1995.

70 References

[22] C. Giuffrida, A. Kuijsten, and A.S. Tanenbaum. Edfi: A dependable fault
injection tool for dependability benchmarking experiments. In Dependable
Computing (PRDC), 2013 IEEE 19th Pacific Rim International Symposium on,
pages 31–40, Dec 2013.

[23] J. Carreira, H. Madeira, and J.G. Silva. Xception: a technique for the experi-
mental evaluation of dependability in modern computers. Software Engineering,
IEEE Transactions on, 24(2):125–136, 1998.

[24] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. Goofi: generic object-
oriented fault injection tool. In Dependable Systems and Networks, 2001. DSN
2001. International Conference on, pages 83–88, July 2001.

[25] J.A. Duraes and H.S. Madeira. Emulation of software faults: A field data
study and a practical approach. Software Engineering, IEEE Transactions on,
32(11):849–867, Nov 2006.

[26] Peter J. Denning. Fault tolerant operating systems. ACM Comput. Surv.,
8(4):359–389, December 1976.

[27] Inhwan Lee and R.K. Iyer. Faults, symptoms, and software fault tolerance in
the tandem guardian90 operating system. In Fault-Tolerant Computing, 1993.
FTCS-23. Digest of Papers., The Twenty-Third International Symposium on,
pages 20–29, June 1993.

[28] G. Carrette. Crashme: Random Input Testing.
http://people.delphiforums.com/gjc/crashme.html, 1998.

[29] Barton P Miller, Louis Fredriksen, and Bryan So. An empirical study of the
reliability of unix utilities. Communications of the ACM, 33(12):32–44, 1990.

[30] N.P. Kropp, P.J. Koopman, and D.P. Siewiorek. Automated robustness testing
of off-the-shelf software components. In Fault-Tolerant Computing, 1998.
Digest of Papers. Twenty-Eighth Annual International Symposium on, pages
230–239, June 1998.

[31] A. Albinet, J. Arlat, and J.-C. Fabre. Characterization of the impact of faulty
drivers on the robustness of the linux kernel. In Dependable Systems and
Networks, 2004 International Conference on, pages 867–876, June 2004.

[32] K. Kanoun and L. Spainhower. Benchmarking the Operating System against
Faults Impacting Operating System Functions, pages 311–339. Wiley-IEEE
Press, 2008.

[33] A. Holler, A. Krieg, T. Rauter, J. Iber, and C. Kreiner. Qemu-based fault
injection for a system-level analysis of software countermeasures against fault
attacks. In Digital System Design (DSD), 2015 Euromicro Conference on,
pages 530–533, Aug 2015.

References 71

[34] M. Kooli, P. Benoit, G. Di Natale, L. Torres, and V. Sieh. Fault injection tools
based on virtual machines. In Reconfigurable and Communication-Centric
Systems-on-Chip (ReCoSoC), 2014 9th International Symposium on, pages 1–6,
May 2014.

[35] T. Jarboui, J. Arlat, Y. Crouzet, and K. Kanoun. Experimental analysis of the
errors induced into linux by three fault injection techniques. In Dependable Sys-
tems and Networks, 2002. DSN 2002. Proceedings. International Conference
on, pages 331–336, 2002.

[36] Alessandro Rubini and Jonathan Corbet. Linux device drivers. O’Reilly Media,
Inc., 2001.

[37] Gianpiero Cabodi, Marco Murciano, and Massimo Violante. Boosting software
fault injection for dependability analysis of real-time embedded applications.
ACM Trans. Embed. Comput. Syst., 10(2):24:1–24:32, January 2011.

[38] Michael J. Wirthlin, Andrew M. Keller, Chase McCloskey, Parker Ridd, David
Lee, and Jeffrey Draper. Seu mitigation and validation of the leon3 soft
processor using triple modular redundancy for space processing. In Proceedings
of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’16, pages 205–214, New York, NY, USA, 2016. ACM.

[39] F. Lima Kastensmidt, L. Sterpone, L. Carro, and M. Sonza Reorda. On the
optimal design of triple modular redundancy logic for sram-based fpgas. In
Proceedings of the Conference on Design, Automation and Test in Europe -
Volume 2, DATE ’05, pages 1290–1295, Washington, DC, USA, 2005. IEEE
Computer Society.

[40] N. R. Saxena, C. W. D. Chang, K. Dawallu, J. Kohli, and P. Helland. Fault-
tolerant features in the hal memory management unit. IEEE Transactions on
Computers, 44(2):170–180, Feb 1995.

[41] C. Borchert, H. Schirmeier, and O. Spinczyk. Generic soft-error detection and
correction for concurrent data structures. IEEE Transactions on Dependable
and Secure Computing, 14(1):22–36, Jan 2017.

[42] P. Koopman and T. Chakravarty. Cyclic redundancy code (crc) polynomial
selection for embedded networks. In International Conference on Dependable
Systems and Networks, 2004, pages 145–154, June 2004.

[43] Y. Brun, G. Edwards, J. Y. Bang, and N. Medvidovic. Smart redundancy for
distributed computation. In 2011 31st International Conference on Distributed
Computing Systems, pages 665–676, June 2011.

[44] A.D. Velasco, B. Montrucchio, and M. Rebaudengo. Software-implemented
fault injection in operating system kernel mutex data structure. In Circuits and
Systems (LASCAS), 2014 IEEE 5th Latin American Symposium on, pages 1–6,
Feb 2014.

72 References

[45] A.D. Velasco, B. Montrucchio, and M. Rebaudengo. Fault injection in the
process descriptor of a unix-based operating system. In Defect and Fault Toler-
ance in VLSI and Nanotechnology Systems (DFT), 2014 IEEE International
Symposium on, pages 281–286, Oct 2014.

[46] A.D. Velasco, B. Montrucchio, and M. Rebaudengo. Kito tool: A fault injec-
tion environment in linux kernel data structures. Microelectronics Reliability,
60:153–162, 2016.

[47] Abraham Silberschatz, Peter B Galvin, and Greg Gagne. Operating system
concepts. Addison-Wesley, 1998.

[48] Eduardo Ciliendo and Takechika Kunimasa. Linux performance and tuning
guidelines. IBM, International Technical Support Organization, 2007.

[49] A. D. Velasco, B. Montrucchio, and M. Rebaudengo. Tmr technique for mutex
kernel data structures. In 2017 18th IEEE Latin American Test Symposium
(LATS), pages 1–6, March 2017.

[50] A. D. Velasco, B. Montrucchio, and M. Rebaudengo. Hardening approach for
the scheduler’s kernel data structures. In 13th Workshop on Dependability and
Fault Tolerance, April 2017.

Appendix A

The KITO Module

#include <linux/module.h>

#include <linux/moduleparam.h>

#include <linux/kernel.h>

#include <linux/init.h>

#include <linux/stat.h>

#include <asm/bitops.h>

#include <linux/hrtimer.h>

#include <linux/ktime.h>

#include <linux/kallsyms.h>

#include <linux/string.h>

#include <linux/binfmts.h>

#include <linux/personality.h>

#include <linux/sched.h>

MODULE_LICENSE("GPL");

MODULE_AUTHOR("B. Montrucchio, M. Rebaudengo, A. Velasco");

//static unsigned long Baddress;

//------ definition of loading parameters ------

static unsigned long address, timensecs = 0;

const char* sym = "null_empty";

74 The KITO Module

static int debug = 1, scenario = 0, testbit = 0;

static long timesecs = 0;

static int pid = 1;

ktime_t ktime;

long delay_in_secs;

unsigned long delay_in_ns;

//-----------------------------------

static unsigned long *FITaddress;

//pointer to the Fault Injection Target (FIT)

static unsigned long VOTaddress; //Value Of Target

//===== LOADING PARAMETERS =====

module_param(pid, int, 1);

MODULE_PARM_DESC(pid, "PID of the task to be modified");

module_param(scenario, int, 0);

MODULE_PARM_DESC(scenario, "Scenario to be executed, 0 for address \

(default), 1 for Kernel Symbols, 2 for a task Process control Block");

module_param(address, ulong, 0);

MODULE_PARM_DESC(address, "Address to be modified");

module_param(sym, charp, 0);

MODULE_PARM_DESC(sym, "Name of a symbol to be modified");

module_param(testbit, int, 0);

MODULE_PARM_DESC(testbit, "Bit to be modified");

module_param(timesecs, long, 1);

MODULE_PARM_DESC(timesecs, "Time in seconds");

module_param(timensecs, ulong, 0);

MODULE_PARM_DESC(timensecs, "Time in nanoseconds");

module_param(debug, int, 1);

MODULE_PARM_DESC(debug, " 0 to turn off dmesg");

//===== "ATOMIC" OPERATION =====

75

static struct hrtimer hr_timer;

enum hrtimer_restart fi_hrtimer_callback(struct hrtimer *timer)

{

change_bit(testbit,FITaddress); //change of the bit

if (debug == 1)

{

VOTaddress = *FITaddress;

printk(KERN_INFO "After the fault injection the value is %d\n", VOTaddress);

printk(KERN_INFO "=============================\n");

}

return HRTIMER_NORESTART;

}

//===== MODULE IN & OUT FUNCTIONS =====

//init of the kernel mod

static int __init chgbittest_init(void)

{

if (scenario == 0){ // If for modifying a particular Address in memory

if (address != 0)

{

FITaddress = address;

VOTaddress = *FITaddress;

if (debug == 1)

printk(KERN_INFO "The value of the loaded address is %lu\n", address);

printk(KERN_INFO "At first value is %d\n", VOTaddress);

printk(KERN_INFO "=============================\n");

}

else

{

printk(KERN_INFO "No loadable values given, cannot proceed\n");

76 The KITO Module

return 0;

}

printk(KERN_INFO "Scenario 0 Fault Injection in a particular address\n");

}

if (scenario == 1){ // IF for modifying a exported kernel symbol

if (sym != "null_empty")

{

FITaddress = kallsyms_lookup_name(sym);

VOTaddress = *FITaddress;

if (debug == 1)

printk(KERN_INFO "The value of the symbol's address is %lu\n", FITaddress);

printk(KERN_INFO "At first value is %d\n", VOTaddress);

printk(KERN_INFO "=============================\n");

}

else

{

printk(KERN_INFO "No loadable values given, cannot proceed\n");

return 0;

}

printk(KERN_INFO "Scenario 1 Fault Injection in a Kernel Symbol\n");

}

if (scenario == 2){ // If for modifing the task struct

struct task_struct *t = pid_task(find_vpid(pid),PIDTYPE_PID);

//Get task pointer struct

VOTaddress = (*t).state; //MODIFY TO DESIRED FIELD AND RECOMPILE

FITaddress = &((*t).state); //MODIFY TO DESIRED FIELD AND RECOMPILE

if (debug == 1){

printk(KERN_INFO "Field value is %d\n", VOTaddress);

printk(KERN_INFO "Field address is the value is %lu\n", FITaddress);

printk(KERN_INFO "=============================\n");

}

printk(KERN_INFO "Scenario 2 Fault Injection in a field of the

Task_struct of a particular process\n");

77

}

printk(KERN_INFO "=============================\n");

//===== TIMER =====

delay_in_secs = timesecs; // set the delay on seconds

delay_in_ns = timensecs; // set the delay on nseconds

ktime = ktime_set(delay_in_secs, delay_in_ns);

// set the timer with the values of delays

hrtimer_init(&hr_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);

//init timer

hr_timer.function = &fi_hrtimer_callback;

// function to exec after timer ends

if (debug == 1){

printk(KERN_INFO "timer set to %ld s %lu ns at the CPU time %lu\n",\

delay_in_secs,delay_in_ns, jiffies);

}

hrtimer_start(&hr_timer, ktime, HRTIMER_MODE_REL);

//timer start

return 0;

}

static void __exit chgbittest_exit(void)

{

printk(KERN_INFO "FIN\n");

return;

}

module_init(chgbittest_init);

module_exit(chgbittest_exit);

Appendix B

Doctoral Period’s Publications

2014

Software-implemented Fault Injection in Operating System Kernel Mutex Data
Structure
B. Montrucchio, M. Rebaudengo, A. Velasco
5th IEEE Latin American Symposium on Circuits and Systems, Santiago, Chile,
February 25-28, 2014

Fault Injection in the Process Descriptor of a Unix-based Operating System
B. Montrucchio, M. Rebaudengo, A. Velasco
IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nan-
otechnology Systems, Amsterdam, Netherlands , 1-3 October 2014

2015

On gait recognition with smartphone accelerometer
R. Ferrero, F. Gandino, B. Montrucchio, M. Rebaudengo, A Velasco, I. Benkhelifa
4th Mediterranean Conference on Embedded Computing (MECO-2015), Budva,
Montenegro, 14-18 June, 2015

79

On the design of distributed air quality monitoring systems
R. Ferrero, F. Gandino, B. Montrucchio, M. Rebaudengo, A Velasco
11th International Conference of Computational Methods in Sciences and Engineer-
ing (ICCMSE 2015), Atene, Greece, 20-23 March 2015

2016

KITO tool: A fault injection environment in Linux kernel data structures
B. Montrucchio, M. Rebaudengo, A. Velasco
Microelectronics Reliability, vol. 60, pp. 153-162, 2016

A mobile and low-cost system for environmental monitoring: a case study
R. Ferrero, F. Gandino, B. Montrucchio, M. Rebaudengo, A Velasco
Sensors, vol. 16 n. 5, pp. 1-17, 2016

2017

TMR Technique for Mutex Kernel Data Structures
B. Montrucchio, M. Rebaudengo, A. Velasco
18th IEEE Latin American Test Symposium, Bogota, Colombia, 13-15 March 2017

Hardening Approach for the Scheduler’s Kernel Data Structures
B. Montrucchio, M. Rebaudengo, A. Velasco
13th Workshop on Dependability and Fault Tolerance, Wien, Austria, 3-6 April 2017

