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Abstract 

The principal goal of this Doctorate thesis is to study high frequency vibrations (in 

the range between Gigahertz and Terahertz) in nanoscopic biological structures such 

as proteins. In particular, the idea of this thesis is to found, by means of experimental 

sessions and numerical simulations, natural frequencies of entire proteins or of large 

portions of that.  

The mechanical behaviour of proteins is receiving an increasing attention from the 

scientific community. Recently it has been suggested that mechanical vibrations 

play a crucial role in controlling structural configuration changes (folding) which 

govern proteins biological function. The mechanism behind protein folding is still 

not completely understood, and many efforts are being made to investigate this 

phenomenon. Complex Molecular Dynamics simulations and sophisticated 

experimental measurements are conducted to investigate protein dynamics and to 

perform protein structure predictions; however, these are two related, although quite 

distinct, approaches. Here we investigate the linearly free dynamics (frequencies 

and modes) of proteins by Modal Analysis. The input mechanical parameters are 

taken from the literature. We first give an estimate of the order of magnitude of the 

natural frequencies of protein crystals by considering both classical wave mechanics 
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and structural dynamics formulas. Afterwards, we perform modal analyses of some 

relevant chemical groups and of the full lysozyme and Na-K ATPase proteins. The 

numerical results are compared to experimental data, obtained from both in-house 

and literature Raman measurements.  

Our present investigations are devoted to understand if stimulating protein samples 

with a laser that excites resonant mechanical vibrations (say, in the THz range) may 

induce variations in the vibrational spectra due to possible conformational changes 

of protein structure.  
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Chapter 1 

Dynamic behaviour of proteins: 

An overview 
 

 

The mechanical behaviour of proteins is receiving an increasing attention 

from the scientific community. In this Chapter we shall provide some general 

concepts on the subjects of dynamic behaviour of proteins, including a brief 

historical review over some techniques used to study these phenomena. 

Afterwards, we will give the objectives and motivation of the study. 

 

1.1 Introduction and historical review 

Recently it has been suggested that mechanical vibrations play a crucial role 

in controlling structural configuration changes (folding) which govern 

proteins biological function. The mechanism behind protein folding is still not 

completely understood, and many efforts are being made to investigate this 

phenomenon. Complex Molecular Dynamics simulations and sophisticated 

experimental measurements are conducted to investigate protein dynamics 

and to perform protein structure predictions; however, these are two related, 

although quite distinct, approaches. Here we investigate the linearly free  
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dynamics (frequencies and modes) of crystallized powder, lyophilized 

powder and rehydrated powder of proteins by Modal Analysis. The input 

mechanical parameters are taken from the literature. We first give an estimate 

of the order of magnitude of the natural frequencies of proteins by considering 

both classical wave mechanics and structural dynamics formulations. 

Afterwards, we perform modal analyses of some relevant chemical groups 

and of the full lysozyme and Na-K ATPase proteins. The numerical results 

are compared to experimental data, obtained from both in-house and literature 

Raman measurements.   

Understanding the mechanical behaviour of proteins has important 

implications in different applied sciences, from biology and medicine, to 

biochemistry, pharmacology, and bioengineering. The proteins three-

dimensional structure controls crucial biological processes such as mitosis, 

mechanotransduction, immune response, cell metabolism, neural signal 

transmission, oxygen transportation, etc. (Alberts et al. 2002, Anfinsen 1972, 

Tymoczko et al. 2002, Saunders et al. 2010). In all these processes, protein 

dynamics plays a crucial role (Alberts et al. 2010). Moreover, several 

neurodegenerative diseases, as well as many allergies, are believed to be 

caused by incorrect folding of some proteins (Selkoe 2003, Hammarström et 

al. 2003, Chiti et al. 2006, Johnson et al. 2005). For these reasons, the 

mechanisms behind protein folding are objective of investigation since long 

time (Levinthal 1968, Anfinsen 1973, Kim et al. 1990, Shortle 1996, Jackson 

1998, Van den Berg et al. 1999,2000, Deechongkit 2004, Kubelka et al. 2004, 

Ellis 2006, Rose et al. 2006, Ojeda-May et al. 2010).  

Nowadays, both experimental and computational techniques are used to 

investigate protein dynamics. As for the former, several standard non-

crystallographic techniques are adopted, including Protein nuclear magnetic 
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resonance spectroscopy (PNMRS), Dual polarisation interferometry (DPI), 

high time resolution measurements (including neutron scattering), Vibrational 

circular dichroism (VCD), Proteolysis, and Optical tweezers (Huyghues-

Despointes et al. 2001, Cross et al. 2008, Bu et al. 2001, Baumruk et al. 1993, 

Minde et al. 2012, Park et al. 2005, Mashaghi et al. 2014, Jagannathan et al. 

2013, Jakobi et al. 2011, Jagannathan et al. 2012). A related, although quite 

different, approach for studying protein vibration and structure is the use of 

Molecular Dynamics simulations. In this case, de novo or ab initio techniques 

are adopted to investigate protein folding (Compiani et al. 2013, Bryngelson 

et al. 1995, Leopold et al. 1992, Robson et al.2008, Rizzuti et al. 2013, 

Schaefer et al. 1998, Kmiecik et al. 2007, Adhikari et al. 2012, Lindorff-

Larsen et al. 2011). Linear normal mode analysis (i.e., Modal Analysis) is 

also used in modeling the dynamics of biomolecular complexes: main pros 

and cons of this technique are discussed in (Ma et al. 2005).    

Single-molecule manipulation has allowed the forced unfolding of 

multidomain proteins (Sotomayor et al. 2007, Oberhauser et al. 2001, Schlierf 

et al. 2004, Liphardt et al. 2001). Staple et al. developed a statistical 

mechanics theory for the stretching and unfolding of multidomain 

biopolymers (Staple et al. 2009). In that paper the theory, valid essentially for 

any molecule that can be unfolded in the atomic force microscope (ATM) 

(Binning et al. 1986), was applied to reproduce the force-extension curves of 

both titin and RNA hairpins as an example. 

It has been suggested that mechanical vibrations that involve the whole 

protein play a crucial role in controlling structural configuration changes 

(folding). In particular, underdamped low-frequency collective vibrational 

modes in proteins have been proposed as being responsible for efficiently  



4 A.Bassani - TeraHertz Vibrations in Proteins: Experimental and…  

 

directing biochemical reactions and biological energy transport (Turton et al. 

2014). Therefore, the existence of delocalized vibrational modes and their 

involvement in biological function has become objective of investigation. 

Vibrational modes of proteins, both crystallized and in solution, have been 

found in the fields of GHz and THz. For example, in lysozyme a 3–4 cm−1 

(~100 GHz) highly delocalized hinge-bending mode that opens and closes the 

binding cleft was found by normal mode calculations (Levitt et al. 1985, 

Brooks et al. 1985). At the same time, some authors report that collective 

modes may occur also in the TeraHertz range. For example, in (Turton et al. 

2014) one reads that “there have been suggestions that TeraHertz-frequency 

underdamped collective modes of the protein may direct the system along the 

correct path on a highly complex potential-energy surface (Deak et al. 1998), 

and may be responsible for the low-loss transport of energy through the 

protein (Davydov 1973), which may facilitate biological function through 

phonon-like modes (Liu et al. 2008)”. 

Several attempts to measure the vibrational spectra of proteins in the 

TeraHertz range have been done with the aim of finding peaks that could then 

be assigned to biochemically relevant motions in the protein (Turton et al. 

2014). Before 1990 there was a gap in the electromagnetic spectrum, 0.1–1.5 

THz (3–50 cm−1), referred to as the “TeraHertz Gap”, that was difficult to 

utilise due to the lack of a suitable light source. The invention of TeraHertz 

time-domain spectroscopy (THz-TDS) enabled measurements using photons 

between 0.1–1.5 THz (3–50 cm−1) that were previously impractical. 

Nowadays spectroscopic analysis using frequencies between 0.1-15 THz (3–

500 cm−1) is being utilized by the biochemistry community and is giving 

scientifically interesting information (Falconer et al. 2012). Recently, far-

infrared and THz-TDS experiments on lysozyme crystals have successfully 
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identified underdamped delocalized vibrational modes in the TeraHertz range 

(Acbas et al. 2014, Niessen et al. 2015). However, the biochemical relevance 

of such modes can not be proved since the crystal packing and hydration level 

modify the protein dynamics (Turton et al. 2014). In fact, the same technique 

has proven to be largely unsuccessful when used for studying proteins in 

solution due to the very large absorption by liquid water (Turton et al. 2014, 

He et al. 2008). In contrast, inelastic neutron scattering (Lerbret et al. 2013, 

Roh et al. 2006) and spontaneous Raman scattering (Genzel et al. 1976, Urabe 

et al. 1998, Perticaroli et al. 2010, Hedoux et al. 2006) have been efficiently 

used to study proteins in solution since they do not suffer from water 

absorption. However, these techniques become unreliable at low frequencies 

(<1 THz) due to the very strong Rayleigh peak from elastic scattering, and 

again it has not been possible to assign biochemical relevance to any peaks 

observed (Turton et al. 2014). To encompass this problems, Turton et al. 

adopted Femtosecond optical Kerr-effect (OKE) spectroscopy for measuring 

the depolarized Raman spectrum in the time domain; this technique in practice 

is superior at low frequencies, as it does not suffer from a large Rayleigh peak 

(Hunt et al. 2007). Although broad-range spectroscopic measurements have 

been attempted, the challenge is to observe specific modes. As a matter of 

fact, calculations show that functional conformational change in many 

biomolecular systems can be simulated using only the first few collective 

vibrational modes of the system (Karplus et al. 2005, Bahar et al. 2005). 

These correlated motions are the low frequency vibrational modes that extend 

throughout the macromolecule. The problem lies in the selection of the most 

relevant modes. However, as stated in (Turton et al. 2014), the role of 

TeraHertz-frequency vibrational modes in mediating biological functions in  
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general is not known at present. Therefore the question is still open, and new 

experimental and numerical investigations are needed. 

A recently proposed conceptual interpretation of protein folding suggests that 

it could be regarded as a dynamic nano-buckling (with snap-through) 

(Carpinteri 2014a, 2015). According to this hypothesis, the instability 

causing the abrupt configuration change can be induced by electro-chemical 

forces, acting on an oscillating structure. As it is known in structural 

mechanics, the force required to produce instability in an oscillating 

mechanical system is lower than the critical force for the same system at rest; 

on the other hand, if an external harmonic excitation has a frequency that 

matches one of the natural frequencies of the system, then resonance occurs, 

and the vibration amplitude increases (diverges if the system is undamped): 

in this case the force required to produce instability tends to zero (see Chapter 

3) (Bažant et al. 1991, Xie 2006, Virgin 2007, Carpinteri 2013, 2014b).   

Aim of the present thesis is to establish a comparison between experimental 

measurements of long-range vibrations of two proteins and their numerical 

simulation by a numerical Lattice Model. We focused on the Chicken Egg 

White Lysozyme (CEWL), a well-known enzyme that, and on Na-K ATPase, 

also known as “sodium-potassium pump”. We performed broad-range Raman 

spectroscopy measurements on crystallized powder samples of Lysozyme and 

on dry and wet lyophilized powder ATPase, and compared the results to 

literature data. Therefore, we modelled the said proteins as a three-

dimensional lattice using the Finite Element code Lusas; a classic Modal 

Analysis was run. A correlation between the resonant peaks found in the 

experiments and the corresponding vibrations modes given by the numerical 

simulation was looked for and some relevant cases are discussed in the paper. 

Furthermore, modal analyses were also performed, using the same Finite 
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Element code, on the structure of three well-known amino acids, i.e. 

phenylalanine, tyrosine, and tryptophan. The agreement between numerical 

and experimental results is discussed in the Chapter 5 also for these cases.  

What reported in the present thesis represents the first stage of a long-term 

project, the main objective of which is to investigate the effects of mechanical 

resonance and instability phenomena in proteins under physiological 

conditions. Future steps will therefore regard the study of the  dynamic 

response of proteins stimulated with frequencies near the natural resonance.  

 

1.2 Theoretical natural frequencies: Wave 

propagation vs Structural dynamics 

 
First step of our work, before experimentation and simulation, was to try to 

obtain natural frequencies of nanoscopic structures like proteins  theoretically. 

To achieve this result we moved through two different paths: the theory of 

wave propagation and the laws governing structural dynamics.  

Longitudinal expansion/contraction (tension/compression) waves may be 

originated in solids, in addition to transverse (shear) waves, as a result of 

different causes. These are generally called pressure waves, or phonons when 

their particle nature is emphasized, and travel at a speed which is 

characteristic of the medium. For most of the solids (and fluids) they present 

an order of magnitude of 103 m s−1. Their wavelength λ can not exceed the 

maximum size of the body (or portion of the body) involved. Therefore, 

knowing the travelling speed v and the dimensional scale, the order of 

magnitude of frequency f of  
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the pressure wave can be evaluated by means of the well-known relationship 

(Feynman et al. 1964) .
v

f


   

This equation is only a simplification to obtain the order of magnitude of 

frequencies. 

In a more correct way we can say that nanostructures, as proteins can subtend 

“confined acoustical phonons”. Confined acoustical phonons are low-

frequency standingwaves corresponding approximately to the acoustical 

phonons of the material at a wavelength λ = 2Nd where d is the smallest 

dimension of the nanostructure and N is an integer. The lowest frequency 

acoustical mode of a globular protein of radius R has a wavelength λ ≈ 2R, 

 (  denotes the order of magnitude) which is much larger than the distances 

between the atoms because R varies typically between 1 and 10 nm. 

Therefore, the properties of a confined acoustical mode do not depend on the 

details of the interactions between the atoms and can be described by 

regarding the protein as an effective elastic medium. 

In elastic continuum theory, the lowest frequency of the confined longitudinal 

acoustical phonon of a sphere of radius R is given by 

 

                                               f = v / 2R                                                        (1) 

 

If the protein is represented by an elastic sphere of radius R = 10 nm and v = 

103 m s−1 we deduce f  ≈ 500 GHz.  

Eq. (1) allows to obtain the order of magnitude of the eigenfrequencies of 

expansion/contraction vibration modes in solids at different dimensional 

scales. Thus, by assuming a constant pressure wave speed 310v  m/s, we 
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obtain for proteins vibration (Fig. 1.1): (i) 𝑓 ≈ 1013 Hz for localized 

eigenvibrations of chemical groups or amino acids ( 1010R   m); (ii) 𝑓 ≈

1012 Hz for eigenvibrations of small proteins or extended portions of large 

proteins ( 910R   m); (iii) 𝑓 ≈ 1011 Hz for global eigenvibrations of large 

proteins ( 810R   m). 

 

Chemical groups / Amino Acids 

𝑹 ≈ 𝟏𝟎−𝟏𝟎 𝒎 

𝒇 ≈ 𝟏𝟎𝟏𝟑 𝑯𝒛 

 

 

 

   Small proteins/Large protein portions 

   𝑹 ≈ 𝟏𝟎−𝟗 𝒎 

              𝒇 ≈ 𝟏𝟎𝟏𝟐 𝑯𝒛  

 

                                             

                                       Large proteins 

    𝑹 ≈ 𝟏𝟎−𝟖 𝒎 

    𝒇 ≈ 𝟏𝟎𝟏𝟏 𝑯𝒛 

 

Fig. 1.1 Proteins eigenvibration at different dimensional scales: correlation between the 

characteristic dimension, R, and frequency, f, by assuming a constant pressure wave speed 

310v   m/s.  
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On the other hand, the same results can be achieved by the theory of 

mechanical vibrations of elastic systems. Considering only 

expansion/contraction deformations, the order of magnitude of the vibration 

frequency can be evaluated as: 

                                                           
1

,
2

k
f

m
   (2) 

being k  and m the apparent axial (tensile/compressive) stiffness and the mass 

of the system, respectively. Thus, applying Eq. (2) to proteins yields again       

( 210k  Nm-1): (i) 𝑓 ≈ 1013 Hz for chemical groups or amino acids                            

( 2610m   kg); (ii) 𝑓 ≈ 1012 Hz for small proteins or extended portions of  

large proteins ( 2410m   kg); (iii) 𝑓 ≈ 1011 Hz for large proteins ( 2210m 

kg). For example, considering entire proteins, we have 𝑓 ≅ 7.8 × 1011 Hz  

for lysozyme (𝑚 ≅ 2.37 × 10−23 kg; average diameter about 4−5 nm) or 

       𝑓 ≅ 2.1 × 1011 Hz for Na+/K+-ATPase (𝑚 ≅ 1.78 × 10−22 kg; average 

diameter about 4 nm, length about 16 nm). On the other hand, if we consider 

very small portions, like amino acids or chemical groups, we obtain 

frequencies of tens of TeraHertz (see Chapters 4-5). In order to make some 

more precise calculation, let us consider the simple case of a diatomic 

covalent bond.  
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Fig. 1.2 Single C-C bond idealized as a mass-spring linear system  

 

 

Considering the single C-C bond, the system appears as in Fig. 2.1, with 𝑚1 =

𝑚2 = 𝑚 ≅ 1.99 × 10−26 kg and 𝑘 = 𝑘𝐶−𝐶 ≅ 180 N m−1 (Ashby et al. 2014). 

Excluding rigid motions, vibration frequency (see also (Clough et al. 1975)) 

can be evaluated as follows: 

 

                        𝑓𝐶−𝐶 =
1

2𝜋
√

2𝑘𝐶−𝐶

𝑚𝐶
≅ 2.14 × 1013 Hz      (713 cm-1) (3) 

 

The previous value is in perfect agreement with the literature (see (Movasaghi 

et al.2007)). At the same time, Eq. (3) can also be used to evaluate the bond 

stiffness when the mass and the vibration frequency of the diatomic molecule 

are known. For example, for the disulfide bridge (S-S bond) we have 𝑚𝑆 ≅

5.31 × 10−26 kg and 𝑓𝑆−𝑠 ≅ 1.57 × 1013 Hz (524 cm−1) (see (Movasaghi et 

al.2007)), and thus the spring stiffness should be: 

                                 𝑘𝑆−𝑆 = 2𝜋2𝑚𝑆𝑓𝑆−𝑆
2 ≅ 260 𝑁𝑚−1 (4) 
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In conclusion, we remark that pressure waves may induce mechanical 

resonance in protein crystals (and in proteins in general) if their frequencies 

match the natural vibration frequencies of the atomic lattice.    

Once we have understood that theoretical values of natural frequencies should 

range from 1011 Hz to 1013 Hz moving from big proteins to amino acids or 

chemical groups we started to plan experimental campaigns to measure these 

frequencies on different proteins. 

 



 



 

 

 

 

  

Chapter 2 

Biology of proteins 
 

Proteins constitute most of a cell’s dry mass; they not only represent the building 

blocks, but execute nearly all the cell’s functions. 

From many points of view proteins are the most complexes and sophisticated 

molecules known; versatility of proteins is truly amazing. 

In this chapter we shall introduce proteins structure from a biological point of view, 

moving from peptide bond and amino acids to 3D structures. 

In the second part of the chapter we analyze the two proteins studied in this thesis: 

Lysozyme and Na-K ATPase (sodium-potassium pump). 

 

2.1 Introduction: peptide bond, primary, secondary, 

tertiary and quaternary structure 

 

Proteins are large biomolecules consisting at least of one chain of amino acids (20 

amino acids are present in nature), each one linked to another by a covalent peptide 

bond (Figure 2.1); for this reason proteins are also called polypeptides.  
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Figure 2.1: Peptide bond is synthesized when the carboxyl group of one amino acid 

molecule reacts with the amino group of the other amino acid molecule, causing the release 

of a molecule of water (H2O) 

 

Among the 20 amino acids present in nature 18 are composed by carbon, hydrogen, 

oxygen and nitrogen, while in methionine and cysteine also sulphur is present (Table 

2.1). 

https://en.wikipedia.org/wiki/Carboxyl_group
https://en.wikipedia.org/wiki/Amino_group
https://en.wikipedia.org/wiki/Water
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Table 2.1: 20 amino acids divided in 7 sub-families. For every amino acid are given chemical structure, 

name, and molecular weight and acid dissociation constant if present.  

 

There are many thousands of protein types, but each one has its unique amino acids 

sequence. It’s possible to identify a polypeptide backbone, made by the repeating 



16 A.Bassani - TeraHertz Vibrations in Proteins: Experimental and … 

 

 

 

sequence of atoms along the core of the chain, and different side chains constituted 

by portions of amino acids not involved in peptide bonds but important to give 

specifics characteristics to the chain (positive/negative charge, polar/non polar and 

so on) (Figure 2.2). 

 

 

Figure 2.2: Protein consist of a polypeptide backbone with attached side chains of various 

types. 

 

Atoms of the chains behave almost like hard spheres with a radius (van der Waals 

radius); for this reason possible bond angles are greatly limited and three 

dimensional arrangements of atoms are severely restricted. 

With “folding” we describe conformational changes that lead a protein by its linear 

chain conformation to a three dimensional state without which it could not perform 

any of its functions 

The folding of a protein chain, however, is restricted not also by steric reasons but 

also by many different non-covalent bonds, like Hydrogen bonds, electrostatic 

attractions and van der Waals attractions.  

Non-covalent bonds are weaker than covalent (from 30 to 300 times) but acting 

together they contribute to the stability of each folded shape. (Figure 2.3) 
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Figure 2.3: Three types of non covalent bonds presents in proteins 

 

The final folded structure, also called conformation, is generally the ones that 

minimizes its free energy.  

All the information needed by the protein to fold in its specific three dimensional 

shape are contained in the amino acid sequence. Each protein has its specific 

conformation but this shape can change a little when the protein interacts with other 

molecules such as other proteins, chemical elements, bacteria etc. This change in 

shape is absolutely fundamental to the function of the protein. 

When we observe three dimensional structures of many different proteins it’s clear 

that, despite the unique conformation of each type, two regular folding patterns are 

present. The first one, called  helix, is abundant in skin, hair, nails and horns, the 

second one, called sheet, is abundant in the core of many proteins (Figure 2.4). 
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 Figure 2.4: Two types of spatial organization in secondary structure of the backbone chain 

 

Biologists often distinguish four steps of organization for proteins structures. 

Amino acid sequence is called primary structure, chains forming  helices and 

sheets are called secondary structures, three dimensional shape is known as 

tertiary structure. If a particular protein is formed by more polypeptide chains, the 

entire structure is known as quaternary structure. (Figure 2.5) 
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Figure 2.5: Quaternary structure depicted highlighting both atoms both secondary structures 

 

Figure 2.6 summarizes all the four stages of the proteins structures. 

Since every amino acid is chemically different and each one can occur in any 

position of a protein chain there are 20n distinct possible polypeptide chains n amino 

acids long. Considering a typical protein length of about 300 amino acids, a cell 

could make more than 20300 different polypeptide chains. This number is enormous 

but only a small portion of that can be achieved since not all three dimensional 

conformation are possible, in fact proteins are so highly precisely built that the 

change of a few atoms, may be also one, in one amino acid can destroy the structure 

of the entire molecule. 

Proteins play a large number of functions within the body including the catalysis of 

numerous metabolic reactions, DNA replication, response to stimuli and the 

transport of molecules.  
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Figure 2.6: Sequence of the steps of the three dimensional shape of a protein moving from 

primary to quaternary structure 
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2.2 Folding: a complex and not totally understood 

process 

 

How a protein folds to its functional state is a biological process that has occupied 

the mind of scientists for many years. 

The “protein folding problem” consists of three strictly related pieces of a bigger 

puzzle: (1) What is the folding code? (2) What is the folding mechanism? (3) Can 

we predict the three dimensional structure of a protein knowing only its primary 

structure? Once described as an enormous challenge, protein folding has seen great 

progress in the last years. Nowadays, foldable proteins and nonbiological materials 

like polymers are designed quite easily and move toward successful applications. 

3D structures of small proteins are now well predicted by computer algorithms. And 

now there is a reasonable answer for the question “how a protein can fold so 

quickly?”: a protein solves its global optimization problem by solving a series of 

smaller local optimization problems, growing and assembling the final structure 

from peptide fragments (Dill, 2008). 

Moreover the protein folding process can be divided in two major problems. The 

first, introduced through the work of Anfinsen, refers to the folding/refolding of 

ribonuclease A (Anfinsen et al. 1961, 1963). In its studies Anfinsen showed that a 

polypeptide chain can spontaneously fold to its lowest free-energy without the help 

of any other biological system. This observation reminds to the idea expressed 

before that all the information necessary for protein folding is encoded in its own 

amino acid sequence (primary structure). 
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Two major conclusions followed from Anfinsen’s work. First of all, it gave the start 

to the large research group of in vitro protein folding that has come to understand 

native structures by experiments inside test tubes rather than inside cells. Second, 

the Anfinsen idea implies a sort of division of works between biology and 

physic/chemistry: evolution can modify an amino acid sequence, but the folding 

equilibrium and kinetics of that sequence are then matters of physic and chemistry. 

Before the 1980s, the protein folding was seen as a sum of many different smaller 

interactions, such as van der Waals forces, hydrogen bonds, ion pairs, and water-

mediated hydrophobic interactions. A key idea was a sort of cascade: the primary 

sequence encoded secondary structures, which then encoded tertiary structures 

(Anfinsen et al. 1975) and so on. However, thanks to statistical mechanical modeling 

and computer algorithms, a different point of view composed by three sub-ideas 

emerged in the end of 1980s: (a) there is a dominant component to the folding code, 

that it is the hydrophobic interaction, (b) the folding code is equally distributed both 

locally and nonlocally in the sequence, and (c) a protein’s secondary structure is 

seen as much a consequence of the tertiary structure as a cause of it (Dill 1990, 

1999). 

Knowing that native proteins are only 5–10 kcal/mol more stable than their 

denatured states, it is obvious that no type of intermolecular force can be neglected 

in folding and structure prediction (Yang et al. 2007). Although it remains very hard 

to separate in a clean and rigorous way some types of interactions from others. Here 

are some examples. Folding process is not likely to be dominated by electrostatic 

interactions among charged side chains cause many proteins have relatively few 

charged residues; they are concentrated in high-dielectric regions on the protein 

surface. Protein stabilities and so folded structure, tend to be independent of pH 

(near neutral) and salt concentration, and charge mutations typically lead to small 
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effects on structure and stability. Hydrogen-bonding interactions are important, 

because essentially all possible hydrogen-bonding interactions are generally 

satisfied in native structures. Hydrogen bonds among backbone amide and carbonyl 

groups are important components of all secondary structures, and many studies of 

mutations in different solvents estimate their strengths to be around 1–4 kcal/mol 

(Byrne et al. 1975, Fersht et al. 1985) or even stronger (Auton et al. 2007, 

Deechongkit et al. 2004). Similarly, tight packing in proteins implies that also Van 

der Waals interactions are important (Chen et al. 2001). 

However, the central question of the folding problem is: “there is a dominant factor 

that explains why any two proteins, for example, lysozyme and ribonuclease, have 

different native structures?”.  

The answer of this question must be conserved in the side chains, not in the 

backbone, because one protein differs from another through the side chains. For 

example, there is evidence that hydrophobic interactions play an important role in 

protein folding (Wolfenden 2007, Cordes et al. 1997, Hecht et al. 2004, Kamtekar 

et al.1993, Kim et al. 1998, Wurth et al. 2006).  

Another great question about folding path is: what stabilizes secondary structures? 

Before any protein structure was known, Linus Pauling (Pauling et al. 1951) 

understood that proteins might have α-helices. Studies of lattice models (Chan et al. 

1990, Chikenji et al. 2006, Dill et al. 1995) and tube models (Banavar et al. 2007, 

2002, Micheletti et al. 1999) have highlighted that secondary structures in proteins 

are, first of all, stabilized by the chain compactness, an indirect consequence of the 

hydrophobic force to collapse. Helical and sheet are the only regular ways to pack 

a linear chain into a tight space. 

Anyway our comprehension of the forces of folding remains quite incomplete. 
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The second major problem refers to the kinetics and dynamics of folding.  Levinthal 

in 1968 studied for first this topic (Levinthal 1966, 1969). He has proved that folding 

process can’t consist in a search of all the possible conformational configurations, 

because it would take an enormous amount of time, around 1052 sec for a protein 

with ~100 amino acid residues, like Lysozyme, (whereas is known that a protein 

folds in few milliseconds); this is called “Levinthal Paradox”. 

C. Levinthal first observed, in 1968, that proteins can search and fall very quickly 

to native states, often in microseconds. How do they do so quickly? It was suggested 

that if we understood the mechanism of protein folding, it could lead to computer 

algorithms to predict native structures from their amino acid sequences. 

Other random questions like the following have driven the research: how can all the 

denatured molecules in a beaker find the same native structure, starting from 

different conformations? What states are not searched? Is folding a hierarchical 

process (Baldwin et al. 1999, Kim et al. 1982)? Are present folding nuclei (Dyson 

et al. 2006, Matheson et al. 1978)? 

Several models have emerged: diffusion-collision model (Karplus et al. 

1979, 1994), the nucleation-condensation mechanism (Fersht 1997), hierarchical 

diffusion-collision model (McCammon et al. 1977, Myers et al. 2001), hierarchic 

condensation (Lesk et al. 1981), foldons (Callender et al. 1998, Krishna et al. 2006), 

native-like topologies (Debe et al. 1999, Makarov et al. 2002). 

These models are not mutually exclusive. 

In spite of the numerous folding studies, both theoretical and experimental, this is 

still an open field and many questions remain. 

New methods like threading (Elofsson et al. 1996) and homology modelling (Moult 

et al. 1995, Sali 1995) will probably allow for the prediction of the native state,  
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solving at the same time the first problem without giving a complete description of 

how a polypeptide acquires its 3D structure in a so short  time. 

When these methods are successful, it will allow to go beyond bioinformatics to (1) 

predict conformational changes, important for drug discovery; (2) understand 

protein mechanisms of action, folding processes, enzymatic catalysis, and other 

processes that require much more than the static native structure; (3) understand 

how proteins react to solvents, different pH, salts, denaturants, and so on. 

 

2.3 Lysozyme: Structure and functions 

 

In the present thesis two proteins were analyzed, lysozyme and Na-K ATP-ase, the 

so called sodium-potassium pump. 

Lysozyme is a rather small protein, also known as N-acetylmuramide 

glycanhydrolase, consisting of 129 amino acids and having a molecular weight 

equal to 14.3 kDa. Its function is to hydrolyze some types of polysaccharides, 

including those that constitute the cell membrane of bacteria (Fleming 1922). 

Lysozyme is very abundant in nature and is found in a large number of biological 

secretions such as saliva, tears, human milk, etc. In humans this protein is encoded 

by the gene LYZ. It is also present within cytoplasmic granules of macrophages. An 

abundant source of lysozyme is also the egg white (Yoshimura et al. 1988). The 

antibacterial properties of the egg white –later attributed to the lysozyme contained 

within it– were discovered at first by Laschtschenko in the early 20-th Century 

(1907); however, the lysozyme was described for the first time in 1922 by Alexander 

Fleming, who coined the name which nowadays commonly identifies this protein. 

Its enzymatic function is held by catalyzing the hydrolysis of 1,4-beta-liNa-K 

ATPaseges between N-acetylmuramic acid and N-acetyl-D-glucosamine residues 
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in a peptidoglycan, and between N-acetyl-D-glucosamine residues in chitodextrins 

(Peters et al. 1989).  

The three-dimensional structure of hen egg white lysozyme was described for the 

first time in 1965 by David Chilton Phillips, who obtained a 2-ångström (200 pm) 

resolution model via X-ray crystallography (Blake et al.1965). The shape of this 

enzyme is globular (compact), with an average diameter of 4-5 nm. It has been the 

first enzyme containing all the 20 amino acids the 3D structure of which was 

obtained. In 2007 Steve Kent obtained the first chemical synthesis of lysozyme at 

the university of Chicago. (Figure 2.7) 

 

Figure 2.7: Three dimensional structure of lysozyme 
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2.4 Na-K ATPase (sodium-potassium pump): 

Structure and functions 

 

Na+,K+-adenosine triphosphatase (NA-K ATPASE) is the most prominent member 

of the P-type adenosine triphosphatase (ATPase) family that includes sarcoplasmic 

reticulum Ca2+-ATPase and gastric H+,K+-ATPase, among others. This protein is 

also known as sodium potassium pump, is found in the plasma membrane of virtual 

all animal cells. NA-K ATPASE pumps three Na+ ions out and two K+ ions into the 

cell per molecule of ATP hydrolysed and thereby creates concentration gradients 

across the plasma membrane. It is primarily a Na+ ion pump, as K+ can be substituted 

equally well with other monovalent metal ions  and even organic cations (Ratheal 

et al., 2010), whereas only Li+ and H+ can substitute partially for Na+ (Blostein, 

1985). The gradients of Na+ and K+ ions created and maintained by NA-K ATPASE 

are used for many purposes, including the generation of action potentials along 

nerves, and as an energy source for secondary active transport. 

NA-K ATPASE is expressed in all animal cells and is finely regulated. In addition 

to the catalytic unit (the α-subunit) of approximately 1,000 residues NA-K ATPASE 

contains a heavily glycosylated β-subunit of about 300 residues and a tissue-specific 

auxiliary regulatory subunit of approximately 70-180 residues. The latter are known 

as FXYD proteins and modulate Na-k ATPase function according to the specific 

needs of a given tissue. Furthermore, Na-k ATPase is now recognised as a key 

player in cell adhesion. Finally, wrong expression and activity of Na-k ATPase may 

be implicated in the development and progression of various types of cancer 

http://www.sciencedirect.com/science/article/pii/S0969212611003984#bib41
http://www.sciencedirect.com/science/article/pii/S0969212611003984#bib41
http://www.sciencedirect.com/science/article/pii/S0969212611003984#bib6
http://www.sciencedirect.com/science/article/pii/S0969212611003984#bib6
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(Mijatovic et al. 2007). Thus, Na-k ATPase is now recognized as an important 

therapeutic target (Prassas et al. 2008). 

As seen from the brief discussion of Na-k ATPase physiological function, it is a 

complex system that is pivotal in the regulation of humans cell homeostasis.  

The reaction cycle of P-type ATPases is explained by the Post-Albers scheme 

(Albers 1967) or E1/E2 theory. Here, pumping action is achieved by alternating the 

affinity and the accessibility of the transmembrane (TM) cation binding sites 

(Glynn, 1993). In the E1 species (e.g., E1·3Na+), the TM cation binding sites have 

high affinity for Na+ and face the cytoplasm, whereas in E2, the binding sites have 

low affinity for Na+ but high affinity for K+ and face the extracellular side. The 

system is expected to have two gates, one on the cytoplasmic side and the other on 

the extracellular side (Gadsby, 2009). The two gates must operate in coordination, 

and the cycle must contain a step in which both gates are closed so that the TM 

binding sites become inaccessible from either side of the membrane. The peculiarity 

of P-type ATPases is autophosphorylation and –dephosphorylation of the catalytic 

aspartate during the reaction cycle. Only after three Na+ ions are bound is the 

cytoplasmic gate closed and locked by phosphoryl transfer to the aspartate (i.e., 

transition into the E1P state). In the E1P state, bound Na+ ions are occluded. During 

the transition to E2P, the extracellular gate opens, and three Na+ ions are released 

sequentially. Then, the ions to be countertransported (normally 2 K+) occupy the 

binding sites. The extracellular gate is closed by the hydrolysis of the 

aspartylphosphate and locked in E2·2K+. This is a stable state, and the transition 

into E1 is very slow without ATP. (Figure 2.8) 

http://www.sciencedirect.com/science/article/pii/S0969212611003984#bib33
http://www.sciencedirect.com/science/article/pii/S0969212611003984#bib40
http://www.sciencedirect.com/science/article/pii/S0969212611003984#bib2
http://www.sciencedirect.com/science/article/pii/S0969212611003984#bib23
http://www.sciencedirect.com/science/article/pii/S0969212611003984#bib18
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Figure 2.8: Na-K ATPase pump cycle 

 

The three-dimensional structure of Na-K ATPase was decribed by Shinoda, Ogawa, 

Cornelius, who obtained a 2,4-ångström (240 pm) resolution model via X-ray 

crystallography (Shinoda et al. 2009). The shape of this enzyme is elongated, with 

two sort of horns that extend inside the cell and a globular part outside the cell. The 

entire protein has a main size of 15-16 nm, and counts 10131 atoms without 

Hydrogen. (Figure 2.9) 

http://www.rcsb.org/pdb/search/smartSubquery.do?smartSearchSubtype=AdvancedAuthorQuery&exactMatch=false&searchType=All%20Authors&audit_author.name=Shinoda,%20T.
http://www.rcsb.org/pdb/search/smartSubquery.do?smartSearchSubtype=AdvancedAuthorQuery&exactMatch=false&searchType=All%20Authors&audit_author.name=Shinoda,%20T.
http://www.rcsb.org/pdb/search/smartSubquery.do?smartSearchSubtype=AdvancedAuthorQuery&exactMatch=false&searchType=All%20Authors&audit_author.name=Cornelius,%20F.
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Figure 2.9: Na-K ATPase structure. In this picture are highlighted the three sectors into 

which is divided the protein: the first part lays inside the cell, the second one lays between 

the cell membrane, the last one is outside the cell.  

 

 

 

 



 

 

 



Chapter 3                                                      

Dynamics of nano-mechanical systems 

In this Chapter we shall provide some general concepts on Dynamics, discussing in 

the first part Dynamics of discrete system of one and more degrees of freedom, 

while in the second part we introduce the modal analysis with second order effects, 

in particular the influence of the load on the natural frequencies of discrete 

mechanical systems. 

In the latter part of the Chapter, we apply these concepts to elementary models of 

proteins to obtain a general idea of their natural frequencies. 

All concepts presented in this Chapter are borrowed and rearranged from Carpinteri, 

“Dinamica delle Strutture”, Pitagora Editrice Bologna. 

 

 

5.1 Dynamics of discrete systems 

 

The main goal of the dynamics of structures is to present methods for analyzing 
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stresses and deflections in any given structural system, when it is subjected to 

arbitrary dynamic loadings. This objective can be considered as an extension of 

standard methods of structural analysis, which are generally concerned with static 

loadings. These become thus functions of time, as well as the structural response. 

The dynamic loadings acting on a structure can be periodic or nonperiodic. The 

simplest periodic loading has the sinusoidal variation, which is also termed as 

harmonic. On the other hand, nonperiodic loadings may be either short-duration or 

impulsive loadings, as those generated by explosions, or long-duration loadings, as 

might result from an earthquake. 

If a structure is subjected to a static load, the internal moments and shearing forces, 

as well as the deflection shape, depend only upon this load, by established principles 

of internal force equilibrium. 

On the contrary, if the load is applied dynamically, the structural response depends 

also on the inertial forces, which oppose the accelerations producing them. If the 

motion is so slow to neglect both damping and inertial forces, the analysis can be 

considered to be static instant-by-instant, although loading and structural response 

are both time-dependent.    

 

Fig 3.1: discrete system, one degree of freedom, composed by mass, sprig and damper 

 

The equation of motion of a single mass, subjected to an elastic force and a damping 
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force (Figure 3.1), can be expressed as: 

                                             ( ) ( ) ( ) 0mx t cx t kx t                                     (3.1) 

where x is the linear elastic spring elongation, which depends on time t (the dot over 

the function represents the time derivative), m is the mass, c is the damping constant 

and k is the spring stiffness. Relationship (3.1) represents the well-known dynamic 

equation: force = mass  acceleration. In fact, both the active forces, kx  and cx

, result to be negative in case of positive elongations and velocities, respectively. 

Another interpretation which can be given to Equation (3.1) is by means of 

D’Alembert’s principle, according to which each mass is in equilibrium in its frame 

of reference, once subjected to all the active and inertial forces. The latter oppose 

the acceleration and are equal to the product of the acceleration itself  times the 

mass. 

When the forces applied to the mass are not external, but only internal (elastic and 

damping forces) and inertial, the motion of the system is called free vibration. The 

solution of Equation (3.1) takes the following form: 

                                                            ( ) estx t C                          (3.2) 

Substituting Equation (3.2) into Equation (3.1) yields: 

                                                       2 e 0stms cs k C                                   (3.3)    

Dividing by estmC  and introducing the notation 

                                                         
2 k

ω
m

                                                                  (3.4)                                                                                                      

Equation (3.3) becomes 

                                                   
2 2 0

c
s s ω

m
               (3.5)     
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Here we have to face two case, in the first one, where we found 0c  we will talk 

about undamped free vibrations.  

In this case, the two solutions of Equation (3.5) are 

                                                          is ω                                                                      (3.6)    

where i is the imaginary unit. The system response is thus given by: 

                                                  i i

1 2e eωt ωtx t C C                                                     (3.7) 

Since, according to Euler’s formula, we have: 

                                              
ie cos isinωt ωt ωt                                                (3.8) 

Equation (3.7) can be rewritten as  

                                            sin cosx t A ωt B ωt                                                    (3.9) 

where the two constants A and B can be expressed by means of the initial conditions. 

In fact, since: 

                                                     0x B          (3.10a) 

                                                     0x Aω          (3.10b) 

Equation (3.9) becomes (Figure 1.3): 

                                     
 

 
0

sin 0 cos
x

x t ωt x ωt
ω

            (3.11) 

 

 

 

Fig 3.2: Harmonic motion and its parameters 
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This solution represents a simple harmonic motion and it is homogenous from a 

dimensional point of view, since the angular frequency (or angular velocity)  has 

dimensions [T]‒1 and it is measured in radians per second. The ordinary frequency 

is measured in Hertz (cycles per second): 

                                                
2

ω
f

π
                           (3.12) 

whereas its reciprocal represents the period T: 

                                                  
1 2π

T
f ω

                        (3.13) 

In addition to Equation (3.11), the motion can be described by the following 

expression: 

                                               cosx t X ωt φ           (3.14) 

where the amplitude is given by 

                                         
 

2

2 0
0

x
X x

ω

 
     

 
         (3.15) 

and the phase angle by 

                                        
 

 

0
arctan

0

x
φ

ωx
                            (5.16) 

 

In the second case, where we found 0c  , we will talk about damped free 

vibrations. In this thesis, due to the nature of the chemical bonds and to the nature 

of the numerical simulation we performed, this type of motion is less important, so 

we will give only basic concepts. 

In this case, the two solutions of Equation (3.5) are 
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2

2

1 2
2 2

,

c c
s ω

m m

 
    

 
   (3.17) 

Three types of motion are represented by this expression, according to the quantity 

under the square-root, whether it is positive, negative or equal to zero. It is 

convenient to discuss first the case when the radical term vanishes. 

 

1st case: 
2

c
ω

m
  (critically-damped system) 

 

The critical value of the damping coefficient is: 

 2 2 2c

k
c mω m km

m
                (3.18) 

Note that this response does not include oscillation about the equilibrium position, 

but only an exponential decay towards this position (Figure 3.3).  

 

Fig 3.3: dynamic response in critically damped condition 

 

It can be stated that the critically-damped condition represents the smallest amount 

of damping for which no oscillation occurs in the free-motion response. 
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2nd case: 2c mω  (undercritically-damped system) 

 

Since the quantity under the radical sign in Equation (3.17) is negative, it is 

convenient to describe damping in terms of a damping ratio ξ, which is the ratio of 

the given damping coefficient c to the critical value cc: 

                                               
2c

c c
ξ

c mω
            (3.22) 

Introducing Equation (3.22) into Equation (3.17) leads to: 

                                         
2 2

1 2,s ξω ξω ω             (3.23) 

with 0 < ξ < 1. 

Equation (3.23) can be expressed as 

                                               1 2 i, Ds ξω ω                                   (3.24) 

where 

                                                    
21Dω ω ξ                      (3.25) 

is the damped frequency. Its value is close to that related to the undamped frequency 

 in practical cases, where generally 1 4ξ / .    

The dynamic response of an undercritically-damped system is obtained by 

substituting the solutions (2.24) into Equation (3.2): 

    D D D Di i i i

1 2 1 2e e e e eξωt ω t ξωt ω t ω t ω tξωtx t C C C C                             (3.26) 

The term within brackets represents a simple harmonic motion.  

A plot of the response of an undercritically-damped system subjected to an initial 

displacement x(0) and starting with zero velocity is shown in Figure 3.4.  
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Fig 3.4: dynamic response in under-critically damped condition 

 

The mass oscillates about the neutral position with an exponentially decreasing 

amplitude.  

 

3rd case: 2c mω  (overcritically-damped system) 

 

In this case, 1cξ c / c   and the response is similar to the motion of a critically-

damped system. However, the asymptotic return to the neutral position is slower 

depending upon the amount of damping. Note that it is very unusual, under normal 

conditions, to have overcritically-damped structural systems. 

 Until now we have treated discrete systems with a single degree of freedom but 

in general, and in the protein structures that we analyze, structures must be described 

by discretized models with several degrees of freedom, and not by a single degree 

of freedom model. Indeed, the structures are continuous systems and would present 

an infinite number of degrees of freedom.  

Consider a vibrating system formed by n masses im  and by n springs in series, with 

stiffness ik , i=1, 2,…, n (Figure 3.5). 
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Fig 3.5: Mechanical system with n-degrees of freedom 

 

There are n equations of motion, one for each vibrating mass: 

 

 

   

   

 

1 1 1 1 2 2 1

2 2 2 2 1 3 3 2

3 3 3 3 2 4 4 3

1

0

0

0

0n n n n n

m x k x k x x

m x k x x k x x

m x k x x k x x

m x k x x 

   

    

    

  
                 (3.27) 

 In Equations (3.27) viscous damping forces are neglected, as well as the presence 

of forcing actions. Equations (3.27) can be put in the compact form: 

                   
       0M x K x 

    (3.28) 

where [M] and [K] are the mass and stiffness matrices, respectively: 

                     

 

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0 n

m

m

M m

m

 
 
 
 
 
 
       (3.29a) 
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 

1 2 2

2 2 3 3

3 3 4 4

0 0 0

0 0

0 0

0 0 0 n n

k k k

k k k k

K k k k k

k k

  
 
  

 
    
 
 
     (3.29b) 

Note that the mass matrix is diagonal, while the stiffness matrix results to be tri-

diagonal. 

Let us search for a solution of Equation (3.28) in the form: 

                               
     sinx X ωt φ 

     (3.30) 

By introducing Equation (3.30) into Equation (3.28), one obtains: 

 
           2 sin sin 0ω M X ωt φ K X ωt φ    

  (3.31) 

that is 

                           
       2 0K ω M X 

    (3.32) 

Equation (3.22) represents an eigenvalue problem, since the linear algebraic 

equation system is homogenous and the trivial solution lacks a physical meaning. 

The determinant of the term in round brackets must be then equal to zero: 

                           
    2Det 0K ω M 

    (3.33) 

The n-order polynomial equation in the unknown 
2ω  which arises from condition 

(3.33) represents the characteristic equation of the elastic system. To each 

eigenvalue 
2 1 2iω , i , ,...,n, , corresponds an eigenvector  iX , but for a 

multiplicative constant.  

It can thus be deduced that a vibrating system with n degrees of freedom has n eigen-
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frequencies, as well as n mode shapes. Each vibrating mode shape corresponds to a 

different eigen-frequency. The lowest frequency is named as fundamental 

frequency. The related mode shape is called fundamental mode. 

Equation (3.33) will remain the fundamental condition for the analysis, although 

matrices [M] and [K] will be no longer diagonal or tri-diagonal, but will be more 

complex. This complexity reflects the real and effective connection between 

vibrating masses, which are generally not in series as in Figure 3.5.  

In particular we will see how protein structure will be composed by masses and 

springs in 3D space, without any repeating order. 

 

 

 

3.2 Dynamic instability: Modal analysis with second-

order effects  

 

In previous section, we have seen how to calculate the natural frequencies of a linear 

elastic structure according to modal analysis. On the other hand, from Structural 

Mechanics we know how to obtain the buckling loads of a structure according to a 

linearized approach to the elastic stability analysis (Bažant et al. 2003). The smallest 

one among these loads (or load multipliers) corresponds to the critical load, 

associated to the condition of neutral equilibrium that separates the region of 

stability (load smaller than the critical load) from that of instability (load greater 

than the critical load).  

 From a mathematical point of view, both modal analysis and buckling analysis 
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are seen as eigenvalue problems: they both lead to two formally identical equations 

written in symbolic form, each one having, of course, different physical meanings. 

In this Chapter we will focus our analysis on structures subjected to loads that may 

cause static instability. Thus, taking into account the effect of geometric nonlinearity 

in the equations of motion through the geometric stiffness matrix, the problem can 

be reduced to a generalized eigenproblem where both the load multiplier and the 

natural frequency of the system are unknown. According to this approach, all the 

configurations intermediate between those of pure buckling and pure free vibrations 

can be investigated (Carpinteri and Paggi, 2013). 

3.2.1 Influence of the Load on the Natural Frequency 

In engineering applications there are a lot of situations where structures that undergo 

flexural vibrations are also loaded by a static axial load. Very common examples 

are structural members as columns, struts, and towers.  

In the case of a slender elastic structure, the applied static load, even if it does not 

lead to instability, has an influence on the natural vibration frequencies of the 

structure. In other words, resonance frequencies result modified, in the sense that 

they are no longer those of the unloaded structure: in general they depend also on 

the kind and magnitude of the applied load. Consequence of this is, for example, 

that an external harmonic excitation to produce resonance should have a frequency 

that matches one of the natural frequencies of the loaded structure, and not of the 

unloaded one.  

This fact requires a very careful analysis of the natural vibration frequencies, which 

must take into account the second order effects induced by the applied loads, in line 



Chapter 3 -  Dynamics of nano-mechanical systems                                                        45  

 

 

with the modal analysis with second-order effects. 

 In general, as we will better see later on, there are more complicated cases in 

which a load increases certain frequencies while others are reduced. 

 The described influence of the load on the natural frequencies appears in general, 

not only in the case of slender structures, but in this last case it has a larger influence, 

while in the other cases it is normally negligible because no important second order 

effects take place. 

As we will see from the end of this Chapter and later on in Chapter 5, proteins will 

be represented as structures made only by masses and beams with their own 

stiffness, so calculation of natural frequencies and influence of external load on 

them is of  enormous importance. 

3.2.2 Discrete Mechanical Systems with One Degree of Freedom 

Let us consider the mechanical system shown in Figure 3.6, consisting of two rigid 

rods connected by an elastic hinge of rotational rigidity k and constrained at one end 

by a pinned support and at the other by a roller support. A mass m is placed in 

correspondence of the intermediate elastic hinge and the system is loaded by a 

horizontal axial force N. Considering the absolute rotation   of the two arms as the 

generalized coordinate, the total potential energy, W, and the kinetic energy, T, of 

the whole system are: 

 

     

     

2

2 2

2 2

1
2 2 1 cos ,

2

1 d 1 d 1
sin cos .

2 d 2 d 2

W k Nl

T m l m l l ml
t t

  

   

  

   
      

     (3.34) 

 The equation of motion can be determined by writing Lagrange’s equation: 



46                                 A.Bassani - TeraHertz Vibrations in Proteins: Experimental and … 

                                    

.
T T W

t   

    
   

      (3.35) 

In the present case, this yields: 

 
2 4 2 sin ,ml k Nl    

 (3.36) 

which can be suitably linearized in correspondence of 0:   

 

Figure 3.6: Scheme of the first one-degree of freedom system analyzed. 

 

                                 
2 4 2 .ml k Nl    

 (3.37) 

 Looking for the solution to Equation (3.37) in the general form 
i

0e
t  , where 

  denotes the natural angular frequency of the system, we obtain the following 

equation which provides the conditions of equilibrium of the system: 

                           
 2 2

04 2 0.k Nl ml   
 (3.38) 

A nontrivial solution to Equation (3.38) exists if and only if the term in brackets is 
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equal to zero. This critical condition corresponding to the bifurcation of the 

equilibrium establishes a one-to-one relationship between the applied axial force, N, 

and the angular frequency, ω: 

                                              

22
.

2

k ml
N

l
 

 (3.39) 

Moreover, Equation (3.39) admits two important limit conditions for (respectively) 

0N   and 0m  . In the former case, Equation (3.39) gives the natural angular 

frequency of the system according to pure modal analysis, i.e. 2

1 4k ml  . In the 

latter, the pure critical Eulerian load is obtained, i.e. 
1 2N k l . 

 Dividing Equation (3.39) by 
1N , we obtain the following relationship between 

N and ω in a nondimensional form: 

 

                                           

2

1 1

1.
N

N





   
    

     (3.40) 

 As a second example, let us consider the mechanical system shown in Figure 3.7, 

consisting of two rigid rods on three supports, of which the intermediate one is 

assumed to be elastically compliant with rigidity k.  
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Figure 3.7: Scheme of the second one-degree of freedom system analyzed. 

As in the previous case, a mass m is placed in correspondence of the intermediate 

hinge and the system is loaded by a horizontal axial force N. Considering the 

absolute rotation   of the two arms as the generalized coordinate, the total potential 

energy, W, and the kinetic energy, T, of the whole system are: 

                        

     

 

2

2 2

1
sin 2 1 cos ,

2

1
.

2

W k l Nl

T ml

  

 

  


 (3.41) 

 Following the procedure discussed above, we determine the equation of motion 

by employing Lagrange’s equation (3.35): 

                        
 2 sin cos 2 ,ml l kl N    

 (3.42) 

which can be suitably linearized in correspondence of 0:   

                               
 2 2 .ml l kl N   

 (3.43) 

 Looking for the solution to Equation (3.43) in the general form 
i

0e
t  , where 
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  denotes the natural angular frequency of the system, we obtain the following 

condition of equilibrium of the system: 

                                
 2 2 2

02 0.kl Nl ml   
 (3.44) 

 As in the previous example, by setting the term in brackets equal to zero, we 

obtain a one-to-one relationship between the applied axial force, N, and the angular 

frequency, ω: 

                                            

2.
2 2

kl ml
N  

 (3.45) 

This equation admits two important limit conditions for (respectively) 0N   and 

0m  . In the former case, Equation (3.45) gives the natural angular frequency of 

the system according to pure modal analysis, i.e 
1 k m  . In the latter, the pure 

critical Eulerian load for buckling instability is obtained, i.e. 
1 2N kl . Dividing 

Equation (3.45) by 
1N , we obtain the same relationship between the nondimensional 

terms 
1N N  and  

2

1   as in the previous example (see Equation (3.40)). 

 A graphical representation of the condition (3.40) in Figure 3.8 shows that the 

resonance frequency is a decreasing function of the compressive axial load.  
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Figure 3.8: Nondimensional frequency squared vs. nondimensional axial force for the single 

degree of freedom systems analyzed. 

 

This demonstrates, for the analyzed mechanical systems with a single degree of 

freedom, that resonance can take place for 1  , provided that the system is 

loaded by an axial force N given by Equation (3.40). 

 In addition, for the static case, the issue of stability or instability of the 

mechanical system in the correspondence of the bifurcation point, can be discussed 

by evaluating the higher order derivatives of the total potential energy W (Carpinteri, 

1997). 
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3.2.3 Discrete Mechanical Systems with Two Degrees of Freedom 

 

Figure 3.9: Scheme of the first two-degrees of freedom system analyzed. 

Let us now consider the mechanical system with two degrees of freedom shown in 

Figure 3.9, consisting of three rigid rods connected by two elastic hinges of 

rotational rigidity k, and constrained at one end by a pinned support and at the other 

by a roller support. A mass m is placed in correspondence of the intermediate elastic 

hinges and the system is loaded by a horizontal axial force N. Assuming the vertical 

displacements 
1x  and 

2x  of the elastic hinges as the generalized coordinates, the 

total potential energy, W, and the kinetic energy, T, of the whole system are given 

by: 
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 

 

2

1 2 1
1 2

2

2 2 1

1 2

2 1

2 2 2 2

1 2 1 1 1 2

1 1 2 2

1
, arcsin arcsin

2

arcsin arcsin

3 cos arcsin cos arcsin

cos arcsin ,

1 1 1
,

2 2 2

21

2

x x x
W x x k

l l

x x x

l l

x x
Nl

l l

x x

l

T x x mx mx x mx

x x x x
m

l

  
  

 

 
   
  

    
     

   

 
  

 

  

 

2

2 1 1 2 .
x x x x

l l l

 
  

   (3.46) 

Performing a Taylor series expansion of Equation (3.46) about the origin, and 

assuming 
1 1 10x l   and 

2 1 10x l  , we obtain: 

                      

     

 

2 2 2 2

1 2 1 2 1 2 1 2 1 22

2 2

1 2 1 2

, 5 5 8 ,
2

1 1
, .

2 2

k N
W x x x x x x x x x x

l l

T x x mx mx

     

 
 (3.47) 

 The equations of motion are identified by considering Lagrange’s equations: 

                               

, 1,2.
i i i

T T W
i

t x x x

    
    

      (3.48) 

In matrix form, they are: 
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2 2
1 1 1

2 2 2

2 2

5 4 2 1

0 0
.

0 4 5 1 2 0

k k

x x xm l l l l
N

x x xm k k

l l l l

   
            

             
             

        (3.49) 

 Looking for the solution to Equation (3.49) in the general form     i

0 e tq q  , 

where   denotes the natural angular frequency of the system, we obtain the 

following equation, written in symbolic form: 

                            
       2

0 0 ,gM K N K q        (3.50) 

where  M ,  K  and gK    denote (respectively) the mass matrix, the elastic 

stiffness matrix and the geometric stiffness matrix of the mechanical system. Their 

expressions can be simply obtained by comparing Equation (3.50) with Equation 

(3.49). 

 A nontrivial solution to Equation (3.50) exists if and only if the determinant of 

the resultant coefficient matrix of the vector  0q  vanishes. This yields the 

following generalized eigenvalue problem: 

                            
    2det 0,gK N K M      (3.51) 

where N  and 2  represent the eigenvalues. For this example, Equation (3.51) 

provides the following relationships between the eigenvalues 2  and N : 

                                    

2

2
,

k N

ml ml
  

 (3.52a) 
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                                              𝜔2 =
9𝑘

𝑚𝑙2 −
3𝑁

𝑚𝑙
 . (3.52b) 

As limit cases, if 0m  , then we obtain the Eulerian buckling loads: 

                                             
1 ,

k
N

l


         (3.53a) 

                                            
2

3
,

k
N

l


 (3.53b) 

whereas, if 0N  , we obtain the natural frequencies of the system: 

                                          
1 2

,
k

ml
 

      (3.54a) 

                                          
2 2

9
.

k

ml
 

 (3.54b) 

 As far as the eigenvectors are concerned, the system (3.50) yields the 

eigenvectors corresponding (respectively) to the eigenfrequencies (3.52a) and 

(3.52b) as functions of N: 

                                         
1 2

4
,

6 3

k l N
x x

k l N





 (3.55a) 

                                        
1 2

4
.

14 5

k l N
x x

k l N





 (3.55b) 

 Dividing Equations (3.52a) and (3.52b) by 2

1 , we derive the following 

nondimensional relationships between the eigenvalues: 
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2

1 1

1 ,
N

N





   
    

     (3.56a) 

                               

2 2

2 2

1 1 1 1

.
N N

N N



 

     
      

       (3.56b) 

 In analogy with the results for the single degree of freedom systems, a graphical 

representation of Equations (3.56a) and (3.56b) is provided in Figure 3.10.  

 

Figure 3.10: Nondimensional frequencies squared vs. nondimensional axial forces for the 

two-degrees of freedom system in Figure 3.9. 

 

We notice that both the eigenfrequencies are decreasing functions of the 



56                                 A.Bassani - TeraHertz Vibrations in Proteins: Experimental and … 

compressive axial load. Entering the diagram with a value of the nondimensional 

compressive axial force in the range 
10 1N N  , the coordinates of the points of 

the two curves provide the two modified resonance frequencies of the mechanical 

system. Axial forces larger than 
1N  in the range 

1 2 11 N N N N   can only be 

experienced if an additional constraint is introduced into the system in order to 

prevent the vertical displacement of the midpoint, allowing at the same time the 

rotation and the horizontal displacement. Moreover, we observe that the applied 

compressive load influences all the eigenfrequencies, and not just the first one. In 

particular, in the present example, the influence of the axial load is greater on the 

highest frequency than on the lower one. 

 As a second example of a system with two degrees of freedom, let us examine 

that of Figure 3.11, which consists of three rigid rods on four supports, of which the 

central ones are assumed to be elastically compliant with rigidity k. A mass m is 

placed in correspondence of the intermediate hinges and the system is loaded by a 

horizontal axial force N.  

 

Figure 3.11: Scheme of the second two-degrees of freedom system analyzed. 

 

Assuming the vertical displacements 
1x  and 

2x  of the elastic hinges as the 
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generalized coordinates, the total potential energy, W, and the kinetic energy, T, of 

the whole system are given by (
1 1 10x l   and 

2 1 10x l  ): 

                  

   

   

 

2 2 1
1 2 1 2

2 2 1

2 2 2 2

1 2 1 2 1 2
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2

cos arcsin cos arcsin

1
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2

1 1
, .

2 2

x
W x x k x x Nl

l

x x x

l l

N
k x x x x x x

l

T x x mx mx

  
     

 

   
    

   

    

 
 (3.57) 

In this case, Lagrange’s equations (3.48) yield the following matrix form: 

            

1 1 1

2 2 2

2 1

0 0 0
.

0 0 1 2 0

x x xm k l l
N

x x xm k

l l

 
           

             
            

    (3.58) 

 Looking for the solution to Equation (3.58) in the general form     i

0 e tq q  , 

where   denotes the natural angular frequency of the system, we obtain the 

following equation, written in symbolic form: 

                             
       2

0 0 ,gM K N K q        (3.59) 

where  M ,  K  and gK    denote (respectively) the mass matrix, the elastic 

stiffness matrix and the geometric stiffness matrix of the mechanical system. As it 

can be readily seen, the geometric stiffness matrix for this problem is the same as 

that of the previous example. 
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 A nontrivial solution to Equation (3.59) exists if and only if the determinant of 

the resultant coefficient matrix of the vector  0q  is equal to zero. This yields the 

following generalized eigenvalue problem: 

                                  
    2det 0,gK N K M      (3.60) 

where N  and 2  are the eigenvalues of the system. For this example, Equation 

(3.60) provides the following relationships between the eigenvalues: 

                                               

2 3 ,
k N

m ml
  

 (3.61a) 

                                              

2 .
k N

m ml
  

 (3.62b) 

As limit cases, if 0m  , we obtain the Eulerian buckling loads: 

                                                 
1

1
,

3
N kl

 (3.63a) 

                                                 2 ,N kl  (3.63b) 

whereas, if 0N  , then we obtain the natural frequencies of the system: 

                                             
1 2 .

k

m
  

 (3.64) 

 As far as the eigenvectors are concerned, the system (3.59) yields the 

eigenvectors corresponding (respectively) to the eigenfrequencies (3.61a) and 

(3.61b), as functions of the axial force, N: 
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1 2 ,

5 2

N l
x x

N l k



 (3.65a) 

                                         
1 2.

3 2

N l
x x

N l k



 (3.65b) 

 Dividing Equations (3.61a) and (3.61b) by 2

1 , we derive the following 

nondimensional relationships between the eigenvalues: 
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A graphical representation of Equations (3.66a) and (3.66b) is provided in Figure 

3.12. 

 

Figure 3.12: Nondimensional frequencies squared vs. nondimensional axial forces for the 

two-degrees of freedom system in Figure 3.11. 
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Also in this case, both the frequencies are decreasing functions of the compressive 

axial load. However, in the present example, the influence of the axial load is greater 

on the lower frequency of the system than on the higher one.  

3.3 Elementary models of proteins 

 

The first step of our research has been to model proteins and interatomic bonds in a 

mechanical form, the easiest possible, to try to obtain, with biological parameters 

derived by literature, an idea of the order of magnitude of their natural frequencies. 

Because the central topic of our research is Na-K ATPase, we used this protein to 

start. 

Biological parameters of this protein were presented in previous Chapter, here we 

report raw data. 

Na/K-ATPase properties: 

• large protein  

• molecular weight = 110 kDa (1.78×10-22 kg) 

• average diameter ≈ 4 nm; length ≈ 16 nm    

• 1028 amino acids (10131 atoms) 

 

As evident from Figure 2.9 the shape of this protein is a sort of Y, but it’s clear that 

one dimension is bigger than the others, so, for primary evaluations, we modelled 

entire protein with an elastic beam. 

In the first model, figure 3.13, the beam is mass-less and the entire mass of the 

protein is concentred at the end. 
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Fig 3.13: Longitudinal complete protein vibrations: concentrated mass where 

protein is shown schematically with an elastic beam with no mass, the entire mass is 

concentrated at one end. 

 

For this mechanical scheme, that is the same one of Figure 3.1, longitudinal natural 

vibrations can be easily calculated by means of the well-known equation (see also 

Eq 3.4) 

 

                    𝑓 =
𝜔

2𝜋
=

√
𝑘

𝑚

2𝜋
                                                   (3.67) 
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where mass m = 1.78×10-22 kg, and the stiffness, from literature, k = 200 N/m 

(Lagace 2007). 

For parameters mentioned above, natural frequency of the simplified scheme in 

figure 3.13, is equal to f = 0.11×1012 Hz = 0.11THz = 110 GHz.  

This result, obtained with large simplifications of the real structure, is however in 

agreement with theory proposed in Chapter 1, section 1.2, where we established that 

the order of magnitude of natural frequencies for big proteins, like Na-K ATPase is, 

would be 1011 Hz. 

The same protein can easily been schematized like an elastic beam with the mass of 

the protein distributed over the entire length, like in figure 3.14. 

 

.Fig 3.14: Longitudinal complete protein vibrations: protein is shown schematically with an 

elastic beam with the entire mass distributed over the length 
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In this case, to calculate the natural frequency of the structure must be used the 

formula 

                         𝑓 =
𝜔

2𝜋
=

1

4𝐿
√

𝐸𝐴

𝜇
                                    (3.68) 

where  L = 15.6 × 10-9 m,  cross sectional area A = (π D2 / 4) = 5.03 × 10−17  m2, 

linear density µ = M / L = 0.11 × 10−13  kg/m, E = (k × L) / A = 3,10 × 109  N/m2. 

With these values, natural frequency of the simplified scheme in figure 3.14, is equal 

to f = 0.27 ×1012 Hz = 0.27THz = 270 GHz. 

Also this value is of the same order of magnitude of the one obtained with 

concentrated mass and proposed in section 1.2. 

We schematized not only entire protein, but we also modeled intermolecular bond 

using scheme in figure 3.15.  

 

Fig 3.15: Natural vibrations at interatomic bond level. 

 

For this type of model, natural frequency is obtained using equation 3.67, but in this 

case, parameters are different, because we have to consider not the entire protein 

but the average mass of a single atom and the average length of a bond:  
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m = 1.76 ×   10−26 kg, L = 0.2 nm. 

Natural frequency obtained is f = 16.9 ×1012 Hz = 16.9 THz, confirming hypothesis 

of section 1.2 for vibrations at bond level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



 

 

 

 

 

 

 

Chapter 4 

 

Raman spectroscopy: 

Experimental campaigns on 

Lysozyme and Na-K ATPase 

 

 

This chapter describes the experimental investigations carried out with the 

Raman technique on Lysozyme and Na-K ATPase. 

In the first part of the chapter, after a brief historical overview, we should  

describe the basics of the technique giving also two different  interpretations, 

the classical one and the quantum mechanics one. 

In the second part of the chapter we will describe in detail the experimental 

sessions and analyse the results.  
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4.1 Elements of Raman Spectroscopy 

Raman Spectroscopy provides information about molecular vibrations. This 

non-destructive technique consists in irradiating a sample with a light source 

(usually a laser) and collecting the scattered light (Figure 1) (Raman 1928, 

Raman et al. 1928). Most of the latter will be at the same frequency of the 

incident light (the so-called Rayleigh peak); a small percentage (10−5 %) will 

be shifted in frequency from the laser due to the light-molecule interaction. 

Plotting the intensity of this scattered light versus the frequency yields a 

Raman spectrum. Generally, the Rayleigh peak is located at 0 cm−1, whereas 

other peaks will arrange themselves on the spectrum at frequencies that refer 

to the energy levels of different specific functional groups that compose the 

sample. 

 

Figure 1: Scheme of Raman spectroscopy technique 

 

Raman spectroscopy can be used both for identification and quantification 

purposes, as the spectra obtained are highly specific, real fingerprints for the 

elements. The identification of samples is usually performed by comparing 
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the spectra with numerous databases now available. Advantages of the Raman 

technique include requiring a limited sample preparation, and allowing the 

analysis of both solid samples and aqueous solutions (Frezzotti et al.2012).  

In 1928, when Sir Chandrasekhra Venkata Raman discovered the 

phenomenon that bears his name, only crude instrumentation was available. 

Sir Raman used sunlight as the source and a telescope as the collector; the 

detector was his eyes. That such a feeble phenomenon as the Raman scattering 

was detected was indeed remarkable. 

Gradually, improvements in the various components of Raman 

instrumentation took place. Early research was concentrated on the 

development of better excitation sources. Various lamps of elements were 

developed (e.g.,helium, bismuth, lead, zinc) (Kerschbaum 1914, 

Veskatesachar et al. 1930, Hibben 1939). These proved to be unsatisfactory 

because of low light intensities. Mercury sources were also developed. An 

early mercury lamp which had been used for other purposes in 1914 by 

Kerschbaum (Kerschbaum 1914) was developed. In the 1930s mercury lamps 

suitable for Raman use were designed. Hibben developed a mercury burner in 

1939, and Spedding and Stamm (Spedding et al. 1942) experimented with a 

cooled version in 1942. Further progress was made by Rank and McCartney 

(Rank et al. 1948), who studied mercury burners and their backgrounds. 

Hilger Co. developed a commercial mercury excitation source system for the 

Raman instrument, which consisted of four lamps surrounding the Raman 

tube. Welsh et al. (Welsh et al. 1952) introduced a mercury source in 1952, 

which became known as the Toronto Arc. The lamp consisted of a four-turn 

helix of Pyrex tubing and was an improvement over the Hilger lamp. 

Improvements in lamps were made by Ham and Walsh (Ham et al. 1958), 
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who described the use of microwave-powered helium, mercury, sodium, 

rubidium and potassium lamps. Stammreich (Stammreich 1950a, 1950b, 

1956a, 1956b) also examined the practicality of using helium, argon, 

rubidium and cesium lamps for colored materials. In 1962 laser sources were 

developed for use with Raman spectroscopy (Gilson et al. 1970). Eventually, 

the Ar+ (351.l-514.5nm) and the Kr+ (337.4-676.4 nm) lasers became 

available, and more recently the Nd-YAG laser (1,064 nm) has been used for 

Raman spectroscopy. 

Progress occurred in the detection systems for Raman measurements. 

Whereas original measurements were made using photographic plates with 

the cumbersome development of photographic plates, photoelectric Raman 

instrumentation was developed after World War II.  

The first photoelectric Raman instrument was reported in 1942 by Rank and 

Wiegand (Rank et al. 1942), who used a cooled cascade type RCA IP21 

detector. The Heigl instrument appeared in 1950 and used a cooled RCA C-

7073B photomultiplier. In 1953 Stamm and Salzman (Stamm et al. 1953) 

reported the development of photoelectric Raman instrumentation using a 

cooled RCA IP21 photomultiplier tube. The Hilger E612 instrument (Ferraro 

1967) was also produced at this time, which could be used as a photographic 

or photoelectric instrument. In the photoelectric mode a photomultiplier was 

used as the detector. This was followed by the introduction of the Cary Model 

81 Raman spectrometer (Ferraro 1992). The source used was the 3 kW helical 

Hg arc of the Toronto type. The instrument employed a twin-grating, twin-slit 

double monochromator.  

Developments in the optical train of Raman instrumentation took place in the 

early 1960s. It was discovered that a double monochromator removed stray 
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light more efficiently than a single monochromator. Later, a triple 

monochromator was introduced, which was even more efficient in removing 

stray hght.  

Holographic gratings appeared in 1968, which added to the efficiency of the 

collection of Raman scattering in commercial Raman instruments. 

These developments in Raman instrumentation brought commercial Raman 

instruments to the present state of the art of Raman measurements. 

Now, Raman spectra can also be obtained by Fourier transform (FT) 

spectroscopy. 

FT-Raman instruments are being sold by all Fourier transform 

infrared (FT-IR) instrument makers, either as interfaced units to the FT-IR 

spectrometer or as dedicated FT-Raman instruments. 

 

 

4.2 Classical Mechanics Interpretation 

 

Light, in the classic wave theory, is nothing but an electromagnetic radiation 

having an oscillating electric field capable of interacting with a molecule 

through its polarizability, i.e., the ability of electrons to interact with the 

electric field. 

Figure 4.1 illustrates a wave of polarized electromagnetic radiation traveling 

in the z-direction. It consists of the electric component (x-direction) and 

magnetic component (y-direction), which are perpendicular to each other.  
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Figure 4.1: Plane polarized electromagnetic radiation 

 

The electric field strength (E) at a given time (t) is expressed by 

                                               E = E0 cos 2nvt,                                      (4-1) 

where E0  is the amplitude and v is the frequency of radiation as defined later. 

The distance between two points of the same phase in successive waves is 

called the "wavelength," λ, which is measured in units such as Å (angstrom), 

nm (nanometer), and cm (centimeter). The relationships between these units 

are: 

                                      1 Å = 10-8 cm = 10-1 nm   (4-2) 

 

Thus, for example, 4,000 Å = 400 nm. 

The frequency, v, is the number of waves in the distance light travels in one 

second. Thus, 

                                            𝜈 =
𝑐

𝜆
                                      (4-3) 

where c is the velocity of light (3×1010 cm/s). If λ is in the unit of centimeters, 

its dimension is (cm/s)/(cm) = 1/s. This "reciprocal second" unit is also called 

the "hertz" (Hz). 

The third parameter, which is most common to vibrational spectroscopy, is 
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the "wavenumber," ṽ, defined by 

 

                                                     ṽ, = 
𝜈

𝐶
    (4-4) 

 

The difference between v and ṽ is obvious. It has the dimension of 

(l/s)/(cm/s) = 1/cm.  

By combining (4-3) and (4-4) we have 

 

                        ṽ = 𝜈
𝐶

= 1
𝜆
  (cm-1)                              (4-5) 

 

By combining (4-3) and (4-4), we obtain 

 

                              𝜈 =
𝐶

𝜆
= 𝐶ṽ                                           (4-6) 

 

As shown earlier, the wavenumber (ṽ) and frequency (v) are different 

parameters, yet these two terms are often used interchangeably. Thus, an 

expression such as "frequency shift of 50cm-1" is used conventionally by  

Raman spectroscopists and we will follow this convention through this 

thesis. 

To explain Raman effect in a classical way, let us consider a simple diatomic 

molecule idealized as a mass-spring linear system, wherein 1m  and 2m  

represent the two masses of the molecule, 1x  and 2x  their displacements (in 

opposite directions), and k  the elastic constant of the linear spring simulating 

the bonding force (Figure 4.2) (Ferraro et al. 2003). 



72       A. Bassani - Terahertz Vibrations in Proteins: Experimental and… 

 

 

 

 

 

Figure 4.2: A diatomic molecule idealized as a mass-spring linear system 

 

Reducing the system to an equivalent macromolecule and combining Hooke’s 

law and Newton’s second law of motion (or, alternatively, D’Alembert’s 

principle), yields the equation of motion: 

                                    
2 2

1 2 1 2
1 22 2

1 2

d d
0,

d d

m m x x
k x x

m m t t

 
    

  
                    (4.7) 

where t  is time. Replacing the reduced mass  1 2 1 2m m m m  with   and 

the total (relative) displacement  1 2x x  with x , Eq. (4.7) can be rewritten 

as follows: 

                                                    

2

2

d
0.

d

x
k x

t
                                          (4.8) 

Eq. (4.8) is the well-known equation of the harmonic oscillator, with general 

solution given by (for  0 0x  , but without loss of generality): 

                                                          0 cos 2 ,mx x f t                            (4.9) 
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where 0x  is the vibration amplitude and mf  is the molecule vibration 

frequency (Hz), given by: 

                                                            
1

,
2

m

k
f

 
                                    (4.10) 

where mk    is the angular frequency of vibration of the molecule (rad 

s−1).  

It is therefore clear that each molecule has its own characteristic (or natural) 

vibration frequency. In general, multi-atomic molecules have different 

frequencies, generated by the combination of atomic masses and 

characteristics of the interatomic bonds. These molecular vibrations are 

measurable through Raman spectroscopy since the polarizability of a 

molecule,  , is a function of the shift (displacement) x . 

Returning to our elementary example, when light hits the diatomic molecule 

of Fig. 2.2, a dipole moment P  arises. It is a function of polarizability and 

electric field, and is defined as follows: 

                                                       0 0cos 2 ,P E f t                              (4.11) 

where 0E  and 0f  are respectively the intensity and the frequency of the 

electric field. The polarizability can be approximated, for small 

displacements, by the following linearized expression: 

                                                   0

0

.
x

x
x


 



 
  
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                                 (4.12) 

Substituting Eq.s (4.12) and (4.9) into Eq. (4.11), yields: 
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(4.13) 

Eq. (4.13) shows that there are two effects that arise from the interaction of a 

molecule with a source of light: the first component is the so-called Rayleigh 

radiation, which is the main component and has the same frequency of the 

incident light ( 0f ) – and therefore it is not interesting for the analysis –, while 

the second part is the real Raman component, expressed as a shift in frequency 

from the Rayleigh radiation and including the molecule eigenfrequency (fm). 

Positive frequency shifts are called Stokes contributions, negative shifts are 

called Anti-Stokes contributions. 

 

4.3 Quantum Mechanics Interpretation 

 

Raman effect can also be explained by the following quantum mechanics 

interpretation (Ferraro et al. 2003). In this case, it is assumed that the effect 

originates from an inelastic scattering of a photon by a molecular bond. 

Following the Jablonski diagram (Figure 4.3), we can see that the effect 

appears like an excitation of the molecule to a virtual energy state by a photon 

( h  is the Plank’s constant). When this happens, there are three possible 

developments. In the first case, the molecule emits a photon at exactly the 

same energy of the incident photon, therefore returning to the original state; 

this is an elastic process and is called Rayleigh scattering. In the second case, 

the molecule relaxes by emitting a photon with an energy lower than the 

incident one, so the molecule persists in an excited energy state different from 
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the fundamental; in this case we speech of Stokes scattering. The third and 

last case occurs when the molecule in origin is not in the fundamental state 

but already in an excited state; the incident photon leads the molecule to a 

higher virtual energy state so the consequent relaxation to the ground state 

results in a photon with energy greater than that of the incident photon. This 

case is called Anti-Stokes scattering. As a consequence of the fact that many 

molecules at room temperature are in the ground state, Stokes shifting is much 

more frequent than Anti-Stokes. 

 

 

Figure 4.3: Jablonski diagram: explanation of Raman effect 

 

It can be shown that the power of the scattered light, SP , is directly 

proportional to the intensity of the incident light 0I , and inversely 

proportional to the wavelength   of the incident light raised to the fourth 

power: 
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Consequently, it would be desirable to work with short wavelength light 

sources and high-power, but unfortunately this is not always possible. 

 

          4.4 Use of Raman Spectroscopy for Proteins Study 

 

The use of Raman spectroscopy for proteins study can be dated back to the 

70’s of the last century. The first studies were designed to investigate the 

structure of proteins (Spiro et al. 1977), assign the bands to the respective 

chemical groups, and so on. In the 90’s the use of Raman spectroscopy was a 

bit put aside because of limits imposed by technological standards of the time 

(Carey 1998). On the other hand, towards the end of the 90’s, the development 

of the CCD (Charge-Coupled Device) detector, better performing filters and 

electronics in general, have greatly increased the signal-to-noise ratio 

obtainable in the Raman spectra (Carey 1999). The improvement in 

sensitivity has also paved the way for the so-called micro-Raman, and the 

extraction of ligand-binding details from crystalline samples. 

Proteins have over 20,000 degrees of freedom, and this results in more than 

20,000 vibration modes. In facts, a protein on average is constituted by 500 

amino acids (Netzer et al. 1997). Each amino acid has an average of 15 atoms; 

this brings the total number of atoms to about 7500. Since every atom in space 

has three degrees of freedom, this brings us to the more than 20,000 modes 

mentioned above for the entire protein. Usually a normal mode involves 

numerous internal coordinate variations. In other cases, these vibrations 
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involve only very few atoms, such as stretching of the C==O group, for 

example. As a consequence, the spectral richness is so high as not to allow 

the identification of each single mode of vibration due to overlapping of some 

modes (Deng et al. 1999). Therefore, a selection of the most relevant peaks 

in relation to the objective of the investigation is fundamental in the study of 

proteins through Raman spectroscopy. For example, information on the 

secondary structure of the protein can be deduced from the region called 

Amide I  (~50 THz), dominated by the contribution of the backbone C==O.  

On the other hand, it is also possible to focus on specific areas to follow the 

changes of  groups involved in specific protein reactions (Callender et al. 

1994, Robert et al. 1996).  

 

4.5 Experimental Campaign on Lysozyme 

 

Raman spectroscopy measurements were performed on hen egg white 

lysozyme crystallized powder. Lysozyme samples (Worthington Biochemical 

Corporation, Product Code: LYSF, Lot Number: 34K15116B; 100% protein, 

two times crystallized) were received and tested in the form of a dialyzed, 

lyophilized powder, containing ≥ 8,000 units per mg dry weight. According 

to the unit definition reported in the certificate of analysis, one unit is equal 

to a decrease in turbidity of 0.001 A450 nm per minute at 25°C, pH 7.0 using 

a 0.3 mg/ml suspension of Micrococcus lysodeikticus cells (Product Code: 

ML) as substrate. were purchased from Worthington Biochemical 

Corporation and stored in a refrigerator at 2-8°C. 

Samples of lysozyme  appear as in Fig. 4.4, where a ten-euro-cents coin is put 

close to it to give an idea of the dimension.  Both the experiments, on 
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Lysozyme and on Na-K ATPase, were performed in the High pressure 

spectroscopy (HPS) laboratory at the Physics Department of Sapienza 

University in Rome, with the technical support of the company Horiba 

Scientific. 

 

Figure 4.4: Samples of lysozyme crystallized powder 

 

The experimental apparatus consists in a Raman spectrometer LabRAM HR 

evolution, a last-generation device produced by Horiba Scientific (Fig. 4.5). 

It mounts a confocal microscope equipped with three objectives (20x, 50x, 

100x) (Fig. 4.5), coupled to a 633 nm wavelength He-Ne laser (Fig. 4.6a). The 

spectrometer disposes of two diffraction gratings, having resolutions equal to 

600 lines / mm (< 3 cm−1) and to 1800 lines / mm (< 1 cm−1). In order to 

analyze low frequencies (<10-15 THz), ultra low frequency (ULF) filters of 

the latest generation were adopted (Fig. 4.6b). The ULF module allows 

  Samples 
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Raman spectroscopic information in the sub-100 cm−1 region, with 

measurements down to 5 cm−1  routinely available. 

 

Fig. 4.5 Raman spectrometer HR evolution 

 

 

Fig. 4.6a/b Spectrometer components (located under the top cover of Fig. 4.5): (a) 

red laser source; (b) ULF filters module 

  

This technology claims the highest performances of the single spectrometer: 

measurements are obtained in just a few seconds or minutes, without any 

limitation in the higher wavenumber region; Stokes and Anti-Stokes spectral 
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features can be simultaneously measured, providing additional information 

(Rapaport et al. 2010). 

A preliminary calibration of the spectrometer was done prior to the 

measurements by means of a in-house code developed on purpose, and 

adopting the emission spectrum of a Neon lamp as a reference.   

 

Fig. 4.7 shows the Raman spectrum obtained for lysozyme crystallized 

powder samples. Data were processed with LabSpec software, supplied with 

the spectrometer used. Acquisition was made using the 600 lines / mm 

diffraction grating, 100x objective and 200 µm confocal hole. Four different 

spectral ranges were analyzed, i.e. grating centered at 650, 1400, 2100 and 

2900 cm−1, and then results were collected in a unique spectrum. Each result 

is the mean of 10 measures with 60 s acquisition time each. Low-degree (≤ 3) 

polynomial functions were subtracted to each original spectrum in order to 

eliminate the background (polynomial baseline correction).  
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Fig. 4.7 Raman spectrum of crystallized lysozyme powder obtained using ULF 

filters 

 

The results are in agreement with those of the literature, see for example 

(Movasaghi et al. 2007). Peaks related to three amino acids (tryptophan, 

tyrosine and phenylalanine) as well as the peak of amide I are highlighted in 

Fig. 4.7. 

Amide I is characteristic of all proteins and is of relevance in biology since it 

refers to the vibration of the protein backbone. The above-mentioned three 

amino acids were selected as reference to validate the numerical model (see 

Chapter 5).  

Thanks to the use of ULF filters it has been possible to investigate also low-

frequency vibrations. A large peak in correspondence to 0.84 THz is clearly 

visible in Fig. 4.7 (top-left). The same peak is better highlighted in Figure 4.8. 
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Fig. 4.8 Crystallized lysozyme powder Raman spectrum centered at 0 cm−1 

 

Fig. 4.8 shows the Raman spectrum of lysozyme around the origin. 

It is the result of 10 mediated 60 s-acquisitions, each one obtained with the 

1800 lines / mm grating, centered at 0 cm−1. The large peak at 28 cm−1  (0.84 

THz) and a broad shoulder at 75 cm−1 (2.25 THz) are indicated in the same 

diagram. Also these peaks at lower frequencies are in agreement with the 

literature (Genzel et al. 1976). 

 These peaks are not assigned in literature to any chemical group, as they 

correspond to vibrations involving the entire protein or large portions of it. 
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Such delocalized or global vibrations were investigated numerically by 

modeling the entire lysozyme (see Chapter 5).  

 

 

 

4.6 Experimental Campaign on Na-K ATPase 

Raman spectroscopy measurements were performed on Na-K ATPase 

lyophilized powder and solution. Na-K ATPase powder were purchased from 

Sigma-Aldrich Corporation and stored in a refrigerator at 2-8°C. 

Samples of Na-K ATPase  appear as in Fig. 4.9, where samples both in 

powder (a) and in solution (b) are presented. 

 

 

a)          b) 

 

Fig. 4.9: a) Na-K ATPase lyophilized powder b) Na-K ATPase solution,  
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Fig. 4.10 shows the Raman spectrum obtained for Na-K ATPase lyophilized 

powder  sample.  

Also for these samples, like for lysozyme, data were processed with LabSpec 

software, supplied with the used spectrometer. Acquisition was made using 

the 600 lines / mm diffraction grating, 100x objective and 200 µm confocal 

hole. Five different spectral ranges were analyzed, i.e. grating centered at a 

650, 1400, 2100, 2900 and 3400 cm-1, and then results were collected in a 

unique spectrum. Each result is the mean of 10 measures with 60 s acquisition 

time each. Low-degree ( 3 ) polynomial functions were subtracted to each 

original spectrum in order to eliminate the background (polynomial baseline 

correction).  

The results are in agreement with those of the literature, see for example 

(Movasaghi et al. 2007).  

Na-K ATPase is a less studied protein (at the spectroscopic investigation 

level) with respect to lysozyme. Therefore, in addition to the total spectrum 

obtained by the analysis, in table 4.1 it is shown the assignment of the 

characteristic peaks as a fingerprint of the protein (Movasaghi et al. 2007). 
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Figure 4.10: Complete raman spectrum of Na-K ATPase powder 

 

Frequency (cm-1) Assignement 

524 S-S stretching 

640 C-C twisting in Tyr 

740 C-S stretching 

831 Tyr 

930 C-C stretching 

1004 Phe 

1067 Pro 

1125 Trp 
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1260 Amide III 

1335 CH3-CH2 wagging 

1365 Trp 

1454 C-H bending 

1585 Tyr, Phe 

1620-1670 Amide I 

2900-3000 CH2-CH3 stretching 

3200-3600 H2O stretching 

 

Table 4.1: correspondence between Na-K ATPase peaks on the spectrum and 

chemical groups or amino acids. 

 

In the spectrum a high frequency band (3200-3600) cm-1 is evidenced, it can 

be identified as a spectroscopic signal compatible with water. Even if the 

analyzed sample under lyophilized conditions, to confirm that this band is 

really due to the hydration water around the protein, called water shell, we 

hydrated protein, by depositing a drop of MilliQ water on the sample powder. 

The spectrum acquired on the protein treated in this way is shown in black in  

Figure 4.11.  

The comparison shows that the sample of ATPase powder contains a part of 

water of hydration. 



Chapter 4 - Raman spectroscopy: Experimental campaigns…                                 87  

 

 

3000 3500

 

 

in
te

n
s
it
y
 (

a
rb

. 
u

n
it
s
)

Raman shift (cm
-1
)

Figure 4.11: comparison of water peaks between lyophilized powder (blue) and 

hydrated sample (black) 

 

 

Thanks to the use of ULF filters it has been possible also to investigate low-

frequency vibrations.  

Fig. 4.12 an Fig 4.13 show Stokes and Antistokes ATPase spectrum obtained 

with grating with 600 lines / mm (spectral resolution of <3 cm-1) and with 

1800 lines / mm (spectral resolution of <1 cm-1) respectively. 
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Fig. 4.12 Lyophilized Na-K ATPase Raman spectrum centered at 0 cm−1. (grating 

600 lines/mm) 
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Fig. 4.13 Lyophilized Na-K ATPase Raman spectrum centered at 0 cm−1. (grating 

1800 lines/mm) 

 

In both figures the central part of spectra around 0 cm−1 is not present. As a 

matter of fact, in this portion the Reyleigh peak, due to the laser source, cannot 

be filtered by ULF, therefore this part is totally uninteresting. 

By analyzing the spectra it is important to consider both Stokes and 

Antistokes regions; in fact the presence on both semi-axis of the same peak is 

a measure of the goodness of the test. 
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Peaks are clearly visible in correspondence of 27, 190, 300 cm-1 (0.81, 5 and 

9 THz) 

These peaks are not assigned in literature to any chemical group, as they 

should correspond to vibrations involving the entire protein or large portions 

of it.  

Such delocalized or global vibrations were investigated numerically by 

modeling the entire Na-K ATPase (see Chapter 5).  

Measurements on the sample in aqueous solution were repeated. Through 

successive measures we chose an amount of solute that would allow the 

collection of a Raman spectrum of good quality using the grating of 600 

lines/mm.  

Also for this acquisition the complete spectrum (in red in Figure 4.13) was 

collected merging 5 spectral ranges (i.e. grating centered at 750, 1400, 2100, 

2850, 3400 cm-1). The spectrum ATPase in aqueous solution is shown in 

Figure 4.13 in comparison with the one previously obtained from the powder. 

By the figure it can be seen as water acts like a sort of dumper, not shifting 

frequencies but lowering peaks. Obviously, adding water to the powder, peak 

around 3300 cm-1, which indicates vibrations of water molecules, arises. 
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Figure 4.13: comparison of complete spectra of Na-K ATPase in solution (red line) 

and in powder (blue line). 

 

 With the same grating (600 lines / mm) the spectrum shown in Figure 4.14 

was collected around origin. In this case, peaks clearly visible in dry samples 

are not present; this fact is probably caused by absorbance of water. Anyhow 

a low shoulder around 190 cm-1, like the one seen on dry powder, is visible.  

 



92       A. Bassani - Terahertz Vibrations in Proteins: Experimental and… 

 

 

 

-500 -400 -300 -200 -100 0 100 200 300 400 500

 

 

in
te

n
s
it
y
 (

a
rb

. 
u

n
it
s
)

Raman shift (cm
-1
)

 

Fig. 4.14: hydrated Na-K ATPase Raman spectrum centered at 0 cm−1. (grating 600 

lines/mm). 

 

In this Chapter the results of the experimental campaigns on Lysozyme and 

Na-K ATPase, have been presented. In addition to providing the complete 

Raman spectra of both protein, the attention has been focalized on low 

frequency regions of these spectra. In these regions, in fact, lie peaks related 

to vibrations involving the global protein or large parts of it: these vibrations 

will be deeply examined in the following chapter by means of numerical 

simulations. 

 





 

 

 

 

 



 

 

 

 

 

 

 

Chapter 5 

 

 

Numerical simulations: Lattice 

models of Lysozyme and Na-K 

ATPase  

 

In this chapter the results of numerical simulations on Lysozyme and Na-K 

ATPase are shown. 

In the first part of the chapter the software used for simulations is presented 

and all the parameters necessary to run the program are discussed. 

In the second part of the normal modes of the two proteins are illustrated. 

Furthermore, the mode shapes corresponding to the vibration frequencies of 

three amino acids present in both proteins (Tryptophan, Tyrosine and 

Phenylalanine) and detected by the Raman spectra are highlighted. 

 



            94 A. Bassani – Terahertz Vibrations in Proteins: Experimental and … 

 

 

 

 

 

 

5.1 Mechanical Model: Covalent bond, 

harmonic approximation, numerical parameters 

 

Molecular forces are difficult to be modelled. However, for small 

displacements, attractive/repulsive forces between atoms can generally be 

considered as linearly elastic (Feynman et al. 1964).   

Bonds between the same type of atom are covalent bonds, and bonds between 

atoms having electronegativities which differ by a little are also 

predominantly covalent. For covalent bonds, bond energies and bond lengths 

depend on many factors; however, there is a general trend in that the shorter 

the bond length, the higher the bond energy. The potential energy associated 

to a covalent bond is made of two parts, and can be empirically expressed as 

(Pauling 1960): 

                                 ( ) (with , 2),
m n

A B
U r m n m

r r
      (5.1) 

 

where A  and B  are positive constants (depending on the nature of interacting 

atoms), and r  is the distance between atoms. The first and the second terms 

of the right-hand side of Eq. (5.1) represent the attractive and the repulsive 

energy, respectively. The former prevails at large interatomic distances (large 

r ), while the latter dominates at short distances (small r ); note that the right-



Chapter 5 - Numerical simulations: Lattice models…                                      95  

 

 

hand side of Eq. (5.1) diverges for 0r  . For intermediate distances, a 

balance between the two terms is expected, with the consequent presence of 

a minimum of the potential energy (Fig. 5.1a). The equilibrium position 

(distance), 0r , is therefore defined by setting the first derivative of function 

 U r  equal to zero (minimum of potential energy): 

                                                              
0

d
0 .

d

U
r r

r
    (5.2) 

 

The interatomic force, d dF U r  , is attractive for 0r r  ( d d 0U r  ), 

repulsive for 0r r  ( d d 0U r  ), and null for 0r r  (Fig. 5.1a). Other 

empirical expressions of the potential ( )U r  can be adopted. For instance, the 

Morse potential has been specifically developed to describe the covalent bond 

between a couple of atoms (Morse 1929). However, unlike that of Eq. (5.1), 

the Morse potential does not diverge for 0r   and consequently it must be 

used for interatomic distances not much smaller than the equilibrium distance. 

The study of the small-amplitude atomic oscillations around the equilibrium 

position requires considering the second-order Taylor series expansion of the 

potential (harmonic approximation): 

                            
0 0

2
2

0 0 02

d 1 d
.

d 2 dr r r r

U U
U r U r r r r r

r r 

  
      

   
 (5.3) 
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Recalling Eq. 

(5.2) and defining the force constant (stiffness) k  as: 

                                            

0 0

2

2

d d
: ,

d dr r r r

F U
k

r r 

  
     

   
 (5.4) 

 

the harmonic approximation of the potential becomes (Fig. 10b): 

                                                             
2

0 0

1
.

2
U r U r k r r    (5.5) 

 

Therefore, near 0r  we obtain the linear expression for the interatomic force 

(Fig. 10b): 

  

                                                     0 ,F k r r kx      (5.6) 

 

where we have set  0x r r  . On these bases,   

                                             

2

2

d
0.

d

x
k x

t
                                            (5.7) 

results fully justified.  
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Fig. 5.1 Model of interatomic bond: potential energy versus interatomic distance 

(a), and harmonic approximation near the equilibrium distance (two atoms joined by 

a spring) (b)  

 

Numerical lattice models were built for some amino acids, full lysozyme and 

full Na-K ATPase. LUSAS finite element code was adopted (Lusas 2015). 

Ball-and-stick models were obtained, with masses concentrated at the nodes 

(atoms) and interatomic bonds replaced by linear-elastic, massless beams. 

Only covalent bonds were considered, neglecting all weaker bonds. The beam 

ends were internally clamped at each node in order to prevent rotational 

labilities (bending and torsion internally rigid constraints). Only the elastic 

axial behaviour of the beams was taken into account: this was achieved by 

providing each beam with bending and torsion rigidities much greater than 

axial rigidity, so to inhibit both bending and torsion deformations, in addition 
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to shear deformation. In general, the axial stiffness ik  of the i-th beam is 

expressed as [99]: 

                                                                i
i

i

EA
k

l
 , (5.8) 

 

being E (FL-2) the Young’s modulus (equal for all beams), iA  (L2) and il  (L) 

the cross-sectional area and the beam length, respectively. Each value was set 

so to reproduce the desired bond stiffness. Bending and (primary) torsion 

beam stiffness depend both on length il  and on bending, 
ijEI , and torsion, 

iGJ , rigidities, respectively; 
ijI  (L4) denotes the second moment of area 

(moment of inertia) of the cross-section with respect to the principal axis j  (

1,2j  ), G  (FL-2) is the shear modulus, and iJ  (L4) denotes the St. Venant 

torsion constant (Carpinteri 1997). Starting from beam lengths il  and local 

axial, bending, and torsion rigidities, the local (element) stiffness matrix eK  

can be computed (Bathe 1982, Zienkiewicz et al. 2005, Cheng 2001). On the 

other hand, knowing the point masses km  ( 1,2,...,k n ) allows to obtain 

also the local mass matrix e
M  (Bathe 1982, Zienkiewicz et al. 2005, Cheng 

2001). By rotating, expanding, and assembling the local matrices of stiffness, 

eK , and mass, 
e

M , the corresponding global matrices K  and M  are 

obtained. In our case, once given the required input data, all computations 

were automatically done by the adopted software. 
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Therefore, the undamped free dynamics of a structural assembly with n  

degrees of freedom is governed by the following homogeneous linear system 

(generalized eigenproblem) (Clough et al. 1975, Cheng 2001) 

                                                2

1 1
K M x 0
n n n n n n


   
  ,  (5.9) 

 

the non-trivial solution of which gives the eigenvalues 
2  (square of the 

natural angular frequencies of the system) by solving the algebraic equation 

of order n  (characteristic equation) resulting from the following condition:  

                                                 2det 0.K M   (5.10) 

 

Once the eigenvalues have been determined, Eq. (5.9) allows to obtain the 

eigenvectors x  (vibration modes). A system with n  degrees of freedom will 

therefore have n  natural frequencies as well as n  vibration modes. The 

solution of the eigenvalue-eigenvector problem was obtained by the adopted 

finite element code. All models were left unconstrained in the 3D space; thus, 

six rigid motions had to be excluded from each analysis. 
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Fig. 11 Finite element lattice model of amino acids: phenylalanine (a), 

tyrosine (b), and tryptophan (c)   

 

Atom masses and bond stiffnesses are listed in Tab. 5.1. Interatomic 

distances’ order of magnitude is 10−10 m. Since we are dealing with powers of 

ten which are not appropriate for computer calculations, a numerical scaling 

was introduced. We remark that this scaling must not be intended as a physical 

scaling, being it just an artifice introduced for ease of computation. The 

adopted numerical scaling is listed in Tab. 5.2. According to that scaling, the 

conversion between the real (subscript r) and the numerical (subscript n) 

frequencies (in Hz) results to be the following: 

                                                        
1310 .r nf f   (5.11) 

 

The input parameters introduced in the analyses are listed in Tab. 5.3. Note 

that the values of Young’s modulus and cross-sectional area in Tab. 5.3 have 
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no physical basis: they were chosen such that, through Eq. (5.8), the required 

axial stiffness is obtained. 

3D 3-node thin beam elements were used, with 3 subdivisions per element; 

however, the number of subdivisions has no influence on our analysis since, 

as pointed out before, we are only interested in the axial behaviour 

(bending/torsion deformations are disregarded; see the related inertia 

constants in Tab. 5.3).  

 

 

Atom  Atom mass (kg)  Bond 

Bond 

stiffness 

(N m−1) 

Carbon (C) 

Nitrogen (N) 

Oxygen (O) 

1.994475x10−26 

2.325918x10−26 

2.656698x10−26 

 

C−C 

C=C 

C−N 

C−O 

180 

320 

160 

190 

 

Tab. 5.1 Atom masses and bond stiffnesses 

 

Physical quantity Scaling 

Mass, M (kg) 

Distance, L (m) 

Stiffness, F L−1 (N m−1) 

numerical = real x1026 

numerical = real x1010 

numerical = real x100 

 

Tab. 5.2 Scaling between real and numerical quantities 
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Mass  
Elastic properties 

of beams 
 

Geometric properties 

of beams cross-section 

Point (atom) 

mass, kg 

mC = 1.994475 

mN =2.325918 

mO =2.656698 

 

Beam mass, 

kg m−3 

= 0 

 

 

 

          Young modulus,     

N m−2 

E = 3x105  

 

Poisson ratio*,           

−0.3 

 

* irrelevant for 

present analysis 

 

 

 

 

Area, m2 

           AC−C = 0.9240x10−3 

AC=C = 1.4293x10−3 

AC−N = 0.7840x10−3 

AC−O = 0.9057x10−3 

 

Principal second 

moments of area, m4 

I1 = I2 = 1x106 

 

 Torsion constant, m4 

J = 1x106 

 

Tab. 5.3 Input data for numerical analysis 
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5.2 Results of numerical simulations of 

Lysozyme: Amino acids and global vibrations 

Figure 5.2 shows the mode shapes corresponding to the vibration frequencies 

indicated in the Raman spectrum of Figure 4.7 (see Trp, Tyr, and Phe peaks). 

These modes mainly involve deformations (breathing) of the rings. The 

numerical frequencies in Figure 5.2 are very close to the corresponding 

experimental values.  

 

 

 

 

 

 

                                                                                                     

 

 

 

                    a)   25.15 THz (838.3 cm−1)                          b)  24.74 THz (824.7 cm−1) 

        

 

 

 

 

 

                  c)  23.35 THz   (778.3 cm−1) 

   

Fig. 5.2 Numerical mode shapes and related frequencies corresponding to ‘Phe’, ‘Tyr’, and 

‘Trp’ peaks in Figure 4.7: phenylalanine (a), tyrosine (b), and tryptophan (c)   
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Fig. 5.3 shows the numerical model of lysozyme implemented in LUSAS. To 

import the entire geometry of the protein on our software, a connectivity 

matrix was created, in MATLAB, based on atom coordinates taken from the 

RCSB Protein Data Bank by identification code 4YM8 for the type of 

Lysozyme we modelled (http://www.rcsb.org/pdb). 

The result is a tree-like three-dimensional structure. 1020 connections were 

created among the 1000 point masses (atoms) constituting the enzyme. The 

average interatomic distance is equal to 0.141 nm. A .dxf file was created by 

MATLAB and therefore imported in LUSAS to construct the structural 

geometry. 

 

 

http://www.rcsb.org/pdb
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Fig. 5.3 Lysozyme finite element lattice model 

 

A constant value of the point mass 2.37 kgam   was used for all atoms 

(actual average atom mass equal to 
262.37 10 kg ); the beam mass density  

  was set equal to zero. The elastic properties and the bending and torsion 

constants are the same as in Tab. 5.3. The cross-sectional area A  was set 

equal to 
49.4 10  m2, constant for all beams. The default value of 4 

subdivisions per beam element was used. The adopted numerical scaling is 

the same as before (see Tab. 5.2), so Eq. (5.11) still holds.  

Using the area 
49.4 10A    m2, Young’s modulus 

5 23 10 NmE   , and 

the average distance 1.41ml  , Eq. (5.8) yields an average axial (bond) 

stiffness k  equal to 200 N m−1. 

Fig. 5.4 shows the mode shape found by the numerical model for a frequency 

close to the large peak on the left of the Raman spectrum shown in Fig. 4.7. 

The experimental and numerical frequencies are respectively equal to 0.84 

THz (28.0 cm−1) and 0.88 THz (29.3 cm−1). This mode is clearly a global one, 

that involves at least half protein. The frequency spectrum is broad: other 

global modes were found, as well as many localized modes. In general, the 

higher frequencies are related to localized vibration modes. 

Fig. 5.4 Global vibration mode of lysozyme at 0.88 THz (29.3 cm−1). 
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5.3 Results of numerical simulations of Na-K 

ATPase 

Fig. 5.5 shows the lattice model of Na-K ATPase implemented in LUSAS. 

Using the same strategy explained for lysozyme using coordinates of RCSB 

Protein Data Banka, code 2ZXE, a connectivity matrix was created in 

MATLAB, 

The result is a Y-like three-dimensional structure. Among the 10131 point 

masses (atoms) constituting the protein, 10351 connections were created.  The 

average interatomic distance is equal to 0.149 nm. A .dxf file was created by 

MATLAB and therefore imported in LUSAS to construct the structural 

geometry. 

 

Fig. 5.5 Na-K ATPase finite element lattice model 
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For Na-K ATPase model a constant value of the point mass  ma = 1.74 kg was 

used for all atoms (the actual average atom mass is equal to 1.74 x 10-26 kg); 

the beam mass density    was set equal to zero. The elastic properties and 

the bending and torsion constants are the same as in Tab. 4.3. The cross-

sectional area A  was set equal to 
49.4 10  m2, constant for all beams. The 

default value of 4 subdivisions per beam element was used. The adopted 

numerical scaling is the same as before (see Tab. 5.2), so Eq. (5.11) still holds. 

Using the area 
49.4 10A    m2, Young’s modulus 

5 23 10 NmE   , and 

the average distance 1.41ml  , Eq. (5.8) yields an average axial (bond) 

stiffness k  equal to 200 N m−1. 

As it is evident from the spectra of lysozyme and of  ATPase,  peaks related 

to the chemical groups are the same (for details see section 5.2), consequently 

is more interesting to numerically simulate vibration modes at low frequency, 

those that involve large portions of protein or the entire protein. 

As explained in chapter 4, in the spectral region near to the origin, below 500 

cm-1, peaks are located around 27, 190, 300 cm-1 (0.81, 5 and 9 THz). 

Therefore, by using a lattice model, these frequencies and vibrational modes 

are investigated. 

Fig. 5.6 shows the mode shape found by the numerical model for a frequency 

close to the peak at 27 cm-1. The experimental and numerical frequencies are 

respectively equal to 0.81 THz (27.0 cm−1) and 0.82 THz (27.3 cm−1). This 

mode is clearly a global one, that involves all the top-left part of the protein 

that extends inside the cell.  
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Fig. 5.6: top left vibration mode at 0.82 THz 

 

Fig. 5.7 shows the mode shape found by the numerical model for a frequency 

close to the peak at 190 cm-1. The experimental and numerical frequencies are 

respectively equal to 5.7 THz (190 cm−1) and 5.73 THz (191 cm−1).  

Also in this case, vibration involves all the top-right part of the protein that, 

as the previous one, extends inside the cell. 

 

Fig. 5.7: top right vibration mode at 5.73 THz 
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Fig. 5.8 shows the mode shape found by the numerical model for a frequency 

close to the peak at 300 cm-1. The experimental and numerical frequencies are 

respectively equal to 9 THz (300 cm−1) and 9.06 THz (302 cm−1).  

In this case, even the mode involves a large part of the protein, this one 

belongs to the bottom of the protein, the part that extends outside the cell. 

 

Fig. 5.8: bottom vibration mode at 5.73 THz 

 

As appears clearly from numerical simulations, all these low frequency 

modes, refer to large portions of protein, while modes at higher frequencies, 

around tens of TeraHertz, are characteristic of  small part of protein, such as 

chemical groups, amino acids, water molecules and so on. 

This conclusion is in perfect agreement with the hypothesis of Chapter 1 and 

3 (see sections 1.2 and 3.4). 
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Chapter 6                                                      

Conclusions  

Important protein biological functions are driven by structural configuration 

changes, i.e. folding. This is a complex phenomenon not completely understood at 

present. Recent studies have argued that proteins mechanical vibrations can play a 

significant role: we cannot exclude that large conformational changes may occur as 

the result of nano-instabilities induced by resonant mechanical oscillations.  

In this thesis, the free dynamics of crystallized powder, protein powder and hydrated 

powder of two types of protein (Lysozyme and Na-K ATPase) is analyzed 

experimentally and numerically. 

Raman spectroscopy measurements were conducted and the results are compared to 

the corresponding ones from the literature, where literature was present. In 

particular, the use of ULF filters allowed to investigate also the lower frequencies, 

under 400 cm-1, (i.e., those corresponding to global vibrations).  

Moreover, the linear normal modes of well-known amino acids contained in 



112        A. Bassani – Terahertz Vibrations in Proteins: Experimental and … 

 

proteins (phenylalanine, tyrosine, tryptophan) as well as those of the whole proteins, 

both Lysozyme and Na-K ATPase, were investigated by Modal Analysis. 

The approach adopted here belongs to classical mechanics. More precisely, we 

referred to biological materials and, starting from data of mechanical properties 

taken from the literature (e.g., mass, bond stiffness/energy), we evaluated the natural 

frequencies and mode shapes corresponding to small-amplitude vibrations around 

the equilibrium configuration.  

The obtained results show a very good correspondence to the experimental 

evidences. The resonant frequencies found range from hundreds of GHz (entire 

protein or large portions of it) to tens of THz (chemical groups/amino acids).  

In our numerical simulations we found values for resonant frequencies lower than 

the ones visible on Raman spectra, despite the presence of Ultra Low Frequency 

filters: this fact refers to the reason that, even with ULF filters we can get near the 

origin of the spectrum, frequencies lower than tens of Gigahertz are anyway covered 

by the Rayleigh peak. It could be very interesting to investigate experimentally these 

vibrations with others equipment, i.e. near field microscopy or femtosecond optical 

Kerr-effect (OKE) spectroscopy. 

Numerical analyses like those conducted here can be performed with standard Finite 

Element programs and require a computational cost lower than molecular dynamics 

simulations (de novo or ab initio). 

The results, although less general than those given by molecular dynamics analyses, 

can easily give precious information about the vibrational behaviour of proteins 

around a specific geometric configuration.  

As a matter of fact, it is possible to investigate vibration mode shapes (previously 

unknown) corresponding to specific frequencies identified by Raman measurements 
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or other techniques. This can be useful to characterize new proteins as well as 

unknown behaviours of common proteins. 

This thesis does not have the will to be exhaustive about a vast and still relatively 

unknown topic as the vibrations at the nanoscale in biological materials and their 

possible implications in cell metabolism. This work is the first step in a larger 

project that tries to bring together the knowledge of engineers and biologists. 

As we have seen in Chapter 3, when a structure vibrates near its natural frequencies, 

instability can occur easily, and instability can cause a change of configuration; 

transferring this concept to proteins structure, we shall think that the right stimuli at 

the right frequencies could cause changes in the 3D structure…consequences of this 

fact are all to be discovered. 
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