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Abstract

This paper discusses the use of higher-order mapping functions for enhancing the physical rep-

resentation of refined beam theories. Based on the Carrera Unified Formulation (CUF), ad-

vanced one-dimensional models are formulated by expressing the displacement field as a generic

expansion of the generalized unknowns. According to CUF, a novel physically/geometrically

consistent model is devised by employing Legendre-like polynomial sets to approximate the gen-

eralized unknowns at the cross-sectional level, whereas a local mapping technique based on the

blending functions method is used to describe the exact physical boundaries of the cross-section

domain. Classical and innovative finite element methods, including hierarchical p-elements

and locking-free integration schemes, are utilized to solve the governing equations of the uni-

fied beam theory. Several numerical applications accounting for small displacements/rotations

and strains are discussed, including beam structures with cross-sectional curved edges, cylin-

drical shells, and thin-walled aeronautical wing structures with reinforcements. The results

from the proposed methodology are widely assessed by comparisons with solutions from the

literature and commercial finite element software tools. The attention is focussed on the high

computational efficiency and the marked capabilities of the present beam model, which can deal

with a broad spectrum of structural problems with unveiled accuracy in terms of geometrical

representation of the domain boundaries.
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1 Introduction

This paper presents a novel refined beam model with shell-like capabilities that makes use of

a higher-order mapping methodology to enhance the geometrical accuracy for the modelling

of physical boundaries of curved cross-sections domains. Beam theories have become an

important tool for the study of a large number of structural problems, but still their usage is

limited by the simplicity of the geometries they can deal with. The main idea is to develop

beam models able of representing the exact geometry of the beam cross-section regardless of

the complexity of the shape and the refinement of the theory kinematics.

One-dimensional theories are commonly used for many applications in several engineering

fields such as aerospace, civil or bio-mechanical fields, in which slender structures are frequent.

Commonly, beam theories make use of a reduced number of degrees of freedom and they have

demonstrated to be very efficient in many cases in comparison with more cumbersome 2D and

3D models. Although classical beam theories, introduced by Euler [1] and Timoshenko [2], are

only suitable for a limited class of problems, in particular long homogeneous beams subjected

to bending, the development of more sophisticated models with enriched kinematics enables

to accurately solve problems that usually require the use of 2D or 3D elements, with a great

advantage in terms of computational costs. Many refined beam theories are available in the

literature. A discussion of various of these models can be found, for instance, in Kapania and

Raciti [3, 4] and in Carrera et al. [5]. The exact solution of the Timoshenko beam theory was

used by Reddy [6] to develop a locking-free finite element model. Higher-order beam theories

were also discussed by Vinayak et al. [7], who made use of the Lo-Christensen-Wo theory

to develop finite element formulations, with a particular attention on flexure of beams and

plates. An approximation of shear stresses in prismatic beams was introduced by Gruttmann

et al. [8], who considered the Saint-Venànt torsion and bending. The application of this

model to thin-walled beams was then presented in Gruttmann and Wagner [9]. The effects

of higher-order shear deformation theories were studied by Petrolito [10], with a comparison

against classical beam theories. The Generalized Beam Theory (GBT), introduced by Schardt

[11] and developed by Davids et al. [12, 13], represented an extension of the conventional

engineering beam theories by considering the cross-section distortion. The GBT was employed

by Silvestre and Camotim [14, 15] for the study of thin-walled orthotropic beams and then

by Silvestre [16] to analyse the elastic buckling behaviour of circular hollow sections, such

as cylinders and tubes. On non-linear beam kinematics, Simo and Vu-Quoc [17] presented

an extension of the finite strain beam formulation to incorporate shear and torsion-warping

phenomena and Pimenta and Campello [18] introduced a fully non-linear rod model that

accounted for in-plane cross-sectional changes and out-of-plane warping. Other contributions

including cross-sectional in-plane distorsion and warping for thin-walled beams can be found

in Gonçalves et al. [19] and Campello and Lago [20], among the others.

In this framework, the Carrera Unified Formulation (CUF), developed by Carrera and his

colleagues during the past two decades, was devised to overcome the limitations of conven-

tional beam models by describing the kinematics of structural theories in a unified manner
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that allows to write the finite element arrays and, thus, the governing equations in a hier-

archical and compact form. Initially, Carrera [21, 22] introduced CUF for two-dimensional

structural and multi-field problems. The extension of CUF to beam models was proposed

by Carrera and Giunta [23], where the authors developed N-order approximations based on

MacLaurin polynomial expansions of the primary mechanical variables. Taking advantage of

the generality of the CUF, any theory of structure can be implemented in a straightforward

way. A detailed description of the most relevant theories based on CUF is further included

in this paper.

The quality of the geometric approximation represents a major issue not only for beam

models such as the aforementioned ones, but in general for the mathematical description

of structural problems, specially in the domain of the Finite Element Method (FEM). The

finite element space is characterised by three main factors, i.e. the finite element mesh, the

polynomial order of the elements and the mapping functions. A good approximation of a

certain structural problem requires a proper combination of these parameters to minimize the

error inherently introduced. In conventional finite element methods, also known to as the h-

version of FEM, the solution accuracy and, eventually, the approximation of the geometrical

domain are mutually enhanced by reducing the size of the isoparametric elements. This

technique implies that complex geometrical representations may induce the use of highly

refined meshes. On the other hand, in the p-version of FEM, introduced by Szabó and

Babǔska [24], the mesh is fixed and the quality of the approximation is determined by the

polynomial degree of the elements. The coarse discretizations used for the p-version make

necessary to have a good geometric representation of the physical domain to keep the mapping

errors negligible. Gordon and Hall [25] presented a method to introduce the exact geometrical

description of the boundaries into the mapping functions, called the blending function method.

This method, which is described with more detail hereafter, has demonstrated to be very

convenient to define curved domains of p-version finite elements, as shown in Düster et al.

[26]. A generalization of the isoparametric mapping to p-version elements was introduced by

Királyfalvi and Szabó [27], who developed a technique denoted to as quasi-regional mapping,

that makes use of piecewise polynomials to represent the curved boundaries and the blending

function method to define the mapping functions. Another way to deal accurately with

complex domain descriptions was inspired by Computer Aided Design (CAD) tools to Hughes

et al. [28], who formulated the so-called isogeometric analysis. The isogeometric analysis

makes use of FEM basis functions constructed from non-uniform rational b-splines (NURBS)

and represents a tentative to link mesh generation and CAD geometry. Nevertheless, it is

important to underline that, unlike the p-version of FEM, the isogeometric analysis is, in fact,

an isoparametric formulation.

Although these technologies for the geometrical description of the problem boundaries

have been introduced and widely utilized in FEM to represent the reference domain (e.g.,

the beam axis in 1D models and the plate mid-plane in the case of 2D models), blending

functions as well as NURBS can be opportunely employed to develop refined kinematics
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theories of structures. In this work, for example, blending functions are used along with a

refined beam structural model to represent the cross-section domain correctly so as to allow

for the exact evaluation of the classical and higher-order cross-sectional moment parameters.

It should be underlined that the present methodology is restricted to the small displacements

and strains regime, without any loss of generality.

The paper is structured as follows: first, an overview of different variable kinematic CUF

models is presented in Section 2, with a focus on Hierarchical Legendre Expansions. Particu-

lar attention is given to the application of these models to curved and complex cross-sections

through mapping techniques. The basis of the finite element method for beams in the frame-

work of CUF is provided in Section 3, including a description of the fundamental nucleus of

the stiffness matrix derived from the Principle of Virtual Displacements (PVD). The numer-

ical results, obtained for several examples of beam and shell-like structures, are addressed in

Section 4, and the main conclusions of the work are outlined in Section 5.

2 Refined CUF models

According to Washizu [29], the displacement field of beam theories can be enriched with

an arbitrary number of higher-order terms in order to overcome the limitations of classical

models and to deal with complex mechanics and phenomena, such as torsion, warping, and

in-plane deformations. In the framework of CUF, the displacement field is expressed in a

unified manner as a generic expansion of the generalized unknowns by arbitrary functions of

the cross-section domain coordinates:

u(x, y, z) = Fτ (x, z)uτ (y) τ = 1, 2, ...,M, (1)

where uτ(y) is the vector of general displacements laying along the beam axis y. According

to Einstein notation, τ denotes summation. Fτ (x, z) corresponds to the expanding functions

on the cross-section, Ω, which is defined in the Cartesian plane x−z, and M is the number of

terms in the expansion. In fact, the choice of Fτ (x, z) determines the class of beam theory to

be adopted. A brief introduction of the main CUF beam theories that have been introduced

in the past few years is provided in the following, with a focus on HLE.

2.1 Taylor Expansions

Taylor Expansion (TE) models employ hierarchical sets of 2D polynomials from MacLaurin

series of the type xizj for the definition of Fτ (x, z). For instance, the second order model,

N=2, makes use of constant, linear and quadratic expansion terms:

ux(x, y, z) = ux1(y) + x ux2(y) + z ux3(y) + x2 ux4(y) + xz ux5(y) + z2 ux6(y)

uy(x, y, z) = uy1(y) + x uy2(y) + z uy3(y) + x2 uy4(y) + xz uy5(y) + z2 uy6(y)

uz(x, y, z) = uz1(y) + x uz2(y) + z uz3(y) + x2 uz4(y) + xz uz5(y) + z2 uz6(y).

(2)
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It is clear that the classical beam theories can be defined as particular cases of TE of first

order (N=1), including the constant and linear terms in Eq. (2). In these class of models,

the generalized displacement variables (i.e. displacements and their derivatives) are expanded

globally over the cross-section from the beam axis. The polynomial order of the theory is

then increased in a straightforward manner by adding higher-order terms to the kinematic

field, enhancing the accuracy of the approximation. TE models have been extensively studied

in many works, see for example [30, 31, 32, 33, 34].

2.2 Lagrange Expansions

Lagrange Expansion (LE) beam theories are based on the use Lagrange-type polynomials as

generic expansions on the beam section domain, Fτ . The cross-section physical surface is

discretize into a number of local expansion sub-domains, whose polynomial degree depends

on the type of Lagrange expansion employed. Three-node linear L3, four-node bilinear L4,

nine-node quadratic L9, and sixteen-node cubic L16 polynomials have been developed in the

framework of CUF. For the sake of brevity, their expressions are not included here, but they

can be found in Carrera and Petrolo [35]. For instance, the kinematic field of the L9 beam

model reads:

ux(x, y, z) = F1(x, z) ux1(y) + F2(x, z) ux2(y) + F3(x, z) ux3(y) + ...+ F9(x, z) ux9(y)

uy(x, y, z) = F1(x, z) uy1(y) + F2(x, z) uy2(y) + F3(x, z) uy3(y) + ...+ F9(x, z) uy9(y)

uz(x, y, z) = F1(x, z) uz1(y) + F2(x, z) uz2(y) + F3(x, z) uz3(y) + ...+ F9(x, z) uz9(y),

(3)

where F1,...,F9 form a usual quadratic Lagrange polynomial set. The main feature of LE

models is that they make use of local expansions of pure displacement variables, being these

arbitrary placed over the cross-section surface. This characteristic enables to capture complex

3D-like solutions at a global-local scale and to increase the accuracy of the solution in particu-

lar zones of interest. Recently, LE beam models have been employed for the Component-Wise

(CW) analysis of composite laminates at various scales [36], aerospace structures [37, 38], civil

constructions [39, 40], and marine ship hulls [41].

2.3 Hierarchical Legendre Expansions

This class of CUF beam theories was devised in Carrera et al. [42] by adopting hierarchical

series of Legendre-type polynomials to expand the generalized displacement variables over

the cross-section. Hierarchical Legendre Expansion (HLE) models combine the main features

of the previous CUF beam models, i.e. the hierarchy of the high-order terms of TE and the

geometric discretization of the beam section surface of LE. HLE models employ a set of hier-

archical Legendre-like polynomials (see [24, 43]) as Fτ generic functions on the cross-section

domains. These functions are utilized in this work in conjunction with a high-order mapping

technique to generate non-isoparametric expansions over the cross-section that allow to cap-

ture the exact geometry of curved surfaces, as described in the next section. Figure 1 shows

5



1

2

3

4

5

6

7

P
o

ly
n

o
m

ia
l 
d

e
g

re
e

vertex expansions

side expansions

internal expansions

τ=1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

18 19 20 21

24 25 26 27

31 32 33 34

17

22 23

28 29 30

35 36 37 38

Figure 1: Linear to seventh-order, hierarchical Legendre-type Fτ expansion used for HLE
models.

all the polynomials used in HLE beam theories from the 1st to the 7th order. Quadrilateral

nodal, edge and internal expansions conform the hierarchical set, see [44].

Vertex expansions The nodal or vertex modes are analogue to the linear Lagrange poly-

nomials (L4). They are defined as follows:

Fτ =
1

4
(1− rτr)(1− sτs) τ = 1, 2, 3, 4, (4)

where r and s vary over the domain between −1 and +1, and rτ and sτ represent the vertex

coordinates in the natural system of coordinates.

Side expansions The side modes are defined for p ≥ 2, being p the polynomial order, and

their expressions are:

Fτ (r, s) =
1

2
(1− s)φp(r) τ = 5, 9, 13, 18, ... (5)

Fτ (r, s) =
1

2
(1 + r)φp(s) τ = 6, 10, 14, 19, ... (6)

Fτ (r, s) =
1

2
(1 + s)φp(r) τ = 7, 11, 15, 20, ... (7)

Fτ (r, s) =
1

2
(1− r)φp(s) τ = 8, 14, 16, 21, ..., (8)

where φp corresponds to the one-dimensional internal Legendre-type modes, see [24, 42] and

Eq. (31). These functions are defined in such a way that the C0 continuity at the interface

of cross-section domains is assured.
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Internal expansions The Fτ internal expansions are included for p ≥ 4 and they vanish

at all the edges of the quadrilateral domain. In total, there are (p − 2)(p − 3)/2 internal

polynomials. For instance, the sixth-order polynomial set contains three internal expansions

(see Fig. 1), which are

F28(r, s) = φ4(r)φ2(s) (9)

F29(r, s) = φ3(r)φ3(s) (10)

F30(r, s) = φ2(r)φ4(s). (11)

It is important to remark that the hierarchy of this model implies that the set of functions

of a particular order contains all the polynomials of the lower degrees. As far as the sixth-

order HLE model is concerned, the set of functions of the kinematic expansion terms includes

the internal polynomials introduced in Eqs. (9), (10) and (11), plus all the internal, side and

vertex functions of the same polynomial order and below, i.e τ = 1, ..., 30. As a consequence,

the accuracy of the approximation can be enhanced by increasing the polynomial order of

the theory, which leads to the use of coarse discretizations at the cross-sectional level and the

need of a proper mapping for large expansion domains.

2.4 Cross-section mapping

Once the kinematics of the beam are defined, the calculation of the stiffness terms goes through

the evaluation of cross-sectional moment parameters (e.g., first and second moments of area in

classical beam theories). These generalized moment of area are computed by integrating the

cross-sectional functions Fτ over the cross-section of the beam, Ω. Hence, it is clear that the

correct geometrical description of Ω is of fundamental importance when dealing with complex

geometries and curved-section beams.

The present paper takes inspiration from FEM to respond to the aforementioned demand.

As it is known, conventional finite elements make use of isoparametric formulations to map

the geometry of a structural problem. This means that the shape of the physical boundaries

of the domain is described by the same functions that are used to interpolate the unknown

variables. In the CUF framework, this approach is also employed for the mapping of the

cross-section in LE models. However, as for the p-version of FEM, the elevated expansion

orders of the HLE enable the use of coarse domain discretizations of the cross-section sur-

face. It is in this context that it becomes important to represent the curved boundaries of

large domains accurately through an independent description of the geometry. The blending

function method, introduced by Gordon and Hall [25], serves to this purpose.

First, let us consider the mapping functions of a certain expansion domain, see for example

Fig. 2. These mapping functions, represented by Q, are defined in the x -z plane of the cross-
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Figure 2: Mapping of a cross-sectional quadrilateral domain with one curved edge, see [24].
The mapping functions are represented by Q = (Qx Qz).

section surface as:

x = Qx(r, s) (12)

z = Qz(r, s), (13)

where r and s are the coordinates in the natural plane of the quadrilateral domain.

First-order mapping

If isoparametric first-order expansion domains are used, as for example in Lagrange-type L4

CUF models, the approximation of the geometry is obtained through linear mapping. The

mapping functions of quadrilateral elements are described as follows

x = Qx(r, s) = 1
4
(1− r)(1− s)X1 + 1

4
(1 + r)(1− s)X2 (14)

+1
4
(1 + r)(1 + s)X3 + 1

4
(1− r)(1 + s)X4

z = Qz(r, s) = 1
4
(1− r)(1− s)Z1 + 1

4
(1 + r)(1− s)Z2 (15)

+1
4
(1 + r)(1 + s)Z3 + 1

4
(1− r)(1 + s)Z4,

which in a simplified manner can be rewritten as:

x = Fτ (r, s) Xτ i = 1, ..., 4, (16)

where x = (x z)T is the geometry vector of the cross-section, Xτ = (Xτ Zτ )
T are the vertex of

the quadrilateral domain and τ denotes summation. Fτ are exactly the same linear functions

as used in the description of the kinematics of the L4 beam model. The lector can notice that

this expression is, in fact, analogous to the Eq. (1) used to define the displacement field and

it does not allow to represent curved cross-section edges, like the one in Fig. 2.
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Second-order mapping

Extending this procedure to biquadratic quadrilateral domains, it is possible to represent

curved boundaries by second-order polynomials. This is the case of Lagrange-type L9 beam

models, whose cross-sectional mapping, in the same compact notation, can be expressed as

x = Fτ (r, s) Xτ i = 1, ..., 9, (17)

where Fτ (r, s) correspond to the biquadratic expansions polynomials of the L9 model. Again,

the geometry of the domain is represented by the same interpolation functions of the kinematic

field, like in Eq. (1). Therefore, this approach is also considered as isoparametric mapping,

and it allows to generate slightly curved domains.

The blending function method

As it has been mentioned previously, when using HLE it is of key importance to ensure that

the representation of the domain is accurate enough to make the geometric approximation

error negligible. The blending function method enables one to include the exact shape of

the cross-section by introducing parametric polynomials of an arbitrary order to describe the

shape of curved edges. The boundary surfaces of the domains are incorporated directly into

the mapping functions and no geometrical error is introduced in the modelling procedure.

Obviously, this approach cannot be considered as isoparametric since the mapping functions

do not correspond with the expansion functions, Fτ .

To present the method, first we consider a quadrilateral domain in which one of the sides

is curved, see Fig. 2. In that domain, the coordinates of the curved edge are represented by

the parametric functions x = x2(s) and z = z2(s). If a cubic parametrization is chosen, the

functions take the form of third-order polynomials as

x2(s) = ax + bxs+ cxs
2 + dxs

3 (18)

z2(s) = az + bzs+ czs
2 + dzs

3. (19)

These functions are defined in such a way that x2(−1) = X2, x2(1) = X3, z2(−1) = Z2 and

z2(1) = Z3, with −1 < (r, s) < 1. Then, according to the blending function method, the

mapping functions are written as:

x = Qx(r, s) = Fτ (r, s)Xτ +
(
x2(s)−

(1− s
2

X2 +
1 + s

2
X3

))1 + r

2
(20)

z = Qz(r, s) = Fτ (r, s)Zτ +
(
z2(s)−

(1− s
2

Z2 +
1 + s

2
Z3

))1 + r

2
, (21)

where τ = 1, ..., 4. In this expression, the first term corresponds to the linear mapping

functions defined in Eq.(14) and (15). The second addend, instead, accounts for the difference

between the parametric functions, x2(s) and z2(s), and the x and z coordinates of the straight

line that connects vertices 2 and 3 of the quadrilateral domain. The term 1+r
2

is the linear
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Figure 3: Mapping of the cross-section domain by the blending function method.

blending function and it takes the unity value along side 2 and it goes to zero on side 4,

ensuring that the mapping of one side does not have any effect on the opposite one.

In the general case of a quadrilateral domain with all sides curved, the previous procedure

is expanded to all the edges to have

x = Qx(r, s) =
1

2
(1− s)x1(r) +

1

2
(1 + r)x2(s) +

1

2
(1 + s)x3(r) (22)

+
1

2
(1− r)x4(s)− Fτ (r, s)Xτ (23)

z = Qz(r, s) =
1

2
(1− s)z1(r) +

1

2
(1 + r)z2(s) +

1

2
(1 + s)z3(r) (24)

+
1

2
(1− r)z4(s)− Fτ (r, s)Zτ , (25)

where all the sides of the element have been represented by parametric functions. Figure 3

shows the application of the blending function method in the framework of HLE beam models.

This method allow us to reproduce the exact shape of complex section geometries with the use

of a minimum number of local expansions. The main advantages of the use of HLE mapped

models are two: first, the reduction of the error related to the geometrical approximation,

and second, but not less important, the substantial savings in terms of computational cost

and modelling time. Once the cross-section discretization is fixed, the polynomial order of

the expansion domains can be easily trimmed to a desired level of accuracy, which leads to a

efficient computation of the solutions.

3 Finite element formulation

The main advantage of CUF is that it allows to write the governing equations and the FEM

arrays in a unified and hierarchal manner which is affected neither by the choice of the theory

of structure, represented by Fτ , nor by the FE shape functions Ni. In fact, the class (e.g.,

TE, LE, HLE) and the order of the beam theory becomes in this way an input of the model.

The generalized displacements are described as a function of the unknown nodal vector, qτi,
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and the 1D shape functions, Ni, as follows

uτ (y) = Ni(y)qτi, i = 1, 2, ..., n, (26)

where n is the number of shape functions per element, and the unknown nodal vector is

defined as

qτi =
{
qxτi qyτi qzτi

}T
. (27)

The beam element formulation depends on the choice of the shape functions Ni(y). Two

different beam elements are employed in the present work: Lagrange-type and Legendre-type

elements.

Lagrange beam elements. Lagrange-type polynomials are the most common choice in

finite element formulations. They are used to interpolate the unknown displacement variables

at the element nodes, whose number determines the polynomial order of the shape functions

Ni. For the sake of brevity, their expressions are not included here, but they can be found in

Carrera et al. [30] for linear, quadratic and cubic interpolations.

Legendre beam elements. The interpolation of the unknowns is conducted by employ-

ing a hierarchical set of 1D Legendre-type polynomials, Lî, which leads to a set of shape

functions of the following form

N1(r) =
1

2
(1− r) (28)

N2(r) =
1

2
(1 + r) (29)

Ni(r) = φi−1(r), i = 3, 4, ..., n, (30)

where r correspond to the local coordinate in the natural domain of the beam element [-1,1],

and φj(r) is

φî(r) =

√
2̂i− 1

î

∫ r

−1

Lî−1(x) dx, î = 2, 3, 4, ..., (31)

as defined in [24, 42]. The set of polynomials is defined in a hierarchical manner and, as

a consequence, the polynomial order of the element can be increased straightforwardly by

adding internal shape functions of higher orders. The approximation error is, in fact, reduced

by following a p-refinement method in which the longitudinal mesh is fixed and the order is

trimmed to a desired level of accuracy.

3.1 Fundamental nuclei

The principle of virtual displacements (PVD) is recalled hereinafter to obtain the governing

equations. Basically, the PVD states that the virtual variation of the internal work must be
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equal to the virtual variation of the external work for the structure to be in equilibrium,

δLint = δLext. (32)

In addition, the internal work corresponds to the elastic strain energy

δLint =

∫
l

∫
Ω

δεεεTσσσ dΩ dy, (33)

where l is the length of the beam and Ω represents the surface of cross-section domain. By

considering the CUF kinematic field included in Eq. (1), the finite element discretization of

Eq. (26) and the 3D constitutive and geometrical relations1, the expression of the internal

work can be rewritten in a compact manner as follows (see [45])

δLint = δqTτiK
τsijqsj, (34)

where Kτsij represents the 3× 3 fundamental nucleus of the element stiffness matrix. In the

present work, Kτsij is derived under the assumptions of small displacements and strains. An

important fact to remark is that the formal expression of the fundamental nucleus is invariant

with the choice of both the theory of structure, Fτ , and the beam shape functions, Ni. For the

sake of completeness, its components for isotropic structures are expressed in the following:

K τ sij
αα = (λ + 2G)

∫
l

NiNj dy

∫
Ω

Fτ,xFs,x dΩ + G

∫
l

NiNj dy

∫
Ω

Fτ,zFs,z dΩ +

+G

∫
l

Ni,yNj,y dy

∫
Ω

FτFs dΩ

K τ sij
αβ = λ

∫
l

NiNj,y dy

∫
Ω

FτFs,x dΩ + G

∫
l

Ni,yNj dy

∫
Ω

Fτ,xFs dΩ,

(35)

where α, β = x, y, z. It is intended, in fact, that all the nine components of the stiffness nucleus

can be obtained by permutations from Eq. (35). It should be underlined that the components

of the fundamental nucleus in Eq. (35) depend only on the material coefficients, λ and G, the

integrals of the shape functions along the longitudinal axis and the integrals of the expansion

functions above the cross-section domain, being the last two independent from each other.

All the integrals over l and Ω are computed numerically using a Gauss-Legendre scheme. If

not differently specified, a selective reduced integration scheme is adopted for the calculation

of the integrals of the shape functions Ni to attenuate the shear locking effects. Any refined

beam model can be automatically formulated by expanding the fundamental nucleus within

the stiffness matrix on τ , s, i, and j. More details about CUF and the expansion of the

fundamental nuclei can be found in Carrera at al. [45].

1Note that, as in the case of this paper, the use of 3D constitutive relations does not entail Poisson locking
if higher-order kinematics are employed on the cross-section, see [35, 45].
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Figure 4: L-shaped beam geometry.

4 Numerical results

A number of static analyses are included in this section to assess the validity of the mapping

techniques on HLE models. The numerical results are compared against those from beam,

shell and solid models generated with the commercial software MSC Nastran and, when possi-

ble, those found in the literature. The examples have been selected to show the capabilities of

the present formulation to deal with a wide range of structural problems, including thin-walled

beams, shell-like components, and aerospace structures.

4.1 L-angle beam

An L-section beam is used first to assess the accuracy of the HLE beam theory applied to

curved cross-section geometries. This type of components are extensively used as stiffeners

in many applications, such as wing boxes or civil structures. The section geometry can be

found in Fig. 4, being its characteristics the following: the total height, h, is equal to 20 mm;

both vertical and horizontal flanges are as long as h1 = 15 mm; the thickness, t, is equal to

2 mm; the radius of curvature is r = 5 mm. The total length of the beam is 1 m, which

means a slenderness ratio, L/h, of 50. The characteristics of the material are the ones of a

typical aluminum alloy for aerospace applications with Young modulus, E, equal to 75 GPa,

and Poisson ratio, ν = 0.33. A clamped-free configuration was selected for the assessment

and a point force of F = −50 N of magnitude in the z-direction was applied at the tip section

in correspondence of point E (see Fig. 4).

Table 1 reports the results in terms of displacements and stresses of the L-angle beam.

Displacements on the three directions are calculated at the upper corner of the top flange

at the tip section (Point A in Fig. 4), whereas longitudinal, σyy and shear stresses, σyz and

σxy, are measured at different points of the cross-section (Points B, C and D in in Fig. 4)

at y = 0.2 m. Classical analytical solutions of this structural problem have been obtained
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accounting for bending, shear, torsion and secondary warping. The displacements shown

in the first row of Table 1 have been calculated using the Euler-Bernoulli beam theory [1]

accounting for the bending effects. The contribution of the deflection due to shear pappears

in the second row and the contribution of torsion is included in the third row. The theory of

the warping torsion of Vlasov [46] has been recalled in the present assessment to include the

restrained warping. According to it, the torsional angle, θ, is described along the beam axis

by the following differential equation:

EJω
d4θ

dy4
−GJt

d2θ

dy2
= my, (36)

where EJω is the warping stiffness, GJt is the torsion stiffness and my is the distributed

torsion moment along the beam. One may notice that the influence of the shear deflection

on the displacement solutions is relatively small due to the moderately high slenderness ratio

of the beam under study. The contribution of the secondary warping to the longitudinal

displacement, uy, and the stress solutions is negligible in this case due to the cross-sectional

geometry of the L-angle beam considered and therefore it has not been included in Table

1. The longitudinal and shear stresses have been computed utilizing the well-known Navier

and Grashof’s formulas for bending, respectively. Finally, the St. Venant theory [47] has

been employed for the computation of the shear stress distribution over the cross-section due

to torsion. Common 1D, 2D and 3D finite element solutions obtained with the commercial

software MSC Nastran [48] are also included as references (rows 4 to 6). CBEAM two-node

beam elements, QUAD4 four-node plate elements and HEXA8 eight-node brick elements are

used respectively for the reference solutions. All the Nastran models included in this work

have been built as a result of convergence analyses so as to allow fair comparison (also in

terms of DOFs) with the refined beam models proposed.

Rows 7 to 12 of Table 1 show the solutions of the HLE models from the 3rd (HL3) to

the 8th (HL8) expansion orders. The beam model developed for this case of study consists

of 20 four-node Lagrange-type elements along the axis. The cross-section has been generated

employing three Legendre-type expansion domains: one for the curved segment and one for

each flange. The mapping technique here adopted allows to capture the exact geometry of the

curved segment, avoiding to introduce any error due to the discretization. The FEM meshing

procedure is shown in Fig. 5(a) and the cross-section domain distribution in Fig. 5(b). Unlike

LE and thanks to the capabilities of HLE (see Carrera et al. [42]), the expansion order is set

as an input that can be increased up to a desired accuracy without varying the longitudinal

mesh or the cross-sectional domain distribution. For the sake of clarity, the displacement field

of a single Legendre-type expansion domain of third order (HL3) is reported in the following
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Figure 5: L-shape beam model.

Model ux × 102 m uy × 104 m uz × 101 m σyy × 10−8 Pa σyz × 10−6 Pa σxy × 10−6 Pa DOFs
Point A, y = L Point B, y = 0.2 m Point C, y = 0.2 m Point D, y = 0.2 m

Analytical solutions
bending 9.029 -6.474 -1.388 1.869 - -
+ shear 9.029 -6.472 -1.389 1.869 -1.542 -0.375
+ torsion 9.051 -6.456 -1.419 1.869 7.434 8.601

MSC Nastran models
CBEAM 9.074 -6.474 -1.399 1.869 - - 120
QUAD4 9.148 -8.684 -1.431 1.893 8.057 9.266 43750
HEXA8 9.055 -6.449 -1.419 1.874 7.546 8.701 128000

HLE beam models
HL3 9.000 -6.412 -1.412 1.916 7.367 8.337 5124
HL4 9.003 -6.414 -1.413 1.889 7.356 8.225 7503
HL5 9.003 -6.414 -1.413 1.892 7.408 8.475 10431
HL6 9.003 -6.414 -1.413 1.891 7.460 8.417 13908
HL7 9.003 -6.414 -1.413 1.890 7.535 8.624 17934
HL8 9.003 -6.413 -1.413 1.891 7.563 8.596 22509

Table 1: Results of displacements and stresses of the L-shape beam.

and in accordance with Eq. (1):

u(x, y, z) = F1(x, z) u1(y) + F2(x, z) u2(y) + F3(x, z) u3(y) + F4(x, z) u4(y) +

F5(x, z) u5(y) + F6(x, z) u6(y) + F7(x, z) u7(y) + F8(x, z) u8(y) +

F9(x, z) u9(y) + F10(x, z) u10(y) + F11(x, z) u11(y) + F12(x, z) u12(y).

(37)

When the cross-section of the model accounts for multi-domain expansions, as in the present

case, the beam kinematics are obtained by imposing continuity of the generalized displace-

ments opportunely at the common vertex and sides of the domains, see Fig. 5(b). Obviously,

the number of degrees of freedom increases as the cross-section domain distribution is refined.

Moreover, in this analysis case the MITC (Mixed Interpolation of Tensorial Components)

approach has been used for the HLE models to compute the shear stresses. This formula-

tion is based on the assumed interpolation of the shear components of the stress tensor and

its implementation on CUF models as well as its numerical performances when applied to

higher-order theories are presented in Carrera et al. [49].

In view of the results obtained for the L-angle beam, the following remarks can be made:

• The classical analytical solutions serve as a good reference for this assessment due to
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the relatively high thickness of the beam walls considered. As a consequence, the beam

model of Nastran perform reasonably well for the present load case. The closeness of

these solutions to the solid model of Nastran support this statement.

• The results of the HLE mapped beam models are convergent both in terms of displace-

ments and stresses already for the fourth-order model (HL4). The HLE solutions are

in good agreement with the analytical results, being the accuracy of the proposed 1D

model comparable to the shell and solid Nastran models. In comparison with the Nas-

tran models, the use of the HL4 beam model implies a reduction of 82.8 % of degrees

of freedom for the shell model, and up to 94.1 % for the solid one.

• The transverse shear stress values of HLE models slightly oscillate around the reference

solutions as the order of expansion increases. It is well-known that the same behaviour

can be observed when performing convergence analysis with classical finite element

codes. The reason is that weak-form formulations are energetically coherent (and con-

vergent from the integral standpoint), but the solution in one point can be (locally) not

accurate. This aspect is further investigated in the next section, where the convergence

of the present models is investigated in energy error.

4.2 Scordelis-Lo roof

The Scordelis-Lo problem, also known as barrel vault, deals with a cylindrical shell structure

that is usually used in civil engineering. It is considered part of the shell obstacle course

problems, defined in Belytschko et al. [50], and, for many years, it has become a standard test

for the assessment of finite element formulations. The essential mechanical and geometrical

characteristics of the problem have been extensively described in the literature (see Bathe

and Dvorkin [51], Zienkiewi and Taylor [52] or McNeal and Harder [53]) and they can be

found in Fig. 6. The test is a membrane dominated problem and it generally serves to

evaluate the ability of shell elements to deal with complex membrane states of stress. In

this paper, on the other hand, the Scordelis-Lo roof problem is employed to demonstrate the

higher-order capabilities of the present HLE beam theories applied to curved structures. The

roof structure is supported on diaphragms on both curved edges (the displacements along x

and z directions are constrained) and is free on the straight ones. The shell is loaded by its

own weight, modelled as a force per area unit of -90 N/m2 in the z direction. The vertical

displacement at the midpoint of the free edges (point A) is used to assess the convergence of

the different formulations presented in this work.

The scope of this test is to assess the present high-order 1D formulations in capturing

complex behaviours that usually require the use of 2D and 3D elements. The refined 1D

elements employed make use of curved expansions to represent the exact geometry of the

cross-section. Third-order polynomials have been employed to parameterize the section into

the mapping functions. Figure 7 (a) shows the finite element distribution along the y-axis of

the beam. Two different finite element models are tested: Lagrange-type and Legendre-type
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Figure 7: Mesh and HLE cross-section expansions used on the Scordelis-Lo roof test.

1D shape functions Ni. In the former one, the convergence of the solutions are sought by

increasing both the number of elements and the polynomial order of the shape functions. On

the other hand, the Legendre-type formulation has been used to develop hierarchical models.

In this case, only one single element is employed along the longitudinal axis of the beam and

the order is increased by following a pure p-refinement scheme. The cross-section surface has

been modelled using 2 HLE curved expansion domains, as shown in Fig. 7 (b). In this paper,

the penalty method is employed to apply the boundary conditions for all analysis cases.

The theoretical value for the vertical displacement quoted in the original paper of Scordelis

and Lo [54] is −0.3086 m, although most finite elements models tested in the literature

converge to a slightly lower value. In the present study, the solutions tend to converge

to a value of −0.3079. Table 2 shows the solutions obtained by Lagrange-class HLE beam

elements. Linear B2, quadratic B3 and cubic B4 finite elements are employed in configurations

of 2, 4, 6 and 10 elements along the y-axis. Table 3 quotes the HLE results obtained by

using Legendre-type 1D finite elements and they are referred to as P2 (quadratic) to P6

(sixth-order), depending on the polynomial space dimension. The use of Legendre-class beam

elements together with HLE section expansions allows to develop fully hierarchical models for

the beam analysis. Orders 2 to 8 are included for the cross-section expansions. Figures 8, 9

and 10 show the converge rates of the different models in terms of norm of the energy error
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# of B2 elements # of B3 elements # of B4 elements

1D model 2 4 6 10 2 4 6 10 2 4 6 10
Scordelis-Lo [54] uz = -0.3086 m

HL2 -0.0218 -0.0274 -0.0285 -0.0292 -0.0293 -0.0296 -0.0295 -0.0295 -0.0295 -0.0219 -0.0295 -0.0295
HL3 -0.2263 -0.2495 -0.2502 -0.2505 -0.2545 -0.2509 -0.2507 -0.2506 -0.2504 -0.2506 -0.2506 -0.2506
HL4 -0.2695 -0.3039 -0.3057 -0.3069 -0.3115 -0.3077 -0.3075 -0.3075 -0.3070 -0.3075 -0.3075 -0.3075
HL5 -0.2711 -0.3045 -0.3060 -0.3072 -0.3118 -0.3080 -0.3078 -0.3078 -0.3072 -0.3078 -0.3078 -0.3078
HL6 -0.2710 -0.3044 -0.3059 -0.3072 -0.3117 -0.3080 -0.3078 -0.3078 -0.3072 -0.3077 -0.3077 -0.3077
HL7 -0.2711 -0.3045 -0.3060 -0.3073 -0.3118 -0.3080 -0.3078 -0.3078 -0.3072 -0.3078 -0.3078 -0.3078
HL8 -0.2711 -0.3046 -0.3061 -0.3073 -0.3119 -0.3081 -0.3079 -0.3079 -0.3073 -0.3079 -0.3079 -0.3079

Table 2: Scordelis-Lo roof displacements at point A for Lagrange-type 1D finite elements.
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Figure 8: Convergence of the solution versus the HLE beam theory order with fixed 1D finite
element mesh. Scordelis-Lo roof.

while varying the polynomial order and the number of elements. It is possible to see that

convergence is reached quickly both for Lagrange and Legendre finite elements. Obviously,

the higher the order of the elements, the faster the convergence is. Regarding the cross-

section polynomial expansions, the study confirms that at least a four-order HL4 expansion

is required to capture accurately the deformation of the section under the proposed load case.

Having in mind that the parametrization of the surfaces has been conducted through cubic

mapping functions, these results seem to be coherent for the authors.

The results presented in this study are compared against others from the literature in

Table 4. Nastran shell and solid finite element solutions (QUAD2, QUAD4, QUAD8, HEXA8,

HEX20 and HEX20R) quoted in MacNeal and Harder [53] are included, together with Koiter

and Naghdi model solutions from the work of Chinosi et al. [55] and MITC hierarchical shell

elements from Cinefra et al. [56]. To complete the assessment, MITC beam element solutions

of HLE are also included in the table. Finally, Fig. 11 shows the deformed of the Scordelis-Lo

roof from the present HL5 model with a distribution of 10 Lagrange-type beam elements.
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a fixed theory order (HL5). Scordelis-Lo roof.

order: P2 P3 P4 P5 P6
Scordelis-Lo [54] uz = -0.3086 m

HL2 -0.0256 -0.0292 -0.0295 -0.0294 -0.0295
HL3 -0.2342 -0.2470 -0.2517 -0.2510 -0.2506
HL4 -0.2849 -0.3030 -0.3086 -0.3078 -0.3073
HL5 -0.2859 -0.3038 -0.3090 -0.3082 -0.3076
HL6 -0.2858 -0.3038 -0.3089 -0.3081 -0.3075
HL7 -0.2859 -0.3038 -0.3090 -0.3082 -0.3076
HL8 -0.2860 -0.3039 -0.3091 -0.3082 -0.3077

Table 3: Scordelis-Lo roof displacements at point A using one single Legendre-type 1D finite
element.

2D and 3D elements 1D HL5 model

Mesh 4x4 6x6 8x8 10x10 13x13 Mesh 1 2 4 10
QUAD2 [53] 0.652 0.765 0.837 0.879 - B2 - 0.879 0.987 0.996
QUAD4 [53] 1.029 0.998 0.988 0.984 - B3 - 1.010 0.998 0.997
QUAD8 [53] 0.964 0.982 0.977 0.976 - B4 - 0.995 0.997 0.997
HEXA8 [53] 1.007 0.992 0.985 - - P3 0.984 - - -
HEX20 [53] 0.253 0.577 0.796 - - P4 1.001 - - -
HEX20(R) [53] 0.948 0.983 0.979 - - P5 0.999 - - -
Koiter [55] 0.957 - - 0.977 0.980 MITC2 - 0.879 0.987 0.996
Naghdi [55] 0.957 - - 0.978 0.982 MITC3 - 1.010 0.998 0.997
MITC LD4 [56] 0.957 - - 0.978 0.982 MITC4 - 0.995 0.997 0.997

Table 4: Normalized vertical displacements, u/uref , found in the literature for the Scordelis-Lo
roof problem against those of the HL5 beam model. uref = -0.3086 m [54].
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Figure 11: Scordelis-Lo roof deformed obtained through the use of 1D elements with curved
high-order expansions (HL5 model).
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4.3 Annular cross-section beam

A clamped-clamped annular cross-section beam is now considered. This problem is similar

to the well-known pinched cylinder test, also included in the aforementioned obstacle course

for shell elements [50] to assess their capabilities in dealing with inextensional bending and

complex states of membrane strain. Nevertheless, in order to allow for a straight comparison

of the present method with other already published CUF solutions [45], the proposed analysis

case differs from the original one in [50] and only one point load is applied instead of two

opposite forces. The diameter of the cylinder, d, is equal to 2 m, and the thickness, t, is

equal to 0.02 m. The length of the structure, L, is equal to 20 m. An isotropic material was

used, with E = 75 GPa and ν = 0.33. The cylinder is clamped at both edges and a point

load Fz is applied at the top of the middle section. The force is parallel to the z -axis and

its magnitude is equal to 5 × 106 N. Ten four-node Lagrange-class beam elements (B4) are

used for the longitudinal mesh, as shown in Fig. 12 (a). The cross-section surface has been

generated using only two expansion domains, see Fig. 12 (b). The high-order polynomials

employed to map the geometry allow the section domains to adopt semi-circular shapes.

Table 5 shows the results of the vertical displacements at the loaded point. The HLE

solutions are compared against others from classic, Taylor-based and shell models presented

in the book of Carrera et al. [45]. TE results are included from the 1st (N=1) to the 12th order

(N=12). A shell model has been created using the commercial software MSC Nastran and it

is used as a reference. Both beam models converge to the shell solution with similar rates,

being the computational efforts reduced in all cases. These models are capable to capture

the high in-plane deformation of the mid section thanks to the use of high expansion orders.

Fig. 13 shows the deformed of that section for some of the cases. It is possible to see how

the deformation of the section domains becomes bigger as the expansion order of the HLE

models increases.
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Theory uz [m] DOFs
Classical models [45]

EBBT -0,046 155
TBT -0,053 155
Taylor-based models, TE [45]
N=1 -0,053 279
N=2 -0,052 558
N=3 -0,114 930
N=4 -0,229 1395
N=5 -0,335 1953
N=6 -0,386 2604
N=7 -0,486 3348
N=8 -0,535 4185
N=9 -0,564 5115
N=10 -0,584 6138
N=11 -0,597 7254
N=12 -0,606 8463

HLE models
HL1 -0,077 372
HL2 -0,043 930
HL3 -0,065 1488
HL4 -0,073 2232
HL5 -0,090 3162
HL6 -0,389 4278
HL7 -0,531 5580
HL8 -0,603 7068
MSC Nastran shell model [45]
QUAD4 -0,670 49500

Table 5: Vertical displacement, uz, at the loaded point of the annular cross-section beam.
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Figure 14: Representation of the wing.

4.4 Wing structure

A benchmark wing is accounted for the last assessment. Two different configurations are

considered: a monocoque wing structure and a semi-monocoque wing with spars and stringers.

The airfoil chosen for this study is a NACA 2415, with a cord equal to 1 m. The thickness of

the structural elements of the wing is 3 mm for the skin panels and 5 mm for the webs of both

spars, when included. The wing is 6 m long and presents a clamped-free configuration. The

structure is completely made of an aluminum alloy with the following characteristics: elastic

modulus (E) equals to 75 GPa and Poisson ratio (ν) equals to 0.33. A single load with a

magnitude of F = −3000N , is applied along the z -direction at 25 % of the cord at the lower

surface at y = 4 m.

Figure 14 shows a 3D representation of the monocoque structure of the wing with respect

to the global coordinate frame. The longitudinal 1D finite element mesh consist of 10 four-

node Lagrange-type B4 elements. Taking advantage of the mapping techniques, the modelling

of the wing section have been performed by employing only five expansion domains, as shown
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Model uz × 103 m σyy × 10−6 Pa σyz × 10−6 Pa DOFs
Point A, y = L Point A, y = 1 m Point B, y = 1 m

MSC Nastran solid model
HEXA8 -85.52 38.40 -43.46 395280

Hierarchical Legendre Expansions, 10 B4
HL2 -33.06 16.54 -60.38 2325
HL3 -83.38 37.68 -41.98 3720
HL4 -84.15 38.50 -43.81 5580
HL5 -84.76 38.55 -44.98 7905
HL6 -84.46 38.47 -44.38 10695
HL7 -84.29 38.44 -41.82 13950
HL8 -84.26 38.50 -41.81 17670

Hierarchical Legendre Expansions, 10 MITC4
HL4 -84.15 38.50 -46.21 5580
HL8 -84.26 39.82 -44.40 17670

Table 6: Results of displacements and stresses for the monocoque wing.

in Fig. 15, with no loss of precision in the geometrical approximation.

Table 6 quotes the results of displacements and stresses. Point A is placed in the section

coordinates [0.282394, 0.093267], whereas Point B corresponds to the leading edge [0, 0],

see Fig. 15. A solid Nastran model has been included for comparison purposes. MITC4

beam models, developed in [49], have been also used to assess the solutions. The solutions of

displacements and normal stresses show a good agreement with the ones obtained through the

solid model as the polynomial order of the theory increases. Although shear stress results are

quite close to the solid ones, with a maximum difference of the 3.8 % for the HL8, they can

be improved by employing MITC4 beam elements instead of standard Lagrange-class ones.

Finally, Fig. 16 shows the deformed of the loaded section of the wing for the solid and HL8

models.

As the final example, a complete semi-monocoque wing that includes longitudinal rein-

HL8

Solid

undeformed

Figure 16: Deformations of the loaded section of the monocoque wing.
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Figure 17: Component Wise modelling using curved cross-section domains.

forcements (spars and stiffeners) is considered in the study. This kind of structures have been

widely assessed in the domain of CUF by employing a Component-Wise (CW) approach, for

example [39, 36, 37]. According to the CW methodology, all the components of the structure

(e.g., spar, stringers, ribs, panels, etc.) are modelled by means of a CUF beam model making

use of one or more expansion domains, and then assembled together at the cross-sectional level

by opportunely imposing continuity of the displacements. In this way, each component of the

structure is characterized by the same kinematics (i.e., same finite element) and the coupling

between them is more straightforward and mathematically coherent if compared to classical

FEM methods. In fact, no artificial constraints and fictitious links between the components

are employed in CW methodology (see Carrera et al. [57]). Figure 17 shows the modelling

procedure of HLE models through the CW approach. In this representation, it is possible to

see how the use of mapping techniques on the cross-section allow to optimize the expansion

domain distribution by employing large curved sub-domains, for example on the skin panels.

The displacements and stress solutions are shown in Table 7. The verification points over

the cross-section are illustrated in Fig. 18, whereas their location along the axis is specified

in the table. As for the previous assessment, the same load is applied at Point A. Results

obtained through classic, TE and LE models in Carrera and Pagani [58] are also included for

comparison purposes. Legendre-class and MITC beam element solutions are also shown for

completeness. To assess these results, a solid model has been generated in the MSC Nastran

software with a sufficient refined mesh that assures convergent results. Finally, the deformed

of the tip section is plotted in Fig. 19 for some of these models. From these results, it is

possible to state that:

• For both wing cases, HLE models show convergent solutions that are in good agreement

with the solid ones used as references. Moreover, when compared against other refined

beam models, CW models based on LE and HLE clearly overcome the performance of

classic and TE models, which are not capable of detecting local phenomena and the

stress distribution of complex structures.
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Figure 18: Verification points on the wing cross-section.
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Figure 19: Tip cross-section deformation of the reinforced wing.

• The higher-order expansions employed in HLE models allow them to capture complex

deformation states such as bending, torsion, distorsion and in-plane warping, with the

same accuracy as solid element models (see Fig. 16 and 19).

• Regarding the 1D FEM discretization, the novel hierarchical Legendre elements have

demonstrated to be an interesting option when straight slender structures are consid-

ered, being capable to obtain highly accurate results with a substantial reduction of the

number of degrees of freedom. Still, MITC-based beam elements are the most reliable

if accurate stress distributions are desired.

5 Conclusions

This paper has discussed the use of advanced mapping techniques in the domain of higher-

order one-dimensional structural theories based on the Carrera Unified Formulation (CUF).

By using Legendre-like expansions of the beam kinematics, a unified finite element method

has been developed straightforwardly. Arbitrary curved cross-section geometries have been

taken into account accurately by employing the blending functions method.

Several structural problems aiming at verifying the enhanced characteristics of the present

beam model have been addressed. These assessments include an L-shaped beam, the Scordelis-

Lo roof problem, a pinched cylinder, and a wing structure for aerospace applications. The

analyses have highlighted clearly three major points:

• Hierarchical Legendre Expansion (HLE) beam models based on CUF provide accurate

solutions, both in terms of displacement and stress components, for all the problems
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Mesh Model uz × 103 m σyy × 10−6 Pa σyz × 10−6 Pa DOFs
Point B, y = L Point C, y = 0 Point D, y = L/2

MSC Nastran solid model
HEXA8 -56.966 -19.051 -3.338 1279653
10 B4 Classic models [58]

EBBM -57.519 -6.648 - 84
TBM -57.563 -6.647 -0.314 140

Taylor Expansions, TE [58]
N=2 -55.664 -6.988 -0.339 504
N=4 -56.401 -4.705 -2.099 1260
N=5 -56.553 -5.308 -2.391 1764
N=6 -56.610 -5.754 -2.470 2352
N=7 -56.707 -6.881 -2.848 3024
N=8 -56.731 -6.807 -2.908 3780

CW Lagrange Expansions, LE [58]
LE -56.462 -16.999 -3.182 22200

CW Hierarchical Legendre Expansions, HLE
HL3 -56.776 -22.133 -2.763 37944
HL4 -56.579 -21.651 -3.141 58218
HL5 -56.420 -20.476 -3.319 84165
HL6 -56.427 -20.410 -3.341 115785

10 MITC4 HL3 -56.777 -22.133 -2.765 37944
HL4 -56.578 -21.648 -3.143 58218
HL5 -56.419 -20.474 -3.303 84165
HL6 -56.427 -20.410 -3.325 115785

1 P5 HL4 -55.105 -19.766 -3.175 11268
HL5 -54.925 -19.280 -3.314 16290
HL6 -54.929 -19.257 -3.333 22410

1 P8 HL4 -56.229 -20.182 -2.442 16902
HL5 -56.069 -19.292 -2.600 24435
HL6 -56.075 -19.215 -2.625 33615

Table 7: Results of displacements and stresses of the reinforced wing.
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considered. HLE elements represent an excellent alternative to the state-of-the-art 2D

and 3D finite elements, because of their efficiency and physical consistency.

• Blending functions method is effective when employed on the cross-section domain for

the description of curved and distorted boundaries. Thanks to this method, geometric

accurate and refined beam models can be implemented with relative ease.

• In the provided methodology, the description of the cross-section domain is fixed and

the accuracy is controlled by the polynomial order of the theory. As a consequence,

there is no need to perform iterative refinements for increasing the kinematics and the

geometrical accuracy with a considerable saving of modelling times.

The proposed mapping technique enables the efficient analysis of a broad class of struc-

tures regardless of the geometrical complexity of the cross-section. In addition, the non-local

expansion capabilities of the beam model make it possible to obtain the complete state of

stress of the structure of thin-walled beams and shell-like structures for different kinds of

boundary conditions. The results of this research provide good confidence for future exten-

sion to global/local and multi-scale analysis of composite structures.
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