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Fast and Lightweight Rate Control for Onboard
Predictive Coding of Hyperspectral Images

Diego Valsesia, and Enrico Magli

Abstract—Predictive coding is attractive for compression of
hyperspecral images onboard of spacecrafts in light of the ex-
cellent rate-distortion performance and low complexity of recent
schemes. In this letter we propose a rate control algorithm and
integrate it in a lossy extension to the CCSDS-123 lossless com-
pression recommendation. The proposed rate algorithm overhauls
our previous scheme by being orders of magnitude faster and
simpler to implement, while still providing the same accuracy in
terms of output rate and comparable or better image quality.

Keywords—Rate control, predictive coding, hyperspectral images

I. INTRODUCTION

Hyperspectral imaging from space-borne spectrometers has
a multitude of applications, such as terrain analysis, material
identification, military surveillance, etc. The ever growing
spectral and spatial resolution of such instruments poses chal-
lenges in handling such wealth of information. In particular,
onboard compression is of paramount importance to overcome
the limited downlink bandwidth. This is a very active area
of research as it poses peculiar challenges, not encountered
elsewhere. In fact, onboard compression algorithms face strict
complexity limitations due to constraints on the payload hard-
ware. Several solutions based on different techniques have
been proposed, such as low-complexity spatial [1] and spectral
transforms [2], distributed source coding [3], compressed sens-
ing [4], [5], and predictive coding [6]–[8]. Predictive coding is
one of the most popular solutions, as it enables low-complexity,
high-throughput solutions, and excellent rate-distortion per-
formance. One of the most recent recommendations by the
Consultative Committee for Space Data Systems (CCSDS) is
a lossless compression algorithm based on predictive coding
[9] and an extension to lossy compression is ongoing. Lossy
predictive coding is typically operated in the so-called near-
lossless mode, where the maximum absolute error on the
reconstructed pixels is bounded by a constant. However, near-
lossless compression has some drawbacks, the most notable
being a variable output rate dependent on the image content. In
our previous works [10], [11] we showed that it is possible to
perform simultaneous rate and quality control with a complex-
ity compatible with resources available onboard of spacecrafts.
In this letter, we propose a significantly improved rate control
algorithm with respect to [10]. The main contribution is that
the new algorithm is extremely fast and lightweight with
respect to [10] and this allows mainly to i) save hardware
resources that could be dedicated to other purposes (or not used
thus saving power), compared e.g. with the solution in [11]
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which requires a dedicated board, running in parallel to the
compressor; ii) enable very high throughput implementations,
while the original algorithm may have caused bottlenecks
in such scenarios because of some complex rate-distortion
optimization operations. We test the proposed algorithm by
extending the CCSDS-123 recommendation, but the method is
general and can be applied to any predictive encoder.

II. RELATED WORK

This section reviews the rate control algorithm originally
proposed in [10] and further developed in [11]. The goal
of the algorithm is to control the output rate of a predic-
tive encoder of hyperspectral and multispectral images, under
low complexity and memory constraints. To be best of our
knowledge this is the only work on rate control for onboard
predictive coding. However rate control algorithms are often
used either onground [12] or onboard [13] in transform coding
schemes. The algorithm in [10] selects quantizers operating on
the prediction errors in predefined spatial and spectral regions.
The rate control algorithm works on a slice-by-slice basis,
where we call “slice” a predefined number of lines with all
their spectral channels. Each band of each slice is divided into
nonoverlapping 16 × 16 blocks. The rate control algorithm
assigns a quantization step size for each of the blocks in each
spectral band in order to meet the target rate with the lowest
distortion. This is done via a two-stage process consisting of:
• Training stage: unquantized prediction residuals in each

block are modeled as realizations of independent and
identically distributed Laplacian random variables. The
sample variance is estimated in order to predict the
rate as function of the quantization step size. The rate
function is stored in a lookup table (LUT) as it is too
complex to implement directly.

• Optimization stage: a greedy optimization algorithm is
employed to select the quantization step sizes that allow
achieving the target rate with the lowest distortion.

The training stage requires to run the predictor twice for
each slice, once to estimate the variance of the unquantized
prediction residuals, then one more time in order to perform
the actual coding which also quantizes the residuals with the
step sizes computed by the rate controller. This dual prediction
stage can be performed in series to the coding process, as in
the original algorithm, or in parallel, as in [11], by having an
independent module that works ahead of the coding process.

Furthermore, the algorithm measures the actual rate pro-
duced by encoding the slice with the computed quantization
step sizes and uses this information to update the target rate
for the next slices. This mode of operation has been shown to



IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2

A   A   A   A   A   A   B B B B B C

Predict 
pixel

&
Compute 
residual Quantize &

Entropy encode

Store
in buffer

Compute
buffer median

Compute
median of
medians

Store
in buffer

Store
in buffer

Compute
next Q

A B C D

A   A   A   A   A   A   B B B B B C

A   A   A   A   A   A   B B B B B D
...

z=1

z=2

z=N
bands

Compressed data Q for next line

L pixels 1 pixel 1 pixel

Fig. 1. High-level diagram of proposed method. A different number of
operations are performed depending on the current pixel position. Pixel in
position D (last pixel of the current line in the last band) performs all the
operations of pixels A, B or C and runs the rate control procedure to determine
the quantization step size for the next line.

effectively correct inaccuracies in the model without reducing
the rate-distortion performance.

In [14] the authors simplify the rate control algorithm by
eliminating the rate-distortion optimization phase and working
on line-by-line basis instead of blocks. This idea is also used
in this work, which however solves major drawbacks of the
method proposed in [14]. The method proposed in this letter
improves over [10], [11], [14] by introducing the following
novel points:
• choosing just one quantization step size per spectral

line, which avoids complex rate-distortion optimization
algorithms (also present in [14]);

• on-the-fly estimation of the residual statistics, which
avoids running the predictor twice, with significant gains
in terms of speed;

• simpler arithmetic that does not involve squaring oper-
ations to compute the statistical parameters;

• simpler arithmetic speeding up access to the rate LUT;
• reduced number of LUT lookups.

III. PROPOSED METHOD

In this section we explain the main novel contributions of
this work. The goal is to design a lightweight rate control
algorithm that is capable of providing accurate control of the
output rate of a predictive encoder while being, at the same
time, simple to implement in hardware, and fast in order to
enable high-throughput implementations. Fig. 1 shows a high-
level diagram of the proposed method and its interaction with
a predictive encoder. The main operations are described in the
following subsections. In the following the term spectral line
refers to a row of pixels with all its spectral channels. It can
be noticed that the algorithm proceeds one spectral line at a
time and that different operations are performed depending on
the spatial location of the pixel under coding. For the sake of
simplicity, the following description assumes that the pixels are
read and coded in band-interleaved-by-line (BIL) order. The
objective of the algorithm is to encode the current spectral line,
thus producing entropy-coded versions of quantized prediction

residuals and to decide the quantization step size to be used
to encode next spectral line. A single quantization step size Q
is used for each spectral line.

A. Prediction and parameter estimation from residuals

The use of a single quantization step size Q of a uniform
scalar quantizer for each spectral line is at the core of the
algorithm. It is necessary to have a statistical characterization
of the prediction residuals in each band in order to choose
the value of Q yielding the desired target rate. The statistics
of prediction residuals of adjacent spectral lines are highly
correlated and therefore it is possible to use the statistics of
the current spectral line as a prediction for the statistics of next
line. We assume that the unquantized prediction residuals are
realizations of i.i.d. Laplacian random variables. The Laplacian
distribution (fR(x) = Λ

2 e
−Λ|x|) is characterized by a single

parameter Λ . Notice that the Λ parameter is also related
to the variance σ2 through Λ =

√
2
σ2 . The magnitude of a

Laplace random variable follows an exponential distribution
of parameter Λ, and the sample mean is the unbiased max-
imum likelihood estimator of Λ−1. However, this is not a
robust estimator [15]. Replacing it with the sample median
has several advantages, including robustness to outliers (the
residuals are far from perfectly i.i.d. Laplacian), and simpler
arithmetic (avoids division by the length Ncols of the line).
Computing the exact median of the prediction residuals of an
entire row would require a sorting operation of complexity
O(Ncols logNcols). A good approximation can be obtained
with the median of medians algorithm [16] which breaks
down a row into non-overlapping subsets of L contiguous
residuals. The median of each subset is computed and then
the median of medians provides an approximation of the true
median of the row. This approach reduces the complexity
to O

(
Ncols logL+ Ncols

L log Ncols

L

)
. The parameter L is set

as a compromise of several objectives. In fact, L should
be large enough that the approximation to the median by
means of the median of median is satisfactory. However, a
large L increases the complexity of the calculation. A good
design should approximately balance the complexity of the
local median operations (each costing O(L logL)) and the
complexity of the final median performed at the end of the row
(costing O(Ncols

L log Ncols

L )) for the typical width of an image,
so that throughput is maximized by the absence of bottlenecks.

The coding and estimation jobs proceed together. Following
the notation of Fig. 1, pixels of type A entropy-code the current
quantized prediction residual of the current pixel but also store
in a temporary buffer the unquantized residual. The encoder
reaches a type-B pixel after L − 1 type-A pixels and the
temporary buffer holds the unquantized prediction residuals
for that subset of type-A pixels. After the computation of the
unquantized residual for the type-B pixel, the median of the
buffer is computed and stored in the buffer of medians. This
sequence of L−1 pixels of type A terminated by a type B pixel
is repeated until the end of the row. The row is terminated by
a pixel of type C, which computes both the median for the
local subset of pixels and the median of medians. Each band
z stores its own median of medians mz . The last pixel in the
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last band is of type D and it uses all the medians of medians
to run the procedure to determine the quantization step size to
be used for the next spectral line.

There are several important differences with the algorithms
in [10], [14]. In particular, a major shortcoming of those
algorithms is the need to run the predictor twice, once for
estimation of the statistics and once for the actual coding.
Moreover, they adopt a more computationally expensive ap-
proach to parameter estimation by computing the sample vari-
ance σ2 of the unquantized prediction residuals, and then using
it to compute Λ. This process requires some computational
effort when performed with integer arithmetic and is subject
to numerical approximations.

B. Assignment of quantization step size
The procedure that assigns the quantization step sizes is

extremely lightweight in order to provide the fastest imple-
mentation possible. It takes as input the set {mz}Nbands

z=1 of the
medians of medians for all the bands. The procedure uses a
rate LUT to find the odd integer-valued quantization step size
1 ≤ Q ≤ Qmax such that:

Q = arg min
q∈{1,3,5,...,Qmax}

∣∣∣∣∣
Nbands∑
z=1

R(mz, q)−Rtarget

∣∣∣∣∣ ,
i.e., the one providing a total rate for the line and all its
spectral channels closest to the target rate Rtarget. The rate
LUT implements the following formula (from [10]), which
is the entropy of an i.i.d. Laplacian source quantized with a
uniform scalar quantizer of step size Q and parameter Λ = 1

m .

R(m,Q) = −
(

1− e−
Q
2m

)
log2

(
1− e−

Q
2m

)
+

− e−
Q
2m

log(2)

log

(
1− e−

Q
m

2

)
+

Q

2m
− Q

m
(

1− e−Q
m

)
 (1)

The proposed method uses two variables, namely m and
δ = (Q − 1)/2, to index the rate LUT that is treated
as a two-dimensional matrix storing the values of R(m,Q)
precomputed using Eq.(1). Notice that using δ instead of Q
as index for the LUT is slightly more efficient (one fewer bit
of dynamic range). This technique is faster than the one used
in [10] which uses a single-variable indexing. Indeed the rate
depends only on the product ΛQ and the parameter estimation
algorithm of [10] directly returns Λ. However, computing the
correct position in the table in such manner is inefficient
because it requires to perform a multiplication every time Q
or Λ are changed. Moreover, the rate function was sampled at
predefined values of ΛQ and a suitable mapping of the product
ΛQ provided at runtime with the closest in the LUT had to be
computed. The proposed method overcomes such limitations
by exploiting the fact that m is discrete-valued and with limited
dynamic range as well as not requiring any index calculation.

A further optimization is included to minimize the number
of LUT lookups. The procedure that determines the quantiza-
tion step size for the following spectral line uses the last chosen
quantization step size as a prediction for the next one. Then

Algorithm 1 Coding and Rate Control
Inputs:

Rtarget, L,Q
max

Initialize:
Q1 = 1

for y = 1, . . . , Nrows do
for z = 1, . . . , Nbands do

i← 0
for x = 1, . . . , Ncols do

ŝx,y,z ← prediction of pixel sx,y,z
Residual rx,y,z ← ŝx,y,z − sx,y,z
if x mod L = L− 1 then

m̃i ← median(rx,y,z, . . . , rx−L+1,y,z)
i← i+ 1

end if
Quantized r̂x,y,z ← sgn(rx,y,z) ·

⌊
|rx,y,z|+ Q−1

2

Qy

⌋
end for
mz ← median(m̃0, . . . , m̃(Nrows/L))

end for
Measure actual output rate
Update Rtarget using Eq. (14) from [10]
Qy+1 ← Qy
R←

∑Nbands

z=1 R(mz, Qy+1)
if R ≥ Rtarget then

while R ≥ Rtarget AND Qy+1 < Qmax do
Rold ← R
Qy+1 ← Qy+1 + 2

R←
∑Nbands

z=1 R(mz, Qy+1)
end while
if |R−Rtarget| > |Rold −Rtarget| then

Qy+1 ← Qy+1 − 2
end if

else
while R ≤ Rtarget AND Qy+1 > 1 do

Rold ← R
Qy+1 ← Qy+1 − 2

R←
∑Nbands

z=1 R(mz, Qy+1)
end while
if |R−Rtarget| > |Rold −Rtarget| then

Qy+1 ← Qy+1 + 2
end if

end if
end for

it checks if such quantization step size yields a rate above or
below the target, consequently deciding whether to increase
it or decrease it. Since the quantization step sizes used in
successive spectral lines are expected to be close, this strategy
minimizes the expected number of times the memory storing
the LUT is queried to compute R(m,Q), thus reducing latency.

As a final remark, in a tradeoff between efficiency and
available features, some characteristics of the algorithm in [10]
have been traded for increased speed. In particular, the original
algorithm performed simultaneous control of rate and quality
on image blocks, thus enabling the definition of spatial as
well as spectral regions of interest with different rate-distortion
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TABLE I. TEST IMAGES

Image Rows Columns Bands P
Bit Entropy

depth (bpp)
AVIRIS SC0 RAW 512 680 224 15 16 12.62

AIRS GRAN9 135 90 1501 10 14 11.16
CASI-T0477F06-NUC 1225 406 72 2 16 10.65
CRISM-SC167-NUC 510 640 545 3 16 10.54

LANDSAT MOUNTAIN 1024 1024 6 5 8 6.33
MODIS-MOD01DAY 2030 1354 14 2 12 7.99

TABLE II. ACCURACY OF RATE CONTROL

Image Method 0.5 bpp 1 bpp 2 bpp 3 bpp 4 bpp
AVIRIS Proposed 0.501 1.002 2.002 3.001 4.001

SC0 RAW [10] 0.510 1.005 2.000 2.990 3.998
AIRS Proposed 0.502 1.006 2.001 2.993 4.021

GRAN9 [10] 0.487 0.987 1.967 2.942 3.930
CASI Proposed 0.501 1.001 2.001 3.001 4.000

T0477F06-NUC [10] 0.402 1.142 2.011 3.007 4.007
CRISM Proposed 0.501 1.003 2.004 3.001 4.002

SC167-NUC [10] 0.508 1.003 1.993 2.986 3.992
LANDSAT Proposed 0.502 1.001 2.001 3.002 3.736(∗)

MOUNTAIN [10] 0.435 0.898 2.008 2.838 3.736(∗)

MODIS Proposed 0.508 1.002 2.005 3.006 4.005
MOD01DAY [10] 0.478 1.018 2.016 3.008 4.006

(*): lossless

policies. This feature is partially lost in the faster version as a
single quantization step size is used for all the bands of a line.

The full algorithm, including both estimation of the statistics
of residuals and computation of the quantization step sizes, is
reported in Algorithm 1. Notice that the initialization of Q1

may be different from Q1 = 1 and, depending on the particular
target rate, a higher Q might be appropriate.

IV. EXPERIMENTAL RESULTS

In this section we study the performance of the proposed
rate control method. The algorithm is integrated into a lossy
extension of CCSDS-123 where the prediction residuals are
quantized with a uniform scalar quantizer and entropy coded
with a range encoder [17] (refer to [10] for more details).
Since the focus of this paper is on the rate control algorithm
we omit comparisons with other compression algorithms (e.g.
M-CALIC [18]) which do not provide rate control on a
predictive encoder. We refer the reader to [19] for comparisons
between M-CALIC and CCSDS-123 in near-lossless and rate-
controlled (using [10]) mode, where it is shown that the latter
typically outperforms the former. All tests are conducted with
the feedback version of the rate control algorithm, with the
rate adjusted using Eq. (14) from [10] (parameters τ = 5,
|I| = 1). The rate LUT stores the value of R(m,Q) multiplied
by 1000 as an integer for the following domains of the input
variables: m ∈ [0, 1023], Q = {1, 3, 5, . . . , 511}. The choice
of Qmax = 511 allows the algorithm to reach very low rates (if
needed according to the statistics of the residuals and the target
rate). Choosing a lower value of Qmax is possible but should
not conflict with the target rate otherwise the rate controller
will be unable to reach the desired rate. A lower value that is
compatible with the target rate has the effect of a constraint on
the maximum error and can often improve quality, as shown
in [10] and in Table V, by forbidding excessive quantization in
presence of inaccurate statistics of the residuals. The LUT uses
16-bit integers to represent the rate values, thus requiring 512
kB of storage in a software implementation. Notice that this

TABLE III. IMAGE QUALITY

Image Rate Proposed [10]
SNR (dB) MAD SNR (dB) MAD

AVIRIS SC0 RAW

0.5 bpp 39.09 255 39.99 255
1 bpp 44.60 255 47.50 228
2 bpp 57.79 25 57.90 25
3 bpp 64.10 25 63.27 25
4 bpp 71.13 3 71.07 3

AIRS GRAN9

0.5 bpp 38.12 255 46.41 53
1 bpp 53.86 18 54.93 10
2 bpp 63.04 4 63.31 4
3 bpp 67.28 3 69.64 1
4 bpp 79.25 1 76.78 1

CASI-T0477F06-NUC

0.5 bpp 32.37 255 27.32 255
1 bpp 41.69 49 38.12 77
2 bpp 50.92 7 49.45 13
3 bpp 57.64 4 56.51 8
4 bpp 62.03 3 62.89 3

CRISM-SC167-NUC

0.5 bpp 37.53 144 36.95 84
1 bpp 44.14 48 44.17 27
2 bpp 52.59 7 52.67 9
3 bpp 59.37 3 58.43 4
4 bpp 64.25 2 64.67 4

LANDSAT MOUNTAIN

0.5 bpp 21.06 41 19.90 35
1 bpp 27.13 10 22.88 58
2 bpp 34.17 3 32.94 5
3 bpp 39.37 3 38.49 4
4 bpp ∞ 0 ∞ 0

MODIS-MOD01DAY

0.5 bpp 30.72 255 29.51 255
1 bpp 38.70 230 37.38 214
2 bpp 49.59 134 49.12 68
3 bpp 58.66 17 58.22 28
4 bpp 63.90 70 66.09 10

requirement could be reduced by subsampling the available
quantization step sizes (trading some accuracy in the rate) or
choosing a Qmax lower than 511 (if the expected target rate
is high). The median estimation uses subsets of length L = 17
pixels. This value was chosen to approximately equalize the
complexity of the median computed at type-B pixels and the
median computed at type-C pixels as explained in Sec. III.
However, results in terms of image quality and rate are not
very sensitive to the choice of this parameter.

All the following tests were performed on images extracted
from the corpus1 defined by the Multispectral and Hyper-
spectral Data Compression (MHDC) Working Group of the
CCSDS for performance evaluation and testing of compression
algorithms. We will use an ultraspectral image from the AIRS
sensor, hyperspectral images from the AVIRIS, CRISM and
CASI sensors and multispectral images from Landsat and
MODIS sensors. Table I reports the test images and their
dimensions, bit-depth and entropy, as well as the number of
bands P used by the predictor.

The first test is concerned with the accuracy of the rate
control algorithm in terms of output rate. Table II reports
the output rate for various target rates. As can be seen, the
proposed algorithm achieves remarkable accuracy for all target
rates and for both the hyperspectral and multispectral cases.

Table III shows a comparison with the algorithm in [10] in
terms of SNR defined as

SNR = 10 log10

∑Npixel

i=1 s2
i∑Npixel

i=1 (si − s̃i)2

being si and s̃i the i-th pixel in the original image and in
the decoded image, respectively, and in terms of Maximum

1Available at http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData

http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData
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TABLE IV. AVERAGE LUT LOOKUPS PER MEGAPIXEL AND RATE CONTROL RUNTIME (SEC.)

Image Algorithm 0.5 bpp 1 bpp 2 bpp 3 bpp 4 bpp
Lookups Time Lookups Time Lookups Time Lookups Time Lookups Time

AVIRIS SC0 RAW
Proposed 13,485 0.0031 6,250 0.0026 3,412 0.0016 3,349 0.0019 3,553 0.0017

[10] 615,567 11.8774 371,675 7.4340 257,333 5.4265 235,065 5.0735 240,722 5.9426

AIRS GRAN9 Proposed 79,506 0.0024 24,198 0.0008 23,704 0.0008 24,115 0.0008 22,058 0.0008
[10] 369,916 1.5309 288,757 1.3689 273,748 1.5250 276,991 1.6256 242,905 1.0447

CASI-T0477F06-NUC
Proposed 8,149 0.0015 5,503 0.0015 5,125 0.0015 5,626 0.0014 5,001 0.0014

[10] 767,673 6.7921 738,115 4.6862 576,056 3.7174 386,564 2.5567 362,650 2.4206

CRISM-SC167-NUC
Proposed 5,863 0.0022 3,713 0.0017 3,321 0.0015 3,398 0.0013 3,165 0.0015

[10] 389,630 33.4665 282,061 20.1007 237,631 16.1764 234,546 16.8475 240,384 17.0099

LANDSAT MOUNTAIN
Proposed 2,418 0.0007 2,175 0.0009 2,244 0.0009 1,957 0.0009 1,951 0.0007

[10] 382,011 0.4723 274,881 0.3482 246,634 0.3190 234,428 0.2991 209,264 0.2672

MODIS-MOD01DAY
Proposed 5,559 0.0024 5,155 0.0023 3,445 0.0020 1,729 0.0019 1,893 0.0019

[10] 1,461,049 11.8816 1,179,269 8.2141 990,538 6.8846 1,337,818 9.3214 606,623 3.9860

TABLE V. IMPACT OF MAXIMUM ERROR CONSTRAINT

Image Qmax Rate (bpp) SNR (dB) MAD
511 1.002 44.60 255

AVIRIS SC0 RAW 127 1.002 49.26 63
1 BPP TARGET 63 1.001 50.36 31

11 2.656 63.25 5

Absolute Distortion (MAD), the largest deviation of a recon-
structed pixel from the original one. It can be noticed that
the image quality is comparable with the one produced by the
original algorithm, which provided a significant improvement
over some low-complexity transform coding approaches [2].
Remarkably, the proposed algorithm sometimes even outper-
forms the reference despite its lower complexity.

In order to test the increased efficiency of the algorithm
we measured the total number of lookups to the rate LUT
needed by the rate control algorithm and compared it with
the algorithm in [10]. Table IV shows the number of lookups
normalized by the image size in millions of pixels. Notice that
the proposed algorithm improves over the old one by reducing
the number of lookups by roughly two orders of magnitude.
Notice that the number of lookups is directly related to the
total number of operations performed by the rate controller,
implying that a speedup of at least two orders of magnitude
is expected. In order to confirm this we also measured the
total execution time for the portion of code responsible for rate
control, also reported in Table IV, under the Time column. The
results confirm that the proposed algorithm is several orders
of magnitude faster, needing milliseconds when the original
required seconds to perform its operations.

V. CONCLUSION

We proposed a novel rate control algorithm for predictive
coding of hyperspectral images onboard of spacecrafts and
tested it by integrating it into a lossy extension of the CCSDS-
123 recommendation. The proposed algorithm loses some
flexibility with respect to [10] in terms of spatial modulation of
quantization step sizes, but it is orders of magnitude faster en-
abling simpler and higher throughput implementations, while
providing comparable or better image quality.
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