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Abstract

Graphene nanoribbons (GNRs) can be added as �llers in polymer matrix com-

posites for enhancing their thermo-mechanical properties. In the present study,

we focus on the e�ect of chemical and geometrical characteristics of GNRs on

the thermal conduction properties of composite materials. Con�gurations con-

sisting of single and triple GNRs are here considered as representative building

blocks of larger �ller networks. In particular, GNRs with di�erent length, rela-

tive orientation and number of cross-linkers are investigated. Based on results

obtained by Reverse Non-equilibrium Molecular Dynamics simulations, we re-

port correlations relating thermal conductivity and thermal boundary resistance

of GNRs with their geometrical and chemical characteristics. These e�ects in

turn a�ect the overall thermal transmittance of graphene based networks. In

the broader context of e�ective medium theory, such results could be bene�cial

to predict the thermal transport properties of devices made of polymer matrix

composites, which currently �nd application in energy, automotive, aerospace,

electronics, sporting goods, and infrastructure industries.
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1. Introduction

Polymer matrix composites (PMCs) have been manufactured to improve

the e�ective thermal, mechanical and electrical properties of pure polymeric

materials [1, 2, 3]. The bene�ts of PMCs, such as light weight, ease of pro-

cess, high strength, durability, and multifunctionality, have been clearly shown

in aerospace applications. In the near future, PMCs are going to be largely

exploited in the exponentially rising industry of �exible electronics, as well as

in the energy, automotive, aerospace, sporting goods and infrastructure sectors

[4, 5, 6].

Among the various �ller materials of current engineering interest, carbon based

�llers (e.g. graphene, graphene nanoribbons carbon nanotubes) have received

increasing attention due to their superior properties, for instance high electrical

conductivity, shielding ability, transparency, �exibility, electromagnetic interfer-

ence, low thermal expansion, mechanical sti�ness [7, 8], large thermal conduc-

tivity [9, 10], and selective mass transport [11, 12, 13]. Instead, the low thermal

conductivities of common polymers (≈ 0.2 - 0.5 W/mK) have been always a

technological limit for industrial applications such as heat exchangers, thermal

energy storage systems, electronic systems and machinery [14, 15]. Therefore,

the introduction of highly conductive �llers in thermally insulating polymers is

expected to enhance the overall thermal and mechanical properties of the re-

sulting polymer matrix composites by some orders of magnitude [4, 16, 17].

However, two main limitations are currently slowing down a more widespread

exploitation of such carbon based composites: a weak �ber-matrix adhesion,

which typically leads to a progressive degradation of the initial properties; poor

out-of-plane properties, due to the anisotropic nature of nanotube or graphene

nano�llers. Furthermore, experimental observations and molecular simulations

of carbon based networks reveal e�ective thermal performance lower than ex-

pected by traditional e�ective medium theories [18]. In fact, researchers have

realized that, along with the properties of the matrix and the �ller, other fac-

tors are signi�cantly a�ecting the overall thermal properties of PMCs, such as
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�ller distribution (morphology), �ller size, �ller-matrix and �ller-�ller interfacial

characteristics.

While it is now accepted that the Kapitza resistance at the �ller-�ller and �ller-

polymer interfaces presents a major barrier to conductive thermal transport in

graphene based polymer matrix composites, a mechanistic understanding of the

thermal transport across such interfaces is still missing [18, 19, 20]. Kapitza

resistance in PMCs mainly arises from two e�ects, namely the scattering at the

interface between two phases, and the di�erences between phonon spectra of dif-

ferent phases. An important factor in thermal transport of carbon based PMCs

is the heat transport through percolation chains of �llers [21]. Carbon based

�llers often fail to form such a network and, as a result, the e�ective thermal

conductivity of the composite material is lower than expected [22].

A possible way to overcome this limitation is cross-linking graphene sheets,

e.g. by means of covalent carbon bonds or short polymer chains. In fact,

surface chemical functionalization is considered as a promising route to a�ect

thermal, mechanical and electrical properties of composite materials made of

carbon based �llers. Hence, the functionalization of �bers has emerged as a

particularly interesting �eld of research, to improve both durable multifunc-

tionality and out-of-plane characteristics of carbon based materials [23]. For

example, Worsley et al. [24] presented a method for synthesizing graphene aero-

gels with high electrical conductivities by introducing covalent carbon bonding

between contiguous graphene sheets. According to previous studies, even a

limited cross-linking could signi�cantly reduce the thermal boundary resistance

between carbon based nanostructures, therefore improving the overall thermal

transmittance of the composite material [25, 26].

Due to the di�culties encountered in the experimental characterization of graphene

based structures with atomistic precision, computational studies have been

widely conducted to analyze thermal transport across graphene interfaces. For

example, Mortazavi et al. [27] investigated the thermal boundary resistance

(Rk) between graphene and epoxy matrix by means of molecular dynamics sim-

ulations; their results showed that Rk varies from 3.14 × 10−8 to 9.26 × 10−8
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m2K/W depending on the interfacial pressure and cross-linking percentage.

Konatham and Striolo [28], instead, studied the thermal boundary resistance

at the graphene-oil interface. Their MD simulations revealed that Rk ranges

from 3.7 × 10−9 to 4 × 10−8 m2K/W according to the number of functional

groups on the edges of graphene sheets.

In the present study, Reverse Non-equilibrium Molecular Dynamics (RNEMD)

simulations are performed to clarify the contribution of �ller size and �ller-

�ller interfacial thermal resistance (also known as Kapitza resistance or thermal

boundary resistance, Rk) to the thermal transmittance within PMCs. Such re-

sults are then adopted in the broader context of e�ective medium theory, in

order to provide design guidelines for the thermal transport properties of poly-

mer matrix composites. The multiscale simulation approach discussed in this

work may �nd application in energy, automotive, aerospace, electronics, sport-

ing goods and infrastructure industries.

2. Methods

Both functionalization and geometry of carbon nanotube [25, 29], graphene

or graphene nanoribbon (GNR) [30, 31] �llers are responsible of thermal bound-

ary resistance at �ller-�ller and �ller-matrix interfaces. In this work, the atten-

tion is focused on the e�ect of functionalization and geometry (relative orien-

tation, size of �llers) on the Rk at the �ller-�ller interface, being one of the

most critical bottlenecks in the heat transport through the composites. As a

case study, here we focus the analyses on GNR �llers. In fact, the thermal

conductance per unit width of GNR is higher than graphene one [32] and, thus,

GNRs are ideal �llers for composite materials with enhanced heat dissipation

properties. However, because of the similar nature of heat transfer also through

graphene or carbon nanotube networks, the obtained design guidelines may be

considered as generally valid also with other carbon �llers.

Con�gurations consisting of single and triple GNRs are therefore considered as
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representative building blocks of larger networks of �llers within PMCs. The

thermal transport through armchair-edged graphene nanoribbons is then in-

vestigated by reverse non-equilibrium molecular dynamics simulations. More

speci�cally, thermal conductivity and thermal boundary resistance are com-

puted in the considered GNR con�gurations.

The adopted simulation approach is based on Muller-Plathe's method, where a

�xed heat �ux is forced from the center of the simulated systems to its extrem-

ities, in order to induce a temperature gradient through the system and thus

extract thermal properties [33]. The heat �ux is generated by continuously ex-

changing the velocity of the "coldest" atom in the hot slab (vcold, red region in

Fig. 1a) with the one of the "hottest" atom in the cold slabs (vhot, blue regions

in Fig. 1a). Hence, an arti�cial energy �ux is forced from cold to hot regions

by the Muller-Plathe's algorithm. Since energy is conserved in the simulated

systems at the steady state, an opposite physical heat �ux (jx) is then induced

from hot to cold regions by heat conduction (Fig. 1a), namely

jx =
1

2tAyz

∑
transfers

m

2
(v2hot − v2cold), (1)

where t is the simulation time, Ayz is the cross-sectional area perpendicular to

the heat �ux direction and m is the atomic mass.

In the molecular dynamics (MD) simulations herein carried out, the adaptive

intermolecular reactive empirical bond order (AIREBO) potential implemented

in the LAMMPS package is used to describe the reactive, covalent bonding inter-

actions; whereas the nonbonded interactions between GNRs, which are mainly

due to van der Waals interactions, are modeled by Lennard-Jones (L-J) poten-

tial [34, 35]. The adopted force �eld is particularly tailored to simulate thermal

properties of graphene in a broad variety of con�gurations [36, 37, 38].

After an initial energy minimization, the MD system is thermalized in the canon-

ical ensemble (NVT). Thereafter, the heat �ux is imposed through the system

by Muller-Plathe's method, and the system is simulated in the micro-canonical

ensemble (NVE) with a time step of 0.5 fs. After that steady temperature pro-

�le and heat �ux are achieved in the system, simulations are continued up to 2
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Figure 1: Con�gurations of GNR �llers studied by atomistic RNEMD simulations. (a) Simu-

lated heat �ux through a GNR for evaluating the thermal conductivity of GNRs with di�erent

length. (b) Schematic of a triple GNR setup, simulated for investigating the thermal boundary

resistance between contiguous GNRs.

ns to guarantee reliable statistics.

GNRs with di�erent lengths (i.e. Lx = 20, 60, 100, 1000 nm) and �xed width

(Ly ∼= 2.4 nm) are simulated to study the e�ect of size on thermal conductivity.

In addition, a novel setup for calculating thermal boundary resistance between

GNRs using RNEMD method is considered (i.e. triple GNRs), as sketched in

Fig. 1b. In this setup, each GNR consists of 1968 carbon atoms and it has 2.4

nm × 20 nm dimensions, being Ly equal to the perimeter of an armchair (5,5)

single wall carbon nanotube. On the one hand, the horizontal overlap (a) and

the vertical normal distance (h) between each pair of GNRs are �xed to a =

4 nm and h = 0.25 nm to investigate the e�ect of cross-linkers on Rk, because

of the geometry of carbon cross-linkers. On the other hand, a and h are freely

varied when the e�ect of relative orientation between �llers on Rk is explored.
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3. Results

3.1. Thermal conductivity

Thermal conductivity of GNRs with lengths ranging from 20 to 1000 nm and

width �xed to 2.4 nm is then calculated by MD simulations. These dimensions

are in the range of both modeling [39, 40] and experimental [41, 42] studies in

the literature, which recently focused the attention on graphene nanoribbons

with sub-10-nanometers widths. The simulation box is divided into slabs along

x-axis, with an approximate linear density of 3 slabs per nanometer. As an

example, the 20 nm long GNR is divided into 60 slabs, where the �rst and the

last slabs are the cold regions in the RNEMD procedure, while the 31st is the

hot one. Therefore, a temperature gradient (dT/dx ) is generated in the system

(see Fig. 2), and the thermal conductivity (λ) can be calculated according to

Fourier's law:

λ = − jx
dT
dx

. (2)

In Fig. 2, the non-linearity of the temperature pro�le at the cold and hot regions

is due to �nite size e�ects [43], which eventually manifest when the nanostruc-

ture length is smaller than the phonon mean free path (MFP) [44].

The results reported in Fig. 3 show that thermal conductivity increases with

GNR length, at least up to 1000 nm. In particular, λ ∼ Lαx with a best �tted

exponent α ∼= 0.48, which falls within the range predicted by similar studies

on graphene and carbon nanotubes [37, 45, 46]. In all simulated cases, thermal

conductivity converged to a constant value within the elapsed simulation time:

for instance, the convergence of thermal conductivity for the GNR with 1000

nm length is presented in Fig. A1.

Simulation results predict that the GNR length has a signi�cant e�ect on its

thermal conductivity, at least for the considered sub-micrometer lengths. This

implies that the thermal conductivity of nanometric GNR �llers does not cor-

respond to the bulk thermal conductivity of graphene, being limited by the
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Figure 2: Temperature distribution along a 20 nm GNR during a RNEMD simulation.

Figure 3: Thermal conductivity (λ) variation for GNRs with di�erent lengths.

�nite length of the nanostructure [44]. In fact, the experimental phonon mean

free path in graphene is relatively long (775 nm) [47]. Therefore, the thermal

conductivity of �llers increases with size for lengths much smaller than MFP,

whereas it is expected to be size-invariant for larger dimensions [14, 48, 49, 50].
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3.2. Kapitza resistance

The thermal transport through a network of carbon �llers is typically lim-

ited by the poor conduction between adjacent �llers, rather than by the thermal

conduction of �ller themselves. In fact, the carbon �llers used to enhance the

thermal properties of polymeric materials often fail to form interconnected net-

works, and thus their interactions are only governed by weak van der Waals

forces [51]. Consequently, the heat transfer is reduced at the �ller-�ller inter-

face, and thus the resulting thermal conductivity enhancement of the composite

is limited.

Since C-C covalent bonds have an interaction potential two orders of magnitude

higher than the nonbonded interactions between graphene sheets (i.e., 5.9 eV

vs. 50 meV [52, 53]), �ller-�ller phonon transfer can be generally improved by

introducing chemical bonds at their interface. Among other examples in the lit-

erature [54, 55], Tian and colleagues experimentally demonstrated the positive

impact of covalent interconnects between single-walled carbon nanotubes on the

overall electric conduction of a thin �lm nanotube network [56]. Starting from

these experimental evidences, a di�erent amount of carbon cross-linkers between

graphene nanoribbons is here simulated as illustrative case. Such covalent joints

are the shortest chemically possible between GNRs, therefore guaranteeing the

best heat transfer performances through the GNR network.

The thermal boundary resistance between a couple of adjacent �llers can be

then evaluated as

Rk = −∆T

jx
, (3)

namely as the temperature jump (∆T ) related to the speci�c heat �ux (jx)

transmitted through the interface [57]. In this study, equation 3 is adopted to

calculate the thermal boundary resistance at various GNR-GNR interfaces from

∆T and jx mechanistically measured by the molecular dynamics experiments.

Let us consider the triple GNRs setup depicted in Fig. 1b, which consists of

3 GNRs located in the left (GNRL), middle (GNRM) and right (GNRR) part

of the nanostructure, as a representative building block of GNR networks in
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PMCs. In Fig. 4, ∆T0C,L and ∆T3C,L are the temperature discontinuities at

the GNRL-GNRM interface with 0 and 3 carbon cross-linkers, respectively. On

the other hand, ∆T0C,R and ∆T3C,R indicate the temperature jumps at GNRM-

GNRR interface with 0 and 3 cross-linkers, respectively.

Knowing the imposed heat �ux and resulting temperature distribution along

Figure 4: Temperature pro�le associated with triple GNRs setups with 0 (gray triangles) and

3 (black circles) cross-linkers.

the triple GNR setup, equation 3 allows computing the thermal boundary re-

sistance in triple GNRs setups with NCL = 0, 1, 2 and 3 cross-linkers between

each pair of overlapping GNRs. To allow a better comparison with experiments,

the number of cross-linkers can be normalized by the interface extension (a ·h),

namely ρCL = NCL

a·h , where ρCL is de�ned as the surface density of cross-linkers.

Simulation results show that, by introducing 3 cross-linkers, the imposed heat

�ux by RNEMD method increases from 4×1011 to 5.3×1011 W/m2 respect the

case without covalent bonds between GNRs, while the resulting temperature

jump at the interface decreases from 360 to 180 K.
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According to equation 3, these trends lead to a decreasing thermal boundary re-

sistance between overlapping GNRs (Fig. 5), namely from 9.0× 10−10 m2K/W

(0 joints) to 3.4×10−10 m2K/W (3 joints). Note that, in all the simulated cases,

Kapitza resistances converge to constant values within the elapsed simulation

time (see for example Fig. A2). Hence, results show that thermal boundary

resistance between overlapping GNRs tends to decrease with ρCL, namely with

the surface density of cross-linkers. Similarly to previous studies [25, 29], the

decreasing trend of Rk can be accurately (R2=0.98) �tted by a semi-empirical

exponential equation:

Rk = Rk,ρ0 exp (αρρCL) , (4)

where Rk,ρ0 = 9.0 × 10−10 m2K/W is the Kapitza resistance with no cross-

linkers, and αρ=-3.09 nm2 (see Fig. 5).

The relation between thermal boundary resistance and overlap or normal dis-

Figure 5: Thermal boundary resistance (Rk) at the GNR-GNR interface as a function of the

surface density (ρCL) of cross-linkers between contiguous nanoribbons. Molecular dynamics

results (black dots) are �tted by the correlation reported in equation 4 (black curve).

tance at �ber-�ber interface is then investigated, to obtain a more mechanistic

derivation of Rk,ρ0 . In detail, the e�ect of horizontal overlap, a, is studied by

simulations performed over the range 20�80 Å, while keeping a �xed normal

distance between GNRs (h0 = 4 Å) and no cross-linkers. Results in Fig. 6a

show an exponential decrease of Rk,ρ0 with the increasing overlap, because of
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the larger GNR-GNR interface. Moreover, the e�ect of vertical spacing, h, is

studied over the range 2.5�8 Å(constant a0= 40 Å). In this case, results in

Fig. 6b show a direct exponential relation between Rk,ρ0 and h, because of

decreasing nonbonded interactions (and thus energy transport) with larger rel-

ative distances between GNRs. Note that these observations are in qualitative

agreement with previously reported results [31]. To provide a quantitative cor-

relation between Rk,ρ0 and the geometrical characteristics of the GNR network,

the simulation results reported in Fig. 6 are �tted (R2=0.94) in the considered

simulation range by the exponential equation

Rk,ρ0 = Rk,(ρ0,h0,a0) exp [αa (a− a0) + αh (h− h0)] , (5)

where Rk,(ρ0,h0,a0) = 1.55 × 10−9 m2K/W is the Kapitza resistance with no

cross-linkers, reference overlap and normal distance (a0 = 40 Å; h0 = 4 Å),

αa =-0.034 Å-1 and αh =0.451 Å-1.

Figure 6: Thermal boundary resistance (Rk) at the GNR-GNR interface as a function of (a)

horizontal overlap, a, and (b) normal distance, h, between nanoribbons. Molecular dynamics

results (black dots) are �tted by the correlation reported in equation 5 (black curve).

4. Discussion

E�ective medium theory (EMT) is a well-established theoretical framework

for predicting a broad variety of properties of composite materials [58]. Among
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others, electrical, mechanical, optical, and thermal properties of polymer based

composites have been often interpreted by di�erent implementations of EMT

equations, with a good approximation of experimental results [59, 60].

According to Maxwell-Garnett formulation of EMT, the overall thermal con-

ductivity of a composite material depends on the thermal conductivities of its

constituents (matrix and �ller) [58]. In general, the higher is the thermal con-

ductivity of the �ller (e.g. a sole GNR or a network of clustered GNRs), the

higher is the e�ective thermal conductivity of the composite material. Hence,

as the thermal conductivity of the GNR increases with its size (at least in the

range 20�1000 nm), it is expected that also the overall thermal conductivity

of the resulting composite material increases. Furthermore, Kapitza resistance

at the interface between clustered GNRs should also play a signi�cant role in

determining the e�ective thermal conductivity of the composite material.

In order to better quantify the above hypothesis, a modi�ed Maxwell-Garnett

e�ective medium approximation is here considered. This model was �rst in-

troduced by Shahil and Balandin [61] for graphene-polymer composites to take

into account the �ller-matrix Kapitza resistance (RB):

λeff = λp

[
3λm + 2φ(λp − λm)

(3 − φ)λp + λmφ+
RBλmλpφ

H

]
, (6)

where λeff , λp and λm are thermal conductivities of composite, �ller and ma-

trix, respectively. Moreover, φ is the volume fraction of the �ller and H is the

�ller thickness (0.35 nm in case of graphene monolayers). The model in equa-

tion 6 demonstrated good prediction capabilities for volume fractions lower than

15-20% and randomly oriented graphene based �llers [61].

Here, we consider the triple GNRs setup depicted in Fig. 1b as a represen-

tative building block of a �ller network. By approximating the heat pathway

through the �ller as a 1D �ow from the leftmost graphene sheet (GNRL, with

thermal conductivity λL and length Lx,L) to the middle (GNRM, with thermal

conductivity λM and length Lx,M) and �nally to the rightmost one (GNRR, with

thermal conductivity λR and length Lx,R), the e�ective thermal resistance of the

triple GNRs network can be roughly estimated as a series of lumped thermal
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resistances, namely

Lp
λp

=
Lx,L
λL

+Rk,L +
Lx,M
λM

+Rk,R +
Lx,R
λR

. (7)

Clearly, di�erent heat paths within the network may imply di�erent estimates of

the overall thermal resistance of the �ller. In equation 7, Lp is the �ller length,

Rk,L is the GNRL-GNRM Kapitza resistance while Rk,R is the GNRM-GNRR

one. The symmetry of the considered setup leads to Lx = Lx,L = Lx,M = Lx,R

, Rk = Rk,L = Rk,R and λ = λL = λM = λR ; therefore, equation 7 can be

simpli�ed as

λp = λ
3Lx

3Lx + 2λRk
, (8)

by considering the GNR-GNR overlap negligible respect to GNR length (i.e.

Lx � a), which implies Lp ∼= 3Lx.

The correlations found by atomistic experiments are then used to perform sen-

sitivity analyses on the e�ect of GNR length, cross-linkers and relative arrange-

ment on the e�ective thermal conductivity of polymer based composites, at least

for volume fractions below the percolation threshold [62]. The aim is thus to

provide some model-driven design guidelines for the synthesis of novel compos-

ite materials with enhanced thermal properties.

Based on the modi�ed expression for the �ller thermal conductivity in equation

8, the e�ect of GNR-GNR Kapitza resistance on the overall thermal conductiv-

ity of the nanocomposite is �rst studied by equation 6 (see Fig. 7a). In this

analysis, φ ranges from 1% to 15%, while Rk varies from 1 × 10−11 to 1 × 10−8

m2K/W. Moreover, thermal conductivity of graphene (λ) is considered equal to

258 W/mK, which is the value measured by MD simulations for GNRs with 100

nm length, whereas λm = 0.2 W/mK [61, 63] and RB = 3.5 × 10−9 m2K/W

[61] are considered as average values of thermal conductivity and matrix-�ller

Kapitza resistance for the typical polymer matrices adopted in carbon based

composite materials, respectively. Figure 7a highlights that the Rk e�ect on

λeff is negligible for low volume concentrations of �ller, while Rk plays a signif-

icant role on the resulting overall thermal conductivity of the nanocomposites

for higher φ.
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Moreover, thermal conductivities of nanocomposites with �ller sizes ranging

from 20 to 1000 nm and �ller volume fractions from 1% to 15% are evaluated

by equations 6 and 8 and plotted in Fig. 7b, while considering the Rk computed

by MD in the triple GNR setup with no cross-linkers (8.85 × 10−10 m2K/W).

Results in Fig. 7b highlight a strong dependence of λeff with �llers length,

at least with sub-micrometer graphene sheets. However, the absolute values of

λeff may be strongly reduced in experimental conditions, because of the sig-

ni�cant decrease in thermal conductivity driven by defects or vacancies in the

graphene sheets [64, 65].

Finally, the e�ect of cross-linkers and relative arrangement between �llers on

Figure 7: Predicted e�ective thermal conductivity of GNR-polymer nanocomposites. (a)

In�uence of GNR-GNR Kapitza resistance and volume concentration for GNRs with 100 nm

length. (b) In�uence of �ller size and volume concentration, considering a �xed GNR-GNR

Kapitza resistance of 8.85× 10−10 m2K/W.

the e�ective thermal conductivity of polymer based composites is assessed. In

fact, the correlations reported in equations 4 and 5 provide accurate bottom up

values of Rk, which can be then adopted in the EMT model (equations 6 and

8) to estimate λeff with various �ller characteristics. On the one side, Fig. 8a

shows a direct exponential correlation between λeff and the overlap between

GNR �llers (up to 5-fold increases in the considered a range); whereas, a more

moderate correlation between λeff and the density of chemical cross-linkers at
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the GNR-GNR interface is noticed in Fig. 8c (up to 2-fold increases in the

considered ρCL range). On the other side, Fig. 8b depicts a strong inverse ex-

ponential correlation between λeff and the normal distance between contiguous

nano�llers, with λeff decreasing up to 80% of its original value by only limited

variations of h (5 Å).

Note that the calculated λeff are in the range of previously reported values for

polymer matrix composites [66, 67, 68], therefore proving the qualitative valid-

ity of the methodology discussed in this work. Hence, by coupling nanoscale

thermal properties of �ller networks (obtained by atomistic simulations) with

consolidated continuum models, the multiscale approach discussed in this work

may represent an e�ective tool for performing sensitivity analyses on the e�ec-

tive properties of composite materials, as for example reported in Figs. 7 and 8

in case of GNR-polymer composites.

5. Conclusions

Computational materials science and engineering is emerging as a strongly

interdisciplinary research �eld, with promising applications in the �eld of ther-

mal sciences as well. In fact, materials research often needs a close interaction

between experiments and computation to achieve a more fundamental under-

standing of materials properties and their relation to synthesis and processing.

Especially in case of nanotechnology based materials, such as colloidal suspen-

sions or composites �lled by nano�bers, multiscale simulations, machine learning

and data mining techniques have recently paved the way to discovering and de-

signing new materials. In the near future, computational materials science is

expected to lead to the reduction of materials development cost and time, the

faster evolution of new materials into products and even the discovery of new

materials [69].

Thanks to their peculiar light weight, mechanical strength and ease of process,

the market is showing a growing interest for polymer based components in vari-
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Figure 8: E�ect of GNR-GNR relative orientation and functionalization on the e�ective ther-

mal conductivity of polymer based composites. (a) In�uence of GNR-GNR horizontal overlap

and volume concentration of �llers, considering no cross-linkers. (b) In�uence of GNR-GNR

normal distance and volume concentration of �llers, considering no cross-linkers. (c) In�uence

of surface density of cross-linkers at the GNR-GNR interface, considering �xed a = 4 nm,

h = 0.25 nm. In all cases, GNRs have 100 nm length and 2.4 nm width.

ous applications. However, due to the continuous progress in diverse industries,

including energy, automotive, electronics and infrastructure sectors, and the

demand for materials with higher performances, it is of great importance to im-

prove the properties of polymer based composites by using �llers with superior

properties. For instance, polymer based composites would need higher thermal

conductivities in several applications, e.g. in heat exchange and thermal stor-

age devices. To this purpose, nanometric �llers with high thermal conductivity

(e.g. carbon nanotube or graphene) can be introduced in the polymeric matrix.

Nevertheless, apart from the properties of matrix and �ller, size and interfacial

factors may strongly in�uence the overall thermal performance of the resulting

composite material, and therefore should be mechanistically understood.
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In the present work, RNEMD simulations are adopted to investigate the e�ect

of �ller size and thermal boundary resistance on the heat transfer within PMCs.

Single GNR with length varying from 20 to 1000 nm and triple GNRs with ei-

ther di�erent orientation or surface density of cross-linkers have been studied.

Simulation results show that thermal conductivity increases with GNR length,

whereas thermal boundary resistance between overlapping GNRs can be reduced

by either introducing covalent cross-links between �llers or by increasing their

relative overlap and decreasing their normal distance. The reported correlations

between �llers characteristics and their thermal properties allow then to predict

the e�ective thermal transmittance of the network of �llers in the polymer ma-

trix with a bottom up approach.

To analyze the e�ect of each of the latter factors on the overall thermal conduc-

tivity of PMC, simulation results are �nally analyzed in the broader context of

Maxwell-Garnett e�ective medium theory. PMCs with volume concentrations

up to 15% are considered. It has been found that, at high volume concentra-

tions, both GNR size and thermal boundary resistance between GNRs have

signi�cant e�ects on the overall thermal conductivity of PMC.

In conclusion, the multiscale approach and the correlations introduced in this

article to quantitatively link atomistic results with macroscale properties of

composites (i.e. e�ective thermal conductivity) can be adopted for a bottom

up optimization of the thermal properties of �ller networks. The aim is thus

to provide guidelines for the computational discovery and rational design of

nano�llers characteristics, in order to achieve polymer matrix composites with

tunable thermal properties.
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6. Appendix

Figure A1: Convergence of the thermal conductivity of a simulated GNR (Lx =1000 nm)

within the simulation time.

Figure A2: Convergence of thermal boundary resistance at the interface of contiguous GNRs

(a = 4 nm, h = 0.25 nm, no cross-linkers) within the simulation time.
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